JP2004134644A - 炭化珪素半導体装置及びその製造方法 - Google Patents
炭化珪素半導体装置及びその製造方法 Download PDFInfo
- Publication number
- JP2004134644A JP2004134644A JP2002298944A JP2002298944A JP2004134644A JP 2004134644 A JP2004134644 A JP 2004134644A JP 2002298944 A JP2002298944 A JP 2002298944A JP 2002298944 A JP2002298944 A JP 2002298944A JP 2004134644 A JP2004134644 A JP 2004134644A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- region
- layer
- semiconductor device
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
【解決手段】炭化珪素半導体基板1に形成されたエピタキシャル層2の表層部に形成されたベース領域3a、3bと、ベース領域3a、3bの表層部に形成されたソース領域4a、4bと、ソース領域4a、4bとエピタキシャル層2との間のベース領域3a、3b中にチャネル領域5a、5bが形成されるべく、チャネル領域5a、5bの上に形成されたゲート絶縁膜6とを有する炭化珪素半導体装置において、ゲート絶縁膜6とチャネル領域5a、5bと間に、炭化珪素とはバンドギャップが異なる半導体層12を形成して構成される
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、炭化珪素の基板を用いて形成された炭化珪素半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
炭化珪素(以下、SiCと呼ぶ)は、バンドギャップが広く、また最大絶縁破壊電界がシリコンと比較して一桁も大きい。さらに、SiCの自然酸化物はSiO2 であり、シリコンと同様の方法によりSiCの表面上に熱酸化膜を容易に形成することができる。このため、SiCは電気自動車の高速/高電圧スイッチング素子、特に高電力ユニ/バイポーラ素子として用いた際に非常に優れた材料となることが期待されている。
【0003】
図9はSiCを用いたプレーナ型MOSFETの従来構造を示す断面図である。この種の従来構造としては、例えば以下に示す文献に記載されたものが知られている(特許文献1参照)。図9において、高濃度N+ 型のSiC基板901上にN− 型のSiCエピタキシャル層902が形成されている。エピタキシャル層902の表層部における所定領域には、P型のベース領域903a、903b、およびN+ 型のソース領域904a、904bが形成されている。
【0004】
なお、P型のベース領域903a、903bの表層部は、デバイス動作時にチャネル領域905a、905bとして機能する。また、N− 型のSiCエピタキシャル層902の上には、ゲート絶縁膜906を介してポリシリコンゲート907が配置され、ポリシリコンゲート907は層間絶縁膜909にて覆われている。N+ 型のソース領域904a、904bに接するようにソース電極910a、910bが形成されているとともに、ポリシリコンゲート907に接するようにゲート電極908画形成され、N+ 型のSiC基板901の裏面にはドレイン電極911が形成されている。なお、P型のベース領域903a、903bは、図示されていないところでソース電極910a、910bと同電位となるように接続されている。
【0005】
このようなプレーナ型MOSFETの動作としては、ソース電極910a、910bが接地され、ドレイン電極911に正の電圧が印加された状態で、ゲート電極908に正の電圧が印加されると、ゲート電極908に対向したP型のベース領域903a、903bの表層部のチャネル領域905a、905bに反転型チャネルが形成され、ソース電極910a、910bからドレイン電極911へと電子を流すことが可能となる。
【0006】
【特許文献1】
特開平10−233503号公報(第5−8頁、図1)
【0007】
【非特許文献1】
V. V. Afanasev, M. Bassler, G. Pensl and M. Schulz, Phys. Stat. Sol. a 162 (1997) 321.
【0008】
【非特許文献2】
V. V. Afanasev, A. Stesmans and C. I. Harris, Materials Science Forum Vols. 264−268 (1998) pp. 857−860
【0009】
【発明が解決しようとする課題】
図10に示すような従来のSiCプレーナ型MOSFETでは、ゲート絶縁膜906とチャネル領域905a、905bとの界面に多量の界面準位が存在することが知られている(例えば、非特許文献1参照)。これら界面準位の起源の一つにカーボンクラスターがあることが知られている(例えば、非特許文献2参照)。
【0010】
通常、ゲート絶縁膜906は、SiCを熱酸化することにより形成される。SiCを熱酸化すると、シリコンのみならずカーボンも酸化されることになる。酸化温度にもよるが、酸化反応が進むに従い、酸化されたカーボン原子の多くはCO、CO2 などの形態を取り、酸化膜/SiC界面から酸化膜中を拡散し酸化反応の系外へ排出される。しかし、一部のカーボン原子は、酸化膜/SiC界面でクラスターを形成する。
【0011】
このクラスターは、sp2結合したカーボン原子の集合体であり、これらが界面準位を形成する。カーボンクラスターのカーボン原子は酸化反応時にSiCから供給されるため、SiCを熱酸化してゲート絶縁膜906を形成する限り、カーボンクラスターの発生は避けられず、酸化膜/SiC界面との界面における界面準位の低減は困難である。このような理由から、ゲート電極908に電圧を印加してP型のベース領域903a、903bの表層部のチャネル領域905a、905bに反転型チャネルを形成しても、チャネル移動度が小さいという問題があった。
【0012】
また、熱酸化を一切行わず、CVD法などのデポジション法によって形成した酸化膜をゲート絶縁膜906に用いる試みもある。しかしながら、この場合には、形成した酸化膜の膜質が通常の熱酸化膜と比較して著しく劣るため、ゲート絶縁膜906の絶縁耐圧の低下を招いてしまうという問題があった。
【0013】
そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、ゲート絶縁膜の絶縁耐圧を低下させることなく、高いチャネル移動度を有する炭化珪素半導体装置及びその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明の課題を解決する手段は、第1導電型の炭化珪素半導体基板と、前記炭化珪素半導体基板上に形成された第1導電型のベース領域と、前記ベース領域に形成された第1導電型のソース領域と、前記炭化珪素半導体基板上に形成された第1導電型のドレイン領域と、前記ソース領域と前記ドレイン領域との間に形成されるチャネル領域の上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート領域とを有する炭化珪素半導体装置において、前記チャネル領域上の前記ゲート絶縁膜と前記チャネル領域との間に、炭化珪素とバンドギャップが異なる半導体層を形成したことを特徴とする。
【0015】
【発明の効果】
本発明によれば、ゲート絶縁膜とチャネル領域と間に、炭化珪素とはバンドギャップが異なる半導体層を挟む構造を採用したので、炭化珪素を直接、熱酸化してゲート絶縁膜を形成する必要がなくなり、カーボンクラスターは発生せず、それに伴い界面準位の発生も防止できる。これにより、チャネル領域にはカーボンクラスターに起因する界面準位が存在せず、高いチャネル移動度を実現することができる。
【0016】
【発明の実施の形態】
以下、図面を用いて本発明の実施形態を説明する。
【0017】
図1は本発明の第1の実施形態に係る炭化珪素半導体装置の構成を示す断面図である。図1に示す実施形態の炭化珪素半導体装置は、SiCプレーナ型MOSFETを一例としており、高濃度N+ 型SiC基板1上にN− 型SiCエピタキシャル層2が形成されている。そしてN− 型SiCエピタキシャル層2の表層部における所定領域には、P型ベース領域3a、3b、およびN+ 型ソース領域4a、4bが形成されている。なお、P型ベース領域3a、3bの表層部は、デバイス動作時にチャネル領域5a、5bとして機能する。
【0018】
また、N− 型SiCエピタキシャル層2の上には、半導体層としてP− 型のポリシリコン層12が形成されている。この半導体層は、ゲート電極8に印加される電圧を制御して半導体層をチャネルとして動作させるために、炭化珪素よりもバンドギャップが小さい材料で構成され、例えばポリシリコンに代えて単結晶シリコンを用いてもよい。ポリシリコン層12は、SiCエピタキシャル層2、ソース領域4a、4bの一部、ならびにベース領域3a、3bの表層部のチャネル領域5a、5bと対向して積層形成され、ソース領域4a、4bとSiCエピタキシャル層2とを電気的に繋ぐように形成されている。ポリシリコン層12は、その膜厚が薄く形成されている。すなわち、ゲート電極8に電圧を印加した際に、ポリシリコン層12を介してベース領域3a、3bの表層部にもゲート電界が及び、チャネル領域5a、5bに反転型チャネルが形成される程度に膜厚が薄く形成されている。
【0019】
ポリシリコン層12の上面にはゲート絶縁膜6を介してポリシリコンゲート7が配置され、ポリシリコンゲート7は層間絶縁膜9にて覆われている。N+ 型ソース領域4a、4bに接するようにソース電極10a、10bが形成されるとともに、ポリシリコンゲート7に接するようにゲート電極8が形成されている。N+ 型SiC基板1の裏面には、ドレイン電極11が形成されている。なお、P型ベース領域3a、3bは、図示されていないところでソース電極10a、10bと同電位となるように接続されている。
【0020】
このようなプレーナ型MOSFETの動作としては、ドレイン電極11とソース電極10a、10bとの間に電圧が印加された状態で、ゲート電極8に正の電圧が印加されると、P− 型のポリシリコン層12を介して、ベース領域3a、3bの表層部にも電界が及び、チャネル領域5a、5bに反転型チャネルが形成される。これにより、ソース電極10a、10bからドレイン電極11へと電子が流れ、導通状態となる。一方、ゲート電極8に印加された電圧を取り去ることによって、ドレイン電極11とソース電極10a、10bとの間は電気的に絶縁され、遮断状態となる。このような動作により、プレーナ型MOSFETは、スイッチング素子として機能することになる。
【0021】
次に、図1に示す構成を製造する方法の一実施形態を、図2に示す製造工程断面図を参照して説明する。
【0022】
図2(a)において、まずN+ 型SiC基板1を用意する。基板1の不純物濃度は、例えば1×1019cm−3程度である。このSiC基板1の上面に、SiC基板1よりも不純物濃度の低いSiCエピタキシャル層2をCVD法にて堆積する。SiCエピタキシャル層2の不純物濃度及び厚さは、例えば1×1016cm−3、10μm程度である。
【0023】
次に、図2(b)において、SiCエピタキシャル層2の上面に、LPCVD法により酸化膜を堆積し、フォトリソグラフィーとエッチングにより、所定の位置に酸化膜マスク20を形成する。その後、この酸化膜マスク20を介してアルミニウム21をイオン注入し、P型ベース領域3a、3bを形成する。アルミニウム21の注入条件は、例えば加速エネルギー:10〜360keV、総ドーズ量:2.5×1013cm−2、基板温度:800℃の多段注入である。
【0024】
次に、図2(c)において、酸化膜マスク20を希フッ酸により除去し、再度SiCエピタキシャル層2の上面にCVD法により酸化膜を堆積し、フォトリソグラフィーとエッチングにより、所定の位置に酸化膜マスク22を形成する。その後、酸化膜マスク22を介して燐23をイオン注入し、ソース領域4a、4bを形成する。燐23の注入条件は、例えば加速エネルギー:20〜150keV、総ドーズ量:5×1015cm−2、基板温度:800℃の多段注入である。
【0025】
次に、図2(d)において、酸化膜マスク21を希フッ酸により除去し、アルゴン雰囲気中にて1500℃で30分間の熱処理を行い、注入したアルミニウム、燐を活性化させる。その後、LPCVD法により、SiCエピタキシャル層2の上面に半導体層としてポリシリコン層12を形成する。ここで、ポリシリコン層12の膜厚は、ゲート電極8に電圧を印加した際に、SiCエピタキシャル層2の表層部のチャネル領域5a、5bにゲート電界が十分に及ぶ膜厚であればよいので、例えば膜厚20nm程度とする。その後、BBr3 の雰囲気中にてポリシリコン層12にボロンを拡散する。ボロンの拡散条件は、例えば700℃で20分である。
【0026】
次に、図2(e)において、ゲート絶縁膜6としてCVD法により酸化膜を堆積し、さらにLPCVD法によりポリシリコンを堆積する。このポリシリコン層は先のポリシリコン層12とは異なり、ポリシリコンゲート7として機能するものである。ここで、ゲート絶縁膜6の厚さは、例えば50nm程度、ポリシリコン層の厚さは、例えば膜厚350nm程度である。その後、POCl3 の雰囲気中にてポリシリコン層に燐23を拡散する。燐23の拡散条件は、例えば950℃で20分である。
【0027】
次に、図2(f)において、フォトリソグラフィと反応性イオンエッチングにより、ポリシリコン層12、ゲート絶縁膜6となる酸化膜ならびにポリシリコンゲート7となるポリシリコン層をエッチングし、ゲート絶縁膜6ならびにポリシリコンゲート7を形成する。その後、層間絶縁膜9としてCVD法により酸化膜を堆積する。
【0028】
最後に、図5(g)において、SiC基板1の裏面にニッケルを堆積し、アルゴンの雰囲気中で1000℃で1分間の熱処理を行い、ドレイン電極11を形成する。その後、フォトリソグラフィとエッチングによりコンタクトホールを開孔し、アルミニウムを堆積し、ゲート電極8、ソース電極10a、10bを形成する。これにより、図1に示す構成のSiCプレーナ型MOSFETが完成する。
【0029】
なお、上記第1の実施形態は、請求項1,2,3,7,8に記載された発明に対応した実施形態である。
【0030】
このような第1の実施形態においては、ゲート絶縁膜6は半導体層であるポリシリコン層12の上面に形成されており、SiCを直接、熱酸化してゲート絶縁膜6を形成していない。このため、前述したカーボンクラスターは発生せず、それに伴う界面準位も発生しない。チャネル領域5a、5bは、ポリシリコン層12の直下に位置することになるが、ポリシリコン層12の厚さが薄いため、ゲート電極8に電圧を印加した際に、ポリシリコン層12を介してベース領域3a、3bの表層部にもゲート電界が及び、チャネル領域5a、5bに反転型チャネルが形成される。先に述べたように、このチャネル領域5a、5bには、カーボンクラスターに起因する界面準位が存在しないため、高いチャネル移動度を実現することができる。
【0031】
また、ベース領域3a、3bに挟まれたSiCエピタキシャル層2の表層部に、半導体層であるポリシリコン層12を配置している。これにより、ソース電極10a、10bとドレイン電極11間に高電圧が印加された状態、且つゲート電極8が接地電位、すなわち遮断状態では、ポリシリコン層12とSiCエピタキシャル層2とのヘテロ接合界面のポリシリコン層12側に蓄積された電子が電界をシールドする。したがって、ゲート絶縁膜6の絶縁破壊が生じるのを防止することができる。
【0032】
また、半導体層の構成材料として単結晶シリコンまたはポリシリコンを用いているので、拡散やイオン注入による伝導度制御やエッチングのプロセスが容易になる。
【0033】
上記効果は、請求項1,2,3,7,8に記載された技術内容によって達成される効果に相当する。
【0034】
なお、上記第1の実施形態では、炭化珪素半導体装置として、プレーナ型MOSFETを一例として説明したが、本願発明は、例えば図3の第2の実施形態に示すように、SiC基板1上に形成されたベース領域3aにソース領域4aとドレイン領域30が対向して形成され、ソース領域4aとドレイン領域30間のベース領域3aの表層にチャネル領域31が形成されるようなMOSFETの場合にも適用可能であり、第1の実施形態と同様の効果を得ることができる。
【0035】
また、第1の実施形態では、図1に示すように半導体層としてのポリシリコン層12がゲート絶縁膜6の直下の全ての領域に配置されている構成になっているが、例えば、図4の第3の実施形態又は図5の第4の実施形態に示すように、半導体層としてのポリシリコン層12がソース領域4a、4b、チャネル領域5a、5b、又はSiCエピタキシャル層2上に部分的に所定の位置に配置された構成の場合においても、第1の実施形態と同様の効果を得ることができる。
【0036】
なお、上記第2の実施形態は、請求項1,7,8に記載された発明に対応した実施形態であり、第3の実施形態は、請求項1,2,3,7,8に記載された発明に対応した実施形態であり、第4の実施形態は、請求項1,2,3,7,8に記載された発明に対応した実施形態である。
【0037】
図6は本発明の第5の実施形態に係る炭化珪素半導体装置の構成を示す断面図である。図6に示す第5の実施形態の炭化珪素半導体装置は、SiCプレーナ型MOSFETを一例としており、高濃度N+ 型のSiC基板1上にN− 型のSiCエピタキシャル層2が形成されている。SiCエピタキシャル層2の表層部における所定領域には、P型のベース領域3a、3b、およびN+ 型のソース領域4a、4bが形成されている。なお、P型ベース領域3a、3bの表層部はデバイス動作時にチャネル領域5a、5bとして機能する。P型のベース領域3a、3bに挟まれたN− 型のSiCエピタキシャル層2の表層部には、SiCエピタキシャル層2よりも不純物濃度が高いN+ 型の高濃度SiC層60が形成されている。
【0038】
N+ 型の高濃度SiC層60及びP型のベース領域3a、3bの上には、半導体層としてソース領域4a、4bと同導電型のN− 型のポリシリコン層12が形成されている。ポリシリコン層12とN+ 型のソース領域4a、4bが接する領域のポリシリコン層は、N− 型のポリシリコン層12より不純物濃度が高いN+ 型の高濃度ポリシリコン層61a、61bで形成されている。
【0039】
この半導体層は、ゲート電極8に印加される電圧を制御して半導体層をチャネルとして動作させるために、炭化珪素よりもバンドギャップが小さい材料で構成されており、例えばポリシリコンに代えて単結晶シリコンを用いてもよい。ポリシリコン層12、61a、61bは、SiCエピタキシャル層2、ソース領域4a、4bの一部、ならびにベース領域3a、3bの表層部のチャネル領域5a、5bと対向して積層形成され、ソース領域4a、4bとSiC層60とを電気的に繋ぐように形成されている。ポリシリコン層12、61a、61bは、その膜厚が薄く形成されている。すなわち、ゲート電極8に電圧を印加した際に、ポリシリコン層12を介してベース領域3a、3bの表層部にもゲート電界が及び、チャネル領域5a、5bに反転型チャネルが形成される程度に膜厚が薄く形成されている。
【0040】
ポリシリコン層12及び高濃度ポリシリコン層61a、61bの上面には、ゲート絶縁膜6を介してポリシリコンゲート7が配置され、ポリシリコンゲート7は層間絶縁膜9にて覆われている。N+ 型のソース領域4a、4bに接するように、ソース電極10a、10bが形成されているとともに、ポリシリコンゲート7に接するようにゲート電極8が形成されている。N+ 型のSiC基板1の裏面には、ドレイン電極11が形成されている。なお、P型のベース領域3a、3bは、図示されていないところでソース電極10a、10bと同電位となるように接続されている。
【0041】
このような構成のプレーナ型MOSFETの動作としては、前述した第1の実施形態におけるプレーナ型MOSFETのスイッチング動作に加えて、ドレイン電極11とソース電極10a、10bとの間に電圧が印加された状態で、ゲート電極8に正の電圧が印加された導通状態時には、ゲート絶縁膜6を介してポリシリコン層12、ならびにポリシリコン層12に接するN+ 型の高濃度SiC層60のヘテロ接合界面までゲート電界が及ぶ。これにより、ポリシリコン層12に接するN+ 型の高濃度SiC層60に電子の蓄積層が形成され、ヘテロ接合界面のエネルギー障壁が急峻になり、エネルギー障壁中をトンネリングすることによって、ポリシリコン層12を経由してソース電極10a、10bからドレイン電極11へ電子が流れる。
【0042】
一方、ゲート電極8に印加された電圧を取り去って遮断状態にした場合には、ポリシリコン層12に接するN+ 型の高濃度SiC層60に形成された電子の蓄積層が消失し、急峻であったエネルギー障壁は緩やかになる。これにより、導通状態時に流れていた電子は、トンネリングすることができなくなり障壁によって遮られ、遮断状態となる。このような動作により、スイッチング素子として機能する。
【0043】
次に、上記トンネリング動作を詳細に説明する。
【0044】
まず、ソース電極10a、10bを発した電子は、ソース領域4a、4bに流れ込み、N+ 型の高濃度ポリシリコン層61a、61bとソース領域4a、4bの界面に到達する。N+ 型の高濃度ポリシリコン層61a、61bとソース領域4a、4bの接触は、N+ 型の高濃度ポリシリコン層61a、61bとソース領域4a、4b間のヘテロ接合界面のエネルギー障壁が急峻になり、オーミック接触になっている。このため、電子はソース領域4a、4bからN+ 型の高濃度ポリシリコン層61a、61bへ流れ、さらにN− 型のポリシリコン層12へと流れる。その後、ポリシリコン層12中を流れる電子は、ポリシリコン層12と
N+ 型の高濃度SiC層60の界面に到達する。
【0045】
ポリシリコン層12とN+ 型の高濃度SiC層60の界面はヘテロ接合になっており、電位状態に応じて図7(a)〜(c)に示すようなエネルギーバンド構造を呈する。
【0046】
以下、各電位状態におけるポリシリコン層12とN+ 型の高濃度SiC層60とのヘテロ接合界面の挙動について説明する。なお、図7(a)〜(c)に示すエネルギーバンド構造は、界面準位の影響は考慮せずに理想的な半導体へテロ接合のエネルギー準位を図示している。図7(a)は、ゲート電極8、ソース電極10a、10b、ドレイン電極11のいずれの電極にも電圧を印加しない状態、すなわち熱平衡状態におけるバンド構造を示している。また、図7(b)は、ゲート電極8、ソース電極10a、10bを共に接地電位とし、かつドレイン電極11に然るべき正電位を印加した状態のエネルギーバンド構造を示している。
【0047】
図7(b)に示すように、ヘテロ接合界面のN+ 型の高濃度SiC層60には、ドレイン電極11に印加した電圧に応じて空乏層が拡がる。それに対して、半導体層であるポリシリコン層12側に存在する電子は、エネルギー障壁70を越えることができず、その接合界面には電子が蓄積される。このため、高濃度SiC層60側に拡がる空乏層に見合う電気力線が終端し、ポリシリコン層12側ではドレイン電界がシールドされることになる。これにより、遮断状態を維持することが可能になる。
【0048】
次に、遮断状態から導通状態へと転じるべくゲート電極8に電圧を印加した場合には、ポリシリコン層12が薄く形成されているため、ゲート絶縁膜6を介してポリシリコン層12ならびにポリシリコン層12に接するN+ 型の高濃度SiC層60のヘテロ接合界面までゲート電界が及ぶ。これにより、ポリシリコン層12に接するN+ 型の高濃度SiC層60に電子の蓄積層が形成される。すなわち、ポリシリコン層12とN+ 型の高濃度SiC層60の接合界面におけるエネルギーバンド構造は、図7(c)中の破線で示すバンド構造から実線で示すバンド構造に変化する。
【0049】
図7(b)中の実線で示すバンド構造は、図7(c)中の破線で示す、ゲート電極8を接地電位とした場合のバンド構造に比べて、ヘテロ接合界面の両側ともポテンシャルが押し下げられる。すなわち、ヘテロ接合界面のエネルギー障壁70は、電子の蓄積効果により急峻になるため、エネルギー障壁70中を電子がトンネリングすることが可能となる。このことから、それまでエネルギー障壁70によって遮断されていた電子は、N+ 型の高濃度SiC層60に流れて導通状態となる。
【0050】
次に、導通状態から遮断状態に移行すべく、再びゲート電極8を接地電位とすると、ポリシリコン層12とN+ 型の高濃度SiC層60のヘテロ接合界面に形成されていた電子の蓄積状態が解除され、エネルギー障壁70中のトンネリングが止まる。そして、ポリシリコン層12からN+ 型の高濃度SiC層60への電子の流れが止まる。さらに、N+ 型の高濃度SiC層60中にあった電子が、SiC基板1側に流れて枯渇すると、N+ 型高濃度SiC層60側には、ヘテロ接合部から空乏層が広がり遮断状態となる。
【0051】
次に、図6に示す構成を製造する方法の一実施形態を、図8に示す製造工程断面図を参照して説明する。
【0052】
図8(a)において、まずN+ 型SiC基板1を用意する。基板1の不純物濃度は例えば1×1019cm−3程度である。このSiC基板1上面に、SiC基板1よりも不純物濃度の低いSiCエピタキシャル層2をCVD法にて堆積する。SiCエピタキシャル層2の不純物濃度及び厚さは、例えば、1×1016cm−3、10μm程度である。
【0053】
次に、図8(b)において、SiCエピタキシャル層2の上面に、LPCVD法により酸化膜を堆積し、フォトリソグラフィーとエッチングにより、所定の位置に酸化膜マスク80を形成する。その後、この酸化膜マスク80を介してアルミニウム81をイオン注入し、P型のベース領域3a、3bを形成する。アルミニウム81の注入条件は、例えば加速エネルギー:10〜360keV、総ドーズ量:2.5×1013cm−2、基板温度:800℃の多段注入である。
【0054】
次に、図8(c)において、酸化膜マスク80を希フッ酸により除去し、再度SiCエピタキシャル層2の上面にCVD法により酸化膜を堆積し、フォトリソグラフィーとエッチングにより、所定の位置に酸化膜マスク82を形成する。その後、酸化膜マスク82を介して燐83をイオン注入し、ソース領域4a、4bを形成する。燐83の注入条件は、例えば加速エネルギー:20〜150keV、総ドーズ量:5×1015cm−2、基板温度:800℃の多段注入である。
【0055】
次に、図8(d)において、酸化膜マスク81を希フッ酸により除去し、再度SiCエピタキシャル層2の上面にCVD法により酸化膜を堆積し、フォトリソグラフィーとエッチングにより、所定の位置に酸化膜マスク84を形成する。その後、酸化膜マスク84を介して燐83をイオン注入し、高濃度SiC層13を形成する。燐83の注入条件は、例えば加速エネルギー:5keV、総ドーズ量:1×1015cm−2、基板温度:800℃である。
【0056】
次に、図8(e)において、酸化膜マスク84を希フッ酸により除去し、アルゴン雰囲気中にて1500℃で30分間の熱処理を行い、注入したアルミニウム81、燐83を活性化させる。その後、LPCVD法により、SiCエピタキシャル層2の上面に、半導体層としてポリシリコン層12を形成する。ここで、ポリシリコン層12の膜厚はゲート電極8に電圧を印加した際に、SiCエピタキシャル層2の表層部のチャネル領域5a、5bにゲート電界が十分に及ぶ膜厚であればよいので、例えば膜厚20nm程度とする。その後、POCl3の雰囲気中にてポリシリコン層12に燐83を拡散する。燐83の拡散条件は、例えば700℃で20分である。
【0057】
次に、図8(f)において、ポリシリコン層12の上面にCVD法によりシリコンナイトライド膜を堆積し、フォトリソグラフィーとエッチングにより、所定の位置に拡散防止マスク85を形成する。その後、拡散法により拡散防止マスク85を介して燐83をポリシリコン層12中に導入し、N+ 型の高濃度ポリシリコン層61a、61bを形成する。燐83の拡散条件は、例えば950℃で20分である。
【0058】
次に、図8(g)において、ゲート絶縁膜6としてCVD法により酸化膜を堆積し、さらにLPCVD法によりポリシリコンを堆積する。このポリシリコン層は先のポリシリコン層12とは異なり、ポリシリコンゲート7として機能するものである。ここで、ゲート絶縁膜6の厚さは、例えば50nm程度、ポリシリコン層の厚さは、例えば膜厚350nm程度である。その後、POCl3 の雰囲気中にてポリシリコン層に燐83を拡散する。燐83の拡散条件は、例えば950℃20で20分である。
【0059】
次に、図8(h)において、フォトリソグラフィと反応性イオンエッチングにより、ポリシリコン層12、ゲート絶縁膜6となる酸化膜ならびにポリシリコンゲート7となるポリシリコン層をエッチングし、ゲート絶縁膜6ならびにポリシリコンゲート7を形成する。その後、層間絶縁膜9としてCVD法により酸化膜を堆積する。
【0060】
最後に、図8(i)において、SiC基板1の裏面にニッケルを堆積し、アルゴンの雰囲気中で1000℃で1分間の熱処理を行い、ドレイン電極11を形成する。その後、フォトリソグラフィとエッチングによりコンタクトホールを開孔し、アルミニウムを堆積し、ゲート電極8、ソース電極10a、10bを形成する。これにより、図6に示す構成のSiCプレーナ型MOSFETが完成する。
【0061】
なお、上記第5の実施形態は、請求項4,5,6,7,8に記載された発明に対応した実施形態である。
【0062】
このような第5の実施形態においては、半導体層であるポリシリコン層12がソース領域4a、4bと同じ導電型のN型であるため、ソース電極10a、10bとドレイン電極11間に高電圧が印加された状態で、ゲート電極8に然るべき電圧が印加されると、半導体層であるポリシリコン層12中にも電子を流すことができる。すなわち、導通状態において反転型チャネルとは別の経路に、電子を流すことができるようになるので、オン抵抗を下げることができる。
【0063】
また、ソース領域4a、4bが接する領域における半導体層のポリシリコン層61a、61bの不純物濃度を、ソース領域4a、4bが接しない領域における半導体層のポリシリコン層12の不純物濃度と比較して高濃度にしているため、ポリシリコン層61a、61bとソース領域4a、4b間のヘテロ接合界面のエネルギー障壁が急峻になる。このため、ソース電極10a、10bとドレイン電極11間に高電圧が印加された状態で、ゲート電極8に然るべき電圧が印加された状態、すなわち導通状態において、ソース領域4a、4bからポリシリコン層61a、61bへと流れる電子は、ポリシリコン層61a、61bとソース領域4a、4b間のヘテロ接合界面におけるエネルギー障壁70中をトンネリングし易くなる。従って、導通状態時にポリシリコン層61a、61b中を電子が流れ易くなり、オン抵抗をより下げることができる。
【0064】
さらに、ベース領域3a、3bに挟まれたSiCエピタキシャル層2の表層部には、SiCエピタキシャル層2より不純物濃度が高く、且つ同じ導電型であるN+ 型の高濃度SiC層60が設けられている。これにより、ソース電極10a、10bとドレイン電極11間に高電圧が印加された状態で、ゲート電極8に然るべき電圧が印加された状態、すなわち導通状態において、半導体層12であるポリシリコン層12を介してソース領域4a、4bからSiCエピタキシャル層2へと流れる電子は、半導体層であるポリシリコン層12とN+ 型の高濃度SiC層60間のヘテロ接合界面におけるエネルギー障壁70中をトンネリングし易くなる。従って、導通状態時に半導体層であるポリシリコン層12を電子がさらに流れ易くなり、さらなる低オン抵抗化を図ることができる。
【0065】
上記効果は、請求項4,5,6,7,8に記載された技術内容によって達成される効果に相当する。
【0066】
なお、上記の実施例1から5のいずれにおいてもチャネル領域5a、5b、31が反転型チャネルの場合で説明しているが、蓄積型チャネルの場合でも、同様の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る炭化珪素半導体装置の構成を示す図である。
【図2】本発明の第1の実施形態に係る炭化珪素半導体装置の製造方法を示す工程断面図である。
【図3】本発明の第2の実施形態に係る炭化珪素半導体装置の構成を示す図である。
【図4】本発明の第3の実施形態に係る炭化珪素半導体装置の構成を示す図である。
【図5】本発明の第4の実施形態に係る炭化珪素半導体装置の構成を示す図である。
【図6】本発明の第5の実施形態に係る炭化珪素半導体装置の構成を示す図である。
【図7】シリコン/SiCへテロ接合界面におけるエネルギーバンド構造を示す図である。
【図8】本発明の第5の実施形態に係る炭化珪素半導体装置の製造方法を示す工程断面図である。
【図9】従来の炭化珪素半導体装置の構成を示す図である。
【符号の説明】
1 SiC基板
2 SiCエピタキシャル層
3a,3b ベース領域
4a、4b ソース領域
5a、5b,31 チャネル領域
6 ゲート絶縁膜
7 ポリシリコンゲート
8 ゲート電極
9 層間絶縁膜
10a、10b ソース電極
11 ドレイン電極
12 ポリシリコン層
20,22,80,82,84 酸化膜マスク
21,81 アルミニウム
23,83 燐
30 ドレイン領域
60 高濃度SiC層
61a,61b 高濃度ポリシリコン層
70 エネルギー障壁
85 拡散防止マスク
Claims (8)
- 第1導電型の炭化珪素半導体基板と、
前記炭化珪素半導体基板上に形成された第1導電型のベース領域と、
前記ベース領域に形成された第1導電型のソース領域と、
前記炭化珪素半導体基板上に形成された第1導電型のドレイン領域と、
前記ソース領域と前記ドレイン領域との間に形成されるチャネル領域の上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート領域と、
を有する炭化珪素半導体装置において、
前記チャネル領域上の前記ゲート絶縁膜と前記チャネル領域との間に、炭化珪素とバンドギャップが異なる半導体層を有する
ことを特徴とする炭化珪素半導体装置。 - 第1導電型の炭化珪素半導体基板の第1主面側に形成された第1導電型の炭化珪素エピタキシャル層と、
前記炭化珪素エピタキシャル層の表層部に、離間して形成された一対の第2導電型のベース領域と、
前記それぞれのベース領域の表層部に、前記ベース領域の深さよりも浅く形成された一対の第1導電型のソース領域と、
前記ソース領域と前記炭化珪素エピタキシャル層との間の前記ベース領域中にチャネル領域が形成されるべく、前記チャネル領域の上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート領域と、
前記炭化珪素半導体基板の第2主面側に形成されたドレイン電極と
を有する炭化珪素半導体装置において、
前記チャネル領域上の前記ゲート絶縁膜と前記チャネル領域との間に、炭化珪素とバンドギャップが異なる半導体層を形成し、
前記半導体層は、前記ベース領域の表層部に接し、かつ前記ソース領域と前記炭化珪素エピタキシャル層を繋ぐように配置形成されている
ことを特徴とする炭化珪素半導体装置。 - 前記半導体層は、
前記ベース領域に隣接した前記炭化珪素エピタキシャル層の表層部上に配置されている
ことを特徴とする請求項2に記載の炭化珪素半導体装置。 - 前記半導体層は、
その導電型が前記ソース領域と同一導電型である
ことを特徴とする請求項1,2又は3のいずれか1項に記載の炭化珪素半導体装置。 - 前記半導体層と前記ソース領域が接する領域における前記半導体層の不純物濃度は、前記半導体層と前記ソース領域が接しない領域における前記半導体層の不純物濃度よりも高濃度である
ことを特徴とする請求項1,2,3又は4のいずれか1項に記載の炭化珪素半導体装置。 - 前記ベース領域に隣接した前記炭化珪素エピタキシャル層の表層部に、前記炭化珪素エピタキシャル層よりも高い不純物濃度を有する第1導電型の炭化珪素層
を有することを特徴とする請求項2,3,4又は5のいずれか1項に記載の炭化珪素半導体装置。 - 前記半導体層は、単結晶シリコンまたはポリシリコンからなることを特徴とする請求項1,2,3,4,5又は6のいずれか1項に記載の炭化珪素半導体装置。
- 炭化珪素半導体基板上に、ソース領域とドレイン領域を形成し、ソース領域とドレイン領域との間に形成されるチャネル領域上に、ゲート絶縁膜を介してゲート領域を形成する炭化珪素半導体装置の製造方法において、
前記チャネル領域と前記ゲート絶縁膜との間に、炭化珪素とバンドギャップが異なる半導体層を形成する工程含む
ことを特徴とする炭化珪素半導体装置の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002298944A JP3580304B2 (ja) | 2002-10-11 | 2002-10-11 | 炭化珪素半導体装置及びその製造方法 |
US10/682,154 US7217950B2 (en) | 2002-10-11 | 2003-10-10 | Insulated gate tunnel-injection device having heterojunction and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002298944A JP3580304B2 (ja) | 2002-10-11 | 2002-10-11 | 炭化珪素半導体装置及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004134644A true JP2004134644A (ja) | 2004-04-30 |
JP3580304B2 JP3580304B2 (ja) | 2004-10-20 |
Family
ID=32288217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002298944A Expired - Fee Related JP3580304B2 (ja) | 2002-10-11 | 2002-10-11 | 炭化珪素半導体装置及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3580304B2 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006100357A (ja) * | 2004-09-28 | 2006-04-13 | Nissan Motor Co Ltd | 半導体装置の製造方法 |
JP2006324517A (ja) * | 2005-05-19 | 2006-11-30 | Mitsubishi Electric Corp | 半導体装置及びその製造方法 |
JP2006351743A (ja) * | 2005-06-15 | 2006-12-28 | Fuji Electric Holdings Co Ltd | Mosゲート型炭化珪素半導体装置およびその製造方法 |
JP2007335501A (ja) * | 2006-06-13 | 2007-12-27 | Nissan Motor Co Ltd | 半導体装置及びその製造方法 |
JP2008294171A (ja) * | 2007-05-24 | 2008-12-04 | Oki Electric Ind Co Ltd | 半導体デバイス及びその製造方法 |
JP2009088440A (ja) * | 2007-10-03 | 2009-04-23 | Oki Semiconductor Co Ltd | 半導体装置及びその製造方法 |
US8053784B2 (en) | 2006-08-08 | 2011-11-08 | Toyota Jidosha Kabushiki Kaisha | Silicon carbide semiconductor device and method for manufacturing the same |
JP2012099834A (ja) * | 2011-12-19 | 2012-05-24 | Fuji Electric Co Ltd | Mosゲート型炭化珪素半導体装置の製造方法 |
JP2015061018A (ja) * | 2013-09-20 | 2015-03-30 | 株式会社東芝 | 半導体装置およびその製造方法 |
JP2016009852A (ja) * | 2014-06-26 | 2016-01-18 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法および半導体装置 |
WO2018012241A1 (ja) * | 2016-07-14 | 2018-01-18 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
CN116504842A (zh) * | 2023-06-28 | 2023-07-28 | 浙江大学 | 异质结绝缘栅场效应管及其制造方法、半导体器件 |
-
2002
- 2002-10-11 JP JP2002298944A patent/JP3580304B2/ja not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006100357A (ja) * | 2004-09-28 | 2006-04-13 | Nissan Motor Co Ltd | 半導体装置の製造方法 |
JP2006324517A (ja) * | 2005-05-19 | 2006-11-30 | Mitsubishi Electric Corp | 半導体装置及びその製造方法 |
JP2006351743A (ja) * | 2005-06-15 | 2006-12-28 | Fuji Electric Holdings Co Ltd | Mosゲート型炭化珪素半導体装置およびその製造方法 |
JP2007335501A (ja) * | 2006-06-13 | 2007-12-27 | Nissan Motor Co Ltd | 半導体装置及びその製造方法 |
US8053784B2 (en) | 2006-08-08 | 2011-11-08 | Toyota Jidosha Kabushiki Kaisha | Silicon carbide semiconductor device and method for manufacturing the same |
JP2008294171A (ja) * | 2007-05-24 | 2008-12-04 | Oki Electric Ind Co Ltd | 半導体デバイス及びその製造方法 |
JP2009088440A (ja) * | 2007-10-03 | 2009-04-23 | Oki Semiconductor Co Ltd | 半導体装置及びその製造方法 |
JP2012099834A (ja) * | 2011-12-19 | 2012-05-24 | Fuji Electric Co Ltd | Mosゲート型炭化珪素半導体装置の製造方法 |
JP2015061018A (ja) * | 2013-09-20 | 2015-03-30 | 株式会社東芝 | 半導体装置およびその製造方法 |
JP2016009852A (ja) * | 2014-06-26 | 2016-01-18 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法および半導体装置 |
WO2018012241A1 (ja) * | 2016-07-14 | 2018-01-18 | 三菱電機株式会社 | 半導体装置およびその製造方法 |
CN109417098A (zh) * | 2016-07-14 | 2019-03-01 | 三菱电机株式会社 | 半导体装置及其制造方法 |
US10510844B2 (en) | 2016-07-14 | 2019-12-17 | Mitsubishi Electric Corporation | Semiconductor device and method of manufacturing same |
CN109417098B (zh) * | 2016-07-14 | 2022-03-01 | 三菱电机株式会社 | 半导体装置及其制造方法 |
CN116504842A (zh) * | 2023-06-28 | 2023-07-28 | 浙江大学 | 异质结绝缘栅场效应管及其制造方法、半导体器件 |
CN116504842B (zh) * | 2023-06-28 | 2023-09-26 | 浙江大学 | 异质结绝缘栅场效应管及其制造方法、半导体器件 |
Also Published As
Publication number | Publication date |
---|---|
JP3580304B2 (ja) | 2004-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5884617B2 (ja) | 炭化珪素半導体装置およびその製造方法 | |
JP4604241B2 (ja) | 炭化ケイ素mos電界効果トランジスタおよびその製造方法 | |
JP4761942B2 (ja) | 半導体装置 | |
JP3573149B2 (ja) | 炭化珪素半導体装置 | |
KR20080005100A (ko) | 반도체 장치 제조 방법 | |
JP3580304B2 (ja) | 炭化珪素半導体装置及びその製造方法 | |
CN104737292A (zh) | 碳化硅半导体器件及其制造方法 | |
WO2018055719A1 (ja) | 炭化珪素半導体装置 | |
JP6183087B2 (ja) | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 | |
JPWO2019123601A1 (ja) | 半導体装置 | |
JP3966249B2 (ja) | 半導体装置及び半導体装置の製造方法 | |
JP3711989B2 (ja) | 半導体装置およびその製造方法 | |
JP4033150B2 (ja) | 半導体装置とその製造方法 | |
JP4742545B2 (ja) | 炭化珪素半導体装置の製造方法 | |
JP2003249652A (ja) | 炭化珪素半導体装置及びその製造方法 | |
US9048103B2 (en) | Method for producing semiconductor device | |
JP3997886B2 (ja) | 炭化珪素半導体装置の製造方法 | |
JP4736386B2 (ja) | 半導体装置の製造方法 | |
JP3979369B2 (ja) | 半導体装置及びその製造方法 | |
KR100966229B1 (ko) | 반도체 장치의 제조 방법 및 그에 의해 제조된 반도체 장치 | |
JP2006086397A (ja) | 半導体装置およびその製造方法 | |
JP2014241426A (ja) | 半導体装置 | |
WO2005034246A1 (ja) | 炭化ケイ素半導体装置 | |
JP4982960B2 (ja) | 半導体装置の製造方法 | |
JP3931805B2 (ja) | 炭化珪素半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040210 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20040210 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20040304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040712 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080730 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080730 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090730 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100730 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110730 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120730 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120730 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |