JP2004120979A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2004120979A
JP2004120979A JP2002284972A JP2002284972A JP2004120979A JP 2004120979 A JP2004120979 A JP 2004120979A JP 2002284972 A JP2002284972 A JP 2002284972A JP 2002284972 A JP2002284972 A JP 2002284972A JP 2004120979 A JP2004120979 A JP 2004120979A
Authority
JP
Japan
Prior art keywords
phase
voltage
inverter
power
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002284972A
Other languages
English (en)
Other versions
JP3967657B2 (ja
Inventor
Akihiko Iwata
岩田 明彦
Akihiro Suzuki
鈴木 昭弘
Masaki Yamada
山田 正樹
Yukimori Kishida
岸田 行盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002284972A priority Critical patent/JP3967657B2/ja
Publication of JP2004120979A publication Critical patent/JP2004120979A/ja
Application granted granted Critical
Publication of JP3967657B2 publication Critical patent/JP3967657B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】複数の単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)の交流側を直列に接続し、選択された各単相インバータの組み合わせで出力する階調制御型の電力変換器において、各単相インバータの発生電圧オンオフタイミングのずれにより出力電圧に発生するスパイク電圧を抑制して漏洩ノイズを低減する。
【解決手段】各単相インバータ毎にスイッチング素子の駆動信号のオンオフタイミングを調整する遅延回路51を設けて、直列接続された単相インバータで構成される単相多重変換器の出力電圧階調が変化する際に発生するスパイク電圧を抑制する。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
この発明は、電力変換器に関し、特に滑らかな交流出力波形を得ることが可能なインバータに関するものである。
【0002】
【従来の技術】
従来の電力変換装置で、単体で3値以上の電圧を出力できるマルチレベルインバータとしては3レベルインバータがある。この3レベルインバータは、PWM制御をするインバータで、各相において常に隣接する2個のGTOを導通状態とし、上の2つが導通して+Ed/2が出力され、真ん中の2つが導通して0が、下の2つが導通して−Ed/2が出力される。特に、0出力時には出力相電圧が中性点に固定される。この結果、出力相電圧は3レベルの電圧が得られ、線間電圧は5値を得る(例えば、非特許文献1参照)。
【0003】
【非特許文献1】
内藤治夫著「マルチレベルインバータ」オーム社発行、OHM、1995年10月、p.44−49
【0004】
【発明が解決しようとする課題】
従来の電力変換装置は、以上のように構成されてPWM制御にて出力電圧を調整しているため、出力端の電圧変化が大きく、高調波成分が多い。このため、通常、インバータの出力側に複雑で大容量の出力フィルタを用いており、このため装置が大型化すると共に、この出力フィルタの電圧降下分だけ3相インバータの皮相電力を増加しておく必要があった。
【0005】
この発明は、上記のような問題点を解消するために成されたものであって、大容量の出力フィルタが必要となるPWM制御をせずに、滑らかな交流出力波形が信頼性良く得られる電力変換装置の構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る請求項1記載の電力変換装置は、複数の半導体スイッチング素子を備えて直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する。上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものである。そして、上記半導体スイッチング素子の駆動信号発生部に遅延回路を設け、上記各単相インバータ毎に上記半導体スイッチング素子の駆動信号のオンオフタイミングを上記遅延回路により調整することにより該各単相インバータの発生電圧オンオフタイミングを調整し、上記単相多重変換器の出力電圧階調が変化する際に発生するスパイク電圧を抑制する。
【0007】
またこの発明に係る請求項6記載の電力変換装置は、直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する。上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものである。そして、上記単相多重変換器と負荷との間に、減衰抵抗あるいは過飽和リアクトルを直列に接続して、上記単相多重変換器の出力電圧階調が変化する際に発生する負荷電圧におけるスパイク電圧を抑制する。
【0008】
またこの発明に係る請求項7記載の電力変換装置は、複数の半導体スイッチング素子を備えて直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する。上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものである。そして、上記単相多重変換器内の第1の単相インバータの出力電圧を監視してその発生電圧オンオフタイミングを検出する手段と、該発生電圧オンオフタイミングを検出したタイミングで、上記単相多重変換器内の第2の単相インバータに対し該単相インバータの発生電圧オンオフ切替のための駆動信号を出力する手段とを備えて、上記第1、第2の単相インバータの発生電圧オンオフタイミングを同期させる。
【0009】
またこの発明に係る請求項11記載の電力変換装置は、請求項1〜10のいずれかに記載の上記単相多重変換器を多相結線し、該各単相多重変換器により各相の出力電圧を階調制御して多相負荷に電力供給するものである。
【0010】
またこの発明に係る請求項12記載の電力変換装置は、請求項1〜10のいずれかに記載の単相多重変換器をスター結線して多相負荷に電力供給する。そして、上記スター結線接続点側の各相分の単相インバータに替わって、コンデンサを共用とする多相3レベルインバータを設けたものである。
【0011】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図について説明する。
図1はこの発明の実施の形態1による3相負荷駆動用の電力変換器の構成を示す図である。図に示すように、3相電力変換器全体は、各相がスター結線された3相インバータ装置25により、制御装置50を備えて3相負荷19〜21に電力供給するもので、それぞれの相は単相インバータであるVaインバータ1、7、13、Vbインバータ2、8、14、Vcインバータ3、9、15が直列接続された単相多重変換器から成る。各単相インバータ1〜3、7〜9、13〜15は、系統からトランスを通して引き込まれる交流電力を整流して直流電力に変換した後、その直流電力を平滑コンデンサで平滑し、該平滑コンデンサからの直流電力を交流電力に変換するものであるが、ここでは便宜上、直流電源4〜6、10〜12、16〜18とスイッチ群で構成されるインバータ部のみを図示する。なお、22、23はそれぞれ負荷側の中性点、電力変換装置側の中性点を示す。
【0012】
各単相インバータ1〜3、7〜9、13〜15の構成は、図2にその拡大図を示すように、ダイオードを逆並列に接続した複数個のIGBT等の自己消弧型半導体スイッチング素子30〜33で構成されるフルブリッジのインバータと電圧Eを出力する直流電源(4〜6、10〜12、16〜18)から構成される。自己消弧型半導体スイッチング素子30〜33はIGBT以外にも、GCT、GTO、トランジスタ、MOSFET等でも、また自己消弧機能がないサイリスタ等でも強制転流動作が可能であればよく、これらのスイッチング制御により単相インバータは、電圧E、−E、0を出力する。
【0013】
また、このように構成される単相多重変換器の各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)1〜3、7〜9、13〜15は、それぞれ直流電源4〜6、10〜12、16〜18の電圧Va、Vb、Vcを電圧源として電圧を出力するが、Va、Vb、Vcの関係は、それぞれ異なる値(Va<Vb<Vc)で、1:2:4、1:3:4、1:3:5、1:3:6、1:3:7、1:3:8、1:3:9のいずれかの関係となる。それぞれの場合について、各単相インバータ1〜3、7〜9、13〜15の出力論理とそれらを直列接続した単相多重変換器の出力階調(電圧レベル)との関係を図3のA〜Gの論理表に示す。ここでは、A表の場合について、以下に説明する。
Va、Vb、Vcは、1:2:4の関係で、最小電圧値Vaの2(n=0,1,2)の関係である。A表に示すように、最下位ビット、中間ビット、最上位ビットの3つの単相インバータ1〜3、7〜9、13〜15の組み合わせにより、これらの発生電圧の総和で0〜7の8階調の出力電圧(絶対値)が得られる。正弦波出力階調を得るための各単相インバータ出力波形を、図4に示す。図に示すように、3つの単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)の発生電圧の組み合わせにより、非常に滑らかな出力電圧階調波形が得られていることがわかる。
【0014】
このように構成される各単相多重変換器を制御する制御装置50は、図5に示すように、入力される参照波52に基づいて各単相インバータ1〜3、7〜9、13〜15に対して駆動信号を発生するインバータ駆動信号発生回路50aで構成される。なお、ここでは便宜上、1相分、例えばU相の駆動信号についてのみ図示する。単相多重変換器の3つの単相インバータ1〜3内の各半導体スイッチング素子30〜33に対し、インバータ駆動信号発生回路50aはゲート駆動信号g11〜g14、g21〜g24、g31〜g34を発生するが、図に示すように、遅延回路51を設けて、各単相インバータ1〜3毎に半導体スイッチング素子30〜33の駆動信号のオンオフタイミングを遅延回路51により調整する。遅延回路51では、遅延時間設定部53により設定された遅延時間を用いて駆動信号のオンオフタイミングを調整することにより、各単相インバータ1〜3の発生電圧オンオフタイミングを調整する。V相、W相においても、同様に、遅延回路51を備えて、各単相インバータ7〜9、13〜15毎に半導体スイッチング素子30〜33の駆動信号のオンオフタイミングを遅延回路51により調整する。
【0015】
各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)1〜3、7〜9、13〜15の発生電圧オンオフタイミングの遅延回路51による調整について以下に説明する。
図4で示したように、各単相多重変換器では、3つの単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)の発生電圧を組み合わせることで、出力電圧を階調制御するものであるが、例えば、Va、Vb、Vcが1:2:4の関係で、出力階調が第3階調から第4階調に変化する際について説明する。第3階調を出力するには、Vaインバータの出力レベル1とVbインバータの出力レベル2とを組み合わせて出力し、第4階調を出力するには、Vcインバータの出力レベル4を出力する。このため、第3階調から第4階調に変化するには、Vaインバータの出力レベル1とVbインバータの出力レベル2とをオンからオフし、同時にVcインバータの出力レベル4をオフからオンにする。
【0016】
しかしながら、3つの単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)を構成する各スイッチング素子30〜33には、特性ばらつきなどによりインバータ駆動信号発生回路50aから同時に駆動信号を出力しても、発生電圧のオンオフタイミングがずれることがある。図6は、1つの単相インバータのスイッチがターンオンする電流波形、電圧波形を表したものと、もう一つのビットのスイッチがターンオフする電流波形、電圧波形を表したものである。
仮に、図7(a)に示す比較例のように、Vcインバータの出力レベル4が先にオフからオンになり、次いでVaインバータの出力レベル1とVbインバータの出力レベル2とがオンからオフすると、このような場合、出力レベル7のスパイク電圧55が発生してしまう。
このため、この実施の形態では、図7(b)に示すように、遅延回路51により、Vaインバータの出力レベル1をオンからオフに切り替えるオンオフタイミングが、Vcインバータの出力レベル4をオフからオンに切り替えるオンオフタイミングよりも早くなるように、また、VbインバータのオンからオフへのオンオフタイミングがVcインバータのオンオフタイミングよりも遅くなるように調整する。
これにより、スパイク電圧55a、55bは一旦逆方向に電圧を低減させてから出力され、互いに逆方向の電圧で分担させて出力されることになるので、電圧レベルが低減できると共に、発生するスパイク電圧55a、56bの平均値が0に近づいてスパイク電圧55a、55bによって流れる電流が抑制されるため、漏洩ノイズの原因となる、浮遊容量や負荷19〜21の中性点22に流れる電流が抑制され、信頼性の高い階調制御が行える。
【0017】
この実施の形態では、正弦波に近い出力電圧波形が、複数の単相インバータを直列接続して階調制御することで得られ、電力変換器の後段に設けられていた平滑用の出力フィルタをなくす、あるいは小さな容量にすることができ、低コスト化、小型化、簡略化が促進した電力変換器が得られると共に、スパイク電圧が抑制されて漏洩ノイズが低減できる信頼性の高い階調制御が実現できる。
【0018】
なお、遅延回路51による各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)のオンオフタイミングの調整は、発生電圧を出力オンからオフに切り替える第1の単相インバータと、発生電圧の出力オフからオンに切り替える第2の単相インバータとの組み合わせで単相多重変換器の出力電圧階調を変化させる際に行うもので、通常、第1、第2の単相インバータのオンオフタイミングのずれが小さくなるように遅延時間を設定する。第1、第2の各単相インバータに該当するものが複数個あって3個以上の単相インバータの組み合わせで単相多重変換器の出力電圧階調を変化させる場合には、スパイク電圧の大きさ、パルス幅を小さくする、あるいは上述したように、スパイク電圧を互いに逆方向の電圧で分担させて出力するように、各駆動信号に対する遅延時間を調整して、スパイク電圧を抑制する。これにより、スパイク電圧によって流れる電流を効果的に低減できる。
【0019】
実施の形態2.
以下、この発明の実施の形態2を図8に基づいて説明する。
図に示すように、上記実施の形態1で示した電力変換器に各単相多重変換器の出力電圧を計測するU相、V相、W相電圧計測器41〜43を備え、各電圧計測器41〜43の出力信号である相電圧は制御装置50に入力される。各単相多重変換器を制御する制御装置50は、図9に示すように、入力される参照波52に基づいて各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)に対して駆動信号を発生するインバータ駆動信号発生回路50aで構成される。なお、ここでは便宜上、1相分、例えばU相の駆動信号についてのみ図示する。
インバータ駆動信号発生回路50aでは、単相多重変換器の3つの単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)内の各半導体スイッチング素子30〜33に対し、ゲート駆動信号g11〜g14、g21〜g24、g31〜g34を発生するが、図に示すように、遅延時間制御部54から出力される遅延時間を用いて、各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)毎に半導体スイッチング素子30〜33の駆動信号のオンオフタイミングを遅延回路51により調整する。遅延時間制御部54では、各電圧計測器41〜43からの相電圧を入力して各相の単相多重変換器の出力電圧を監視し、発生するスパイク電圧が抑制されるように遅延時間を演算して制御する。この遅延時間制御部54からの遅延時間により、各相の単相多重変換器の出力電圧におけるスパイク電圧は、フィードバック制御されて低減される。
【0020】
遅延時間制御部54での遅延時間の制御、およびそれによる出力電圧のフィードバック制御について図10に基づいて以下に詳述する。
電圧計測器41〜43で計測された各単相多重変換器の出力電圧は、比較増幅器56およびV/t変換器57を備えた遅延時間制御部54に入力され、比較増幅器56にて目標電圧と比較されてその電圧偏差が増幅される。V/t変換器57では、上記増幅された電圧偏差を入力としてスパイク電圧を検出し、該スパイク電圧の大きさおよび発生継続時間が小さくなるように各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)のオンオフタイミングta、tb、tcを調整する遅延時間を演算して出力する。遅延回路51では、各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)における各半導体スイッチング素子30〜33に対して発生されるインバータ駆動信号発生回路50aからのインバータ駆動信号に上記遅延時間を設ける。これにより各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)には遅延時間が調整されたインバータ駆動信号が入力される。
【0021】
上記遅延時間の演算処理の方法の例を、図11のフローチャートに基づいて以下に示す。まず、スパイク電圧を検出し(s1)、その大きさから各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)のオンオフタイミングta、tb、tcの互いの関係を推定して認識する。例えば、出力階調が第3階調から第4階調に変化する際、Vaインバータの出力レベル1とVbインバータの出力レベル2とをオンからオフし、Vcインバータの出力レベル4をオフからオンにするが、このとき出力レベル7(第4階調からの電圧偏差は出力レベル3)のスパイク電圧が発生すると、その大きさから、tc<ta(=tb)、即ちタイミングtcがタイミングta、tbよりも時刻が早いことが分かる(s2)。次いで、認識されたオンオフタイミングta、tb、tcの相互関係から、スパイク電圧の大きさ、発生継続時間を小さくするために、調整すべきオンオフタイミングta、tb、tcを選択し、その遅延時間を出力する。上述したように、出力階調が第3階調から第4階調に変化する際に出力レベル7(第4階調からの電圧偏差は出力レベル3)のスパイク電圧が発生する場合は、tc<ta(=tb)であるため、tcを若干遅らせるように、例えば予め定められた時間幅Δtにより遅延時間を設定する(S3)。
【0022】
この実施の形態では、スパイク電圧55a、55bによって流れる電流が抑制されるため、漏洩ノイズの原因となる、浮遊容量や負荷19〜21の中性点22に流れる電流が抑制され、信頼性の高い階調制御が行える。
【0023】
この実施の形態では、検出されたスパイク電圧の大きさおよび発生継続時間をフィードバック制御して、該フィードバック制御量が小さくなるように上記遅延時間制御部54は遅延時間を制御して出力する。このため、遅延時間が信頼性良く制御されて、スパイク電圧およびスパイク電圧によって流れる電流が信頼性良く効果的に抑制されるため、漏洩ノイズが低減された信頼性の高い階調制御が行える。
【0024】
なお、上記実施の形態では、電圧計測器41〜43で計測された各単相多重変換器の出力電圧を用いてスパイク電圧の抑制制御を行ったが、電流と電圧の位相差が無い場合、各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)の出力電流を検出してもよい。この場合、この検出された出力電流により各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)のオンオフタイミングta、tb、tcを検出し、遅延時間制御部54から出力される遅延時間により、オンオフタイミングta、tb、tcにおける相互のずれをフィードバック制御する。遅延時間制御部54では、オンオフタイミングta、tb、tcにおける相互のずれが小さくなるように遅延時間を演算して制御する。これにより、遅延時間が信頼性良く制御されて、スパイク電圧およびスパイク電圧によって流れる電流が信頼性良く効果的に抑制される。
【0025】
また、各単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)では、出力される電圧の大きさにより、各単相インバータ間でスイッチング速度が異なる半導体スイッチング素子30〜33を用いることがあり、スイッチング速度が速い素子の遅延時間を調整するようにすると、素子自体のスイッチング速度のばらつきも小さいため、調整が信頼性良く容易に行え、スパイク電圧の抑制制御が信頼性良く効果的に行える。一般に出力電圧が低い場合の方がスイッチング速度が速い素子を用いるものであり、例えば、図12に示すように、スイッチング速度が速い素子のオンオフタイミングが、スイッチング速度が遅い素子のオンオフタイミングよりも早い場合、スイッチング速度が速い素子に対してそのオンオフタイミングが遅くなるように遅延時間を調整する。なお、スイッチング速度が遅い素子側の単相インバータにおけるオンオフタイミングずれが大きい場合には、この限りではなく、スイッチング速度が遅い側の単相インバータについても調整する。
【0026】
実施の形態3.
上記実施の形態1、2では、各相の単相多重変換器を、3つの単相インバータの交流側を直列接続して構成したが、負荷19〜21と反対側の端に接続された単相インバータを3レベルインバータで構成しても良い。また、スター結線接続点側の各相分の単相インバータに替わって、コンデンサを共用とする3相3レベルインバータを設けても良く、上述した実施の形態1、2と同様にスパイク電圧を抑制することができる。3レベルインバータは、同じ電圧の2個のコンデンサを用いて3レベルの電圧出力を可能にするものであり、広く用いられており、このような3レベルインバータを単相インバータの組み合わせに用いることにより、安価な装置構成で多段階の階調制御による出力電圧が得られる。
図13には、3相3レベルインバータ26の各相の出力側にそれぞれ1つの単相インバータであるマルチレベルインバータ27、28、29を接続したものを示す。ここでは、3相3レベルインバータ26の中性点23および3相負荷19〜21の中性点22をそれぞれ接地する場合を示す。
【0027】
図13に示すように、この場合、3相3レベルインバータ26の各相に接続する単相インバータとして、各単相インバータ内に複数の直流電源を備えたマルチレベルインバータ27、28、29を用いる。この場合、各マルチレベルインバータ27、28、29はそれぞれ2個の直流電源とこれらの直流電源の電圧を組み合わせて出力するための4個の切替スイッチとを備えて、例えば2個の直流電源の電圧レベルが1:2のとき、切替スイッチの切替制御により0〜3の4階調の発生電圧(絶対値)が得られる。各マルチレベルインバータ27、28、29が、それぞれ0〜3の4階調の電圧を出力するため、3相3レベルインバータ26の発生電圧をさらに組み合わせることにより、多段階の階調制御ができる。例えば3相3レベルインバータ26が各相で−4、0、4の電圧レベルの出力をすると、これらの発生電圧の総和で0〜7の8階調の出力電圧(絶対値)が得られ、非常に滑らかな出力電圧階調波形が得られる。
このように単相インバータ内に複数の直流電源を備えてインバータの発生電圧を階調制御するマルチレベルインバータ27、28、29を用いることにより、単相インバータの数を低減でき、安価で簡略な装置構成で出力電圧が多段階の階調制御が行える。
【0028】
なお、マルチレベルインバータ27、28、29内の複数の直流電源の組み合わせを変化させる際に発生するスパイク電圧についても、上記実施の形態1、2で説明したようにスイッチング素子の駆動信号を遅延回路を設けて調整することによって同様に抑制することができる。この場合、インバータ駆動信号および直流電源の切替スイッチの駆動信号の双方を調整する。
【0029】
実施の形態4.
以下、この発明の実施の形態4を図14に基づいて説明する。この実施の形態では、出力電圧に発生するスパイク電圧を抑制するために、1つの単相インバータの発生電圧オンオフタイミングを検出し、このオンオフタイミングに同期するように他の単相インバータの駆動信号を発生する。
図14では、3レベルインバータ26と2つの直流電源を備えたマルチレベルインバータ27とが直列接続されて単相多重変換器を構成した例について示す。
3レベルインバータ26の出力可能電圧をマルチレベルインバータ27の出力可能電圧よりも高いものとすると、通常、出力電圧が高い方がスイッチング速度の遅い半導体スイッチング素子を用いる。図14に示すように、スイッチング速度の遅い側の3レベルインバータ26の出力電圧を検出して出力電圧レベルの切替タイミングを電圧変化検出器70で検出する。一方、AND回路(論理積)72にはフリップフロップ71を介してマルチレベルインバータ27への出力指令(インバータ駆動信号)が入力されており、電圧変化検出器70からの検出信号が入力されると、この信号に同期してマルチレベルインバータ27へ出力指令を出力する。
【0030】
このように、3レベルインバータ26の出力電圧切替タイミング(オンオフタイミング)を検出し、このタイミングでマルチレベルインバータ27に対し発生電圧オンオフ切替のための駆動信号を出力する。マルチレベルインバータ27の方がスイッチング速度が速いため、2つのインバータ26、27の発生電圧オンオフタイミングをほぼ同期させることができる。
このため、マルチレベルインバータ27の発生電圧オンオフタイミングは、リアルタイムで3レベルインバータ26の発生電圧オンオフタイミングに同期するように制御できる。2つのインバータ26、27の発生電圧オンオフタイミングがずれないように制御されるため、単相多重変換器は、スパイク電圧の発生が抑制された信頼性の高い階調制御電圧を出力できる。
【0031】
実施の形態5.
上記実施の形態1〜4では、単相多重変換器の出力電圧に発生するスパイク電圧は、各インバータの発生電圧オンオフタイミングを調整することで抑制したが、図15(a)に示すように、単相多重変換器と負荷との間にダンピング抵抗(減衰抵抗)64を直列に接続することによっても負過電圧におけるスパイク電圧を抑制することができる。61は浮遊のインダクタンス、62は浮遊のキャパシタンス、63はケーブル60の抵抗を示したもので、これらによるケーブル60の集中定数と上記減衰抵抗64とで、単相多重変換器の出力に発生したスパイク電圧が減衰されて負過電圧におけるスパイク電圧を抑制することができる。
なお、上記減衰抵抗64の代わりに、図15(b)に示すような、サージ電圧を除去するフェライトなどの過飽和リアクトル65を配して、スパイク電圧を抑制してもよい。
【0032】
実施の形態6.
次に、この発明の実施の形態6について、図16、図17に基づいて説明する。上記実施の形態1では、3つの単相インバータ(Vaインバータ、Vbインバータ、Vcインバータ)の発生電圧の組み合わせにより、出力電圧の階調制御を行ったが、例えば、Va、Vb、Vcが1:2:4の関係で、出力階調が第3階調から第4階調に変化する際に、上述したように大きなスパイク電圧55cが発生することがあった(図16(a)、図17(a))。
この実施の形態では、図16(b)に示すように、各相に出力レベルが3である単相インバータを追加し、その発生電圧をVxとすると、Va:Vb:Vx:Vcが1:2:3:4となる4つの発生電圧で単相多重変換器の出力電圧を制御する。これにより、図17(b)に示すように、出力階調が第3階調から第4階調に変化する際にはスパイク電圧は発生せず、出力階調が第4階調から第5階調に変化する際には、スパイク電圧55dは発生しても最大1レベルである。このように、スイッチング素子の駆動信号を調整せずに、スパイク電圧の低減できる構造が得られる。
【0033】
なお、上記実施の形態3で説明したような、複数の直流電源を備えてインバータの発生電圧を階調制御するマルチレベルインバータを用いれば、単相インバータの数を増やすことなく、異なる電圧が発生できる直流電源が増加できてスパイク電圧の低減できる構造が得られる。
【0034】
【発明の効果】
この発明に係る請求項1記載の電力変換装置は、複数の半導体スイッチング素子を備えて直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する。上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものである。そして、上記半導体スイッチング素子の駆動信号発生部に遅延回路を設け、上記各単相インバータ毎に上記半導体スイッチング素子の駆動信号のオンオフタイミングを上記遅延回路により調整することにより該各単相インバータの発生電圧オンオフタイミングを調整し、上記単相多重変換器の出力電圧階調が変化する際に発生するスパイク電圧を抑制する。このため、低コスト化、小型化、簡略化が促進した電力変換器が得られると共に、スパイク電圧の抑制により浮遊容量や負荷の中性点に流れる電流が抑制されて漏洩ノイズが低減でき、信頼性の高い階調制御が行える。
【0035】
またこの発明に係る請求項6記載の電力変換装置は、直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する。上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものである。そして、上記単相多重変換器と負荷との間に、減衰抵抗あるいは過飽和リアクトルを直列に接続して、上記単相多重変換器の出力電圧階調が変化する際に発生する負荷電圧におけるスパイク電圧を抑制する。このため、低コスト化、小型化、簡略化が促進した電力変換器が得られると共に、スパイク電圧の抑制により浮遊容量や負荷の中性点に流れる電流が抑制されて漏洩ノイズが低減でき、信頼性の高い階調制御が行える。
【0036】
またこの発明に係る請求項7記載の電力変換装置は、複数の半導体スイッチング素子を備えて直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する。上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものである。そして、上記単相多重変換器内の第1の単相インバータの出力電圧を監視してその発生電圧オンオフタイミングを検出する手段と、該発生電圧オンオフタイミングを検出したタイミングで、上記単相多重変換器内の第2の単相インバータに対し該単相インバータの発生電圧オンオフ切替のための駆動信号を出力する手段とを備えて、上記第1、第2の単相インバータの発生電圧オンオフタイミングを同期させる。このため、低コスト化、小型化、簡略化が促進した電力変換器が得られると共に、第1、第2の単相インバータの発生電圧オンオフタイミングがリアルタイムで同期するように制御されて、単相多重変換器の出力電圧にスパイク電圧が発生するのが抑制でき、浮遊容量や負荷の中性点に流れる電流が抑制されて漏洩ノイズが低減でき、信頼性の高い階調制御が行える。
【0037】
またこの発明に係る請求項11記載の電力変換装置は、請求項1〜10のいずれかに記載の上記単相多重変換器を多相結線し、該各単相多重変換器により各相の出力電圧を階調制御して多相負荷に電力供給するため、多相多重変換器において、低コスト化、小型化、簡略化が促進した構造が得られると共に、単相多重変換器の出力電圧のスパイク電圧が抑制でき、浮遊容量や負荷の中性点に流れる電流が抑制されて漏洩ノイズが低減でき、信頼性の高い階調制御が行える。
【0038】
またこの発明に係る請求項12記載の電力変換装置は、請求項1〜10のいずれかに記載の単相多重変換器をスター結線して多相負荷に電力供給する。そして、上記スター結線接続点側の各相分の単相インバータに替わって、コンデンサを共用とする多相3レベルインバータを設けたため、安価な装置構成で低コスト化、小型化、簡略化が促進した構造が得られると共に、単相多重変換器の出力電圧のスパイク電圧が抑制でき、浮遊容量や負荷の中性点に流れる電流が抑制されて漏洩ノイズが低減でき、信頼性の高い階調制御が行える。
【図面の簡単な説明】
【図1】この発明の実施の形態1による電力変換器の構成図である。
【図2】この発明の実施の形態1による単相インバータの構成図である。
【図3】この発明の実施の形態1による各単相インバータの出力論理と出力階調レベルとの関係を示す論理表である。
【図4】この発明の実施の形態1による各単相インバータと単相多重変換器とによる出力波形である。
【図5】この発明の実施の形態1による電力変換器における制御回路の構成図である。
【図6】この発明の実施の形態1によるスイッチング素子のオンオフタイミングずれを説明する図である。
【図7】この発明の実施の形態1による遅延時間の調整を説明する図である。
【図8】この発明の実施の形態2による電力変換器の構成図である。
【図9】この発明の実施の形態2による電力変換器における制御回路の構成図である。
【図10】この発明の実施の形態2によるフィードバック制御を説明する図である。
【図11】この発明の実施の形態2による遅延時間の演算を説明するフローチャートである。
【図12】この発明の実施の形態2によるスイッチング速度の違う素子のオンオフタイミングずれを説明する図である。
【図13】この発明の実施の形態3による電力変換器の構成図である。
【図14】この発明の実施の形態4による電力変換器の部分構成図である。
【図15】この発明の実施の形態5による電力変換器の部分構成図である。
【図16】この発明の実施の形態6による電力変換器の階調制御を説明する図である。
【図17】この発明の実施の形態6による電力変換器の階調制御を説明する図である。
【符号の説明】
1,7,13 Vaインバータ(単相インバータ)、
2,8,14 Vbインバータ(単相インバータ)、
3,9,15 Vcインバータ(単相インバータ)、
4,10,16 直流電源Va、5,11,17 直流電源Vb、
6,12,18 直流電源Vc、19〜21 負荷、22,23 中性点、
25 3相インバータ装置、26 3レベルインバータ、
27〜29 マルチレベルインバータ、30〜33 半導体スイッチング素子、
41〜43 各相電圧計測器、50a インバータ駆動信号発生回路、
51 遅延回路、53 遅延時間設定部、54 遅延時間制御部、
55,55a〜55d スパイク電圧、64 ダンピング抵抗(減衰抵抗)、
65 過飽和リアクトル、70 電圧変化検出器、71 フリップフロップ、
72 論理積、ta,tb,tc 各単相インバータのオンオフタイミング。

Claims (12)

  1. 複数の半導体スイッチング素子を備えて直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する電力変換装置において、上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものであり、上記半導体スイッチング素子の駆動信号発生部に遅延回路を設け、上記各単相インバータ毎に上記半導体スイッチング素子の駆動信号のオンオフタイミングを上記遅延回路により調整することにより該各単相インバータの発生電圧オンオフタイミングを調整し、上記単相多重変換器の出力電圧階調が変化する際に発生するスパイク電圧を抑制することを特徴とする電力変換装置。
  2. 上記単相多重変換器内の複数の上記単相インバータの内、発生電圧を出力オンからオフに切り替える単相インバータと、発生電圧の出力オフからオンに切り替える単相インバータとを含んだ3個以上の単相インバータの発生電圧の切り替えにより上記単相多重変換器の出力電圧階調を変化させる際に、発生するスパイク電圧の平均値が0に近付くように、上記各単相インバータの発生電圧オンオフタイミングを調整してスパイク電圧を互いに逆方向の電圧で分担させて出力させることを特徴とする請求項1記載の電力変換装置。
  3. 上記単相多重変換器の出力電圧を監視して上記スパイク電圧を検出する手段と、上記遅延回路にて用いる遅延時間を制御する遅延時間制御部とを備え、該遅延時間により、上記検出されたスパイク電圧の大きさおよび発生継続時間をフィードバック制御し、該フィードバック制御量が小さくなるように上記遅延時間を制御することを特徴とする請求項1または2記載の電力変換装置。
  4. 上記遅延時間制御部は、上記検出されたスパイク電圧から、上記各単相インバータの発生電圧オンオフタイミングにおける相互関係を推定して、上記遅延時間を決定することを特徴とする請求項3記載の電力変換装置。
  5. 上記単相多重変換器内の各単相インバータの出力電流を監視して該各単相インバータの発生電圧オンオフタイミングを検出する手段と、上記遅延回路にて用いる遅延時間を制御する遅延時間制御部とを備え、該遅延時間により、上記検出された各単相インバータの発生電圧オンオフタイミングにおける相互のずれをフィードバック制御し、該フィードバック制御量が小さくなるように上記遅延時間を制御することを特徴とする請求項1または2に記載の電力変換装置。
  6. 直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する電力変換装置において、上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものであり、上記単相多重変換器と負荷との間に、減衰抵抗あるいは過飽和リアクトルを直列に接続して、上記単相多重変換器の出力電圧階調が変化する際に発生する負荷電圧におけるスパイク電圧を抑制することを特徴とする電力変換装置。
  7. 複数の半導体スイッチング素子を備えて直流電源からの直流電力を交流電力に変換する単相インバータの交流側を複数直列接続して単相多重変換器を構成して負荷に電力供給する電力変換装置において、上記単相多重変換器は、上記複数の単相インバータの中から選択された所定の組み合わせによる各発生電圧の総和により出力電圧を階調制御するものであり、上記単相多重変換器内の第1の単相インバータの出力電圧を監視してその発生電圧オンオフタイミングを検出する手段と、該発生電圧オンオフタイミングを検出したタイミングで、上記単相多重変換器内の第2の単相インバータに対し該単相インバータの発生電圧オンオフ切替のための駆動信号を出力する手段とを備えて、上記第1、第2の単相インバータの発生電圧オンオフタイミングを同期させることを特徴とする電力変換装置。
  8. 上記第1の単相インバータは、上記第2の単相インバータに比して、出力可能電圧の絶対値が大きく、上記半導体スイッチング素子のスイッチング速度が遅いことを特徴とする請求項7記載の電力変換装置。
  9. 上記単相多重変換器内の1つあるいは複数の単相インバータに、複数の直流電源と、該複数の直流電源の中から出力電圧を選択出力する切替スイッチとを備え、選択出力された上記直流電源の各出力電圧の総和により上記単相インバータからの交流出力電圧を階調制御することを特徴とする請求項1〜8のいずれかに記載の電力変換装置。
  10. 上記単相多重変換器内の上記複数の単相インバータの内、上記負荷と反対側の端に接続された単相インバータを3レベルインバータで構成することを特徴とする請求項1〜9のいずれかに記載の電力変換器。
  11. 請求項1〜10のいずれかに記載の上記単相多重変換器を多相結線し、該各単相多重変換器により各相の出力電圧を階調制御して多相負荷に電力供給することを特徴とする電力変換装置。
  12. 請求項1〜10のいずれかに記載の単相多重変換器をスター結線して多相負荷に電力供給する電力変換装置において、上記スター結線接続点側の各相分の単相インバータに替わって、コンデンサを共用とする多相3レベルインバータを設けたことを特徴とする電力変換装置。
JP2002284972A 2002-09-30 2002-09-30 電力変換装置 Expired - Fee Related JP3967657B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284972A JP3967657B2 (ja) 2002-09-30 2002-09-30 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284972A JP3967657B2 (ja) 2002-09-30 2002-09-30 電力変換装置

Publications (2)

Publication Number Publication Date
JP2004120979A true JP2004120979A (ja) 2004-04-15
JP3967657B2 JP3967657B2 (ja) 2007-08-29

Family

ID=32278390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284972A Expired - Fee Related JP3967657B2 (ja) 2002-09-30 2002-09-30 電力変換装置

Country Status (1)

Country Link
JP (1) JP3967657B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081361A (ja) * 2004-09-13 2006-03-23 Mitsubishi Electric Corp 電力変換装置
JP2006109688A (ja) * 2004-09-10 2006-04-20 Meidensha Corp 多相直列多重電力変換装置のpwm制御方法
JP2006320103A (ja) * 2005-05-12 2006-11-24 Fuji Electric Systems Co Ltd 直列多重電力変換装置の制御装置
KR100662750B1 (ko) * 2005-06-30 2007-01-02 엘에스산전 주식회사 매트릭스 컨버터를 구비한 전동기 구동 회로의순간전압보상 장치
JP2009017782A (ja) * 2008-10-02 2009-01-22 Mitsubishi Electric Corp 電力変換装置
JP2010035252A (ja) * 2008-07-25 2010-02-12 Mitsubishi Electric Corp 電力変換装置
JP2012010532A (ja) * 2010-06-28 2012-01-12 Mitsubishi Electric Corp 電力変換装置
WO2012035807A1 (ja) * 2010-09-13 2012-03-22 オムロン株式会社 パワーコンディショナ
JP2013198182A (ja) * 2012-03-16 2013-09-30 Meidensha Corp 多重インバータ
US8902620B2 (en) 2010-09-13 2014-12-02 Omron Corporation Power conditioner
JP2015023777A (ja) * 2013-07-24 2015-02-02 株式会社明電舎 高圧インバータの2段変化防止装置
JP2015204723A (ja) * 2014-04-16 2015-11-16 株式会社日立製作所 半導体装置及びそれを用いた電力変換装置
JP2016118183A (ja) * 2014-12-23 2016-06-30 株式会社豊田自動織機 電動圧縮機
JP6682049B1 (ja) * 2019-06-25 2020-04-15 三菱電機株式会社 電力変換装置
WO2022064673A1 (ja) * 2020-09-28 2022-03-31 三菱電機株式会社 電力変換装置
JP7466476B2 (ja) 2021-02-04 2024-04-12 三菱電機株式会社 電力変換装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109688A (ja) * 2004-09-10 2006-04-20 Meidensha Corp 多相直列多重電力変換装置のpwm制御方法
JP4665602B2 (ja) * 2004-09-10 2011-04-06 株式会社明電舎 多相直列多重電力変換装置のpwm制御方法
JP2006081361A (ja) * 2004-09-13 2006-03-23 Mitsubishi Electric Corp 電力変換装置
JP4494911B2 (ja) * 2004-09-13 2010-06-30 三菱電機株式会社 電力変換装置
JP2006320103A (ja) * 2005-05-12 2006-11-24 Fuji Electric Systems Co Ltd 直列多重電力変換装置の制御装置
KR100662750B1 (ko) * 2005-06-30 2007-01-02 엘에스산전 주식회사 매트릭스 컨버터를 구비한 전동기 구동 회로의순간전압보상 장치
JP2010035252A (ja) * 2008-07-25 2010-02-12 Mitsubishi Electric Corp 電力変換装置
JP2009017782A (ja) * 2008-10-02 2009-01-22 Mitsubishi Electric Corp 電力変換装置
JP2012010532A (ja) * 2010-06-28 2012-01-12 Mitsubishi Electric Corp 電力変換装置
JP2012060856A (ja) * 2010-09-13 2012-03-22 Omron Corp パワーコンディショナ
WO2012035807A1 (ja) * 2010-09-13 2012-03-22 オムロン株式会社 パワーコンディショナ
CN103004078A (zh) * 2010-09-13 2013-03-27 欧姆龙株式会社 功率调节器
US8570781B2 (en) 2010-09-13 2013-10-29 Omron Corporation Power conditioner
US8902620B2 (en) 2010-09-13 2014-12-02 Omron Corporation Power conditioner
JP2013198182A (ja) * 2012-03-16 2013-09-30 Meidensha Corp 多重インバータ
JP2015023777A (ja) * 2013-07-24 2015-02-02 株式会社明電舎 高圧インバータの2段変化防止装置
JP2015204723A (ja) * 2014-04-16 2015-11-16 株式会社日立製作所 半導体装置及びそれを用いた電力変換装置
JP2016118183A (ja) * 2014-12-23 2016-06-30 株式会社豊田自動織機 電動圧縮機
JP6682049B1 (ja) * 2019-06-25 2020-04-15 三菱電機株式会社 電力変換装置
WO2022064673A1 (ja) * 2020-09-28 2022-03-31 三菱電機株式会社 電力変換装置
JPWO2022064673A1 (ja) * 2020-09-28 2022-03-31
JP7275404B2 (ja) 2020-09-28 2023-05-17 三菱電機株式会社 電力変換装置
JP7466476B2 (ja) 2021-02-04 2024-04-12 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP3967657B2 (ja) 2007-08-29

Similar Documents

Publication Publication Date Title
CA2249856C (en) Five level high power motor drive converter and control system
JP3967657B2 (ja) 電力変換装置
US20100045108A1 (en) Power conversion architecture with zero common mode voltage
WO2011120970A1 (en) Multilevel inverter
US20140176100A1 (en) Matrix converter and method for controlling matrix converter
JP2004007941A (ja) 電力変換装置
JP6178433B2 (ja) 電力変換装置
TW200924366A (en) Matrix converter
JP2007312451A (ja) マルチレベルコンバータ及びその制御方法
JP3856689B2 (ja) 中性点クランプ式電力変換器の制御装置
WO2019180763A1 (ja) 電力変換装置および回転機駆動システム
JP4147373B2 (ja) インバータの制御方法
JP3838093B2 (ja) 系統連系電力変換装置
JP4893152B2 (ja) 交流−交流直接変換装置の空間ベクトル変調方法
JP3903429B2 (ja) 電力変換装置
JP4893150B2 (ja) 交流−交流直接変換装置の空間ベクトル変調方法
JP2008048530A (ja) 交流−交流直接変換装置の空間ベクトル変調方法
JP5494618B2 (ja) 電力変換装置
JP2006081362A (ja) 電力変換装置
US5151853A (en) Cycloconverter and the method of controlling the same
JP2008048537A (ja) 交流−交流電力変換装置
JP4178331B2 (ja) 直列多重パルス幅変調サイクロコンバータ装置およびその制御方法
JP3297184B2 (ja) 電力変換装置
JP5849632B2 (ja) 電力変換装置
JP2002199737A (ja) 電力変換装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees