JP2004207030A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2004207030A
JP2004207030A JP2002374476A JP2002374476A JP2004207030A JP 2004207030 A JP2004207030 A JP 2004207030A JP 2002374476 A JP2002374476 A JP 2002374476A JP 2002374476 A JP2002374476 A JP 2002374476A JP 2004207030 A JP2004207030 A JP 2004207030A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
load
amount
purge valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002374476A
Other languages
English (en)
Other versions
JP4147936B2 (ja
Inventor
Masaru Okamoto
勝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002374476A priority Critical patent/JP4147936B2/ja
Publication of JP2004207030A publication Critical patent/JP2004207030A/ja
Application granted granted Critical
Publication of JP4147936B2 publication Critical patent/JP4147936B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】外部負荷が増大する場合において、水素不足によって発電電圧が低下する問題を解決し、電池本体へのダメージを防止する。
【解決手段】燃料電池本体2と、燃料電池本体2に水素を供給する水素供給装置7と、燃料電池本体2に空気を供給する空気供給装置7と、燃料電池本体2の水素出口側から排出される水素を水素入口側へと循環させる水素循環ポンプ9と、循環する水素を大気中に放出するパージ弁10とを備える。そして、負荷が増大変化した際に、パージ弁10の開度の増加及び水素循環ポンプ9の回転数の増加を実行することにより、燃料電池本体2の水素入口側と出口側との圧力差を拡大して燃料電池本体2に十分な流量の水素を供給する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池本体に水素及び空気を供給して発電させる燃料電池システムに関し、特に、燃料電池本体で未使用の水素を燃料電池本体の入口側へと循環させる水素循環形式の燃料電池システムに関する。
【0002】
【従来の技術】
燃料電池システムは、燃料電池本体の水素極に水素ガス、空気極に空気をそれぞれ供給して、燃料電池本体において水素と酸素とを電気化学的に反応させて発電電力を得るものである。このような燃料電池システムは、例えば自動車の動力源等としての実用化に大きな期待が寄せられており、現在、実用化に向けての研究開発が盛んに行われている。
【0003】
燃料電池システムに用いられる燃料電池本体としては、特に自動車に搭載する上で好適なものとして、固体高分子タイプの燃料電池本体が知られている。この固体高分子タイプの燃料電池本体は、水素極と空気極との間に膜状の固体高分子が設けられたものであり、この固体高分子膜が水素イオン伝導体として機能するようになっている。この固体高分子タイプの燃料電池本体では、水素極で水素ガスが水素イオンと電子とに分離される反応が起き、空気極で酸素ガスと水素イオンと電子とから水を生成する反応が行われる。このとき、固体高分子膜がイオン伝導体として機能し、水素イオンは固体高分子膜を空気極に向かって移動することになる。
【0004】
ところで、固体高分子膜をイオン伝導体として機能させるためには、この固体高分子膜にある程度の水分を含ませておく必要がある。このため、このような固体高分子タイプの燃料電池本体を用いた燃料電池システムでは、水素ガスを加湿装置により加湿した状態で燃料電池本体に供給することで、燃料電池本体の固体高分子膜を加湿することが一般に行われている。
【0005】
また、固体高分子膜を加湿する上で有効な方法として、燃料電池本体で未使用の水素ガスを、再度燃料電池本体へと循環させて再利用する水素循環形式の燃料電池システムが知られている。この水素循環形式の燃料電池システムでは、燃料電池本体外部に接続した負荷(以下、外部負荷という。)で消費する電力に要する水素量より幾分多めの水素ガスを燃料電池本体の水素極へと供給し、未使用の水素ガスを水素極出口から排出させて、この排水素(以下、循環水素という。)を再度、燃料電池本体の水素極入口へ戻して再利用するようにしている。水素極出口から排出される循環水素は水蒸気を多く含んでいるため、この水蒸気を多く含んだ循環水素が水素タンクからの乾燥している水素に混合されて燃料電池本体の水素極へ供給されることによって、燃料電池本体の固体高分子膜が加湿されることになる。
【0006】
前記の水素循環形式の燃料電池システムでは、外部負荷で消費する電力に要する水素量より幾分多めの水素ガスを燃料電池本体の水素極へと供給するが、これにさらに循環水素が混合されるため、水素極への供給水素流量が発電に必要な水素量よりも多くなる。このとき、発電に必要な水素量だけを水素極に供給した場合には水素極出口付近のセルに効率的に水素が到達しなくなって発電効率が落ちるため、前述のように発電に必要な水素量よりも多い水素ガスを水素極に供給することによって、燃料電池システムの全てのセルでの発電が高効率で行われるようになる。燃料電池システムでは、同様のことが空気極についても言えるため、発電に必要な酸素(空気)量のみを供給するのではなく、少し余分に酸素を空気極に供給するようにしている。このような発電に要する水素(空気)量に対する実際に供給する水素(空気)量の比を原料ストイキ比と通常呼んでいるが、この原料ストイキ比は、前記理由により1以上の最適値に設定されている。
【0007】
しかしながら、前記原料ストイキ比を最適値に設定した場合であっても、外部負荷が急激に増加した場合には、さらに多くの水素及び空気が必要となってくる。このような原料増加変化は、燃料電池電極に到達するまでに時間遅れがあるため、燃料電池電極において過渡的に原料不足が生じ、発電電圧の低下を引き起こす。このように過渡的な原料不足が生じた場合であっても、通常外部負荷は一定電力を取り出そうとするため、前記のように発電電圧が低下すると、一定負荷とするために負荷電流を多く取り出すようになる。負荷電流が多くなると、燃料電池本体の内部抵抗等の作用によって電圧降下が生じ、さらなる電圧低下を招いてしまう。このような悪循環によって、電圧下限値を下回ることとなり、燃料電池本体にダメージを与える可能性がある。このため、燃料電池にて外部負荷を駆動する場合、特に外部負荷が急激に増加する過渡時には、負荷電流と同時に燃料電池電圧を考慮する必要がある。
【0008】
前記過渡時における燃料電池の運転方法としては、燃料電池本体から取り出す負荷電流が所望の軌道になるように、負荷電流取り出し量を制限する方法が知られている(例えば、特許文献1参照。)。
【0009】
【特許文献1】
特開平7−57753号公報
【0010】
【発明が解決しようとする課題】
しかしながら、前記特許文献1のように負荷電流のみを制限する場合でも、運転負荷急増変化時に、原料増加変化の時間遅れによって過渡的に原料不足を生じ、発電電圧の低下を引き起こす場合がある。そして、前述のように外部負荷は、一定負荷を取り出し続けるので、負荷電流が増大し、それがさらに電圧低下を引き起こす。このような電圧低下が顕著な場合には、電圧下限値を下回ることとなり、燃料電池本体にダメージが及ぶおそれがある。
【0011】
前記燃料電池における原料不足を防止するためには、負荷取り出しをゆっくり行うことも考えられるが、負荷取り出しをゆっくり行ったのでは応答性能が悪くなる。逆に、応答性能を上げるために負荷取り出しを急速に行うと、前述のような原料不足を招いてしまうため、応答性能を上げつつ原料不足をも防止するためには、燃料電池本体へ供給する水素及び空気の原料増加変化への応答を過渡的に速くする必要がある。この点において、空気は、燃料電池本体の空気極に対してコンプレッサ或いはブロワ等の空気供給装置で供給されるため、供給流量の調整可能範囲が大きい。したがって、原料ストイキ比を予め高く設定してより多くの空気を燃料電池本体の空気極に供給することによって、過渡変化時に備えることができる。これに対し、水素も原料ストイキ比を予め高く設定することができるが、水素は通常水素タンクから供給されるため、空気のように供給流量の調整可能範囲がさほど大きくない。したがって、水素不足によって燃料電池本体の発電電圧が低下するおそれがある。
【0012】
そこで、本発明は、外部負荷が増大する場合において、水素不足によって発電電圧が低下する問題を解決し、燃料電池本体へのダメージを防止する燃料電池システムを提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る燃料電池システムは、燃料電池本体と、燃料電池本体に水素を供給する水素供給装置と、燃料電池本体に空気を供給する空気供給装置と、燃料電池本体の水素出口側から排出される水素を燃料電池本体の水素入口側へと循環させる水素循環系と、燃料電池本体の水素入口側と出口側との圧力差を調整する圧力差調整手段と、目標負荷値と実際の負荷とが一致するように圧力差調整手段を制御する制御手段とを備える。そして、制御手段が、負荷が増大変化した際に燃料電池本体の水素入口側と水素出口側との圧力差が拡大するように、圧力差調整手段を制御するようにしている。
【0014】
本発明の燃料電池システムでは、負荷が増大変化した際に、制御手段が圧力差調整手段を制御することによって、燃料電池本体の水素入口側と水素出口側との圧力差が過渡的に拡大され、燃料電池本体の水素極を通過する水素流量が過渡的に増加される。そして、目標負荷値と実際の負荷とを一致させて、負荷を目標値通り取れるように制御される。
【0015】
【発明の効果】
本発明に係る燃料電池システムによれば、負荷が増大変化した場合に、燃料電池本体へ供給される水素流量が過渡的に増加するように、制御手段によって圧力差調整手段が制御され、燃料電池本体に十分な流量の水素を供給することができる。したがって、目標応答に沿って負荷を取り出すことができ、燃料電池本体において水素不足による電圧低下が生じる不都合が抑制され、燃料電池本体へのダメージを効果的に防止することができる。
【0016】
【発明の実施の形態】
以下、本発明に係る燃料電池システムの具体的な実施の形態について、図面を参照しながら詳細に説明する。
【0017】
(第1の実施形態)
本発明の第1の実施形態について図1を参照して説明する。この第1の実施形態の燃料電池システム1は、電解質として固体高分子膜を有する固体高分子タイプの燃料電池本体2を備えている。燃料電池本体2は、空気極に供給される空気中の酸素と水素極に供給される水素とを電気化学的に反応させて発電するものである。
【0018】
燃料電池本体2は、空気極入口に、空気供給用配管3を介してコンプレッサ等の空気供給装置4が接続されている。そして、空気供給装置4により流量及び圧力が調整された空気が、空気供給用配管3を通って燃料電池本体2の空気極入口に供給されるようになっている。
【0019】
燃料電池システム1では、空気極入口から供給された空気が全て消費されるわけではなく、消費されずに残った酸素及び空気中の他の成分が排空気として排空気用配管5から排出される。この排空気用配管5は大気開放されており、前記排空気は大気中に放出される。
【0020】
また、燃料電池本体2は、水素極入口に、水素供給用配管6を介して水素供給装置7が接続されている。この水素供給装置7は、詳しい図示は省略するが、例えば水素タンクや流量制御弁等を有しており、目標流量の水素ガス(以下、原料水素という。)を燃料電池本体2の水素極入口側に供給できるようになっている。
【0021】
前記燃料電池システム1は、水素循環型として構成されており、燃料電池本体2での発電に使用されずに燃料電池本体2から排出された排水素(循環水素)の経路となる循環水素用配管8が設けられている。そして、この循環水素用配管8の中途部に水素循環ポンプ9が配設されており、燃料電池本体2から排出された水蒸気を多く含む循環水素が、前記水素循環ポンプ9の駆動によって、循環水素用配管8を通って燃料電池本体2の水素極入口側へと循環され、水素供給装置7から供給される原料水素と合流するようになっている。したがって、燃料電池システム1では、水素供給装置7から供給される原料水素と水蒸気を多く含む循環水素との混合水素が、燃料電池本体2の水素極に供給されることになる。このように、燃料電池システム1では、水蒸気を多く含む循環水素を原料水素と混合して燃料電池本体2の水素極に供給することによって、燃料電池本体2の固体高分子膜を加湿するようにしている。なお、加湿効果を更に良好なものとするために、水素供給装置7の後段に加湿器を別途設置するようにしてもよい。このような加湿器を設置することで、燃料電池本体2の水素極には、加湿器を通過することで加湿された原料水素と循環水素との混合水素が供給されるようになり、燃料電池本体2の固体高分子膜を十分に加湿することができるようになる。
【0022】
また、前記燃料電池システム1には、前記循環水素用配管8内の余剰水素ガスや水蒸気を大気中へ放出するためのパージ弁10が配設された排水素用配管11が循環水素用配管8に分岐して設けられている。
【0023】
そして、燃料電池本体2には、当該燃料電池本体2で発電した電力を消費する外部負荷12が接続されている。具体的には、外部負荷12として例えばインバータが燃料電池本体2に接続され、燃料電池本体2で発電した電力がこのインバータでエネルギ変換されて駆動モータ等へ供給されるようになっている。この駆動モータは、燃料電池システム1を車両に適用した場合には車両走行の動力として使用されることになる。本実施形態では、前記外部負荷12に発電量が設定され、該発電量に基づき燃料電池本体2から負荷が負荷電流として取り出される。
【0024】
燃料電池本体2と外部負荷12との間には、電圧センサ13と負荷電流センサ14とが配設されており、電圧センサ13によって燃料電池本体2における発電電圧が検出され、負荷電流センサ14によって燃料電池本体2から外部負荷12へと供給される負荷電流が検出されるようになっている。
【0025】
また、燃料電池本体2には、該燃料電池本体2の動作温度を検出する温度センサ15が配設されている。燃料電池システム1では、燃料電池本体2における反応時に熱が発生するが、図示を省略する冷却機構によって冷却されるとともに、前記温度センサ15にて燃料電池本体2の動作温度が監視されることによって、最適な温度下での運転が可能とされる。
【0026】
そして、前記構成の燃料電池システム1では、外部負荷12で要求される負荷の変化、特に要求負荷が急に増大した場合に、燃料電池本体2にて水素不足とならないように、負荷変化量に応じて十分な量の水素が燃料電池本体2の水素極に供給されるよう水素流量がコントローラ16にて制御される。このコントローラ16は、CPUやROM、RAM、CPU周辺回路等を備え、これらがバスを介して接続されたマイクロプロセッサ構成を有している。コントローラ16では、CPUがRAMをワークエリアとして利用してROMに格納された制御プログラムを実行することによって、燃料電池システム1全体の動作を制御するようになっており、特に、このコントローラ16は、電圧センサ13により検出された燃料電池本体2の発電電圧と、負荷電流センサ14により検出された負荷電流、すなわち外部負荷12が燃料電池本体2から取り出した負荷電流とに基づいて燃料電池本体2で消費された水素量とともに、不足水素量を算出する。そして、不足水素量を補う水素を燃料電池本体2の水素極に供給するために、水素極の水素入口側と水素出口側とにおける圧力差を一時的に拡大、具体的には水素出口側の圧力を下降させる。このような圧力差の拡大は、パージ弁10の開度の増加又は水素循環ポンプ9の回転数の増加のいずれか一方、或いはこれらの両方を行うことによって実現する。このとき、コントローラ16は、外部負荷12が要求している負荷(目標負荷値)と、実際の負荷とが一致するように、水素極の水素入口側と水素出口側とにおける圧力差を拡大させる。
【0027】
燃料電池システム1では、前述のように、外部負荷12からの要求負荷が急に増大した場合に、前記コントローラ16の制御の下に燃料電池本体2の水素極に供給される水素の流量を増やすことによって、水素不足に起因する燃料電池本体2の電圧低下を防止する。以下、外部負荷12からの要求負荷が増大した場合の動作について、図2のフローチャートを用いて説明する。
【0028】
まず、外部負荷12にて発電量が設定され、この発電量に基づいて、負荷を燃料電池本体2から取り出す軌道(以下、目標軌道という。)が設定される(ステップS1)。そして、前記目標軌道における目標負荷値の変化から負荷変化量を算出する(ステップS2)。
【0029】
次に、前記ステップS2にて算出した負荷変化量が所定量以上であるかどうかを判定する(ステップS3)。負荷変化量が所定量以上である場合は、パージ弁10の開度を増加する処理が実行され(ステップS4)、さらに水素循環ポンプ9の回転数を増加する処理が実行される(ステップS5)。このように、前記ステップS3と前記ステップS4とで、パージ弁10の開度増加と水素循環ポンプ9の回転数増加とを続けて実行することによって、一方の処理において飽和状態となった、例えばパージ弁10の開度を最大にしてもなお水素不足が解消されない等の場合に、他方の処理で補うことによって水素極に供給する水素流量を増やすことができるようになる。したがって、大きな負荷変化にも対応することができるようになり、負荷変化への制御範囲が拡大される。
【0030】
これに対し、負荷変化量が所定量未満である場合は、比較的負荷変化量が小さいため、パージ弁10の開度を増加する処理のみが実行される(ステップS6)。なお、本実施形態では、前記ステップS6にて、パージ弁10の開度を増加する処理のみを行っているが、これは消費電力が少ない手段を選択して実行したためであり、パージ弁10の開度を増加する処理に代えて水素循環ポンプ9の回転数を増加させる処理を実行してもよい。すなわち、前記ステップS6においては、パージ弁10の開度増加、又は水素循環ポンプ9の回転数増加のいずれか一方の処理が実行されるものであればよい。
【0031】
以上の一連の処理を繰り返し行うことによって、外部負荷12からの要求負荷が増大変化した場合であっても、コントローラ16によって水素極の水素入口側と水素出口側とにおける圧力差を一時的に拡大して、燃料電池本体2の水素極に十分な流量の水素を供給することができるようになり、燃料電池本体2における水素不足による電圧の低下を防止することができる。
【0032】
燃料電池システム1では、以上のようにして燃料電池本体2の水素不足による電圧低下が防止されるが、前記ステップS4及び前記ステップS6にて実行されるパージ弁10の開度を増加する処理、及び前記ステップS5にて実行される水素循環ポンプ9の回転数を増加する処理について、以下に示す図3及び図4のフローチャートを用いて詳しく説明する。
【0033】
図3は、燃料電池システム1において、コントローラ16によってパージ弁10の開度を増加させる処理の一例を示すフローチャートである。
【0034】
まず、燃料電池システム1においては、水素供給遅れ時間が算出される(ステップS11)。本実施形態では、予め調べておいた燃料電池システム1における水素供給遅れ時間をコントローラ16に記憶させておく。
【0035】
次に、現在の状態、具体的には前記ステップS3にて負荷変化量を判定した時点で、前記ステップ2にて算出した負荷変化量だけ要求負荷が急に増大変化した場合に不足する水素量を算出する(ステップS12)。本実施形態では、目標負荷値から目標水素流量を算出し、図5に示すように、この目標水素流量に水素流量をステップ変化させた場合の理想値と、ステップS11にて算出した水素供給遅れ時間経過後に水素流量が前記目標水素流量に達する一次遅れ応答した場合との差分(図5中斜線部分)を計算して算出した。
【0036】
そして、前記ステップS12にて算出した不足水素量に応じて、パージ弁10の開度の増加目標値を算出する(ステップS13)。本実施形態では、パージ弁10の開度と水素流量とに関する特性を測定し、関数化してコントローラ16に記憶させておき、該関数を参照して算出した。なお、図6に、ステップS13においてパージ弁10の開度の増加目標値の算出で参照される関数例を示す。
【0037】
最後に、前記ステップS11にて算出した水素供給遅れ時間の分だけ、前記ステップS13にて算出した増加目標値までパージ弁10の開度を増加する(ステップS14)。なお、このとき、燃料電池システム1では、図7に示すように、コントローラ16によって前記目標負荷値と実際の負荷とが一致するように、パージ弁10の開度が増加される。また、前記パージ弁10の開度増加とともに、同図に示す水素供給装置7の流量制御弁7aの開度を操作するよう構成しても良い。流量制御弁7aは、水素供給装置7の水素タンク7bに接続され、該水素タンク7bから燃料電池本体2の水素極へ供給される水素流量を調整するものである。このとき、コントローラ16は、目標負荷値に必要な水素流量を算出し、これに応じて流量制御弁7aの開度を制御する。
【0038】
そして、燃料電池システム1では、以上の一連の処理が繰り返し行われる。
【0039】
次に、水素循環ポンプ9の回転数を増加する処理について説明する。図4は、燃料電池システム1において、コントローラ16によって水素循環ポンプ9の回転数を増加させる処理の一例を示すフローチャートである。
【0040】
まず、燃料電池システム1においては、水素供給遅れ時間が算出される(ステップS21)。本実施形態では、前記ステップS11と同様に、予め調べておいた水素供給遅れ時間をコントローラ16に記録させておく。次に、前記ステップS12と同様に、不足する水素量を算出する(ステップS22)。
【0041】
そして、前記ステップS22にて算出した不足水素量に応じて、水素循環ポンプ9の回転数の増加目標値を算出する(ステップS23)。本実施形態では、水素循環ポンプ9の回転数と水素流量とに関する特性を測定し、関数化してコントローラ16に記憶させておき、該関数を参照して算出した。なお、図8に、ステップS23において水素循環ポンプ9の回転数の増加目標値の算出で参照される関数例を示す。
【0042】
次に、前記ステップS21にて算出した水素供給遅れ時間の分だけ、前記ステップS23にて算出した増加目標値まで水素循環ポンプ9の回転数を増加する(ステップS24)。
【0043】
最後に、前記ステップS21にて算出した水素供給遅れ時間の分だけ、取り出し負荷量をΔPだけ増加する(ステップS25)。これは、水素循環ポンプ9の回転数を急激に増加させた反動で、水素極入口側の圧力が過渡的に上昇して、燃料電池本体2の水素極への水素流量の過渡的な増加が妨害されることを防止するためである。このステップS25においては、ΔPは所定の値を予めコントローラ16に記憶させておいても良く、水素極入口に圧力センサを設置して、この圧力センサにより検出される圧力が目標範囲内になるようなΔPを算出するようにしても良い。なお、このとき、燃料電池システム1では、図9に示すように、コントローラ16によって前記目標負荷と実際の負荷とが一致するように、水素循環ポンプ9の回転数が増加され、外部負荷12の取り出し負荷量も増加するよう操作される。また、前記水素循環ポンプ9の回転数増加とともに、同図に示す水素供給装置7の流量制御弁7aの開度が操作されるよう構成しても良い。このとき、コントローラ16は、目標負荷値に必要な水素流量を算出し、これに応じて流量制御弁7aの開度を制御する。
【0044】
そして、燃料電池システム1では、以上の一連の処理が繰り返し行われる。
【0045】
燃料電池システム1は、前記パージ弁10の開度を増加する処理によって、外部負荷12からの要求負荷が急に増大した場合であっても、コントローラ16によって水素極の水素入口側と水素出口側とにおける圧力差を一時的且つ過渡的に拡大し、燃料電池本体2の水素極上を通過する水素流量が過渡的に増加するよう操作される。したがって、燃料電池システム1では、燃料電池本体2の水素極に十分な流量の水素が供給され、水素不足による電圧低下に起因する電池本体へのダメージを防止することができる。
【0046】
また、燃料電池システム1では、前記圧力差の拡大が、目標負荷値と実際の負荷とが一致するように制御され、パージ弁10の開度が操作される。したがって、燃料電池システム1では、負荷を目標応答に沿って取り出すことができ、且つパージ弁10から大気中に無駄に放出される水素量を低減することができる。
【0047】
さらに、燃料電池システム1では、前記水素循環ポンプ9の回転数を増加する処理によって、外部負荷12からの要求負荷が急に増大した場合であっても、コントローラ16によって水素極の水素入口側と水素出口側とにおける圧力差を一時的に且つ過渡的に拡大し、燃料電池本体2の水素極上を通過する水素流量が過渡的に増加するよう操作される。したがって、燃料電池システム1では、燃料電池本体2の水素極に十分な流量の水素が供給され、水素不足による電圧低下に起因する電池本体へのダメージを防止することができる。
【0048】
また、燃料電池システム1では、現在の状態、具体的には負荷変化量を判定した時点での不足水素量とからパージ弁10の開度、或いは水素循環ポンプ9の回転数を算出し、水素供給遅れ時間の分だけ前記パージ弁10の開度、或いは水素循環ポンプ9の回転数を増加するため、負荷の急増変化時においてのみ燃料電池本体2の水素極上を通過する水素流量を過渡的の増加することができる。そして、燃料電池本体2の水素極に十分な流量の水素を供給し、水素不足による電圧低下に起因する電池本体へのダメージを防止することができる。また、水素供給遅れ時間の分だけ、すなわち必要な時間だけ前記パージ弁10の開度が増加されるため、この点からもパージ弁10から大気中に無駄に放出される水素量を低減させることができる。
【0049】
なお、前記ステップS25では、取り出し負荷量を増加させる代わりに、パージ弁10の開度をΔCだけ増加させるようにしても良い。このΔCは、所定の値を予めコントローラ16に記憶させておいても良く、水素極入口に圧力センサを設置して、この圧力センサにより検出される圧力が目標範囲内になるようなΔCを算出するようにしても良い。
【0050】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。この第2の実施形態は、前記第1の実施形態の燃料電池システム1と同様の構成を有するものであり、外部負荷12からの要求負荷が増大する場合に、前記コントローラ16によって水素極の水素入口側と水素出口側とにおける圧力差を一時的に拡大、具体的には水素出口側の圧力を下降させることによって、燃料電池本体2の水素極に十分な量の水素ガスを供給し、燃料電池本体2における水素不足を防止するものである。以下、外部負荷12からの要求負荷が増大する場合におけるコントローラ16の動作について図10のフローチャートを用いて説明する。なお、本実施形態では、前記第1の実施形態における燃料電池システム1の説明と同名称、同符号を用い、各部の詳細な説明は省略する。
【0051】
まず、外部負荷12にて発電量が設定され、この発電量に基づいて、負荷を燃料電池本体2から取り出す目標軌道が設定される(ステップS31)。そして、前記目標軌道における目標負荷値の変化から負荷変化量を算出する(ステップS32)。
【0052】
次に、前記ステップS32にて算出した負荷変化量が所定量以上であるかどうかを判定する(ステップS33)。負荷変化量が所定量以上である場合は、パージ弁10の開度が制御され(ステップS34)、さらに水素循環ポンプ9の回転数が制御される(ステップS35)。このステップS35は、負荷変化量が大きいため、パージ弁10の制御だけでは水素不足が解消されない場合に、制御範囲を拡大するために行われる。
【0053】
これに対し、負荷変化量が所定量未満である場合は、比較的負荷変化量が小さいため、パージ弁10の開度を制御する処理のみが行われる(ステップS36)。なお、本実施形態では、このステップS36にて、パージ弁10の開度を制御する処理のみを行っているが、これは消費電力が少ない手段を選択して実行したためであり、パージ弁10の開度を制御する処理に代えて水素循環ポンプ9の回転数を制御させる処理を実行してもよい。
【0054】
前記ステップS34及び前記ステップS36では、目標軌道と実際の取り出し負荷とが一致するように、例えばフィードバック制御器を使用したフィードバック制御により、パージ弁10の開度がそれぞれ制御される。また、前記ステップS35では、パージ弁10の開度と同様に、目標軌道と実際の取り出し負荷とが一致するように、例えばフィードバック制御器を使用したフィードバック制御により、水素循環ポンプ9の回転数が制御される。前記実際の取り出し負荷は、負荷電流と燃料電池本体2の電圧との積により算出する。
【0055】
なお、パージ弁10の開度の制御については、前述のステップS11乃至ステップS14まで(図3参照)の各処理が、水素循環ポンプ9の回転数の制御については、前述のステップS21乃至ステップS25まで(図4参照)の各処理が行われる。
【0056】
以上の一連の処理を繰り返し行うことによって、外部負荷12からの要求負荷が急激に増加した場合であっても、コントローラ16によって水素極の水素入口側と水素出口側とにおける圧力差が一時的に拡大され、燃料電池本体2の水素極に十分な流量の水素を供給することができるようになる。したがって、水素不足による電圧低下で電池本体にダメージを与えるようなことが無く、また反応性能も上がり、目標応答に沿って要求負荷を取り出すことができるようになる。
【図面の簡単な説明】
【図1】第1の実施形態の燃料電池システムの概略構成を示す図である。
【図2】同燃料電池システムにおいて、要求負荷が増大する場合の動作を説明するフローチャートである。
【図3】パージ弁の開度を増加させる処理の一例を示すフローチャートである。
【図4】水素循環ポンプの回転数を増加させる処理の一例を示すフローチャートである。
【図5】目標水素流量にステップ変化させた場合の理想値と、遅れ時間経過後に目標水素流量に達する一次遅れ応答した場合との水素流量の差分を示す特性図である。
【図6】パージ弁の開度の増加目標値の算出で参照される関数例を示す特性図である。
【図7】圧力差拡大時におけるパージ弁操作の状態を説明するための図である。
【図8】水素循環ポンプの回転数の増加目標値の算出で参照される関数例を示す特性図である。
【図9】圧力差拡大時における水素循環ポンプ操作及び外部負荷操作の状態を説明するための図である。
【図10】第2の実施形態の燃料電池システムにおいて、要求負荷が増大する場合の動作を説明するフローチャートである。
【符号の説明】
1 燃料電池システム
2 燃料電池本体
3 空気供給用配管
4 空気供給装置
5 排空気用配管
6 水素供給用配管
7 水素供給装置
8 循環水素用配管
9 水素循環ポンプ
10 パージ弁
11 排水素用配管
12 外部負荷
13 電圧センサ
14 負荷電流センサ
15 温度センサ
16 コントローラ

Claims (11)

  1. 燃料電池本体と、
    前記燃料電池本体に水素を供給する水素供給装置と、
    前記燃料電池本体に空気を供給する空気供給装置と、
    前記燃料電池本体の水素出口側から排出される水素を前記燃料電池本体の水素入口側へと循環させる水素循環系と、
    前記燃料電池本体の水素入口側と出口側との圧力差を調整する圧力差調整手段と、
    目標負荷値と実際の負荷とが一致するように前記圧力差調整手段を制御する制御手段とを備え、
    前記制御手段は、負荷が増大変化した際に前記燃料電池本体の水素入口側と水素出口側との圧力差が拡大するように、前記圧力差調整手段を制御することを特徴とする燃料電池システム。
  2. 前記圧力調整手段として、前記水素循環系から大気中に排水素を放出するパージ弁を備え、
    前記制御手段は、負荷が増大変化した際に前記パージ弁の開度を増加させることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記水素供給装置から前記燃料電池本体への水素の流量を制御する流量制御弁を備え、
    前記制御手段は、目標負荷値に応じて必要な水素流量から前記流量制御弁の目標開度を算出すると共に、前記目標負荷値と実際の負荷とを一致させるように前記パージ弁の目標開度を算出して、前記流量制御弁の開度及び前記パージ弁の開度を制御することを特徴とする請求項2に記載の燃料電池システム。
  4. 前記制御手段は、負荷が増大変化した際に、水素遅れ供給時間と、該水素遅れ供給時間に基づく増大変化時における負荷変化量に応じた不足水素量と、該不足水素量に基づく前記パージ弁の開度増加量とを算出し、前記水素供給遅れ時間の分だけ前記パージ弁の開度を前記開度増加量まで増加させることを特徴とする請求項2又は3に記載の燃料電池システム。
  5. 前記圧力調整手段として、前記水素循環系にて水素を循環させる水素循環ポンプを備え、
    前記制御手段は、負荷が増大変化した際に前記水素循環ポンプの回転数を増加させることを特徴とする請求項1に記載の燃料電池システム。
  6. 前記水素供給装置から前記燃料電池本体への水素の流量を制御する流量制御弁を備え、
    前記制御手段は、目標負荷値に応じて必要な水素流量から前記流量制御弁の目標開度を算出すると共に、前記目標負荷値と実際の負荷とを一致させるように前記水素循環ポンプの目標回転数を算出して、前記流量制御弁の開度及び前記水素循環ポンプの回転数を制御することを特徴とする請求項5に記載の燃料電池システム。
  7. 前記制御手段は、負荷が増大変化した際に、水素遅れ供給時間と、該水素遅れ供給時間に基づく増大変化時における負荷変化量に応じた不足水素量と、該不足水素量に基づく前記水素循環ポンプの回転数増加量とを算出し、前記水素供給遅れ時間の分だけ前記水素循環ポンプの回転数を前記回転数増加量まで増加させることを特徴とする請求項5又は6に記載の燃料電池システム。
  8. 前記圧力調整手段として、前記水素循環系から大気中に排水素を放出するパージ弁と、前記水素循環系にて水素を循環させる水素循環ポンプとを備え、
    前記制御手段は、負荷変化量が所定量以上である場合には、前記パージ弁の開度増加と前記水素循環ポンプの回転数増加との双方を実行し、負荷変化量が所定量未満である場合には、前記パージ弁の開度増加又は前記水素循環ポンプの回転数増加の何れか一方を選択して実行することを特徴とする請求項1に記載の燃料電池システム。
  9. 前記制御手段は、前記水素循環ポンプの回転数増加を実行した場合に、取り出し負荷量を更に増加させることを特徴とする請求項8に記載の燃料電池システム。
  10. 前記制御手段は、前記水素循環ポンプの回転数増加を実行した場合に、前記パージ弁開度を増加させることを特徴とする請求項8に記載の燃料電池システム。
  11. 前記パージ弁の開度増加と前記水素循環ポンプの回転数増加とがフィードバック制御されることを特徴とする請求項8に記載の燃料電池システム。
JP2002374476A 2002-12-25 2002-12-25 燃料電池システム Expired - Fee Related JP4147936B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374476A JP4147936B2 (ja) 2002-12-25 2002-12-25 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374476A JP4147936B2 (ja) 2002-12-25 2002-12-25 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2004207030A true JP2004207030A (ja) 2004-07-22
JP4147936B2 JP4147936B2 (ja) 2008-09-10

Family

ID=32812487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374476A Expired - Fee Related JP4147936B2 (ja) 2002-12-25 2002-12-25 燃料電池システム

Country Status (1)

Country Link
JP (1) JP4147936B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134806A (ja) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd 燃料電池システム
JP2006269281A (ja) * 2005-03-24 2006-10-05 Nissan Motor Co Ltd 燃料電池システム
JP2007005315A (ja) * 2005-06-24 2007-01-11 Samsung Sdi Co Ltd 燃料電池システム用燃料供給装置の流量補正方法
JP2007066622A (ja) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd 燃料電池システム
JP2007273227A (ja) * 2006-03-31 2007-10-18 Toyota Motor Corp 燃料電池システム
JP2008041433A (ja) * 2006-08-07 2008-02-21 Toyota Motor Corp 燃料電池システムおよびこの制御方法
JP2008218265A (ja) * 2007-03-06 2008-09-18 Denso Corp 燃料電池システム
JP2009213200A (ja) * 2008-02-29 2009-09-17 Aisin Seiki Co Ltd モータ駆動制御システム
JP2012256613A (ja) * 2012-09-04 2012-12-27 Nissan Motor Co Ltd 燃料電池システム
KR101844285B1 (ko) * 2016-04-08 2018-04-02 현대자동차주식회사 연료전지 시스템, 및 그 제어방법
US20180159157A1 (en) * 2016-12-07 2018-06-07 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and method of operating fuel cell system
CN110021765A (zh) * 2019-03-15 2019-07-16 深圳国氢新能源科技有限公司 燃料电池系统及燃料电池系统的控制方法
JP2019145442A (ja) * 2018-02-23 2019-08-29 トヨタ自動車株式会社 制御装置、制御方法、およびコンピュータプログラム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134806A (ja) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd 燃料電池システム
JP2006269281A (ja) * 2005-03-24 2006-10-05 Nissan Motor Co Ltd 燃料電池システム
US7757668B2 (en) 2005-06-24 2010-07-20 Samsung Sdi Co., Ltd. Method of correcting flow rate in fuel supply unit of fuel cell system
JP2007005315A (ja) * 2005-06-24 2007-01-11 Samsung Sdi Co Ltd 燃料電池システム用燃料供給装置の流量補正方法
JP4558683B2 (ja) * 2005-06-24 2010-10-06 三星エスディアイ株式会社 燃料電池システム用燃料供給装置の流量補正方法
JP2007066622A (ja) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd 燃料電池システム
JP2007273227A (ja) * 2006-03-31 2007-10-18 Toyota Motor Corp 燃料電池システム
JP2008041433A (ja) * 2006-08-07 2008-02-21 Toyota Motor Corp 燃料電池システムおよびこの制御方法
JP2008218265A (ja) * 2007-03-06 2008-09-18 Denso Corp 燃料電池システム
JP2009213200A (ja) * 2008-02-29 2009-09-17 Aisin Seiki Co Ltd モータ駆動制御システム
JP2012256613A (ja) * 2012-09-04 2012-12-27 Nissan Motor Co Ltd 燃料電池システム
KR101844285B1 (ko) * 2016-04-08 2018-04-02 현대자동차주식회사 연료전지 시스템, 및 그 제어방법
US20180159157A1 (en) * 2016-12-07 2018-06-07 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system and method of operating fuel cell system
JP2019145442A (ja) * 2018-02-23 2019-08-29 トヨタ自動車株式会社 制御装置、制御方法、およびコンピュータプログラム
JP7059685B2 (ja) 2018-02-23 2022-04-26 トヨタ自動車株式会社 制御装置、制御方法、およびコンピュータプログラム
CN110021765A (zh) * 2019-03-15 2019-07-16 深圳国氢新能源科技有限公司 燃料电池系统及燃料电池系统的控制方法

Also Published As

Publication number Publication date
JP4147936B2 (ja) 2008-09-10

Similar Documents

Publication Publication Date Title
JP5176590B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
US9893371B2 (en) Fuel cell system
JP4923551B2 (ja) 燃料電池システム
JP5428307B2 (ja) 燃料電池システム
JP4147936B2 (ja) 燃料電池システム
JP5812118B2 (ja) 燃料電池システム
JP2005129252A (ja) 燃料電池システム
JP2005253270A (ja) 燃料電池車両の制御装置
JP2005228637A (ja) 燃料電池システム
JP2008103228A (ja) 燃料電池システム
JP2007073328A (ja) 燃料電池自動車及び燃料電池の制御方法
JP2009117066A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2007220355A (ja) 燃料電池システムと燃料電池の低温起動方法
JP2004207029A (ja) 燃料電池システム
JP4155027B2 (ja) 燃料電池システム
EP3118922B1 (en) Fuel cell system
JP2005158647A (ja) 燃料電池の制御装置
JP3882693B2 (ja) 燃料電池システム
JP2007234452A (ja) 燃料電池システム
JP2014007097A (ja) 燃料電池システム
JP4010217B2 (ja) 燃料電池システム
JP6136185B2 (ja) 燃料電池システム
JP2007234311A (ja) 燃料電池システム
JP2010130806A (ja) 燃料電池システム
JP2006032136A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees