JP2006134806A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2006134806A
JP2006134806A JP2004325114A JP2004325114A JP2006134806A JP 2006134806 A JP2006134806 A JP 2006134806A JP 2004325114 A JP2004325114 A JP 2004325114A JP 2004325114 A JP2004325114 A JP 2004325114A JP 2006134806 A JP2006134806 A JP 2006134806A
Authority
JP
Japan
Prior art keywords
flow rate
fuel cell
hydrogen circulation
cell system
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004325114A
Other languages
English (en)
Other versions
JP4940541B2 (ja
Inventor
Naoto Todoroki
直人 轟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004325114A priority Critical patent/JP4940541B2/ja
Publication of JP2006134806A publication Critical patent/JP2006134806A/ja
Application granted granted Critical
Publication of JP4940541B2 publication Critical patent/JP4940541B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】効率や燃費を悪化させることなく、ガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御する。
【解決手段】ECU12が、燃料電池システムの運転状態に基づいて要求水素循環流量Q’を演算し、アノード系内のガス密度に基づいてアノード系内における実水素循環量Qを演算し、アノード系内における実水素循環流量Qを要求水素循環流量Q’に制御する。これにより、循環ポンプ4の総循環流量が直接的に判らない状況下でも水素循環流量を制御し、効率や燃費を悪化させることなく、ガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御することができる。
【選択図】図1

Description

本発明は、燃料電池システムに関し、より詳しくは、効率や燃費を悪化させることなく、水素循環路内のガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御するための技術に係わる。
従来より、循環ポンプを利用して燃料電池の燃料極から排出された水素を燃料極に循環させる燃料電池システムが知られている。そして、このような燃料電池システムによれば、燃料極で未利用の水素を再利用することが可能となり、燃料電池システムの燃費性能を向上させることができる。
ところで、従来までの燃料電池システムは、水素循環路内のガス密度によって循環性能が変化しない体積式やスクロール式と呼ばれる形式の循環ポンプを用いて水素を循環させている(例えば、特許文献1を参照)。しかしながら、体積式やスクロール式と呼ばれる形式の循環ポンプを利用して大流量の水素を循環させようとする場合には、循環ポンプが大型化してしまう。
このような背景から、大型化することなく大流量の水素を循環させることが可能な速度式や過流式と呼ばれる形式の循環ポンプを用いて水素を循環させる方法が考えられている。しかしながら、速度式や過流式と呼ばれる形式の循環ポンプでは、ガス密度が低くなると循環性能が低下し、循環性能がガス密度によって影響を受ける。このため最近では、ガス密度が変化した場合でも必要な循環性能を確保できるように、循環ポンプを最大回転数(全開)で動作させる制御方法が提案されている。
特開2003−157874号公報
しかしながら、上記制御方法によれば、ほとんどの運転状態において水素を過剰に循環させることになるので、循環ポンプが電力を無駄に消費することによって、燃料電池システムの効率や燃費が悪化する。
本発明は、上述の課題を解決するためになされたものであり、その目的は、効率や燃費を悪化させることなく、水素循環路内のガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御することが可能な燃料電池システムを提供することにある。
本発明に係る燃料電池システムは、燃料電池システムの運転状態に基づいて要求水素循環流量を演算し、水素循環路内のガス密度に基づいて前記水素循環路内における実水素循環量を演算し、水素循環路内における実水素循環流量を演算された要求水素循環流量に制御する。
本発明に係る燃料電池システムによれば、水素循環路内のガス密度に基づいて水素循環路内における実水素循環量を演算するので、効率や燃費を悪化させることなく、水素循環路内のガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御することができる。
以下、図面を参照して、本発明の実施形態となる燃料電池システムの構成について説明する。
〔燃料電池システムの構成〕
本発明の実施形態となる燃料電池システムは、燃料極(アノード)及び酸化剤極(カソード)にそれぞれ水素及び空気の供給を受けて発電する燃料電池を備える。なお、この実施形態では、燃料電池は、固体高分子型燃料電池により構成され、アノード及びカソードにおける電気化学反応及び燃料電池全体としての電気化学反応は以下に示す化学反応式(1)〜(3)による。
〔アノード〕 H2 → 2H+ +2e- …(1)
〔カソード〕 1/2 O2 +2H+ +2e- → H2O …(2)
〔全体〕 H2 +1/2 O2 → H2O …(3)
〔アノード系の構成〕
上記燃料電池システムは、図1に示すように、水素(H)貯蔵装置1及び圧力調整バルブ2を備え、水素貯蔵装置1内に貯蔵された水素の圧力を圧力調整バルブ2により調整した後、水素循環路3aを介して燃料電池のアノードに水素を供給する。また、燃料電池のアノードから排出された水素は、水素循環路3bを介して循環ポンプ4に循環され、循環ポンプ4によって水素循環路3aを介して燃料電池のアノードに供給される。なお、この燃料電池システムでは、循環ポンプ4は、ガス密度によって循環性能が変化する速度式や過流式と呼ばれる形式の循環ポンプにより構成されている。
なお、水素循環路3a,3bには、カソードからリークした空気中の窒素やアルゴン等の不純物ガス、或いは、過剰な水分が液化した液水が蓄積することがある。そして、これらの不純物ガスは、水素の分圧を低下させて発電効率を低下させたり、循環ガスの平均分子量を上昇させ水素の循環を困難にする。また液水は水素の循環を妨げる。このため、この燃料電池システムでは、水素循環路3bにパージ弁5が設けられている。そして、不純物ガスや液水が蓄積した際には、ECU12からの指示でパージ弁5を短時間開き、不純物ガスや液水を系外へ排出させるパージを行う。これにより、アノードを含む水素循環路3a,3b内の水素分圧や循環性能を回復させることができる。
〔カソード系の構成〕
上記燃料電池システムは、図示しないが、空気を圧縮して供給するコンプレッサを備え、コンプレッサは圧縮した空気を空気供給路を介して燃料電池のカソードへ供給する。そして、燃料電池のカソードで未使用の空気は、空気圧力調整弁により圧力調整された後、空気排出路から系外へ排出される。
〔制御系の構成〕
上記燃料電池システムにおける制御系は、図1に示すように、水素循環路3aに供給される水素の流量を計測する流量計6と、水素循環路3a内のガスの温度及び圧力を検出する温度計7及び圧力計8と、水素循環路3b内の水素濃度を検出するガス濃度センサ9と、水素循環路3b内のガスの圧力及び温度を検出する圧力計10及び温度計11と、燃料電池システム全体の動作を制御するECU12とを備える。なお、ECU12は、CPUと、プログラムROMと、作業用RAMと、入出力インタフェースとを備えたマイクロプロセッサで構成されている。
そして、このような構成を有する燃料電池システムでは、ECU12が以下に示す水素流量制御処理を実行することにより、効率や燃費を悪化させることなく、水素循環路3a,3b内のガス密度が変化した場合でも水素循環流量を要求水素循環流量に正確に制御する。以下、図面を参照して、本発明の第1乃至第3の実施形態となる水素流量制御処理を実行する際のECU12の動作について説明する。
始めに、図2乃至図4を参照して、本発明の第1の実施形態となる水素流量制御処理の流れについて説明する。
図2に示すフローチャートは、燃料電池システムが起動されるのに応じて開始となり、水素流量制御処理はステップS1の処理に進む。
ステップS1の処理では、ECU12が、圧力計8,10及び温度計7,11を利用して水素循環路3a,3b内(以下、アノード系内と表記)のガスの圧力と温度を検出し、アノード系内のガスの圧力及び温度とその時にアノード系内に存在する窒素,水素,及び水蒸気の量を示すマップデータから、検出された圧力と温度時にアノード系内に存在する窒素,水素,及び水蒸気の量を読み出すことにより、アノード系内のガス密度ρを算出する。
なお、ECU12は、ガス密度ρの算出精度を高めるために、ガス濃度センサ9を利用して水素循環路3b内の水素濃度を検出し、圧力計8,10及び温度計7,11の検出値を利用して水蒸気濃度を算出し、100%から水素濃度と水蒸気濃度を減算することにより窒素濃度を算出し、水素濃度,水蒸気濃度,窒素濃度から各気体の体積を算出することにより、アノード系内のガス密度ρを算出してもよい。これにより、このステップS1の処理は完了し、水素流量制御処理はステップS1の処理からステップS2の処理に進む。
ステップS2の処理では、ECU12が、スタック出力電流値,パージ弁5によるパージに伴う排出水素量演算値,圧力計8,10及び温度計7,11の検出値,アノード側からカソード側にクロスリークする水素量推定値から、アノードにおける水素消費量を演算する。これにより、このステップS2の処理は完了し、水素流量制御処理はステップS2の処理からステップS3の処理に進む。
ステップS3の処理では、ECU12が、燃料電池システムの運転条件に応じて設定されている水素の要求ストイキから1を減算した値に水素消費量を乗算することにより、燃料電池の要求水素循環流量Q’を算出する。なお、ECU12は、水素の要求ストイキから1を減算した値に流量計6の検出値を乗算することにより要求水素循環流量Q’を算出してもよい。
また、ECU12は、要求ストイキから1を減算した値に水素消費量を乗算する方法と要求ストイキから1を減算した値に流量計6の検出値を乗算する方法の2つの方法により要求水素循環流量を算出し、算出された値の大きい方を要求水素循環流量Q’として選択するようにしてもよい。このような処理によれば、算出される要求水素循環流量Q’の信頼性を向上させることができる。これにより、このステップS3の処理は完了し、水素流量制御処理はステップS3の処理からステップS4の処理に進む。
ステップS4の処理では、ECU12が、圧力計8,10の検出値を利用して循環ポンプ4の差圧Pを算出し、算出された差圧Pを利用してアノード系内の実水素循環流量Qを算出する。具体的には、始めに、ECU12は、循環ポンプ4の回転数と循環ポンプ4の差圧(P)−水素循環流量(Q)線図(以下、P−Q線図と表記)の傾き及び切片(締め切り圧)の関係を示す曲線をアノード系内のガス密度毎に表したマップデータ(図3参照)をアノード系内のガスの圧力及び温度毎に用意し、現在のアノード系内のガスの圧力及び温度に対応する、若しくは、近いマップデータを抽出する。
次に、ECU12は、抽出されたマップデータからステップS1の処理により算出されたガス密度ρに対応する曲線のデータを読み出し、読み出したデータを用いて図4に示すようなステップS1の処理により算出されたガス密度ρに対応するP−Q線図を作成する。そして、ECU12は、作成されたP−Q線図から循環ポンプ4の差圧Pに対応する水素循環流量Qを読み出すことにより、アノード系内の実水素循環流量Qを算出する。これにより、このステップS4の処理は完了し、水素流量制御処理はステップS4の処理からステップS5の処理に進む。
ステップS5の処理では、ECU12が、ステップS3の処理により算出された要求水素循環流量Q’とステップS4の処理により算出された実水素循環流量Qを比較することにより、要求水素循環流量Q’を実現するための循環ポンプ4の必要回転数を決定し、決定した必要回転数で動作するように循環ポンプ4を制御する。これにより、このステップS5の処理は完了し、水素流量制御処理はステップS5の処理からステップS1の処理に戻る。
以上の説明から明らかなように、本発明の第1の実施形態となる水素流量制御処理によれば、ECU12が、燃料電池システムの運転状態に基づいて要求水素循環流量Q’を演算し、アノード系内のガス密度ρに基づいてアノード系内における実水素循環量Qを演算し、アノード系内における実水素循環流量Qを要求水素循環流量Q’に制御する。すなわち、本発明の第1の実施形態となる水素流量制御処理によれば、アノード系内のガス密度に基づいてアノード系内における実水素循環量Qを演算するので、循環ポンプ4の循環流量が直接的に判らない状況下でも水素循環流量を制御し、効率や燃費を悪化させることなく、ガス密度ρが変化した場合でも水素循環流量Qを要求水素循環流量Q’に制御することができる。また、要求水素循環流量Q’を下回ることにより燃料電池が劣化することを防止することもできる。
なお、ECU12は、パージ弁5の開度を制御することにより、アノード系内における実水素循環流量Qを要求水素循環流量Q’に制御してもよい。このような構成によれば、パージ弁5の開度は、要求水素循環流量Q’を確保するために行われる制御に応じて決定されるようになるので、定期的にパージを行うシステムと比較して、パージ弁5からの排水素量を低減することができる。
次に、図5乃至図8を参照して、本発明の第2の実施形態となる水素流量制御処理の流れについて説明する。
一般に、図5に示すように、アノード系内のガス密度ρが最も低い状態は、アノード系内に水素しか存在しない状態である水素100%の時であり、逆にガス密度ρが最も高くなる状態は、アノード系内に窒素と水蒸気しか存在しない水素0%の時である。また、循環ポンプ4の回転数が一定である場合、アノード系内のガス密度ρが上がるほど循環ポンプ4の総循環流量が増えるために、アノード系内における水素循環流量は次第に増えていき、最大値密度ρmaxで最大となる。
そして、循環ポンプ4の特性上、アノード系内のガス密度ρが上がるのに応じて総循環流量はさらに増加していくが、ガス密度ρの増加に伴う水素濃度の減少によって、水素循環流量は最大値(以下、水素循環流量最大値と表記)から減少を開始する。また、循環ポンプ4が最大回転数で動作している場合であっても、要求水素循環量領域の最大値を下回る水素循環量しか循環させられない密度(以下、性能保証最低密度と表記)ρminがある。
より具体的には、アノード系内のガス密度ρは、カソード側からアノード系内への窒素の侵入や温度変化に伴う水蒸気量増加によって、時間と共に高くなる。これは、アノード系内において、水素と比較して分子量が大きい窒素や水蒸気の濃度が高くなるためである。そして、アノード系内のガス密度ρが高くなると、図6に示す直線L2のように、アノード系内の総循環流量は増加するが、ガス密度が上がった分、水素濃度が次第に低下することによって、図6に示す直線L3のように水素循環流量が不足する状態になる。
また、水素循環流量が不足していなくても、総循環流量が多い割りに水素循環流量が少ないために、システム効率が悪くなる。一方、アノード系内のガス密度ρが低いということは水素濃度が高いことを意味するが、循環ポンプ4の特性上、ガス密度ρが下がると総循環流量も減るため、図6に示す直線L1のように循環ポンプ4を最大回転数で動作させても、必要な水素循環流量を確保できない場合がある。
そこで、本発明の第2の実施形態となる水素流量制御処理では、ECU12は、以下に示すように動作することにより、循環ポンプ4が無駄に電力を消費することを抑制する。以下、図7,8を参照して、本発明の第2の実施形態となる水素流量制御処理について説明する。
本発明の第2の実施形態となる水素流量制御処理では、始めに、ECU12が、図7,8に示すようにアノード系内のガス密度ρに上限閾値ρth2及び下限閾値ρth1を設定する。なお、アノード系内のガス密度ρが上限閾値ρth2以上である場合、多くのガスが循環していることになり、循環ポンプ4の消費電力に無駄が生じてしまう。また、ガス密度ρが上限閾値ρth2を上回っている状態は、水素循環流量がじきに水素循環流量最大値を超えてしまうことを意味する。
また、ガス密度ρが増加するのに応じて循環ポンプ4による総循環流量は増加するが、最大値密度ρmaxは、密度増加によるポンプの水素循環量増加率よりも水素濃度低下に伴う水素循環流量減少率の方が上回る点なので、水素循環流量が水素循環流量最大値を超えた場合、循環ポンプ4にとっては、水素割合が少ない、還元すれば、窒素が多いために重くなったガスを循環させることになり、循環ポンプ4の消費電力が増加する。従って、水素循環流量が水素循環流量最大値を超えることは望ましくない。
次に、ECU12は、アノード系内のガス密度ρが上限閾値ρth2以上、又は下限閾値ρth1以下であるか否かを判別し、図7,8に示す点P1,P6のようにガス密度ρが上限閾値ρth2以上である場合、循環ポンプ4の回転数を一定にした状態でパージ量を増やすことによりガス密度ρが上限閾値ρth2以下になる点P2,P7まで水素循環流量を低下させた後、循環ポンプ4の回転数を必要回転数に補正することにより水素循環流量を要求値Q5,Q10に補正する。一方、図7,8に示す点P4,P9のようにガス密度ρが下限閾値ρth1以下である場合には、ECU12は、パージを停止して循環ポンプ4の回転数を上げることにより水素循環流量を要求値Q5,Q10に補正する。
なお、ガス密度が下限閾値ρth1以下になった場合は循環ポンプ4の回転数を制御することにより水素循環流量Qを補正する理由は、水素循環流量Qはパージ量を増やしてガス密度ρを下げることにより下げることができるが、ガス密度ρを性能保証最低密度ρmin以下まで下げると、フル出力指令が出されて循環ポンプ4の回転数が最大になっても、ガス密度ρの低下によって水素循環流量Qも下がっているために、要求水素循環流量Q’を確保することができず、出力が制限されたり、水素ストイキが不足することによって燃料電池が劣化してしまうためである。また、ガス密度ρが下限閾値ρth1に達した後に、水素循環流量Qが要求値に足りないからといって、ガス密度を急に上げて水素循環流量Qを増やすことはできないためである(ガス密度ρを上げるためには、窒素濃度を増やせばいいが、窒素はカソード側から侵入してくるものなので急には増やすことができない)。
以上の説明から明らかなように、本発明の第2の実施形態となる水素流量制御処理によれば、ECU12が、アノード系内のガス密度ρが上限閾値ρth2以上である場合、アノード系内のガスを外部に排出するパージ弁5の開度を制御することによりガス密度ρを上限閾値ρth2以下まで低下させた後、循環ポンプ4の回転数を制御することによりアノード系内における水素循環流量Qを要求水素循環流量Q’に制御するので、循環ポンプ4の負荷を減らし、且つ、アノード系内のガス密度ρを下げながら水素循環流量Qを補正することができる。
また、本発明の第2の実施形態となる水素流量制御処理によれば、アノード系内のガス密度ρが下限閾値ρth1以下である場合、ECU12が、循環ポンプ4の回転数を制御することにより、アノード系内における水素循環流量Qを要求水素循環流量Q’に制御するので、循環ポンプ4の負荷を小さく抑えた状態で、且つ、アノード系内のガス密度ρを上げながら水素循環流量Qを補正することができる。また、アノード系内のガス密度ρを上げながら水素循環流量Qを補正することができるので、ガス密度ρが性能保証最低密度ρminまで低下することを抑制し、システムの信頼性を確保することができる。
最後に、図9,10を参照して、本発明の第3の実施形態となる水素流量制御処理の流れについて説明する。
本発明の第3の実施形態となる水素流量制御処理では、燃料電池システムが搭載されている車両の運転モードに応じて、ECU12が下限閾値ρth1及び上限閾値ρth2を変化させる。具体的には、運転者が山道等で意図的に行うスイッチング動作や車両駆動モータのトルクに対する車速がある一定時間の間連続して低い状態にあることを検知した場合、ECU12は、高出力運転モードとして、図9に示すようにガス密度範囲R1を水素循環流量最大値方向に変化させる。これにより、アノード系内のガス密度は通常時と比較して高めに制御され、通常時と比較して最大水素循環流量が高くなる(図9に示す水素循環流量Q12から水素循環流量Q13に変化)ので、高出力運転を行うことができるようになる。
一方、燃料電池の発電量の低下量が所定値以下になったことを検知した場合には、ECU12は、燃料電池の劣化が生じていると判断し、スタック劣化保護モードとして、ガス密度範囲を水素循環流量最大値方向に変化させる。これにより、アノード系内のガス密度は通常時と比較して高めに制御され、通常時と比較して水素が多めに循環されるようになるので、水素循環流量が不足することによって燃料電池が劣化することを抑制することができる。
また、通常時や高速道路走行時等、エネルギー効率を重視する場合には、ECU12は以下に示すエネルギー効率重視型運転モードを実行する。一般に、アノード系内のガス密度ρが高い状態とは、パージ量を少なくした結果であり、系外への排水素量が少ない状態を示す。換言すれば、アノード系内のガス密度が低い状態とは、パージを頻繁に行った結果であり、エネルギー損失は大きい。このことから、パージによるエネルギー損失は、図10に示す曲線L6のように表される。また、循環ポンプ4の消費電力は、図10に示す曲線L5のように、高密度のガスを循環させた場合大きく、低密度のガスを循環させた場合は小さい。従って、曲線L6と曲線L5の和を算出することにより、ガス密度の変化に伴うエネルギー損失の変化は図10に示す曲線L4のように表される。
そこで、エネルギー効率を重視する場合、ECU12は、エネルギー効率重視型運転モードとして、図10に示す曲線L4が最も小さくなる密度領域(図10に示す領域B)で運転することにより、エネルギー効率が最も良い運転を行うように制御する。より具体的には、運転者による意図的なスイッチング動作や、車両駆動モータのトルク変動幅がある一定時間の間規定値以内に収まっている(=急加速がないことから信号待ちがなく、高速道路を走行していると判断する)ことを検知すると、ECU12は、エネルギー効率重視型運転モードとして、曲線L4の最小値を挟むようにガス密度範囲を設定することにより、エネルギー効率が最も良い運転を行うように制御する。
なお、上述の通り、アノードガス密度幅を水素循環流量最大値方向に変化させた場合には、アノード系内のガス密度は通常時と比較して高めに制御されるので、循環ポンプ4の回転数を下げても要求水素循環流量Q’を確保することができる。従って、循環ポンプ4の音や振動が目立つようなアイドルストップ状態を検知した場合、又は、運転者が意図的なスイッチ動作を行った場合、ECU12は、音振低減モードとして、ガス密度範囲を水素循環流量最大値方向に変化させることにより、循環ポンプ4の回転数を低減し、循環ポンプ4の音や振動を抑えるようにしてもよい。また、ガス密度範囲を狭める、又は、上限閾値ρth2と下限閾値ρth1を一致させてもよい。これにより、上述の各運転モードの特性をより大きく出すことができる。また、目標とする運転ガス密度付近で精度よく運転することもできる。
以上、本発明者によってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。
本発明の実施形態となる燃料電池システムの構成を示す模式図である。 本発明の第1の実施形態となる水素流量制御処理の流れを示すフローチャート図である。 アノード系内のガス密度毎の、循環ポンプの回転数と循環ポンプの差圧−水素循環流量線図の傾き及び切片の関係を示す図である。 循環ポンプの差圧−水素循環流量線図である。 循環ポンプの回転数毎のアノード系内の水素循環流量とガス密度の関係を示す図である。 アノード系内の水素循環流量及び総循環流量とガス密度の関係を示す図である。 本発明の第2の実施形態となる水素流量制御処理を説明するための図である。 本発明の第2の実施形態となる水素流量制御処理を説明するための図である。 本発明の第3の実施形態となる水素流量制御処理を説明するための図である。 本発明の第3の実施形態となる水素流量制御処理を説明するための図である。
符号の説明
1:水素(H)貯蔵装置
2:圧力調整バルブ
3a,3b:水素循環路
4:循環ポンプ
5:パージ弁
6:流量計
7,11:温度計
8,10:圧力計
9:ガス濃度センサ
12:ECU

Claims (13)

  1. 循環ポンプを利用して燃料電池の燃料極から排出された水素を水素循環路を介して燃料極に循環させる燃料電池システムであって、
    燃料電池システムの運転状態に基づいて要求水素循環流量を演算し、前記水素循環路内のガス密度に基づいて前記水素循環路内における実水素循環量を演算し、前記水素循環路内における実水素循環流量を演算された要求水素循環流量に制御する制御部を備えること
    を特徴とする燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記制御部は、前記水素循環路内の水素濃度を検出するガス濃度センサの検出値を利用して前記水素循環路内のガス密度を推定することを特徴とする燃料電池システム。
  3. 請求項1又は請求項2に記載の燃料電池システムであって、
    前記制御部は、前記循環ポンプの回転数を制御することにより、前記水素循環路内における実水素循環流量を演算された要求水素循環流量に制御することを特徴とする燃料電池システム。
  4. 請求項1又は請求項2に記載の燃料電池システムであって、
    前記制御部は、前記水素循環路内のガスを系外に排出するパージ弁の開度を制御することにより、水素循環路内における実水素循環流量を演算された要求水素循環流量に制御することを特徴とする燃料電池システム。
  5. 請求項1乃至請求項4のうち、いずれか1項に記載の燃料電池システムであって、
    水素循環路に供給される水素の流量を検出する流量検出部を備え、
    前記制御部は、前記流量検出部により検出された流量から算出される要求水素循環流量と、前記燃料極の水素消費量から算出される要求水素循環流量のうち、値が大きい方を要求水素循環流量として用いることを特徴とする燃料電池システム。
  6. 請求項1乃至請求項5のうち、いずれか1項に記載の燃料電池システムであって、
    前記制御部は、前記ガス密度の上限閾値及び下限閾値を設定することによりガス密度範囲を設定し、水素循環路内のガス密度と当該ガス密度範囲の相対位置に従って水素循環路内における実水素循環流量の制御方法を切り換えることを特徴とする燃料電池システム。
  7. 請求項6に記載の燃料電池システムであって、
    前記制御部は、前記水素循環路内のガス密度が前記上限閾値以上である場合、前記パージ弁の開度を制御することにより水素循環路内のガス密度を上限閾値以下まで低下させた後、前記循環ポンプの回転数を制御することにより、水素循環路内における実水素循環流量を演算された要求水素循環流量に制御することを特徴とする燃料電池システム。
  8. 請求項6又は請求項7に記載の燃料電池システムであって、
    前記制御部は、前記水素循環路内のガス密度が前記下限閾値以下である場合、前記循環ポンプの回転数を制御することにより、水素循環路内における実水素循環流量を演算された要求水素循環流量に制御することを特徴とする燃料電池システム。
  9. 請求項6乃至請求項8のうち、いずれか1項に記載の燃料電池システムであって、
    前記制御部は、燃料電池システムの運転状態に応じて前記ガス密度範囲を移動すること特徴とする燃料電池システム。
  10. 請求項9に記載の燃料電池システムであって、
    前記制御部は、燃料電池の出力を増加させる場合、前記水素循環路内の水素循環流量が最大になるガス密度方向に前記ガス密度範囲を移動することを特徴とする燃料電池システム。
  11. 請求項9又は請求項10に記載の燃料電池システムであって、
    前記制御部は、燃料電池システムのエネルギー効率を高める場合、前記パージ弁により水素を排出することによるエネルギー損失量と前記循環ポンプの消費電力量の和が最小になるガス密度方向に前記ガス密度範囲を移動することを特徴とする燃料電池システム。
  12. 請求項9乃至請求項11のうち、いずれか1項に記載の燃料電池システムであって、
    前記制御部は、水素循環流量制御の信頼性を高める場合、又は、燃料電池システムの音振を低減する場合、水素循環流量が最大になるガス密度方向に前記ガス密度範囲を漸近、又は一致させることを特徴とする燃料電池システム。
  13. 請求項9乃至請求項12のうち、いずれか1項に記載の燃料電池システムであって、
    前記制御部は、前記ガス密度範囲を狭める、又は、前記上限閾値と前記下限閾値を一致させることを特徴とする燃料電池システム。
JP2004325114A 2004-11-09 2004-11-09 燃料電池システム Expired - Fee Related JP4940541B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325114A JP4940541B2 (ja) 2004-11-09 2004-11-09 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325114A JP4940541B2 (ja) 2004-11-09 2004-11-09 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2006134806A true JP2006134806A (ja) 2006-05-25
JP4940541B2 JP4940541B2 (ja) 2012-05-30

Family

ID=36728140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325114A Expired - Fee Related JP4940541B2 (ja) 2004-11-09 2004-11-09 燃料電池システム

Country Status (1)

Country Link
JP (1) JP4940541B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299480A (ja) * 2008-06-10 2009-12-24 Toyota Motor Corp ポンプ駆動制御装置
JP2010129352A (ja) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd 燃料電池システム
JP2013125591A (ja) * 2011-12-13 2013-06-24 Toyota Motor Corp 燃料電池システム及びその制御方法
US8546035B2 (en) 2008-06-10 2013-10-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2014165063A (ja) * 2013-02-26 2014-09-08 Chino Corp ガス流量制御装置及びガス流量制御方法
JP2015115227A (ja) * 2013-12-12 2015-06-22 株式会社デンソー 燃料電池システム
KR20150115164A (ko) * 2014-04-03 2015-10-14 현대자동차주식회사 연료전지 시스템의 연료극 운전제어 장치 및 방법
US9252444B2 (en) 2008-09-04 2016-02-02 Honda Motor Co., Ltd Fuel cell system
CN117117260A (zh) * 2023-10-23 2023-11-24 上海重塑能源科技有限公司 阳极循环量控制方法、装置、电子设备及燃料电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231786A (ja) * 1993-02-02 1994-08-19 Toshiba Corp 燃料電池制御装置
JPH09213353A (ja) * 1996-02-05 1997-08-15 Shikoku Sogo Kenkyusho:Kk 燃料電池発電装置
JP2002280027A (ja) * 2001-03-19 2002-09-27 Nissan Motor Co Ltd 燃料電池システム
JP2002352825A (ja) * 2001-03-23 2002-12-06 Nissan Motor Co Ltd 燃料電池システム
JP2003157874A (ja) * 2001-11-20 2003-05-30 Honda Motor Co Ltd 燃料循環式燃料電池システム
JP2003317752A (ja) * 2002-04-19 2003-11-07 Nissan Motor Co Ltd 燃料電池システム及び制御方法
JP2004031234A (ja) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd 燃料電池システム
JP2004207030A (ja) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd 燃料電池システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231786A (ja) * 1993-02-02 1994-08-19 Toshiba Corp 燃料電池制御装置
JPH09213353A (ja) * 1996-02-05 1997-08-15 Shikoku Sogo Kenkyusho:Kk 燃料電池発電装置
JP2002280027A (ja) * 2001-03-19 2002-09-27 Nissan Motor Co Ltd 燃料電池システム
JP2002352825A (ja) * 2001-03-23 2002-12-06 Nissan Motor Co Ltd 燃料電池システム
JP2003157874A (ja) * 2001-11-20 2003-05-30 Honda Motor Co Ltd 燃料循環式燃料電池システム
JP2003317752A (ja) * 2002-04-19 2003-11-07 Nissan Motor Co Ltd 燃料電池システム及び制御方法
JP2004031234A (ja) * 2002-06-27 2004-01-29 Nissan Motor Co Ltd 燃料電池システム
JP2004207030A (ja) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd 燃料電池システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299480A (ja) * 2008-06-10 2009-12-24 Toyota Motor Corp ポンプ駆動制御装置
US8546035B2 (en) 2008-06-10 2013-10-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9252444B2 (en) 2008-09-04 2016-02-02 Honda Motor Co., Ltd Fuel cell system
JP2010129352A (ja) * 2008-11-27 2010-06-10 Nissan Motor Co Ltd 燃料電池システム
JP2013125591A (ja) * 2011-12-13 2013-06-24 Toyota Motor Corp 燃料電池システム及びその制御方法
JP2014165063A (ja) * 2013-02-26 2014-09-08 Chino Corp ガス流量制御装置及びガス流量制御方法
JP2015115227A (ja) * 2013-12-12 2015-06-22 株式会社デンソー 燃料電池システム
KR20150115164A (ko) * 2014-04-03 2015-10-14 현대자동차주식회사 연료전지 시스템의 연료극 운전제어 장치 및 방법
KR101637642B1 (ko) 2014-04-03 2016-07-07 현대자동차주식회사 연료전지 시스템의 연료극 운전제어 장치 및 방법
CN117117260A (zh) * 2023-10-23 2023-11-24 上海重塑能源科技有限公司 阳极循环量控制方法、装置、电子设备及燃料电池
CN117117260B (zh) * 2023-10-23 2024-02-13 上海重塑能源科技有限公司 阳极循环量控制方法、装置、电子设备及燃料电池

Also Published As

Publication number Publication date
JP4940541B2 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
KR100591365B1 (ko) 연료 전지 시스템 및 연료 전지 시스템 제어 방법
EP2355219B1 (en) Fuel battery power generation control device and power generation control method
EP1984971B1 (en) Controlling the requested power output of a fuel cell system
JP2009199940A (ja) 燃料電池システム
WO2005101543A2 (en) Control apparatus and control method for fuel cell
US20070026280A1 (en) Fuel cell system and method of controlling gas pressure in fuel cell system
JP4185671B2 (ja) 燃料電池システムの制御装置
JP4992261B2 (ja) 燃料電池システム
JP4940541B2 (ja) 燃料電池システム
JP5092335B2 (ja) 燃料電池システム及び燃料電池システム制御方法
JP5136415B2 (ja) 燃料電池システム
JP4982977B2 (ja) 燃料電池システム
JP5304863B2 (ja) 燃料電池システム
JP2007115460A (ja) 燃料電池システム
JP4372523B2 (ja) 燃料電池の制御装置
JP4495578B2 (ja) 燃料電池システム
JP5034191B2 (ja) 燃料電池システム
JP4682572B2 (ja) 燃料電池の発電量制御装置
JP4923424B2 (ja) 燃料電池システム
JP2009076261A (ja) 燃料電池システム及びその起動方法
JPWO2004093230A1 (ja) 燃料電池システム及びその制御方法
JP2006331966A (ja) 燃料電池システム
JP4561048B2 (ja) 燃料電池システム
JP2007234311A (ja) 燃料電池システム
KR20210071117A (ko) 연료전지 차량의 운전 제어시스템 및 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4940541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees