JP2004146807A - 位置決め装置及び露光装置並びにデバイスの製造方法 - Google Patents

位置決め装置及び露光装置並びにデバイスの製造方法 Download PDF

Info

Publication number
JP2004146807A
JP2004146807A JP2003324688A JP2003324688A JP2004146807A JP 2004146807 A JP2004146807 A JP 2004146807A JP 2003324688 A JP2003324688 A JP 2003324688A JP 2003324688 A JP2003324688 A JP 2003324688A JP 2004146807 A JP2004146807 A JP 2004146807A
Authority
JP
Japan
Prior art keywords
electromagnet
slider
force
positioning
electromagnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003324688A
Other languages
English (en)
Other versions
JP3762401B2 (ja
Inventor
Toshiya Asano
浅野 俊哉
Yugo Shibata
柴田 雄吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003324688A priority Critical patent/JP3762401B2/ja
Priority to US10/670,241 priority patent/US7193493B2/en
Publication of JP2004146807A publication Critical patent/JP2004146807A/ja
Priority to US11/246,185 priority patent/US7330093B2/en
Application granted granted Critical
Publication of JP3762401B2 publication Critical patent/JP3762401B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20341Power elements as controlling elements
    • Y10T74/20354Planar surface with orthogonal movement only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】位置決め対象の構造物を大きな加速度で迅速に加減速するとともに高精度に位置決めする。
【解決手段】位置決め装置は、XYスライダをX梁、Y梁とともに移動させる。XYスライダとX梁、Y梁との間には電磁ガイド(電磁機構)が設けられる。電磁ガイドは、XYスライダ109cに設けられた位置決め用電磁石XEM1〜XEM4、YEM1〜YEM4および加速用電磁石XAEM1、XAEM2、YAEM1、YAEM2と、X梁、Y梁に設けられたターゲットとで構成される。位置決め用電磁石はフィードバック制御され、加速用電磁石はフィードフォワード制御される。
【選択図】図3

Description

 本発明は、位置決め装置、特に露光装置に搭載される位置決め装置並びにデバイスの製造方法に関する。
 露光装置は、ウエハを移動させるステージ装置を有する(例えば、特許文献1参照。)。このステージ装置においては、ステージ定盤上にはヨーガイドとステージ定盤でガイドされるYスライダが載せられている。Yスライダとステージ定盤およびヨーガイドとの間には、エアパッドが設けられている。
 また、Yスライダを囲むようにXスライダが設けられている。Yスライダの側面とXスライダの側面との間には、エアパッドが設けられている。Xスライダとステージ定盤との間にもエアパッドが設けられている。この構成により、YスライダはY方向に滑動自在であり、XスライダはYスライダに対してX方向に滑動自在なので、XスライダはX,Y方向に滑動自在である。
 Xスライダ、Yスライダの駆動にはリニアモータが用いられる。Xスライダ、Yスライダ駆動用のリニアモータは、コイル固定、磁石可動型のものであり、磁石位置に応じてコイルを選択し、電流の大きさと方向を適切に制御することで長ストロークの駆動を実現する。
特許第3145355号公報
 このようなステージ装置は、長ストロークにわたって高精度な位置制御が可能である。ところで、このようなステージ装置において、Xスライダ上に、Xスライダに対してX,Y,Z,θx,θy,θzの各方向に基板保持プレートを微動可能な6軸微動ステージを搭載する場合には、Xスライダより先、つまりXスライダと微動ステージのトータルの質量が増加してしまうことになる。露光装置では、生産性を高めるために大きな加速度でステージを加速する必要があるが、Xスライダと微動ステージのトータルの質量が増加すると、加速度が同一でも加速に必要な力は質量に比例して増加する。
 上述したステージ装置の構成では、Xスライダと微動ステージを例えばY方向に加速するための力は、Yリニアモータで発生される。そして、この力の一部がエアパッドを介してXスライダと微動ステージに伝達される。具体的には、Yスライダ系の質量をm、Xスライダ系の質量をm、微動ステージ系の質量をm、加速度をαとすると、2本のYリニアモータで(m+m+m)×αの力を発生し、このうちの(m+m)×αの力がYスライダの側面とXスライダの側面との間のエアパッドを介してXスライダと微動ステージに伝達されることになる。
 問題は、このエアパッドの力伝達能力である。エアパッドによる力伝達は圧力換算で1kgf/cm程度にとどまっている。よって微動ステージの追加によりXスライダに伝達すべき力が増加すると、このエアパッドの力伝達能力を越えることが想定される。かといって、斯かるエアパッドを転がりタイプのガイドにするのは、寿命の問題や発塵の問題があって、露光装置のように長期間の連続稼動とクリーン度が要求される装置においては、非常に困難である。
 さらに、最近ではより微細なパターンを露光するために真空雰囲気での使用に適合したステージ装置が要求されているが、真空雰囲気でエアパッドを構成しようとすると周辺にエアを回収する手段を設ける必要がある。このような手段の周辺部は推力伝達に寄与しないので圧力換算での推力伝達能力はますます低下する傾向となる。
 また、上述したステージ装置の構成では、XスライダとYスライダとの間の非接触ガイドが静圧軸受などエアベアリングで構成されているため、ばね剛性によって拘束されている。すなわち、従来のステージ装置の構成は、一方のスライダの動きに他方のスライダが追従する連性系のシステム構成である。そのため、X、Yスライダを能動的に位置決めする機械制御(サーボ)を行うことができず、高精度な位置決めを行うことができなかった。
 また、例えばYスライダに外乱が加わったときは、X、Yスライダがばね剛性によって拘束された連性系のシステム構成であるため、Yスライダに対する位置決めサーボ系がXスライダに対する位置決めサーボ系に必然的に影響を及ぼすことになり、Xスライダの高精度な位置決めを行うことが困難であった。
 さらに、Yスライダの位置に応じて、Xスライダに発生する力のモーメントを打ち消すために、Yスライダにフィードフォワード制御を施したとても、Xスライダに振動が加わってしまい、X、Yスライダともに高精度の位置決めを行うことが困難となっていた。
 また、従来のエアベアリングに能動的にサーボをかける方法も考えられるが、応答性が悪く、高精度な位置決めを実現することは困難であった。この場合、ギャップセンサによってX、Yスライダ間のギャップを保持するシステムとなるため、システム構成上も応答性が悪く、高精度な位置決めは困難であった。
 本発明は、上記の背景に鑑みてなされたものであり、例えば、位置決め対象の構造物を大きな加速度で迅速に加減速するとともに高精度に位置決めすることができる位置決め装置及びそれを備えた露光装置を提供することを目的とする。
 本発明の第1の側面は、位置決め装置に係り、位置決めすべき構造物と、前記構造物の位置決めのために移動する移動体と、前記構造物と前記移動体との間に電磁的に力を作用させることにより、前記構造物と前記移動体との間に間隙を形成しつつ前記移動体の移動に伴って前記構造物が移動することを可能にする電磁機構とを備え、前記電磁機構は、前記構造物の目標位置と実際位置との偏差に基づいてフィードバック制御される第1電磁アクチュエータと、前記構造物の目標位置に基づいてフィードフォワード制御される第2電磁アクチュエータと、を有し、前記第1及び第2電磁アクチュエータは、各々、同一線上において互いに反対の方向に力を発生するように配置された一対の電磁石と、前記一対の電磁石の各々と対向して配置された一対のターゲットと、を有し、前記電磁石と前記ターゲットとの間において、前記電磁石が発生する磁束による吸引力が前記ターゲットに作用することを特徴とする。
 本発明の好適な実施の形態によれば、少なくとも1つの前記ターゲットは、少なくとも2つの前記電磁石によって共用されるように配置されることが望ましい。
 本発明の好適な実施の形態によれば、前記フィードバック制御では、前記偏差を低減するために前記第1電磁アクチュエータが発生すべき力の平方根に前記第1電磁アクチュエータにおける前記電磁石と前記ターゲットとの間の間隙に相当する補正項を乗じた値に従って前記電磁石のコイルに流す電流を制御することが望ましい。
 本発明の好適な実施の形態によれば、前記フィードフォワード制御では、前記構造物の目標位置を前記第2電磁アクチュエータの前記電磁石が発生すべき磁束の指令値に変換し、該指令値と前記電磁石が発生している磁束の値との差分に基づいて前記電磁石を制御することが望ましい。
 本発明の好適な実施の形態によれば、前記一対の電磁石の一方の電磁石を駆動しているときは他方の電磁石を駆動しないことが望ましい。
 本発明の好適な実施の形態によれば、前記装置は、前記第1電磁アクチュエータを2組備え、前記第2電磁アクチュエータが前記2組の第1電磁アクチュエータの間に配置されていることが望ましい。
 本発明の好適な実施の形態によれば、前記第2電磁アクチュエータが発生する力の力線が、前記構造体の重心を通る線と一致していることが望ましい。
 本発明の好適な実施の形態によれば、前記第1電磁アクチュエータと前記ターゲットの間隔は前記第2電磁アクチュエータと前記ターゲットの間隔以上あることが望ましい。
 本発明の好適な実施の形態によれば、前記移動体の両端に配置されて前記移動体を駆動する2つの駆動機構を更に備え、前記2つの駆動機構は、前記構造物の位置に応じて分配される推力でそれぞれ前記移動体を駆動することが望ましい。
 本発明の好適な実施の形態によれば、前記推力は、前記構造物から前記移動体が受ける反力によって生じる前記移動体の重心周りの力のモーメントを打ち消すように分配されることが望ましい。
 本発明の好適な実施の形態によれば、前記推力は、前記構造物と前記移動体とを一体物としたときの重心位置に基づいて分配されることが望ましい。
 本発明の好適な実施の形態によれば、前記推力は、前記構造物の重心位置と前記移動体の重心位置とに基づいて分配されることが望ましい。
 本発明の第2の側面は、露光装置に係り、上記記載の位置決め装置を利用して、位置決め対象物を位置決めし露光動作を実行することを特徴とする。
 本発明の第3の側面は、デバイス製造方法に係り、上記記載の露光装置を利用して、基板にパターンを転写する工程と、前記基板を現像する工程と、を含むことを特徴とする。
 本発明によれば、例えば、位置決め対象の構造物を大きな加速度で迅速に加減速するとともに高精度に位置決めすることができる。
 以下、添付図面を参照しながら本発明の好適な実施の形態を説明する。
 図1は、本発明の好適な実施の形態のステージ装置の概観を示す図である。このステージ装置は、半導体露光装置等の露光装置のウエハステージ装置として構成されているが、本発明のステージ装置は他の装置に組み込まれてもよい。
 ウエハステージ装置100は、ウエハをウエハチャック上に保持し、アライメントポジションや露光ポジションにウエハを搬送し位置決めする。ステージ定盤113上には、不図示の静圧案内によってXY平面上を移動自由に案内された粗動X梁105が配置されている。粗動X梁105は、Xヨーガイド115に不図示の静圧案内を用いてヨー方向の姿勢が固定され、結果として、粗動X梁105は、X方向のみに移動自由に案内されている。同様にして、粗動Y梁107は、ステージ定盤113とYヨーガイド117によりY方向のみに移動自由に案内されている。
 粗動X梁105、粗動Y梁107の各両端には永久磁石を用いたX、Y粗動リニアモータ可動子119、121がそれぞれ設けられている。X粗動リニアモータ可動子119を上下から挟み込むようにX粗動リニアモータ固定子対101が配置され、Y粗動リニアモータ可動子121を上下から挟み込むようにY粗動リニアモータ固定子対103が配置されている。
 粗動リニアモータ固定子101、103は、櫛歯状の珪素鋼薄板を積層して構成された鉄心にコイルが巻かれた構成を有する。鉄心と粗動リニアモータ可動子との間には磁石の吸引力が働くが、上下とも同じ間隙で粗動リニアモータ固定子が粗動リニアモータ可動子を挟み込む構成とすることにより、この吸引力が相殺されている。
 粗動リニアモータ固定子101、103のコイルに電流を流すことにより、粗動リニアモータ固定子101、103と粗動リニアモータ可動子119、121との各間に推力を発生することができる。粗動リニアモータ固定子101、103とステージ定盤113は、同じ構造体によって支持されており、粗動リニアモータの推力は、X粗動梁105、粗動Y梁107の各々の移動方向に働く。
 粗動X梁105、粗動Y梁107には、不図示のコーナーキューブが設けられており、不図示のレーザ干渉計からのレーザ光を反射する。粗動X梁105、粗動Y梁107の各々の移動方向の位置は、これらのレーザ干渉計により計測される。不図示の制御系により、粗動X梁105、粗動Y梁107は、各々のレーザ干渉計による計測値と粗動リニアモータにより位置決め制御される。
 粗動X梁105、粗動Y梁107を囲むようにしてXYスライダ109が設けられている。XYスライダ109の自重は、XYスライダ底板109cに設けられた不図示の静圧案内によってステージ定盤113で受けられている。よって、XYスライダ109は、ステージ定盤113上のXY平面内を移動するように案内されている。XYスライダ109とX梁105、Y梁107との間には電磁ガイド(電磁機構)が設けられている。電磁ガイドについては、後述する。
 XYスライダ109の適所、例えば、XYスライダ上板109aの側面には、反射鏡が形成又は固定されており、不図示のレーザ干渉計によりXYスライダ109の位置及び姿勢が計測される。図2は、図1に示す構成の一部をZ方向に分解して示した図である。図2に示す例では、XYスライダ109に関して、レーザ光軸AXX(X方向の計測光軸)、レーザ光軸AXY1及びAXY2(共にY方向の計測光軸)を計測光軸とするレーザ干渉計が配置されており、X、Y方向の位置及びωz方向の回転を計測することができる。以下では、XYスライダ109に関するレーザ干渉計をXYスライダレーザ干渉計という。ここで、ωz方向の回転は、レーザ光軸AXY1及びAXY2を光軸とするレーザ干渉計による計測結果、すなわち、Y方向の2つの位置計測値の差分とレーザ光軸の間隔とに基づいて算出することができる。
 同様に、X梁105、Y梁107の適所、例えば両端部にも、反射鏡が形成又は固定されており、不図示のレーザ干渉計によりX梁105、Y梁107の位置及び姿勢が計測される。図2に示す例では、X梁105に関して、レーザ光軸RAXX1及びRAXX2(共にX方向の計測光軸)が配置され、X梁105のX方向の位置及びωz方向の回転が計測される。また、Y梁107に関して、レーザ光軸RAXY1及びRAXY2(共にY方向の計測光軸)を計測光軸とするレーザ干渉計が配置され、Y梁107のY方向の位置及びωz方向の回転が計測される。X梁105、Y梁107に関するレーザ干渉計を以下では粗動ステージレーザ干渉計という。
 XYスライダ109上には図1の微動ステージ111が搭載される。微動ステージ111は、不図示の空気ばねや磁石の反発を用いた自重補償系によりXYスライダ109からの振動が絶縁されている。XYスライダ109の上部にはコイルから成る単相リニアモータ固定子が固定され、微動ステージ111の下部には永久磁石から成る単相リニアモータ可動子が固定されている。これらによって構成される単相リニアモータは、微動ステージ111をX、Y、Zと各々の軸周りの回転方向であるωx、ωy、ωz方向に推力を出せる構成となっている。例えば、XY座標が異なる3つの位置にそれぞれ単相リニアモータを配置することにより、Z、ωx、ωy方向に推力を発生させることができる。また、X方向に2個、Y方向に2個の単相リニアモータを配置することにより、X、Y、ωz方向に推力を発生させることができる。
 微動ステージ111には、不図示のレーザ反射鏡が設けられており、不図示のレーザ干渉計によって微動ステージ装置111の6自由度の位置変位を計測することができる。
 図3は、図2に示すXYスライダ底板109c、及びその上に設けられた電磁石を示す図である。図2及び図3を参照しながらXYスライダ109とX梁105、Y梁107との間に設けられた電磁ガイド(電磁機構)について説明する。
 この実施の形態では、XYスライダ109と、それを移動させるための移動体としてのX梁105、Y梁107との間のガイド機構として電磁ガイドを採用している。電磁ガイド(電磁機構)は、電磁石が発生する磁界を利用した一対の電磁アクチュエータが梁を挟むように対向配置して構成された非接触のガイド(案内機構)である。このような電磁アクチュエータは、ターゲット(例えば、磁性体)と電磁石とによって構成されうる。ここで、エアガイドに代えて電磁ガイドを採用することにより、非接触ガイドであるという利点を維持しつつ高い推力伝達能力を得ることができる。このような電磁ガイドは、エアを使用しないので、真空環境或いは減圧環境等を含むあらゆる使用環境に適している。
 ターゲット105T、107Tは、例えば、珪素鋼の薄板を積層して構成されうる。積層構造を採用するのは、渦電流の影響を抑えるためである。図4に電磁アクチュエータの構成例が示されている。電磁石130は、E型コア131にコイル132を巻くことにより構成されうる。コイル132に電流を流すことにより、E型コア131とターゲット105T(107T)に磁束が通り、両者間に吸引力が発生する。
 電磁石130は、XYスライダ中間部材109bに取り付けられている。なお、XYスライダ109は、XYスライダ上板109a、XYスライダ中間部材109b、XYスライダ底板109cにより構成されている。
 図3には、図2に示す電磁石130の具体的な配列例が示されている。なお、図2中の電磁石130は、図3では、XEM1〜XEM4、XAEM1、XAEM2、YEM1〜YEM4、YAEM1、YAEM2として記載されている。
 電磁石XEM1〜XEM4は、X方向に位置決めの際に制御力を発生する電磁石であり、電磁石YEM1〜YEM4は、Y方向に位置決めの際に制御力を発生する電磁石である。これらの電磁石を位置決め用電磁石と呼ぶことにする。ここで、電磁石XEM1及び電磁石XEM2、電磁石XEM3及び電磁石XEM4、電磁石YEM1及び電磁石YEM2、電磁石YEM3及び電磁石YEM4が、それぞれ対向配置されて電磁石対を構成している。
 ここで、電磁石XEM1と電磁石XEM2の各中心を通る線をX12軸、電磁石XEM3と電磁石XEM4の各中心を通る線をX34軸、電磁石YEM1と電磁石YEM2の各中心を通る線をY12軸、電磁石YEM3と電磁石YEM4の各中心を通る線をY34軸と呼ぶことにする。X12軸とX34軸は、XY平面内においてXYスライダ109及び微動ステージ111を含む構造体(X梁105、Y梁107の負荷)の重心を通るX軸を基準として対称に配置されることが好ましい。同様に、Y12軸とY34軸は、XY平面内においてXYスライダ109及び微動ステージ111を含む構造体(X梁105、Y梁107の負荷)の重心を通るY軸を基準として対称に配置されることが好ましい。このような構成を採用することにより、X軸方向及びY軸方向の制御力によるωz方向の回転を最小化することができる。
 位置決め用電磁石XEM1〜XEM4、YEM1〜YEM4には、後述の電磁石指令演算器からフィードバック制御指令が送られる。フィードバック制御指令とは、XYスライダ109の位置制御系に与えられる位置指令(XYスライダ109の目標位置)とXYスライダ109の位置及び姿勢に関する計測値とから得られたXYスライダ109の位置偏差情報とに従って算出される制御指令である。なお、XYスライダ109の位置制御系の補償器には、公知のPID補償器を採用することができる。
 これらの位置決め用電磁石とは別に、この実施の形態では、X方向へのXYスライダ109の加速の際に制御力を発生する、対向配置された電磁石XAEM1及びXAEM2からなる電磁石対と、Y方向へのXYスライダ109の加速の際に制御力を発生する、対向配置された電磁石YAEM1及びYAEM2からなる電磁石対と、が設けられている。これらの電磁石を以下では加速用電磁石と呼ぶことにする。
 ここで、X方向用の加速用電磁石XAEM1及びXAEM2の対は、XYスライダ109及び微動ステージ111を含む構造体(X梁105、Y梁107の負荷)の重心を通るX軸上に配置すること、すなわち、加速用電磁石対の力線を構造体のX軸に一致させることが好ましい。また、同様に、Y方向用の加速用電磁石YAEM1及びYAEM2の対は、XYスライダ109及び微動ステージ111を含む構造体(X梁105、Y梁107の負荷)の重心を通るY軸上に配置することが好ましい。これにより、ステージ装置を小型化しつつX軸方向及びY軸方向の制御力によるωz方向の回転(Z軸周りの回転)を最小化することができる。ここで、加速用電磁石対の力線が前記構造体の重心からずれていると、加減速の際にZ軸周りのモーメントが発生し、位置決め精度の悪化、位置決め用電磁石ユニットの負荷増加(発熱増加)を招くので好ましくない。
 加速用電磁石XAEM1、XAEM2、YAEM1、YAEM2には、後述のXYスライダ位置指令器からフィードフォワード制御指令が送られる。フィードフォワード制御指令とは、XYスライダ109の駆動指令である加速度にXYスライダ109及び微動ステージ111を含む構造体(X梁105、Y梁107の負荷)の質量を乗じた値である。フィードフォワード制御を加えることにより、ステージ加減速時(XYスライダ109の加減速時)の位置偏差を減少させ、フィードバック制御系で発生する制御指令の値を小さく抑えることができる。
 X方向の位置決め用電磁石XEM1及びXEM3(XEM2及びZEM4)と加速用電磁石XAEM1(XAEM2)とは、電磁アクチュエータを構成するためのターゲット105Tを共用することが好ましく、これにより、ステージ装置を小型化することができる。Y方向の電磁石についても同様である。
 ここで、電磁ガイドとして、位置決め用電磁ガイドと加速用電磁ガイドとを別個に設けることにより、XYスライダ109(微動ステージ111)の加減速時においても高い位置決め精度を実現することができる。すなわち、このような構成によれば、位置決め対象物としての構造体を迅速に加減速することができるとともに高精度に位置決めすることができる。以下に、この効果について詳述する。
 XYスライダ109の加減速時は、電磁ガイド(電磁機構)には、XY平面内においてXYスライダ109及び微動ステージ111を含む位置決め対象の構造体の質量に加速度を乗じた加減速力が加わる。ここでは、比較として、上記の位置決め用電磁石が加速用電磁石としても使用される場合(すなわち、加速用電磁石がない場合)を考える。
 例えば、XYステージ109をX軸の正方向に加速する場合、その加速力をX方向用の電磁石XEM1及びXEM3でXYスライダ109に伝達する必要がある。すなわち、この場合、加速力に相当する吸引力を電磁石XEM1及びXEM3が発生する必要がある。電磁石が発生する吸引力は、電磁石コイルに流れる電流の2乗に大凡比例する。すなわち、吸引力の大きさにより吸引力の分解能が変化する。電磁石の吸引力が小さいときは力変化に対する電流指令変化が大きく、吸引力が大きいときは力変化に対する電流指令変化が小さくなるためである。
 言い換えると、電磁石の力分解能は線形ではなく、大きな力を発生するときほど分解能が悪くなる。よって、大きな加減速力を発生しているときは、力分解能が低下してXYスライダ109の位置決め精度が悪くなり、最悪の場合、電磁ガイドの面同士が接触してしまい機能を果たさなくなる。したがって、大きな加減速力の伝達が可能でかつ高い位置決め精度を得ることができる電磁ガイドの構成が求められる。
 この実施の形態は、上記の要求に応えるべく、位置決め用電磁ガイドと加速用電磁ガイドとを別個に設けている。このような構成によれば、XYスライダ(XYステージ)の加減速時に必要な大きな力を加速用電磁石に発生させるので、位置決め用電磁ガイドでは、XYスライダ(XYステージ)の加減速時、等速時、停止時といった運動状態に関係なく、位置決め用の限定された範囲内の力を発生すればよい。加減速時における加速用電磁ガイドの分解能の低さに起因する位置決め誤差は、高い分解能を常に発揮し得る位置決め用ガイドによって低減される。したがって、この実施の形態によれば、位置決め用電磁ガイドによってXYスライダ(XYステージ)を高精度に位置決めすることができる一方、加速用電磁ガイドによって加減速時に大きな吸引力を得ることができる。
 ここで、位置決め用電磁ガイドをフィードバック制御系で制御することにより、位置決め用電磁ガイドには、位置偏差に相当する小さな値の制御指令が与えられる。一方、加速用電磁ガイドをフィードフォワード制御系で制御することにより、加速用電磁ガイドには、加減速指令に相当する大きな値の制御指令が与えられる。
 図5は、図2及び図3に示す電磁ガイド(電磁機構)を制御する制御系を示す図である。この制御系では、モード制御と呼ばれる手法が採用されている。すなわち、この制御系は、XYスライダ109を含む位置決め対象の構造体の重心位置におけるX、Y方向の位置、およびZ軸周りの回転方向であるωzの3軸の各モード位置指令と、XYスライダ109の位置を3本のレーザ干渉計(計測軸は、AXX、AXY1、AXY2)から提供されるXYスライダ109の各モード計測値とに基づいてXYステージ109の位置を制御する。
 モード毎の制御を行なうことにより、直進方向と回転方向との幾何学的干渉を避けることができる。まず、主制御器からXYスライダ位置指令器201にステージ移動指令が送られ、XYスライダ位置指令器201において、XYスライダ109の位置指令(目標位置)が算出される。モード指令変換器202は、位置指令に従ってXYスライダ109を含む構造体の重心位置におけるX、Y、ωzのモード位置指令を算出する。
 XYスライダ位置算出器205は、XYスライダ109の位置を計測する3本のXYスライダレーザ干渉計による計測値に基づいて、レーザが反射鏡にあたる場所でのXYスライダ109の位置を算出する。モード位置演算器204は、XYスライダ位置算出器205によって算出されたXYスライダ109の位置をXYスライダ109の各モード計測値に変換する。モード指令変換器202およびモード位置演算器204には、XYスライダ109を含む構造体の重心位置の情報が組み込まれており、これらの幾何学的情報に基づいて演算が行われる。
 モード制御器203は、モード位置指令とモード計測値とに基づいて各モード軸の偏差を算出して、これらの偏差を解消するためのモード制御指令を生成する。
 前述のように、加速用電磁石は、その力線上に加速される構造体の重心があるので、XYスライダ位置指令器201においてXYスライダ109の位置指令から直にX、Y方向の加減速力のフィードフォワード制御指令が得られる。フィードフォワード制御指令は、磁束指令演算器211に送られる。
 制御指令分配器212は、モード制御器203から送られてくるモード制御指令をXYスライダ109を含む構造体の重心位置情報と各電磁石の位置情報とに基づいてX12軸、X34軸、Y12軸、Y34軸に配置された電磁石への力指令であるXf12、Xf34、Yf12、Yf34に分配する。ωz軸についての力指令は、X12軸とX34軸に割り振りY12軸とY34軸でのωz成分を零にしてもよいし、その逆でも良い。
 位置決め用電磁石の駆動方法にについて、X12軸を一例として示す図6を参照して説明する。他のX34、Y12、Y34軸も同様の構成である。制御電流演算器213は、各軸の一対の位置決め用電磁石について図6に示す構成を有する。制御電流演算器213に設けられた選択器401は、X12軸指令であるXf12の正負を判断する。判断結果が正の場合(図6では、”1”)は、X12軸の電磁石XEM1及びXEM2のうち電磁石XEM2に力を発生させ、電磁石XEM1に対する力指令を零とする。すなわち、電磁石XEM2のコイルを駆動する電流ドライバ221に対して、XEM2指令器403は、零電流指令(演算式に従って演算されたXI2)を送り、電磁石XEM1のコイルを駆動する電流ドライバ221に対して、XEM1指令器402は、零電流指令(XI1=0)を送る。このように、X12軸指令であるXf12の正負に応じて一対の電磁石の一方にのみ電流を流すことにより、電磁石(コイル)の発熱を低減することができる。
 電磁石が発生する吸引力は電磁石ギャップの磁束φの2乗に比例し、磁束φはコイルに流れる電流に比例する。よって、電磁石が発生する力は、コイル電流の2乗にほぼ比例すると考えてよい。そこで、電磁石XEM2のコイルには、力指令の平方根の次元を有する電流が与えられる。より具体的には、電磁石XEM2のコイルには、力指令(XF12)の平方根に補正値を乗じた値に相当する電流が指令電流として与えられる。
 更に、吸引力は電磁石ギャップにも依存する。吸引力は大凡電磁石ギャップの2乗分の1に比例する。X梁105、Y梁107とXYスライダ109とで制御性能が異なると、XYスライダ109を加減速させる際に両者間の位置偏差に差が生じ、結果として電磁石ギャップの変動が生じる。この変動は、電磁石の吸引力を変動させるので、これに対処しないと最悪の場合には、XYスライダ109の制御系が吸引力変動の非線形性に勝てず、不安定となり発散を起こす。そこで、次のようなギャップ変動補正を行なうことが好ましい。
 すなわち、XYスライダ位置算出器205によりXYスライダレーザ干渉計(計測軸は、AXX、AXY1、AXY2)から提供される位置情報に基づいてXYスライダ109の位置を算出する。また、粗動ステージ位置算出器206により粗動ステージレーザ干渉計(計測軸は、RAXX1、RAXX2、RAXY1、RAXY2)に基づいて粗動ステージ(X梁105、Y梁107)の位置を算出する。そして、ギャップ算出器214によりXYスライダ位置及び粗動ステージ位置に基づいて各電磁石XEM1、XEM2、XEM3、XEM4、YEM1、YEM2、YEM3、YEM4のギャップX1gap、X2gap、X3gap、X4gap、Y1gap、Y2gap、Y3gap、Y4gapを算出する。この符号はギャップが大きくなる方向を正方向にとることにする。すなわち、ギャップ値が大きくなると、吸引力は減少する。
 図6のXギャップ補正器2(405)では、ギャップ補正係数Col_X2gapを次式に従って算出する。
   Col_X2gap=1+X2gap/Gap :Gap=(標準ギャップ値)
 Gapは、ギャップ変動が零の時の標準のギャップの値であり、単位はX2gapと同じである。ここでは、X梁105、Y梁107とXYスライダ109の各々の計測値から電磁石のギャップを割り出したが、電磁石の近傍に該電磁石とターゲットとのギャップを計測するギャップセンサを用いてもよい。XEM2指令器403では、前述した力指令の平方根である√(Xf12)に対して、このギャップ補正係数Col_X2gapを乗じたものを、電磁石XEM2のコイルを駆動する電流ドライバ222に対する電流指令(XI2)として算出する。
 X12軸指令のXf12が負または零の場合(図6では、判断結果が”0”の場合)は、電磁石XEM2のコイルを駆動する電流ドライバ222に対する電流指令を零とし、電磁石XEM1のコイルを駆動する電流ドライバ221に対しては力指令の平方根にギャップ補正係数Col_X1gapを乗じたものを電流指令(XI1)として指令する。ただし、Xf12が負であるので、平方根をとるにあたって−1を乗じて正の値にしてから行なう。Xf12が零の場合は、当然に、電磁石XEM1のコイルを駆動する電流ドライバ221に対する指令も零となる。
 他の軸(X34軸、Y12軸、Y34軸)もX12軸の構成とまったく同じであるので省略する。
 各々の電磁石XEM1〜XEM4、YEM1〜YEM4のコイルには、制御電流演算器213から提供される電流指令(XI1〜XI4、YI1〜YI4)に従った電流が電流ドライバ(X1〜X4、Y1〜Y4)221〜228によって供給される。このようにして所望の制御力をXYスライダ109の電磁ガイドに発生させることができ、XYスライダ109を高精度に位置決めすることができる。位置決め用電磁石に発生させる制御力は小さくてよいので、以上のような電流ドライバに電流指令を送る方式が簡単であり好ましい。
 位置決め用電磁石の制御方法については、公知の技術として、対向する電磁石の両者にバイアス電流を流しておき片方にバイアス電流に制御指令電流を加えたものを、他方にバイアス電流から制御指令電流を差し引いたものを指令する方法がある。しかし、この制御方法では、コイルが発生する熱がバイアス電流の増大に伴って大きくなり、さらにギャップ変動時の吸引力変動を抑制することができない。よって、大きな加減速を伴うステージ装置においては、この実施の形態のような位置決め用電磁石の制御方法を用いるのが良い。
 次に、加速用電磁石の駆動方法について、X加速電磁石XAEM1及びXAEM2を一例として、図7及び図8を参照して説明する。一対の加速用電磁石の対向する電磁石XAEM1及びXAEM2への指令は、電磁石指令演算器210内の磁束指令演算器211がフィードフォワード制御指令の正負に応じて振り分ける。磁束指令演算器211は、X加速電磁石XAEM1及びXAEM2用として図7に示す構成を有し、また、Y加速電磁石YAEM1及びYAEM2用としても同様の構成を有する。
 XYスライダ位置指令器201からX方向のフィードフォワード制御指令Xffが磁束指令演算器211に送られる。磁束指令演算器211内の選択回路411は、フィードフォワード制御指令Xffの正負を判断する。フィードフォワード制御指令Xffが正の場合(図7では、判断結果が”1”の場合)は、XAEM1指令器412が電磁石XAEM11に指令XJ1を送り、XAEM2指令器413が電磁石XAEM2に零指令XJ2を送る。Xffが負の場合(図7では、判断結果が”0”の場合)は、この逆となる。フィードフォワード制御指令Xffの正負に応じて一対の電磁石の一方にのみ電流を流すことにより、電磁石(コイル)の発熱を低減することができる。
 加速電磁石は、大きな加減速力を発生する必要があるので、位置決め用電磁石に用いた電流指令系ではなく、磁束を検出して磁束の次元で制御する磁束フィードバック制御系を用いることが好ましい。そこで、この実施の形態は、加速用電磁石XAEM1、XAEM2への指令の次元を磁束の次元としている。磁束の次元とは、フィードフォワード制御指令の平方根をとったものである。Xffが負の場合は、−1を乗じて符号を反転させてから平方根をとる。
 磁束指令演算器211で演算された各加速用電磁石への磁束指令XJ1、XJ2、YJ1、YJ2は、加速用電磁石XAEM1を駆動するX加速電磁石1駆動系231、加速用電磁石XAEM2を駆動するX加速電磁石2駆動系232、加速用電磁石YAEM1を駆動するY加速電磁石1駆動系233、加速用電磁石YAEM2を駆動するY加速電磁石2駆動系234に送られる。
 図8を参照しながら、電磁石XAEM1を一例として説明すると、加速電磁石駆動系231には、電磁石XAEM1に設けられたサーチコイル421と積分器423とにより磁束検出器が構成されている。電磁石XAEM1のサーチコイル421には、電磁石XAEM1における磁束の時間変化成分が誘起電圧として発生する。この誘起電圧を積分器423により時間積分することで電磁石XAEM1が発生する磁束が検出される。加算器424では磁束指令XJ1と検出磁束との差分である磁束誤差が算出される。この磁束誤差に増幅器425がゲインを乗じて電圧ドライバ426に指令として送られる。電磁石XAEM1のコイル422には電圧ドライバにより電圧が印加され、コイル422に電流が流れることにより電磁石XAEM1に磁束が発生する。
 図8に示すフィードバックループを磁束フィードバックループと呼ぶ。この磁束フィードバックループの磁束誤差から検出磁束までのループゲインが十分に高ければ、電磁石XAEM1に発生する磁束は、指令磁束XJ1にほぼ等しいものとなる。電磁石で発生する吸引力は磁束の2乗に比例するので、磁束を制御することにより等価的に吸引力を制御することになる。当然ながら、磁束指令が零の場合は電磁石XAEM1で発生する力もコイルに流れる電流も零となる。
 加速用電磁石XAEM1、XAEM2、YAEM1、YAEM2に磁束フィードバックループを用いたのは次の理由による。粗動リニアモータ101、103によって大きな加速力でXYスライダ109を駆動する場合、X梁105、Y梁107とXYスライダ109との間の電磁ガイド(加速用電磁石)は大きな力を発生する必要がある。電磁石の材質として磁気ヒステリシス特性の少ない珪素鋼を用いたとしても、大きな磁束を通すと少なからず残留磁気が発生する。位置決め用電磁石のように電流の制御のみではこの残留磁気の影響を抑えることができず、フィードフォワード力発生の精度が悪くなる。
 フィードフォワード力に誤差が生じると、加減速時のXYスライダ109の位置偏差が生じ、結果的にフィードバック制御指令分が増えて位置決め用電磁石が大きな力を発生する必要があり、位置決め用電磁石が発生する力を小さく抑えるという思想に対立する。磁束フィードバック制御では磁束を検出して制御しており、残留磁気の影響はこの磁束検出で得ることができるので高精度に大きな吸引力を発生させることができる。
 位置決め用電磁石では、発生する力が小さいので残留磁気を生じる量も少なく、また、フィードフォワード制御指令のようにオープン指令ではなくフィードバック指令であるので残留磁気があったとしても問題とはならない。
 本発明を適用する上でステージの構成は上記の実施形態に限定されない。上記の実施形態では、平面上においてXYスライダ(XYステージ)をX、Y、ωz方向に位置制御する構成であったが、本発明は、位置制御と加速力伝達が必要なあらゆる構成に適用することができ、例えば、並進1方向のみや並進1方向と回転1方向(例えばXとωz)の制御にも適用することができる。
 また、上記の実施の形態では、平面上においてX、Y方向に大きな移動範囲でXYスライダを移動させる必要があったのでターゲットを長く構成し、ターゲット面に対して電磁石面が移動する方式をとった。この場合は、上記のように、位置決め用電磁石と加速用電磁石とでターゲットを共用することが装置を小型化する面で有利である。しかしながら、位置決め用電磁石用および加速用電磁石用としてターゲットとを独立に設けてもよい。
 並進1方向のみに位置決めおよび加減速伝達を行なう場合であれば、ターゲット面と電磁石面が平面上で大きく移動することはないので、それぞれに独立してターゲットを構成すればよい。このような構成の一例を図9に示す。第1ステージ501はX方向に移動し、第2ステージ502は、第1ステージ501上にXおよびωz方向に移動自由に支持されている。第1ステージ501上には第2ステージ502を位置決め制御するための電磁石として電磁石XEM1〜XEM4、および加減速力を伝達するための電磁石として電磁石XAEM1、XAEM2が設けられている。第2ステージ502上には、各々の電磁石に対応するターゲットT1〜T4、AT1、AT2が独立に構成されている。
 図9に示す構成は、例えばマスクステージとして好適であり、この場合、第2ステージ502上に半導体露光用のマスク基板が搭載されるので、第2ステージ502の熱膨張による露光精度悪化を防ぐ必要がある。このため発熱源である電磁石を第1ステージ501に固定し、発熱のないターゲットを第2ステージ502に固定することが好ましい。各ステージの制御系は図5に示した構成から1方向分の制御系のみを切り出した構成とすることができる。
 前述のように電磁石の発生する力はターゲットとのギャップが小さいほど、同じ電流に対して大きくなる。加速用電磁石は大きな加減速力を出す必要があるので、ギャップを小さくしコイルの発熱を抑えるようにすることが望ましい。位置決め用電磁石では発生する力は小さくて済むので、加速用電磁石ほどギャップを小さくする必要は無い。また、前述したギャップ変動補正の精度をあげるためにもギャップは大きいほうが良い。さらに、ωz方向のストロークを確保するためにも位置決め用電磁石のギャップは大きいほうが良い。そこで、(位置決め用電磁石とターゲットの間隙)≧(加速用電磁石とターゲットの間隙)とすることが構成上望ましい。
 図10は、XYスライダ109とX梁105、Y梁107との間の非接触ガイドが静圧軸受等のエアベアリングで構成されている例を示す。この例は、ばね剛性によって拘束され、X梁105、Y梁107の動きにXYスライダ109が追従する連性系システム構成である。このため、この例では、XYスライダ109を能動的に位置決めサーボすることが出来ず、高精度な位置決めを行うには不充分であった。さらに、例えばX梁105、Y梁107に印加された外乱に対しても、X梁105、Y梁107とXYスライダ109とがばね剛性によって拘束された連性系のシステムであったため、X梁105、Y梁107に対する位置決めサーボがXYスライダ109に影響を及ぼしてしまい、XYスライダ109を高精度に位置決めすることが困難であった。
 また、従来のエアガイドによるシステムを適用した場合には、X梁105、Y梁107を駆動する際に、X梁105、Y梁107の両側の駆動装置は、XYスライダ109の位置と各駆動装置との間の距離の比を逐次演算し、その結果に基づいてX梁105、Y梁107の両端にある2つの駆動装置の駆動力をXYスライダ109の位置に応じて調整することになる。
 例えば、XYスライダ109の重心XYgとY梁107の重心YgとがX方向にずれた位置にある場合では、Y梁107が移動すると、Y梁107ではXYスライダ109から空気ばね等を介して受ける力によって、Z軸周りの回転方向にモーメント力が発生する。このとき、Y梁107の両端のリニアモータ103a、103b(駆動装置)に与える推力を分配することによって、Y梁107にかかるモーメント力を相殺する。その際、X梁105、Y梁107とXYスライダ109とは、ばねを介してつながっていると考えられるため、両者を一体物として新たな重心Gを求め、そこから両端のリニアモータ103a、103bまでの距離の比で加減速時、等速運動時、外乱印加時の区別なくX梁105、Y梁107の両端にあるリニアモータ103a、103bの推力を分配する方法を採る。
 すなわち、能動的に制御を行っているのは、X梁105、Y梁107のみであり、XYスライダ109は、静圧軸受のばね剛性によって拘束され、X梁105、Y梁107の動きにXYスライダ109が追従するといった連性系のシステム構成である。なお、XYスライダ109の重心がX梁105の重心とY方向にずれた位置にあるときに、X梁105がX方向に移動した場合においても同様である。
 しかし、図11に示すように、本発明な好適な実施の形態に係る電磁ガイドを用いることによって、X梁105、Y梁107とXYスライダ109とをそれぞれ独立に位置計測して、XYスライダ109とX梁105、Y梁107とが分離したサーボ系を構成することが出来る。すなわち、駆動システム900は、X梁105、Y梁107及びXYスライダ109のぞれぞれに対し、独自に目標位置を与えて、独自のフィードバック制御系によって、独自に能動的な位置決めサーボを行うことが出来る。このため、従来のシステムに比べてX梁105、Y梁107及びXYスライダ109の位置決め特性が向上する。
 また、X梁105、Y梁107に印加された外乱に対して、ばね剛性によって拘束された連性系のシステムを適用する場合は、X梁105、Y梁107の位置決めサーボが必ずXYスライダ109に影響を及ぼしていたが、X梁105とY梁107とで、分離したフィードバック制御系を採用することにより、XYスライダ109の位置決めサーボ系に影響を与えることなく、X梁105、Y梁107の位置決めサーボを行うことが出来る。このため、従来のシステムに比べて、X梁105、Y梁107及びXYスライダ109の位置決め特性が向上する。
 さらに、例えばXYスライダ109の重心XYgがY梁107の重心YgとX方向にずれた位置にある場合では、電磁石ユニットが力を発生するとY梁107への力の印加点がY梁107の重心からずれることにより、z軸周りの回転方向にモーメント力が発生する。
 駆動システム900は、このモーメント力を予め算出し、それを打ち消すような大きさが同じで方向が反対の力を作り出すように、Y梁107の両端のリニアモータ103a、103bにフィードフォワード制御指令を加える方法を採用することもできる。これによって、駆動システム900は、XYスライダ109動作時の位置偏差を減少させ、フィードバック制御系で発生する制御指令を更に小さく抑えることが出来る。以下、X梁105、Y梁107にかかるモーメント力を打ち消す方法を例示的に示す。
 図11は、本発明の好適な実施の形態に係るステージ装置における推力分配を説明するための図である。図11に示すように、例えば、右側のリニアモータ103bに与える力をF、左側のリニアモータ103aに与える力をF、Y梁107がXYスライダ109から受ける反力をFとする。また、Y梁107の重心Ygから右側のリニアモータ103bの力の印加点までの距離をL、Y梁107の重心Ygから左側のリニアモータ103aの力の印加点までの距離をL、Y梁107の重心YgからXYスライダ109の重心XYgまでの距離をLとすると、
 F+F=F
 F・L−F・L=F・L …(数式1) 
という、関係式が得られる。
 反力FがXYスライダ109の加減速によるものである場合、XYスライダ109の目標加速度とXYスライダ109の重量(例えば、XYスライダ109の重量と微動ステージの重量を合わせたもの)で反力Fを表すことが出来る。したがって、XYスライダ109の重量をm、XYスライダ109の加速度をaとすると、Y梁107が受ける反力F
 F=m・a …(数式2)
となる。
 数式1に数式2を代入して、Y梁107の左右リニアモータ103a、103bへのフィードフォワード制御指令の分配を決定すると、求める分配式は、
 F=(L+L/L+L)×m・a
 F=(L−L/L+L)×m・a …(数式3)
となる。駆動システム900は、これらの力をY梁107の両端のリニアモータ103a、103bに、フィードフォワード制御指令として与え、Y梁107の重心Ygにかかるモーメント力を打ち消すことができる。
 一方、XYスライダ109が等速運動する時等のように加減速を行っていない場合や、XYスライダ109に外乱が印加された時等の反力FがXYスライダ109の通常の位置決めサーボ系によるものである場合では、駆動システム900は、電磁石ユニットが出す力を推定して、加減速時の場合と同様に分配することができる。電磁石ユニットは電流の2乗に比例し、吸引対象との間の距離の2乗に反比例する力を出すことが知られている。ここで、推定された力をfとすると、Y梁107が受ける反力は
 F=f∝i/r …(数式4)
と表される。但し、iは電磁石に流れる電流であり、rは電磁石から吸引される磁性体までの距離(ギャップ)である。
 数式1に数式4を代入してY梁107の左右リニアモータ103a、103bへのフィードフォワード制御指令の分配を決定すると、求める分配式は、
 F=(L+L/L+L)×f
 F=(L−L/L+L)×f …(数式5)
となる。駆動システム900は、これらの力をY梁107の両端のリニアモータ103a、103bにフィードフォワード制御指令として加え、Y梁107の重心Ygにかかるモーメントを打ち消すことができる。なお、駆動システム900は、XYスライダ109の重心XYgがX梁105の重心とY方向にずれた位置にあるときには、X梁105の両端のリニアモータ101a、101bにフィードフォワード制御指令を加える方法を採用することができる。
 X梁105、Y梁107にかかるモーメント力を打ち消すための方法は、上記の方法に限定されない。例えば、駆動システム900は、図10に示したような、X梁105、Y梁107とXYスライダ109とを一体物として新たな重心Gを求め、重心Gから両端のリニアモータ103a、103bまでの距離の比に基づいて、X梁105、Y梁107の両端にあるリニアモータ103a、103bの推力を分配する方法を採用することもできるし、その他の方法を採用することもできる。
 以上のように、加速用電磁石ユニットと位置決め用電磁石ユニットを分けるという構成を採ることにより、より大きなモーメント力を発生するステージの加減速時において、目標加速度入力により正確に各梁にかかるZ軸周りのモーメント力を算出することが出来るため、ステージの位置決め特性を著しく向上することができる。
 図12は、上記のステージ装置を組み込んだ露光装置の構成を概略的に示す図である。図12に示す例では、図1に示すステージ装置をウエハステージとして搭載し、図9に示すステージ装置をマスクステージとして搭載している。マスクステージ500には、その第2ステージ502に設けられたチャックによってマスクが保持され、ウエハステージ100には、その微動ステージ111に設けられたチャックによってウエハが保持される。マスクは、照明光学系601によって照明され、マスクに形成されているパターンの像は、投影光学系602を介してウエハ上に投影転写される。パターンが転写された基板としてのウエハ上の感光層は、半導体デバイスを製造するために現像される。この露光装置は、上述のように、半導体デバイスの周知の製造プロセスに適用される。
本発明の好適な実施の形態のステージ装置の概観を示す図である。 図1に示す構成の一部をZ方向に分解して示した図である。 電磁ガイド(電磁機構)の電磁アクチュエータを構成する電磁石の配列例を示す図である。 電磁ガイド(電磁機構)の電磁アクチュエータの構成例を示す図である。 図2及び図3に示す電磁ガイド(電磁機構)を制御する制御系を示す図である。 一対の位置決め用電磁石の駆動方法を説明する図である。 一対の加速用電磁石の駆動方法を説明する図である。 1つの加速用電磁石の駆動方法を説明する図である。 本発明の他の実施の形態のステージ装置の構成を示す図である。 本発明の好適な実施の形態のステージ装置における推力分配を説明する図面である。 本発明の好適な実施の形態のステージ装置における推力分配を説明する図面である。 露光装置の概略構成を示す図である。

Claims (14)

  1.  位置決め装置であって、
     位置決めすべき構造物と、
     前記構造物の位置決めのために移動する移動体と、
     前記構造物と前記移動体との間に電磁的に力を作用させることにより、前記構造物と前記移動体との間に間隙を形成しつつ前記移動体の移動に伴って前記構造物が移動することを可能にする電磁機構とを備え、
     前記電磁機構は、
     前記構造物の目標位置と実際位置との偏差に基づいてフィードバック制御される第1電磁アクチュエータと、
     前記構造物の目標位置に基づいてフィードフォワード制御される第2電磁アクチュエータと、を有し、
     前記第1及び第2電磁アクチュエータは、各々、
     同一線上において互いに反対の方向に力を発生するように配置された一対の電磁石と、
     前記一対の電磁石の各々と対向して配置された一対のターゲットと、
     を有し、前記電磁石と前記ターゲットとの間において、前記電磁石が発生する磁束による吸引力が前記ターゲットに作用することを特徴とする位置決め装置。
  2.  少なくとも1つの前記ターゲットは、少なくとも2つの前記電磁石によって共用されるように配置されることを特徴とする請求項1に記載の位置決め装置。
  3.  前記フィードバック制御では、前記偏差を低減するために前記第1電磁アクチュエータが発生すべき力の平方根に前記第1電磁アクチュエータにおける前記電磁石と前記ターゲットとの間の間隙に相当する補正項を乗じた値に従って前記電磁石のコイルに流す電流を制御することを特徴とする請求項1に記載の位置決め装置。
  4.  前記フィードフォワード制御では、前記構造物の目標位置を前記第2電磁アクチュエータの前記電磁石が発生すべき磁束の指令値に変換し、該指令値と前記電磁石が発生している磁束の値との差分に基づいて前記電磁石を制御することを特徴とする請求項1に記載の位置決め装置。
  5.  前記一対の電磁石の一方の電磁石を駆動しているときは他方の電磁石を駆動しないことを特徴とする請求項1に記載の位置決め装置。
  6.  前記装置は、前記第1電磁アクチュエータを2組備え、前記第2電磁アクチュエータが前記2組の第1電磁アクチュエータの間に配置されていることを特徴とする請求項1に記載の位置決め装置。
  7.  前記第2電磁アクチュエータが発生する力の力線が、前記構造体の重心を通る線と一致していることを特徴とする請求項1に記載の位置決め装置。
  8.  前記第1電磁アクチュエータと前記ターゲットの間隔は前記第2電磁アクチュエータと前記ターゲットの間隔以上あることを特徴とする請求項1に記載の位置決め装置。
  9.  前記移動体の両端に配置されて前記移動体を駆動する2つの駆動機構を更に備え、前記2つの駆動機構は、前記構造物の位置に応じて分配される推力でそれぞれ前記移動体を駆動することを特徴とする請求項1乃至請求項8のいずれか1項に記載の位置決め装置。
  10.  前記推力は、前記構造物から前記移動体が受ける反力によって生じる前記移動体の重心周りの力のモーメントを打ち消すように分配されることを特徴とする請求項9に記載の位置決め装置。
  11.  前記推力は、前記構造物と前記移動体とを一体物としたときの重心位置に基づいて分配されることを特徴とする請求項10に記載の位置決め装置。
  12.  前記推力は、前記構造物の重心位置と前記移動体の重心位置とに基づいて分配されることを特徴とする請求項10に記載の位置決め装置。
  13.  請求項1乃至請求項12のいずれか1項に記載の位置決め装置を利用して、位置決め対象物を位置決めし露光動作を実行することを特徴とする露光装置。
  14.  請求項13に記載の露光装置を利用して、
     基板にパターンを転写する工程と、
     前記基板を現像する工程と、
     を含むことを特徴とするデバイスの製造方法。
JP2003324688A 2002-09-30 2003-09-17 位置決め装置及び露光装置並びにデバイスの製造方法 Expired - Fee Related JP3762401B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003324688A JP3762401B2 (ja) 2002-09-30 2003-09-17 位置決め装置及び露光装置並びにデバイスの製造方法
US10/670,241 US7193493B2 (en) 2002-09-30 2003-09-26 Alignment apparatus, exposure apparatus, and device manufacturing method
US11/246,185 US7330093B2 (en) 2002-09-30 2005-10-11 Alignment apparatus, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002287056 2002-09-30
JP2003324688A JP3762401B2 (ja) 2002-09-30 2003-09-17 位置決め装置及び露光装置並びにデバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2004146807A true JP2004146807A (ja) 2004-05-20
JP3762401B2 JP3762401B2 (ja) 2006-04-05

Family

ID=32473283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324688A Expired - Fee Related JP3762401B2 (ja) 2002-09-30 2003-09-17 位置決め装置及び露光装置並びにデバイスの製造方法

Country Status (2)

Country Link
US (2) US7193493B2 (ja)
JP (1) JP3762401B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006449A1 (ja) * 2004-07-14 2006-01-19 Sumitomo Heavy Industries, Ltd. 移動体位置制御装置及びこの制御装置を用いたステージ装置
WO2006088098A1 (ja) * 2005-02-18 2006-08-24 Yokogawa Electric Corporation Xyステージ
JP2006252484A (ja) * 2005-03-14 2006-09-21 Yaskawa Electric Corp 2次元位置決め装置
JP2006256559A (ja) * 2005-03-18 2006-09-28 Honda Motor Co Ltd 電動パワーステアリング装置
JP2008060563A (ja) * 2006-08-29 2008-03-13 Asml Netherlands Bv 可動物体の位置を制御するための方法、位置決めシステム、および、リソグラフィ装置
KR100828459B1 (ko) * 2004-07-14 2008-05-13 스미도모쥬기가이고교 가부시키가이샤 이동체 위치 제어장치 및 이 제어장치를 이용한스테이지장치
KR102722525B1 (ko) * 2021-11-29 2024-10-25 도쿄엘렉트론가부시키가이샤 기판의 반송을 행하는 장치, 및 기판의 반송을 행하는 방법

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762401B2 (ja) * 2002-09-30 2006-04-05 キヤノン株式会社 位置決め装置及び露光装置並びにデバイスの製造方法
JP3950861B2 (ja) * 2004-02-25 2007-08-01 キヤノン株式会社 位置決め装置及び露光装置
JP4447949B2 (ja) 2004-03-25 2010-04-07 キヤノン株式会社 位置決め装置の初期化方法、露光装置およびデバイス製造方法
US20080236997A1 (en) * 2004-08-24 2008-10-02 Nikon Corporation Stage Apparatus and Exposing Apparatus
JP2006211873A (ja) 2005-01-31 2006-08-10 Canon Inc 移動体制御装置及び移動体制御方法
US8140288B2 (en) * 2007-04-18 2012-03-20 Nikon Corporation On-machine methods for identifying and compensating force-ripple and side-forces produced by actuators on a multiple-axis stage
JP2009016385A (ja) * 2007-06-29 2009-01-22 Canon Inc ステージ装置、露光装置及びデバイス製造方法
US8267388B2 (en) * 2007-09-12 2012-09-18 Xradia, Inc. Alignment assembly
DE102008001896B4 (de) * 2008-05-21 2023-02-02 Robert Bosch Gmbh Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil
US8763999B2 (en) * 2009-10-27 2014-07-01 Applied Materials Israel, Ltd. Stage structure for operation in vacuum
US10036544B1 (en) 2011-02-11 2018-07-31 Soraa, Inc. Illumination source with reduced weight
JP2012235026A (ja) * 2011-05-06 2012-11-29 Canon Inc 位置決め装置、露光装置およびデバイス製造方法
USD736724S1 (en) * 2011-08-15 2015-08-18 Soraa, Inc. LED lamp with accessory
USD736723S1 (en) * 2011-08-15 2015-08-18 Soraa, Inc. LED lamp
US9488324B2 (en) 2011-09-02 2016-11-08 Soraa, Inc. Accessories for LED lamp systems
US9360190B1 (en) 2012-05-14 2016-06-07 Soraa, Inc. Compact lens for high intensity light source
US9995439B1 (en) 2012-05-14 2018-06-12 Soraa, Inc. Glare reduced compact lens for high intensity light source
US10436422B1 (en) 2012-05-14 2019-10-08 Soraa, Inc. Multi-function active accessories for LED lamps
US9215764B1 (en) 2012-11-09 2015-12-15 Soraa, Inc. High-temperature ultra-low ripple multi-stage LED driver and LED control circuits
US9267661B1 (en) 2013-03-01 2016-02-23 Soraa, Inc. Apportioning optical projection paths in an LED lamp
US9435525B1 (en) 2013-03-08 2016-09-06 Soraa, Inc. Multi-part heat exchanger for LED lamps
US9891599B2 (en) 2016-02-01 2018-02-13 Varian Semiconductor Equipment Associates, Inc. Proportional integral derivative control incorporating multiple actuators
US10152033B2 (en) 2016-02-01 2018-12-11 Varian Semiconductor Equipment Associates, Inc. Proportional integral derivative control incorporating multiple actuators
JP6779390B2 (ja) * 2017-12-15 2020-11-04 三菱電機株式会社 推力測定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228358A (en) * 1990-02-21 1993-07-20 Canon Kabushiki Kaisha Motion guiding device
US6246204B1 (en) * 1994-06-27 2001-06-12 Nikon Corporation Electromagnetic alignment and scanning apparatus
JP3815750B2 (ja) * 1995-10-09 2006-08-30 キヤノン株式会社 ステージ装置、ならびに前記ステージ装置を用いた露光装置およびデバイス製造方法
JP3145355B2 (ja) 1998-06-08 2001-03-12 キヤノン株式会社 移動案内装置
JP3312297B2 (ja) 1999-07-02 2002-08-05 住友重機械工業株式会社 ステージ位置制御装置
JP3814453B2 (ja) * 2000-01-11 2006-08-30 キヤノン株式会社 位置決め装置、半導体露光装置およびデバイス製造方法
JP3481540B2 (ja) 2000-02-21 2003-12-22 シャープ株式会社 ステージ装置
DE60136667D1 (de) * 2000-02-21 2009-01-08 Sharp Kk Präzisionsträgerplatte
JP3679776B2 (ja) * 2002-04-22 2005-08-03 キヤノン株式会社 駆動装置、露光装置及びデバイス製造方法
JP3762401B2 (ja) 2002-09-30 2006-04-05 キヤノン株式会社 位置決め装置及び露光装置並びにデバイスの製造方法
US20060170382A1 (en) * 2005-01-28 2006-08-03 Nikon Corporation Linear motor force ripple identification and compensation with iterative learning control

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006449A1 (ja) * 2004-07-14 2006-01-19 Sumitomo Heavy Industries, Ltd. 移動体位置制御装置及びこの制御装置を用いたステージ装置
US7333862B2 (en) 2004-07-14 2008-02-19 Sumitomo Heavy Industries, Ltd. Position control device of moving body, stage device using the position control device, and position control method of moving body
KR100828459B1 (ko) * 2004-07-14 2008-05-13 스미도모쥬기가이고교 가부시키가이샤 이동체 위치 제어장치 및 이 제어장치를 이용한스테이지장치
WO2006088098A1 (ja) * 2005-02-18 2006-08-24 Yokogawa Electric Corporation Xyステージ
JP2006226862A (ja) * 2005-02-18 2006-08-31 Yokogawa Electric Corp Xyステージ
JP4678204B2 (ja) * 2005-02-18 2011-04-27 横河電機株式会社 Xyステージ
JP2006252484A (ja) * 2005-03-14 2006-09-21 Yaskawa Electric Corp 2次元位置決め装置
JP4591136B2 (ja) * 2005-03-14 2010-12-01 株式会社安川電機 2次元位置決め装置
JP2006256559A (ja) * 2005-03-18 2006-09-28 Honda Motor Co Ltd 電動パワーステアリング装置
JP4571529B2 (ja) * 2005-03-18 2010-10-27 本田技研工業株式会社 電動パワーステアリング装置
JP2008060563A (ja) * 2006-08-29 2008-03-13 Asml Netherlands Bv 可動物体の位置を制御するための方法、位置決めシステム、および、リソグラフィ装置
KR102722525B1 (ko) * 2021-11-29 2024-10-25 도쿄엘렉트론가부시키가이샤 기판의 반송을 행하는 장치, 및 기판의 반송을 행하는 방법

Also Published As

Publication number Publication date
US7330093B2 (en) 2008-02-12
JP3762401B2 (ja) 2006-04-05
US20060028310A1 (en) 2006-02-09
US7193493B2 (en) 2007-03-20
US20040112164A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP3762401B2 (ja) 位置決め装置及び露光装置並びにデバイスの製造方法
EP1970941B1 (en) Stage system for use in an exposure apparatus
JP5217623B2 (ja) 磁気浮上制御装置
US6639225B2 (en) Six-axis positioning system having a zero-magnetic-field space
JP5505871B2 (ja) 移動体装置及び露光装置
JP3919560B2 (ja) 振動制御装置及び振動制御方法及び露光装置及びデバイスの製造方法
KR102014586B1 (ko) 이동체 장치 및 노광 장치, 그리고 디바이스 제조 방법
JP2005142501A (ja) ステージ装置および露光装置ならびにデバイス製造方法
JP4386293B2 (ja) 振動制御装置及び振動制御方法及び露光装置及びデバイスの製造方法
JP4422957B2 (ja) 位置決め装置
US7738232B2 (en) Alignment apparatus
JP2019121656A (ja) 制御方法、制御装置、リソグラフィ装置、および物品の製造方法
US20120307228A1 (en) Positioning apparatus, exposure apparatus and device manufacturing method
JP4553405B2 (ja) 位置決め装置、露光装置およびデバイス製造方法
JP3540239B2 (ja) ステージ装置
JP2000216082A (ja) ステ―ジ装置および露光装置
JP2001230178A (ja) 位置決め装置、露光装置およびデバイス製造方法
JP4012198B2 (ja) ステージ装置、露光装置およびデバイス製造方法
JP2004241576A (ja) 位置決め装置
JP2005142583A (ja) ステージ装置、露光装置およびデバイス製造方法ならびにステージ駆動方法
JP2001230177A (ja) 位置決め装置、露光装置およびデバイス製造方法
JP3409864B2 (ja) リニアモータ構造を有するモータ装置
Takahashi et al. euspen’s 20th International Conference & Exhibition, Geneva, CH, June 2020

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees