JP2004144662A - 酸化還元電流測定装置及び酸化還元電流測定方法 - Google Patents

酸化還元電流測定装置及び酸化還元電流測定方法 Download PDF

Info

Publication number
JP2004144662A
JP2004144662A JP2002311222A JP2002311222A JP2004144662A JP 2004144662 A JP2004144662 A JP 2004144662A JP 2002311222 A JP2002311222 A JP 2002311222A JP 2002311222 A JP2002311222 A JP 2002311222A JP 2004144662 A JP2004144662 A JP 2004144662A
Authority
JP
Japan
Prior art keywords
oxidation
current
electrode
detection electrode
reduction current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002311222A
Other languages
English (en)
Inventor
Shinichi Akazawa
赤沢 真一
Hiroko Tatematsu
立松 裕子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2002311222A priority Critical patent/JP2004144662A/ja
Publication of JP2004144662A publication Critical patent/JP2004144662A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】越流未処理水や簡易処理水のように、挟雑物が多岐にわたる試料液を測定する場合であっても、安定してポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定が可能な酸化還元電流測定装置及び酸化還元電流測定方法を提供する。
【解決手段】検知極1と対極2と、検知極1と対極2との間に流れる酸化還元電流iを測定する電流検出機構3と、検知極1と対極2との間に所定の印加電圧を与える加電圧機構4とを具備し、試料液Sが検知極1表面に対して相対的に流動するように、モータ6で検知極1を回転させつつ、周期的にスイッチ機構5により酸化還元電流iの電流回路を開放する
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、酸化還元電流測定装置及び酸化還元電流測定方法に関する。さらに詳しくは、試料液中の挟雑物質等に関わらず、安定してポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定が可能な酸化還元電流測定装置及び酸化還元電流測定方法に関する。
【0002】
【従来の技術】
従来から、残留塩素、溶存オゾン,塩素要求量、二酸化塩素等の測定を目的として、ポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定装置が用いられている。
これらの測定方式は、試料液に、白金、金などの貴金属やグラシーカーボンなどからなる検知極と、検知極に対して充分に大きい表面積をもつ銀などからなる対極とを浸漬し、両極間の間に適当な一定電圧を印加して検知極近傍において測定対象成分の電解還元(又は酸化)を起こさせることで電解電流を得、これを測定することにより所定成分の濃度を求めるものである。
このような測定方式では、検知極の表面に薄く均一な拡散層を得、測定対象成分の濃度に比例した電解電流(拡散電流)が測定されている。薄く均一な拡散層を得るため、試料液には、検知極表面に対する一定の線速度を与えることが行われている。
したがって、正確な測定値を得るには、検知極の表面状態が常時一定であることが必要となる。
【0003】
ところが、検知極表面は、対極で生成される電解物質や試料液中の夾雑物が主として電気化学的に付着(メッキ)することにより汚染されて感度が低下し易く、測定に際しては電極の洗浄が必要となる。この洗浄手段として、従来からセラミック等のビーズを充填した中で検出電極を回転又は振動させたり、さらには被検査液に水流を起こさせ、その水流にのせてビーズ状研磨剤を電極表面に当てて研磨することなどが行われていた。
また、このような機械的研磨だけでは防ぎきれない汚染に対する対策として、作用極(検知極)を対極等と同じ材質とし、非測定時に電極間を短絡させて検知極表層の電位を安定させることが提案されている(特許文献1参照)。また、非測定時に、測定時よりも高い電圧と低い電圧とを交互に印加して、検知極に付着した汚染物質を電気化学的に除去(電解研磨)すること(特許文献2参照)も提案されている。
【0004】
【特許文献1】
特開2001−174436号公報
【特許文献2】
特開平10−185871号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前記特許文献1のように、短絡により電位を安定させようとする場合、電極間に短絡電流が流れてしまわないように、各電極を同じ材質の金属とせざるを得ない。そのため、測定対象成分に応じた検知極と対極の材質を選択することができず、適用できる範囲が限られていた。
また、前記特許文献2のように、電解研磨により汚染物質を電気化学的に除去しようとする場合、挟雑物の種類によっては、かえって強固なメッキを形成して汚れを助長してしまうので、条件の設定が困難であった。
特に、雨水を生活排水等と合流させて処理する合流式下水道では、降雨での増水時に終末処理場の処理能力を超えてしまうため、処理対象水の一部を、越流未処理水として塩素消毒や臭素消毒のみで公共水域に放流したり、簡易処理水として、終末処理場での簡易処理後に塩素消毒や臭素消毒して公共水域に放流することが行われている。
このような越流未処理水や簡易処理水の塩素消毒や臭素消毒において、残留塩素等を測定しようとする場合、含まれる共存成分が多岐にわたるため、安易な電解研磨は採用できなかった。また、ビーズによる機械研磨では1時間前後で検知極の安定性が失われてしまうという問題があった。
【0006】
本発明は、上記事情に鑑みて、例えば越流未処理水や簡易処理水のように、挟雑物が多岐にわたる試料液を測定する場合であっても、安定してポーラログラフ方式又はガルバニ電池方式の酸化還元電流測定が可能な酸化還元電流測定装置及び酸化還元電流測定方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明の酸化還元電流測定装置は、上記課題を解決するため、検知極と対極と、前記検知極と前記対極との間に流れる酸化還元電流を測定する電流検出機構と、前記検知極と前記対極との間に所定の印加電圧を与える加電圧機構とを具備し、試料液を前記検知極表面に対して相対的に流動させつつ、前記酸化還元電流を測定する酸化還元電流測定装置であって、前記酸化還元電流の電流回路を、周期的に開放するスイッチ機構を備えることを特徴とする。
【0008】
本発明において、前記電流回路を開放している間も閉鎖している間も、前記検知極を研磨剤によって連続的に研磨する研磨機構を備えることが好ましい。
また、前記スイッチ機構によって前記電流回路を開放している間、及びその後の所定時間の間、前記電流回路を開放する直前における前記電流検出機構の測定値をホールドして出力するホールド機構を備えることが好ましい。
また、本発明は、さらに、参照極を備え、前記加電圧機構によって与えられる所定の印加電圧が、該参照極を基準として設定される3電極法にも適用できる。
【0009】
本発明の酸化還元電流測定方法は、上記本発明に係る酸化還元電流測定装置を用いて、試料液を測定することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明するが、本発明は以下の実施形態に限定されるものではない。
図1は第1実施形態に係る酸化還元電流測定装置の等価回路図である。図1の酸化還元電流測定装置は、検知極1及び対極2と、検知極1と対極2との間に流れる酸化還元電流iを測定する電流検出機構3と、検知極1と対極2との間に所定の印加電圧を与える加電圧機構4と、スイッチ機構5と、検知極1を回転又は振動させるモータ6と、これらを制御する制御装置7と、検知電極1周辺の試料液S中に配置された研磨剤としてのビーズ8とから構成されている。
【0011】
検知極1と対極2とは、図1に示すように、各々独立した別体の電極として構成されていてもよいが、取り扱いの便宜等のため、複合化されて一体化した複合電極として構成されていてもよい。たとえば、検知極を棒状の支持体先端に設け、対極をその外周側を周回するように設ける構造が採用できる。
検知極1の材質としては、例えば、金、白金、合金、グラシーカーボン等が好適に採用できる。対極2の材質としては、例えば、白金、銀/塩化銀等が好適に採用できる。
【0012】
検知極1は、モーター6によって回転又は振動させられる。回転の場合、回転軸の周りの単純な回転でもよいが、一点を支点とする歳差運動とすることが、リード線を導出する便宜上好ましい。
検知極1を回転又は振動させることによって、試料液Sを検知極1表面に対して相対的に流動させることができるようになっている。この場合、検知極1の回転又は振動は、試料液Sの通常の流速よりはるかに大きい線速度であるため、試料液流速と無関係に安定な拡散層を形成することができ、試料液流速の変動による測定値への影響を受けにくい。
【0013】
また、検知極1を回転又は振動させることで、周辺の試料液S中に配置されたビーズ8により、機械的に研磨することができるようになっている。検知極1の周辺にビーズ8を配置する具体的な態様としては、たとえば、ビーズ8の径よりも小さいメッシュの網状キャップを検知極8を覆うように被せ、このキャップ内にビーズ8を配置する態様を採用できる。この場合、ビーズ8の流出を防ぎつつ検知極1の機械研磨を行うことができる。
【0014】
加電圧機構4は、所定の一定電圧を付与できる加電圧電源によって構成することができる。また、様々な印加電圧を適宜設定できる可変の加電圧電源によって、加電圧機構4を構成してもよい。
加電圧機構4によって印可される所定の印加電圧の値にはゼロも含まれる。印加電圧がゼロの場合には、電流計を介して検知極と対極とを繋ぐ単なる配線によって構成することができる。
なお、一般的には、印加電圧がゼロでない場合はポーラログラフ方式と呼ばれ、印加電圧がゼロの場合はガルバニ電池方式と呼ばれる。両方式とも、被還元物質等が一定の厚さの拡散層と呼ばれる層の中において、濃度勾配による自然拡散によってのみ検知極表面に運ばれ、その表面で酸化還元されるときに流れる拡散電流(酸化還元電流)を捉える点において共通しており、本質的な差違はない。
本実施形態の酸化還元電流測定装置は、ポーラログラフ方式とガルバニ電池方式のいずれの方式であっても差し支えない。
【0015】
検知極1と対極2との具体的材質、及びこれらの間に印加される所定の印加電圧の具体的な値は、測定対象成分等に応じて適宜決定される。
なお、試料液Sには、測定原理に応じて、試薬や希釈液等を、適宜添加しておくことができる。
【0016】
試料液S中の測定対象成分に対応する酸化還元電流は、検知極1、電流検出機構3、加電圧機構4、対極2、試料液Sを経由する電流回路を流れるようになっている。スイッチ機構5は、かかる電流回路を開放する位置に設けられており、制御装置7により制御されて、周期的に開閉するようになっている。
【0017】
本実施形態に係る酸化還元電流測定装置の具体的な回路構成は、図1の等価回路を実現するものであれば特に限定はないが、例えば、図2のように構成することができる。
図2において、酸化還元電流iを測定する電流検出機構3は、アンプ3a、抵抗3b、電圧計3cからなる電流電圧変換回路として構成されている。この場合、電圧計3cにて測定される電圧Vと、加電圧機構4で印加する電圧Vと、抵抗3bの抵抗値Rとは、酸化還元電流iと以下の関係にあることから、酸化還元電流iを求められるようになっている。
i=(V−V)/R
【0018】
次に、本実施形態に係る酸化還元電流測定装置の動作について、図3のタイムチャートを参照しつつ説明する。
本実施形態において、モータ6は常にONとされている。すなわち、検知極1は常に回転又は振動しており、測定に必要な試料液の検知極表面に対する相対的な流動状態が継続して確保されている。また、ビーズ8による検知極1の機械的研磨も継続してして行われている。
【0019】
一方、スイッチ5は、開状態と閉状態とが交互に切り替えられている。ここで、開の状態の継続時間tは、好ましくは1〜10分、例えば5分とされている。また、閉の状態の継続時間tは、好ましくは5〜30分、例えば5分とされている。
スイッチ5が開状態で酸化還元電流の電流回路が開放されている間、検知極1と対極2との間に印加電圧は与えられず、当然のことながら電流検出機構3の測定値も得られない。そのため、制御装置7にはホールド機構が設けられ、このホールド機構により、スイッチ5を開放する直前における電流検出機構3の測定値がホールドされるようになっている。図3に示すように、スイッチ5が開状態の時だけでなく、開状態から閉状態に復帰した後も所定時間(t)、この測定値ホールドがONの状態が継続される。これは、開状態から閉状態に復帰した直後は、過剰電流が流れる等して不安定になるため、本来の拡散電流値が得られるまでの時間、引き続き測定を中断する必要があるからである。この所定の時間tは、好ましくは1〜5分、例えば2分とされている。
そして、測定値ホールドがONの状態の時には洗浄中信号及びホールドされた電流値が、OFFの状態の時には測定中信号及び現に測定中の電流値が、各々制御装置7から出力されるようになっている。
なお、t、t、tの具体的な値は、試料液中の挟雑成分等を考慮して適宜決定される。
【0020】
本実施形態に係る酸化還元電流測定装置によれば、スイッチ5が開の間は、印加電圧が検知極1に付与されない。そのため、その間、ビーズ8による機械研磨の効果を無にするような、新たなメッキ性の汚れが付着することがない。したがって、検知極1の汚れを充分に落として、次にスイッチ5を閉とした後の測定に備えることができる。その結果、安定した測定を長期間継続することが可能である。
【0021】
なお、ビーズ8を用いずに、単にスイッチ5を用いた酸化還元電流回路の開閉だけでも、汚れ低減の効果が認められる。これは、スイッチ5を閉とした直後の不安定な電流状体が、電解研磨に類似した効果をもたらしているのではないかと推定される。
【0022】
次に、図4は第2実施形態に係る酸化還元電流測定装置の等価回路図である。図4において、図1と同一の構成要素には、同一の符号を付して、その詳細な説明を省略する。
本実施形態の酸化還元電流測定装置は、検知極1及び対極2の他に、第3の電極として参照極9を備えているところが、第2実施形態の酸化還元電流測定装置と相違している。
本実施形態の酸化還元電流測定装置では、加電圧機構4によって検知極1に付与される印加電圧が、参照極9を基準とした一定の電位に補正されるようになっている。
【0023】
本実施形態においても、試料液S中の測定対象成分に対応する酸化還元電流は、検知極1、電流検出機構3、加電圧機構4、対極2、試料液Sを経由する電流回路を流れるようになっている。そして、スイッチ機構5は、かかる電流回路を開放する位置に設けられており、制御装置7により制御されて、周期的に開閉するようになっている。
本実施形態の酸化還元電流測定装置も、第1実施形態と同様に、図3のタイムチャートに示したように動作する。その結果、第1実施形態と同様の汚れ削減効果が得られ、安定した測定を長期間継続することが可能である。
【0024】
なお、第1、第2実施形態においては、試料液Sを検知極1表面に対して相対的に流動させる具体的な態様として、検知極1を回転又は振動させることととしたが、検知極1を静止させたままとして、試料液Sに流速を与えることも可能である。また、検知極1を動かしつつ試料液Sにも流速を与えるようにしてもよい。
試料液Sに流速を与える場合も、検知極1近傍の試料液S中にビーズ8を配すれば、試料液Sの流れによってビーズ8を検知極1の表面に当て、これによって検知極1を機械研磨することが可能である。
【0025】
また、第1、第2実施形態においては、試料液の温度を検知するのためのサーミスタを用いることができる。この場合、温度による酸化還元電流値の変化を補正して、測定対象成分の濃度を正確に測定することができる。
【0026】
【実施例】
実施形態1の酸化還元電流測定装置を用いて、種々の現場において、合流式下水道の越流未処理水又は簡易処理水の残留塩素又は残留臭素を測定した。電極としては、検知極1と対極2とを設けた支持体を、電極本体内に保持した複合電極を用いた。この複合電極において、検知極1は直径2mの円形の金製電極で、支持体の先端に設けた。また、対極2は銀/塩化銀製で、支持体の周囲に周回させるようにして設けた。また、ビーズ8を収納するために、電極本体の検知極1を覆う位置に網状キャップを被せた。そして、モータ6により、支持体を電極本体内で連続して歳差運動させた。歳差運動によって得られる検知極1表面の線速度は、各現場によって異なるものとしたが、30〜50cm/sとした。また、印加電圧も各現場によって異なるものとしたが、−250〜−400mVとした。
【0027】
スイッチ5は、開の時間を5分、閉の時間を5分で周期的に開閉した。また、制御装置7のホールド機構により、スイッチ後が開である5分間及びその後の2分間、スイッチ5を開放する直前における電流検出機構3の測定値をホールドした。
その結果、越流未処理水の残留塩素濃度等を、6時間以上安定して測定することができた。一般に集中豪雨による越流未処理水や簡易処理水の発生は数時間で終息する場合が多く、発生初期ほど夾雑物も多岐にわたりかつ多量に含まれる。したがって、6時間以上の安定測定が可能な本実施例によれば、越流未処理水や簡易処理水の塩素処理等を的確に行うことができる。
【0028】
一方、比較のため、スイッチ5を連続して閉とした他は、上記実施例と同じ酸化還元電流測定装置で、同じ現場の越流未処理水等の測定を行った。その結果、いずれも1時間程度で検出感度が低下し、測定不能となった。
【0029】
【発明の効果】
本発明によれば、例えば越流未処理水や簡易処理水のように、挟雑物が多岐にわたる試料液を測定する場合であっても、安定してポーラログラフ方式又はガルバニ電池方式の酸化還元電流を測定できる。そのため、酸化還元電流測定を利用して、塩素処理等の管理を確実に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る酸化還元電流測定装置の等価回路図である。
【図2】図1に示す等価回路を実現する回路の一例である。
【図3】本発明の第1実施形態に係る酸化還元電流測定装置の動作を説明するためのタイムチャートである。
【図4】本発明の第2実施形態に係る酸化還元電流測定装置の等価回路図である。
【符号の説明】
1……検知極、2……対極、3……電流検出機構、4……加電圧機構、
5……スイッチ機構、6……モータ、7……制御装置、8……ビーズ
9……参照極

Claims (5)

  1. 検知極と対極と、前記検知極と前記対極との間に流れる酸化還元電流を測定する電流検出機構と、前記検知極と前記対極との間に所定の印加電圧を与える加電圧機構とを具備し、試料液を前記検知極表面に対して相対的に流動させつつ、前記酸化還元電流を測定する酸化還元電流測定装置であって、
    前記酸化還元電流の電流回路を、周期的に開放するスイッチ機構を備えることを特徴とする酸化還元電流測定装置。
  2. さらに、前記検知極を研磨剤によって連続的に研磨する研磨機構を備える請求項1に記載の酸化還元電流測定装置。
  3. 前記スイッチ機構によって前記電流回路を開放している間、及びその後の所定時間の間、前記電流回路を開放する直前における前記電流検出機構の測定値をホールドして出力するホールド機構を備える請求項1又は請求項2に記載の酸化還元電流測定装置。
  4. さらに、参照極を備え、前記加電圧機構によって与えられる所定の印加電圧が、該参照極を基準として設定される請求項1から請求項3の何れかに記載の酸化還元電流測定装置。
  5. 請求項1から請求項4の何れかに記載の酸化還元電流測定装置を用いて、試料液を測定することを特徴とする酸化還元電流測定方法。
JP2002311222A 2002-10-25 2002-10-25 酸化還元電流測定装置及び酸化還元電流測定方法 Pending JP2004144662A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311222A JP2004144662A (ja) 2002-10-25 2002-10-25 酸化還元電流測定装置及び酸化還元電流測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311222A JP2004144662A (ja) 2002-10-25 2002-10-25 酸化還元電流測定装置及び酸化還元電流測定方法

Publications (1)

Publication Number Publication Date
JP2004144662A true JP2004144662A (ja) 2004-05-20

Family

ID=32456513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311222A Pending JP2004144662A (ja) 2002-10-25 2002-10-25 酸化還元電流測定装置及び酸化還元電流測定方法

Country Status (1)

Country Link
JP (1) JP2004144662A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236787A (ja) * 2008-03-28 2009-10-15 Dkk Toa Corp 酸化還元電流測定装置
JP2011027584A (ja) * 2009-07-27 2011-02-10 Horiba Advanced Techno Co Ltd 水質測定装置
JP2017111110A (ja) * 2015-12-11 2017-06-22 富士電機株式会社 ガス分析装置
JP2019132733A (ja) * 2018-01-31 2019-08-08 シスメックス株式会社 生体内成分測定装置及び生体内成分測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236787A (ja) * 2008-03-28 2009-10-15 Dkk Toa Corp 酸化還元電流測定装置
JP2011027584A (ja) * 2009-07-27 2011-02-10 Horiba Advanced Techno Co Ltd 水質測定装置
JP2017111110A (ja) * 2015-12-11 2017-06-22 富士電機株式会社 ガス分析装置
JP2019132733A (ja) * 2018-01-31 2019-08-08 シスメックス株式会社 生体内成分測定装置及び生体内成分測定方法

Similar Documents

Publication Publication Date Title
Lindner et al. Tailored transport through ion‐selective membranes for improved detection limits and selectivity coefficients
JP4463405B2 (ja) 酸化還元電流測定装置のセンサ及び酸化還元電流測定装置
CA2377947A1 (en) Micro reference electrode
JP3361237B2 (ja) 残留塩素測定方法及び装置並びに残留塩素検出プローブ
JP4022609B2 (ja) 棒状電極の洗浄装置
GB1576984A (en) Monitoring of the concentration of heavy metals in aqueous liquors
JP2004144662A (ja) 酸化還元電流測定装置及び酸化還元電流測定方法
JPH08136501A (ja) オゾン水センサー
JP3390154B2 (ja) 残留塩素計およびこれを利用する浄水装置
JP4869849B2 (ja) 溶液分析方法
JP4414277B2 (ja) 酸化還元電流測定装置および酸化還元電流測定装置の洗浄方法
JP3469962B2 (ja) 遊離塩素測定装置
JP2001349866A (ja) 残留塩素測定装置
JP3838435B2 (ja) 次亜塩素酸濃度測定装置
JP4962796B2 (ja) 酸化還元電流測定装置
JP2004191197A (ja) 濃度測定装置及び濃度測定方法
JP3328215B2 (ja) 残留塩素測定装置
JP2000088801A (ja) 酸化還元電位測定装置及び方法
Omanović et al. A new mercury drop electrode for trace metal analysis
JP4603782B2 (ja) 残留塩素測定装置
JPH11118756A (ja) 酸化還元電位測定装置
JP3702125B2 (ja) 下水処理水の残留塩素測定装置
RU2386124C1 (ru) Способ определения концентрации ионов в жидких растворах электролитов
JP3672290B2 (ja) 酸化還元電位測定方法およびその装置
JP7227714B2 (ja) 電気化学測定装置及びその洗浄方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624