JP2004119883A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2004119883A
JP2004119883A JP2002284329A JP2002284329A JP2004119883A JP 2004119883 A JP2004119883 A JP 2004119883A JP 2002284329 A JP2002284329 A JP 2002284329A JP 2002284329 A JP2002284329 A JP 2002284329A JP 2004119883 A JP2004119883 A JP 2004119883A
Authority
JP
Japan
Prior art keywords
power supply
circuit block
circuit
semiconductor device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002284329A
Other languages
English (en)
Other versions
JP2004119883A5 (ja
Inventor
Hirotomo Ishii
石井 啓友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002284329A priority Critical patent/JP2004119883A/ja
Priority to US10/670,342 priority patent/US20040120087A1/en
Publication of JP2004119883A publication Critical patent/JP2004119883A/ja
Publication of JP2004119883A5 publication Critical patent/JP2004119883A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】本発明は、互いに異なる電源系統に属する回路ブロックの間で信号を伝搬する半導体集積回路において、ESD耐量を向上できるようにすることを最も主要な特徴とする。
【解決手段】たとえば、第1の電源系統11に属する第1の回路14は、NMOSトランジスタMN1とPMOSトランジスタMP1とで構成されたインバータINV1を含んでいる。第2の電源系統21に属する第2の回路24は、NMOSトランジスタMN2TとPMOSトランジスタMP2Tとで構成されたインバータINV2Tを含んでいる。インバータINV1の出力端子OTから出力される信号を、信号線41を介して、インバータINV2Tの入力端子ITより入力する場合、上記NMOS,PMOSトランジスタMN2T,MP2Tを、それぞれ、他の素子よりもゲート耐圧の高い素子によって構成する。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
この発明は、複数の電源系統を有する半導体装置に関するもので、特に、互いに異なる電源系統に属する回路ブロックの間で信号を伝搬する半導体集積回路において、静電気放電(ESDとも言う)耐量の向上に使用されるものである。
【0002】
【従来の技術】
従来、半導体集積回路では、同一のチップ上に搭載された回路ブロック間での干渉、雑音による誤動作、性能の劣化などを防ぐ必要がある。そのために、同一の電源電圧であっても、機能の異なる回路ブロックに対しては、互いに独立された電源端子を設けることがある(たとえば、特許文献1参照)。
【0003】
【特許文献1】
特公平6−5705号公報
半導体集積回路の分野では、微細加工技術の進歩に伴い、同一チップ上に集積される素子数が増加する。すると、搭載される回路ブロックの数も増大し、ますます電源系統の分離の要求が高まることが想定される。
【0004】
分離された複数の電源系統を有する半導体集積回路においては、通常、異なる電源系統の間にESD保護回路網が形成される。これにより、集積回路にサージ電圧が印加された場合の、回路ブロック内での静電破壊が抑えられる。
【0005】
図5は、従来の半導体集積回路において、同一のチップ上に複数の電源系統が設けられてなる場合を例に示すものである。
【0006】
図5において、第1の電源系統101は、電源端子(VDD)102と、グランド端子(VSS)103と、第1の回路104とを備えている。第2の電源系統201は、電源端子202と、グランド端子203と、第2の回路204とを備えている。第3の電源系統301は、電源端子302と、グランド端子303と、第3の回路304とを備えている。
【0007】
また、上記各回路104,204,304の相互は、互いに信号を入力あるいは出力するための、単数または複数からなる信号線401,402,403により接続されている。
【0008】
上記各電源端子102,202,302および上記各グランド端子103,203,303は、それぞれ独立して設けられている。そして、上記各電源端子102,202,302は、電源配線501,503,505をそれぞれ介して、ESD保護回路網601の各端子602,604,606に接続されている。上記各グランド端子103,203,303は、電源配線502,504,506をそれぞれ介して、ESD保護回路網601の各端子603,605,607に接続されている。
【0009】
なお、図中に示すR1〜R6は、それぞれ、上記電源配線501〜506の寄生抵抗である。
【0010】
ESD保護回路網601は、各端子102,103,202,203,302,303のうち、任意の二端子間にサージ電圧が印加された場合でも、内部の保護素子(図示していない)によって、各回路104,204,304に静電破壊が生じるような過大な電圧が印加されるのを防ぐようにしたものである。
【0011】
ここで、この従来例においては、全ての端子102,103,202,203,302,303を互いに独立した端子としている。しかし、電源端子102,202,302のうちの任意の端子同士、あるいは、グランド端子103,203,303のうちの任意の端子同士を相互に接続し、共通の端子とすることも可能である。また、図5に示した集積回路は、電源系統が三系統の場合の一例を示したものであり、この例と異なるものであっても構わない。
【0012】
図6は、図5に示したESD保護回路網601において、任意の二端子間についての電圧と電流との関係を示したものである。ここでは、等価寄生抵抗が大きい場合(点線611)と小さい場合(実線612)とについて、それぞれ特性例を示している。
【0013】
等価寄生抵抗とは、保護素子に流れる電流がI1よりも大きい領域における電圧特性を特徴づけるためのパラメータである。この領域における、保護素子の両端の電圧Vclamp と保護素子を流れる電流Iclamp との関係は、等価寄生抵抗Resd および保持電圧VHを用いて、下記式(1)のように表現できる。
【0014】
Vclamp =Iclamp ×Resd +VH … (1)
一般に、保持電圧VHは保護素子の三次元的構造に依存する。一方、等価寄生抵抗Resd は、保護素子の平面的な寸法に依存し、一般に寸法が大きいほど低減される性質がある。ある特定の製造プロセスを前提とした場合、三次元的構造を変更することは難しいが、平面的な寸法を任意に設定することは容易である。そのため、等価寄生抵抗Resd が所望の値になるように保護素子を設計することは容易に可能である。
【0015】
以下、図5に示した集積回路に対し、サージ電圧が印加された場合について考察する。ここでは、その一例として、電源端子102とグランド端子203との間にサージ電圧が印加された場合について考察する。その他の端子の組み合わせに対する考察は省略するが、同様の考察が可能である。
【0016】
図7は、図5に示した集積回路において、電源端子102とグランド端子203との間にサージ電圧が印加された場合の電流経路を示すものである。
【0017】
図に示すように、サージ電圧の印加に伴って、サージ電流は経路701の通り流れる。すなわち、サージ電流は、電源端子102から電源配線501の寄生抵抗R1を経て、ESD保護回路網601の端子602へ至る。そして、ESD保護回路網601の内部の保護素子を経た後、端子605から電源配線504の寄生抵抗R4を介して、グランド端子203へと流れる。
【0018】
ここで、サージ電流をIesd 、ESD保護回路網601の端子602,605間の特性を図6に実線612で示した特性、その等価寄生抵抗をResd とすると、電源端子102とグランド端子203との間の電圧Vesd は、下記式(2)によって表わされる。
【0019】
Vesd =Iesd ×(R1+R4+Resd )+VH … (2)
以下では、集積回路に、上記式(2)によって表される電圧Vesd が印加された場合の挙動について考察する。
【0020】
図8は、図5に示した集積回路の、第1の電源系統101と第2の電源系統201とに関係する部分だけを抜粋して示すものである。なお、ここでは、第1の回路104の、MOSトランジスタMP1,MN1よりなるインバータから出力された信号が、第2の回路204の、MOSトランジスタMP2,MN2よりなるインバータに入力される場合を例に示している。
【0021】
この例の場合、第1の回路104には、たとえば、NMOSトランジスタMN1とPMOSトランジスタMP1とで構成されたインバータINV1が含まれている。この第1の回路104では、信号線401に対し、上記インバータINV1からの信号を出力するようになっている。また、第2の回路204には、たとえば、NMOSトランジスタMN2とPMOSトランジスタMP2とで構成された第1のインバータINV2と、NMOSトランジスタMN3とPMOSトランジスタMP3とで構成された第2のインバータINV3とが含まれている。この第2の回路204では、第1の回路104より出力され、信号線401を伝搬されてくる信号が、上記インバータINV2に入力されるようになっている。
【0022】
図8に示した集積回路に、上記式(2)で表わされる電圧Vesd が印加された場合、信号線401の電位は、概ね、電源端子102とグランド端子203との間の電位になると考えられる。このため、その最大電位は、電源端子102とほぼ等しい電位となる。その電位は、そのまま第2の回路204のNMOSトランジスタMN2のゲートに印加される。
【0023】
一方、NMOSトランジスタMN2のソースは、グランド端子203に接続されている。このため、ソースの電位はグランド端子203の電位と等しい。したがって、NMOSトランジスタMN2のゲート・ソース間の電圧は、最大で、電源端子102とグランド端子203との間の電位に等しい電圧、つまり電圧Vesd となる。この電圧Vesd がNMOSトランジスタMN2のゲート耐圧を超えた場合、ゲート酸化膜が静電破壊するという問題が生じる。
【0024】
図9は、図8と同様に、図5に示した集積回路の、第1の電源系統101と第2の電源系統201とに関係する部分だけを抜粋して示すもので、図8とは別の例を示すものである。ここでは、第1の回路104の、MOSトランジスタMP11,MN11よりなる出力回路から出力された信号が、第2の回路204の、MOSトランジスタMP14,MN14よりなる入力回路に入力される場合を例に示している。
【0025】
この例の場合、第1の回路104には、たとえば、NMOSトランジスタMN11とPMOSトランジスタMP11とで構成された出力回路OC1と、上記NMOSトランジスタMN11の前段の回路OC2を構成するNMOSトランジスタMN12とPMOSトランジスタMP12、および、上記PMOSトランジスタMP11の前段の回路OC3を構成するNMOSトランジスタMN13とPMOSトランジスタMP13が含まれている。この第1の回路104では、信号線401に対し、上記NMOSトランジスタMN11および上記PMOSトランジスタMP11の共通ドレインからの信号を出力するようになっている。
【0026】
なお、図中に示すR11,R12は、それぞれ、電源端子102およびグランド端子103につながる電源配線の寄生抵抗である。
【0027】
第2の回路204には、たとえば、NMOSトランジスタMN14とPMOSトランジスタMP14とで構成されたアナログスイッチ(入力回路)AS1が含まれている。この第2の回路204では、第1の回路104より出力され、信号線401を伝搬されてくる信号が、上記NMOSトランジスタMN14および上記PMOSトランジスタMP14のドレイン同士の接続点に入力されるようになっている。
【0028】
図9に示した集積回路では、第1の電源系統101と第2の電源系統201との間にまたがる信号が、MOSトランジスタMN14,MP14の共通ドレインに供給されるようになっている。そのため、上記式2により表わされる電圧Vesd が印加された場合には、図8の集積回路とは異なった問題が生じる。
【0029】
すなわち、電圧Vesd が印加された場合、図7に示した電流経路701に沿ってサージ電流が流れることは、図8の集積回路の場合と同じである。その他に、第1,第2の回路104,204の内部のPN接合部を介して、サージ電流が流れることが想定される。
【0030】
サージ電流は、たとえば図10に示す電流経路702のように、電源端子102から電源配線の寄生抵抗R11、PMOSトランジスタMP11のソース−Nウェル−ドレインで構成される寄生バイポーラ(PNP)トランジスタ、PMOSトランジスタMP14のドレイン−Nウェルで構成される寄生ダイオード、電源配線503の寄生抵抗R3を経て、ESD保護回路網601の端子604へ至る。そして、ESD保護回路網601の内部の保護素子を経た後、端子605から電源配線504の寄生抵抗R4を介して、グランド端子203へと流れる。
【0031】
このときの電流値は、上記式2により表わされる電圧Vesd 、寄生ダイオードや寄生バイポーラトランジスタの特性によって決定される。
【0032】
一方、これらの寄生ダイオードや寄生バイポーラトランジスタには、素子の寸法などによって決まる許容電流値がある。この許容電流値を超えたサージ電流に対しては、PN接合部が破壊され、MOSトランジスタとしても正常に機能しなくなるという問題が生じる。
【0033】
さらに、図9に示した集積回路の場合、電流経路702と寄生抵抗R11とに起因する別の問題も想定される。たとえば、電流経路702に沿ってサージ電流が流れた場合、寄生抵抗R11の両端に電圧降下が生じる。PMOSトランジスタMP13のドレインの電位は、定常的には、電源端子102とグランド端子103との間であると考えられる。寄生容量のために、概ね、電源端子102の過渡的な変化に追従するものと考えられる。すなわち、寄生抵抗R11の両端に生じた電圧降下によって、相対的に、PMOSトランジスタMP11のソースの電位よりも電源端子102の電位が上昇し、結果的に、PMOSトランジスタMP13のドレインの電位も上昇する。PMOSトランジスタMP13のドレインは、PMOSトランジスタMP11のゲートに接続されている。そのため、PMOSトランジスタMP11のソースの電位に対して、PMOSトランジスタMP11のゲートの電位が上昇することになる。このように、寄生抵抗R11の両端に生じる電圧が、概ね、PMOSトランジスタMP11のゲート耐圧よりも大きい場合には、PMOSトランジスタMP11のゲート酸化膜が静電破壊されるという問題が生じる。
【0034】
【発明が解決しようとする課題】
上述したように、ESDによるサージ電圧の印加に対して、ESD保護回路網を用いて内部の回路を保護しようとしても、ESD保護回路網へ至る電源配線の寄生抵抗やESD保護回路網の等価寄生抵抗が大きい場合、内部の回路を保護しきれない場合が想定される。その対策としては、電源配線の拡張や保護素子の大型化による寄生抵抗の低減が有効であることは明らかである。しかしながら、これらの対策は、結果的にチップ面積の拡大を招き、チップコストの増大につながる。
【0035】
また、同一チップ内の電源系統の数が増えた場合、あるいは、雑音に敏感な回路を雑音源から離して配置する場合など、場合によっては、チップ上での物理的距離が離れた場所に電源系統の独立した回路を配置することがある。このような場合には、ESD保護回路網に至る電源配線長が長くなりやすい。しかしながら、ESDに対する保護の観点から、配線の寄生抵抗値を一定値以下に抑えるためには、電源配線長が短い場合に比べて、配線幅を太く拡張する必要がある。その結果、電源配線の拡張に伴ってチップ面積が著しく拡大するなど、ESD保護対策が非常に困難になるという問題がある。
【0036】
そこで、この発明は、従来と同等のチップ面積であってもよりESD耐量を向上させることが可能な半導体装置、もしくは、従来と同等のESD耐量をより小さなチップ面積でも実現することが可能な半導体装置を提供することを目的としている。
【0037】
【課題を解決するための手段】
上記の目的を達成するために、この発明の半導体装置にあっては、第1の電源系統を有し、この第1の電源系統からの第1の電源電圧を供給するための第1の電源端子および第1のグランド端子のうち、少なくとも一方が独立して設けられた第1の回路ブロックと、前記第1の電源系統とは異なる第2の電源系統を有し、この第2の電源系統からの第2の電源電圧を供給するための第2の電源端子および第2のグランド端子のうち、少なくとも一方が独立して設けられた第2の回路ブロックと、前記第1の回路ブロックの出力端子および前記第2の回路ブロックの入力端子間に設けられた、信号を伝搬するための伝搬回路とを具備し、少なくとも、前記第2の回路ブロックは同等の入力耐圧を有する複数の素子により構成し得る回路であり、前記第1の回路ブロックは、前記第2の回路ブロックと同等か、もしくは、それよりも小さい入力耐圧を有する複数の素子により構成し得る回路であって、前記伝搬回路を介して、前記信号が入力される前記第2の回路ブロックの前記入力端子につながる信号入力用の素子は、その入力耐圧が、前記第2の回路ブロックを構成する他の素子の入力耐圧よりも大きいことを特徴とする。
【0038】
また、この発明の半導体装置にあっては、第1の電源系統を有し、この第1の電源系統からの第1の電源電圧を供給するための第1の電源端子および第1のグランド端子のうち、少なくとも一方が独立して設けられた第1の回路ブロックと、前記第1の電源系統とは異なる第2の電源系統を有し、この第2の電源系統からの第2の電源電圧を供給するための第2の電源端子および第2のグランド端子のうち、少なくとも一方が独立して設けられた第2の回路ブロックと、前記第1の回路ブロックの出力端子および前記第2の回路ブロックの入力端子間に設けられた、信号を伝搬するための伝搬回路とを具備し、前記伝搬回路は、前記第1の回路ブロックの出力端子および前記第2の回路ブロックの入力端子間に接続される抵抗を有してなることを特徴とする。
【0039】
さらに、この発明の半導体装置にあっては、第1の電源系統を有し、この第1の電源系統からの第1の電源電圧を供給するための第1の電源端子および第1のグランド端子のうち、少なくとも一方が独立して設けられた第1の回路ブロックと、前記第1の電源系統とは異なる第2の電源系統を有し、この第2の電源系統からの第2の電源電圧を供給するための第2の電源端子および第2のグランド端子のうち、少なくとも一方が独立して設けられた第2の回路ブロックと、前記第1の回路ブロックの出力端子および前記第2の回路ブロックの入力端子間に設けられた、信号を伝搬するための伝搬回路とを具備し、前記第1の回路ブロックおよび前記第2の回路ブロックは共に同等の入力耐圧を有する複数の素子により構成し得る回路であって、前記第1の回路ブロックを構成する複数の素子のうち、高電圧が印加される少なくとも1つの素子は、その入力耐圧が、前記第1の回路ブロックを構成する他の素子の入力耐圧よりも大きいか、あるいは、前記第2の回路ブロックを構成する複数の素子のうち、高電圧が印加される少なくとも1つの素子は、その入力耐圧が、前記第2の回路ブロックを構成する他の素子の入力耐圧よりも大きいことを特徴とする。
【0040】
この発明の半導体装置によれば、ESDにより破壊されやすい回路ブロックに対するESD保護対策を、既成の製造プロセスにより容易に実施できるようなる。これにより、電源配線の拡張や保護素子の大型化によらず、ESD耐量の向上が可能となるものである。
【0041】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して説明する。
【0042】
(第1の実施形態)
図1は、本発明の第1の実施形態にかかる半導体集積回路の構成例を示すものである。なお、ここでは、第1の電源系統と第2の電源系統とを有して構成される場合を例に説明する。
【0043】
図1において、第1の電源系統11は、第1の電源端子である電源端子(VDD)12と、第1のグランド端子であるグランド端子(VSS)13と、第1の回路(第1の回路ブロック)14とを備えている。この第1の回路14は、上記第1の電源系統11から上記電源端子12および上記グランド端子13に供給される第1の電源電圧により動作する。
【0044】
第2の電源系統21は、第2の電源端子である電源端子22と、第2のグランド端子であるグランド端子23と、第2の回路(第2の回路ブロック)24とを備えている。この第2の回路24は、上記第2の電源系統21から上記電源端子22および上記グランド端子23に供給される第2の電源電圧により動作する。
【0045】
また、上記各回路14,24の相互は、互いに信号を入力あるいは出力するための、単数または複数からなる信号線(伝搬回路)41により接続されている。
【0046】
上記各電源端子12,22および上記各グランド端子13,23は、それぞれ独立して設けられている。そして、上記各電源端子12,22は、電源配線51,53をそれぞれ介して、ESD保護回路網61の各端子62,64に接続されている。上記各グランド端子13,23は、電源配線52,54をそれぞれ介して、ESD保護回路網61の各端子63,65に接続されている。
【0047】
なお、図中に示すR1〜R4は、それぞれ、上記電源配線51〜54の寄生抵抗である。
【0048】
ESD保護回路網61は、各端子12,13,22,23のうち、任意の二端子間にサージ電圧が印加された場合でも、内部の保護素子(図示していない)によって、各回路14,24に静電破壊が生じるような過大な電圧が印加されるのを防ぐものである。
【0049】
この例の場合、上記第1の回路14には、たとえば、NMOSトランジスタMN1とPMOSトランジスタMP1とで構成されたインバータ(出力回路)INV1が含まれている。この第1の回路14では、信号線41に対し、上記インバータINV1の出力端子OTからの信号を出力するようになっている。
【0050】
一方、第2の回路24には、たとえば、信号入力用の素子としてのNMOSトランジスタMN2TとPMOSトランジスタMP2Tとで構成された第1のインバータ(入力回路)INV2Tと、NMOSトランジスタMN3とPMOSトランジスタMP3とで構成された第2のインバータINV3とが含まれている。この第2の回路24では、第1の回路14より出力され、信号線41を伝搬されてくる信号が、上記インバータINV2Tの入力端子ITに入力されるようになっている。
【0051】
また、第2の回路24において、上記第1のインバータINV2Tを構成するNMOSトランジスタMN2TおよびPMOSトランジスタMP2Tは、それぞれ、他の素子よりもゲート耐圧の高い素子によって構成されている(MN2T,MP2T>MN1,MP1,MN3,MP3)。これにより、NMOSトランジスタMN2TおよびPMOSトランジスタMP2Tの各ゲートに対し、集積回路へのサージ電圧の印加による高電圧が加えられたとしても、ゲート酸化膜が静電破壊するのを防ぐことが可能となる。
【0052】
ここで、本実施形態においては、第1の回路14および第2の回路24を、同等のゲート耐圧(入力耐圧)を有する複数の素子により構成し得る場合を想定している。その場合、たとえば第1の電源系統11の第1の電源電圧および第2の電源系統21の第2の電源電圧は同じ場合が含まれる。また、第1の電源系統11および第2の電源系統21は、必ずしもまったく同一の電源電圧である必要はない。
【0053】
すなわち、図1に示した集積回路は、たとえば図8に示したNMOSトランジスタMN2およびPMOSトランジスタMP2が、よりゲート耐圧の高いNMOSトランジスタMN2TおよびPMOSトランジスタMP2Tによって置き換えられてなる構成とされている。このようなNMOSトランジスタMN2TおよびPMOSトランジスタMP2Tは、たとえば、そのゲート酸化膜の膜厚を他の素子よりも厚くすることで容易に実現可能である。
【0054】
同一チップ内において、回路ごとにゲート耐圧の異なる素子を用いることは、製造プロセスによっては実現が容易である。一般的に、チップ内の内部回路の電源電圧は、たとえば1.5V程度以下である。そのため、それに応じたゲート耐圧の素子が用いられる。これに対し、チップの外部とのインタフェースに用いられるI/O回路の電源電圧は、たとえば2.5V程度である。したがって、内部回路よりもゲート耐圧の高い素子が用いられる。
【0055】
このように、近年の製造プロセスによれば、同一チップ内で、内部回路よりもゲート耐圧の高い素子が標準的に用いられるような場合には、たとえ内部回路であっても、部分的にその他の内部回路よりもゲート耐圧の高い素子を形成することが可能であり、これにより製造コストの増大を招くこともない。
【0056】
本実施形態の場合のように、異なる電源系統の回路から出力された信号が入力される素子を、他の素子よりもゲート耐圧の高いMOS形トランジスタを用いて構成する。すると、従来に比べて、ゲートの静電破壊が生じにくくなる。その結果、従来と同一のESD保護対策を施した場合にも、何ら特別な製造プロセスを必要とすることなく、ESD耐量を高くすることが可能となる。
【0057】
すなわち、電源配線を太く拡張したり、保護素子を大型化したりすることなしに、従来と同一のESD保護回路網および従来と同一の寄生抵抗を有する電源配線によりESD保護対策を施す場合においても、チップ面積の拡大やチップコストの増大を招くことなく、ESD耐量を向上させることが可能となる。
【0058】
また、たとえば従来よりも電源配線を細くしたり、保護素子を小型化したりすることにより、電源配線の寄生抵抗や保護素子の等価寄生抵抗を増大させた場合でも、ゲートの静電破壊は生じにくくなる。すなわち、本実施形態によれば、より面積の小さなチップで従来と同等のESD耐量を得ることができ、チップコストの低減を可能にするという利点もある。
【0059】
なお、本実施形態にかかる集積回路は、たとえば図1に示した構成に限定されるものではない。すなわち、ある電源系統から出力された信号が、他の電源系統内におけるMOS形トランジスタのゲートに入力される構成のものであれば、まったく同様に適用することが可能である。
【0060】
(第2の実施形態)
図2は、本発明の第2の実施形態にかかる半導体集積回路の構成例を示すものである。なお、ここでは、ある電源系統の出力回路から出力された信号が、別の電源系統の入力回路を構成するMOS形トランジスタのドレインなどのPN接合部に入力される場合を例に説明する。
【0061】
図2において、第1の電源系統11は、第1の電源端子である電源端子(VDD)12と、第1のグランド端子であるグランド端子(VSS)13と、第1の回路(第1の回路ブロック)14とを備えている。この第1の回路14は、上記第1の電源系統11から上記電源端子12および上記グランド端子13に供給される第1の電源電圧により動作する。
【0062】
第2の電源系統21は、第2の電源端子である電源端子22と、第2のグランド端子であるグランド端子23と、第2の回路(第2の回路ブロック)24とを備えている。この第2の回路24は、上記第2の電源系統21から上記電源端子22および上記グランド端子23に供給される第2の電源電圧により動作する。
【0063】
また、上記各回路14,24の相互は、互いに信号を入力あるいは出力するための信号線(伝搬回路)41Lにより接続されている。
【0064】
上記各電源端子12,22および上記各グランド端子13,23は、それぞれ独立して設けられている。そして、上記各電源端子12,22は、電源配線51,53をそれぞれ介して、ESD保護回路網61の各端子62,64に接続されている。上記各グランド端子13,23は、電源配線52,54をそれぞれ介して、ESD保護回路網61の各端子63,65に接続されている。
【0065】
なお、図中に示すR1〜R4は、それぞれ、上記電源配線51〜54の寄生抵抗である。
【0066】
ESD保護回路網61は、各端子12,13,22,23のうち、任意の二端子間にサージ電圧が印加された場合でも、内部の保護素子(図示していない)によって、各回路14,24に静電破壊が生じるような過大な電圧が印加されるのを防ぐものである。
【0067】
この例の場合、第1の回路14には、たとえば、NMOSトランジスタMN11とPMOSトランジスタMP11とで構成された出力回路OC1と、上記NMOSトランジスタMN11の前段の回路OC2を構成するNMOSトランジスタMN12とPMOSトランジスタMP12、および、上記PMOSトランジスタMP11の前段の回路OC3を構成するNMOSトランジスタMN13とPMOSトランジスタMP13が含まれている。この第1の回路14では、信号線41Lに対し、上記NMOSトランジスタMN11および上記PMOSトランジスタMP11の共通ドレイン(出力端子OT)からの信号を出力するようになっている。
【0068】
なお、図中に示すR11,R12は、それぞれ、電源端子12およびグランド端子13につながる電源配線の寄生抵抗である。
【0069】
一方、第2の回路24には、たとえば、NMOSトランジスタMN14とPMOSトランジスタMP14とで構成されたアナログスイッチ(入力回路)AS1が含まれている。この第2の回路24では、上記NMOSトランジスタMN11および上記PMOSトランジスタMP11の共通ドレインより出力され、信号線41Lを伝搬されてくる信号が、上記NMOSトランジスタMN14および上記PMOSトランジスタMP14のドレイン同士の接続点(入力端子IT)に入力されるようになっている。
【0070】
上記信号線41Lは、上記NMOSトランジスタMN11および上記PMOSトランジスタMP11の共通ドレインと、上記NMOSトランジスタMN14および上記PMOSトランジスタMP14の共通ドレインとの間に、抵抗素子Rlimit が挿入されている。これにより、たとえ集積回路にサージ電圧が印加されたとしても、上記NMOSトランジスタMN14および上記PMOSトランジスタMP14の共通ドレインに供給されるサージ電流を低減することが可能となっている。
【0071】
なお、上記抵抗素子Rlimit は、抵抗特性を示すものであれば、いかなる素子であっても良く、何ら特別な製造プロセスを必要としない。また、このような信号線41Lは、たとえば、信号線の途中に抵抗特性を有する素子を形成することで、製造コストの増大を招くことなしに容易に実現可能である。
【0072】
ここで、本実施形態においては、第1の回路14および第2の回路24を、同等のゲート耐圧(入力耐圧)を有する複数の素子により構成し得る場合を想定している。その場合、たとえば第1の電源系統11の第1の電源電圧および第2の電源系統21の第2の電源電圧は同じ場合が含まれる。また、第1の電源系統11および第2の電源系統21は、必ずしもまったく同一の電源電圧である必要はない。
【0073】
すなわち、図2に示した集積回路は、たとえば図9に示した信号線401が、抵抗素子Rlimit を有する信号線41Lによって置き換えられてなる構成とされている。
【0074】
本実施形態の場合のように、出力回路を構成するMOS形トランジスタの共通ドレインと、入力回路を構成するMOS形トランジスタの共通ドレインとの間を、抵抗素子Rlimit が挿入された信号線41Lを用いて接続する。この場合も、集積回路へのサージ電圧の印加時には、図10に電流経路702で示したようなサージ電流が流れる。すると、そのサージ電流は、信号線41Lに挿入された抵抗素子Rlimit により低減される。そのため、従来よりもPN接合部の破壊が生じにくくなる。したがって、抵抗素子Rlimit を配置した分だけ、わずかにチップ面積が拡大するものの、製造コストをほとんど増大させることなく、ESD耐量を高くすることが可能である。
【0075】
すなわち、抵抗素子Rlimit が挿入された信号線41Lを用いることによって、ESD耐量を向上できるようになる結果、たとえば、PMOSトランジスタMP11のソース−Nウェル−ドレインで構成される寄生バイポーラトランジスタ(第1のPN接合を構成する第1の半導体領域)や、PMOSトランジスタMP14のドレイン−Nウェルで構成される寄生ダイオード(第2のPN接合を構成する第2の半導体領域)にサージ電流が流れたとしても、このサージ電流によって寄生PN接合部が破壊されるのを防ぐことが可能となる。
【0076】
このように、本実施形態によっても、上述した第1の実施形態の場合と同様に、チップ面積の拡大やチップコストの増大をほとんど招くことなく、ESD耐量を向上させることが可能であり、また、従来と同等のESD耐量をより低コストで実現できる。
【0077】
なお、本実施形態にかかる集積回路は、たとえば図2に示した構成に限定されるものではない。すなわち、ある電源系統から出力された信号が、他の電源系統内におけるMOS形トランジスタのドレインなどのPN接合部に入力される構成のものであれば、まったく同様に適用することが可能である。
【0078】
(第3の実施形態)
図3は、本発明の第3の実施形態にかかる半導体集積回路の構成例を示すものである。なお、ここでは、ある電源系統の出力回路から出力された信号が、別の電源系統の入力回路を構成するMOS形トランジスタのドレインなどのPN接合部に入力される場合を例に、他の構成について説明する。
【0079】
図3において、第1の電源系統11は、第1の電源端子である電源端子(VDD)12と、第1のグランド端子であるグランド端子(VSS)13と、第1の回路(第1の回路ブロック)14とを備えている。この第1の回路14は、上記第1の電源系統11から上記電源端子12および上記グランド端子13に供給される第1の電源電圧により動作する。
【0080】
第2の電源系統21は、第2の電源端子である電源端子22と、第2のグランド端子であるグランド端子23と、第2の回路(第2の回路ブロック)24とを備えている。この第2の回路24は、上記第2の電源系統21から上記電源端子22および上記グランド端子23に供給される第2の電源電圧により動作する。
【0081】
また、上記各回路14,24の相互は、互いに信号を入力あるいは出力するための信号線(伝搬回路)41により接続されている。
【0082】
上記各電源端子12,22および上記各グランド端子13,23は、それぞれ独立して設けられている。そして、上記各電源端子12,22は、電源配線51,53をそれぞれ介して、ESD保護回路網61の各端子62,64に接続されている。上記各グランド端子13,23は、電源配線52,54をそれぞれ介して、ESD保護回路網61の各端子63,65に接続されている。
【0083】
なお、図中に示すR1〜R4は、それぞれ、上記電源配線51〜54の寄生抵抗である。
【0084】
ESD保護回路網61は、各端子12,13,22,23のうち、任意の二端子間にサージ電圧が印加された場合でも、内部の保護素子(図示していない)によって、各回路14,24に静電破壊が生じるような過大な電圧が印加されるのを防ぐものである。
【0085】
この例の場合、第1の回路14には、たとえば、NMOSトランジスタMN11TとPMOSトランジスタMP11Tとで構成された出力回路OC1と、上記NMOSトランジスタMN11Tの前段の回路OC2を構成するNMOSトランジスタMN12とPMOSトランジスタMP12、および、上記PMOSトランジスタMP11Tの前段の回路OC3を構成するNMOSトランジスタMN13とPMOSトランジスタMP13が含まれている。この第1の回路14では、信号線41に対し、上記NMOSトランジスタMN11Tおよび上記PMOSトランジスタMP11Tの共通ドレイン(出力端子OT)からの信号を出力するようになっている。
【0086】
なお、図中に示すR11,R12は、それぞれ、電源端子12およびグランド端子13につながる電源配線の寄生抵抗である。
【0087】
一方、第2の回路24には、たとえば、NMOSトランジスタMN14とPMOSトランジスタMP14とで構成されたアナログスイッチ(入力回路)AS1が含まれている。この第2の回路24では、上記NMOSトランジスタMN11Tおよび上記PMOSトランジスタMP11Tの共通ドレインより出力され、信号線41を伝搬されてくる信号が、上記NMOSトランジスタMN14および上記PMOSトランジスタMP14のドレイン同士の接続点(入力端子IT)に入力されるようになっている。
【0088】
また、第1の回路14において、上記出力回路OC1を構成するNMOSトランジスタMN11TおよびPMOSトランジスタMP11Tは、それぞれ、他の素子よりもゲート耐圧の高い素子によって構成されている(MN11T,MP11T>MN12,MP12,MN13,MP13,MN14,MP14)。これにより、集積回路に電圧Vesd が印加された場合において、図10に示した電流経路702に沿ってサージ電流が流れたとしても、寄生抵抗R11の両端に生じる電圧降下に起因して、PMOSトランジスタMP11Tのゲート酸化膜が絶縁破壊されるのを防止することができる。
【0089】
ここで、本実施形態においては、第1の回路14および第2の回路24を、同等のゲート耐圧(入力耐圧)を有する複数の素子により構成し得る場合を想定している。その場合、たとえば第1の電源系統11の第1の電源電圧および第2の電源系統21の第2の電源電圧は同じ場合が含まれる。また、第1の電源系統11および第2の電源系統21は、必ずしもまったく同一の電源電圧である必要はない。
【0090】
すなわち、図3に示した集積回路は、たとえば図9に示したNMOSトランジスタMN11およびPMOSトランジスタMP11が、よりゲート耐圧の高いNMOSトランジスタMN11TおよびPMOSトランジスタMP11Tによって置き換えられてなる構成とされている。このようなNMOSトランジスタMN11TおよびPMOSトランジスタMP11Tは、たとえば、そのゲート酸化膜の膜厚を他の素子よりも厚くすることで容易に実現可能である。
【0091】
本実施形態の場合においても、上述した第1の実施形態の場合と同様に、同一チップ内において、部分的にその他の内部回路よりもゲート耐圧の高い素子を形成することは、近年の製造プロセスによれば実現が容易であり、これにより製造コストの増大を招くこともない。
【0092】
上記したように、第1の電源系統11のMOS形トランジスタNM11T,MP11Tから出力された信号が、第2の電源系統21のMOS形トランジスタMN14,MP14のドレインなどのPN接合部に入力される構成の集積回路においては、MOS形トランジスタNM11T,MP11Tを、他の素子よりもゲート耐圧の高いMOS形トランジスタを用いて構成する。すると、従来に比べて、ゲートの静電破壊が生じにくくなる。その結果、従来と同一のESD保護対策を施した場合にも、何ら特別な製造プロセスを必要とすることなく、ESD耐量を高くすることが可能となる。
【0093】
すなわち、本実施形態によっても、チップ面積の拡大やチップコストの増大を招くことなく、ESD耐量を向上させることが可能であり、また、従来と同等のESD耐量をより低コストで実現できる。
【0094】
なお、本実施形態にかかる集積回路は、たとえば図3に示した構成に限定されるものではない。すなわち、ある電源系統のMOS形トランジスタから出力された信号が、他の電源系統内におけるMOS形トランジスタのドレインなどのPN接合部に入力され、かつ、上記信号を出力する側のMOS形トランジスタに電源配線の寄生抵抗を介してサージ電流が流れる構成のものであれば、まったく同様に適用することが可能である。
【0095】
また、ゲート耐圧の高い素子は、必ずしも信号を出力する出力回路に限らず、その他の回路に用いることも可能である。すなわち、出力回路以外の、たとえば高電圧の印加によりゲート破壊が生じ得る回路を、他の素子よりもゲート耐圧の高い素子を用いて構成するようにすればよい。
【0096】
特に、第3の実施形態にかかる構成の半導体集積回路において、さらに、上述した第2の実施形態で示した半導体集積回路を実現することも可能である。この場合、たとえば図4に示すように、MOS形トランジスタNM11T,MP11Tを、他の素子よりもゲート耐圧の高いMOS形トランジスタを用いて構成すると同時に、第1,第2の回路14,24の相互を、抵抗素子Rlimit が挿入されてなる信号線41Lを用いて接続する。この構成によれば、チップ面積の拡大やチップコストの増大をほとんど招くことなく、ESD耐量を向上させることが可能であり、また、従来と同等のESD耐量をより低コストで実現できるだけでなく、寄生抵抗R11の両端に生じる電圧降下に起因して、PMOSトランジスタMP11Tのゲート酸化膜が絶縁破壊されるのを防ぐことも可能となる。
【0097】
その他、本発明は、上記(各)実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、上記(各)実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。たとえば、(各)実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題(の少なくとも一つ)が解決でき、発明の効果の欄で述べられている効果(の少なくとも一つ)が得られる場合には、その構成要件が削除された構成が発明として抽出され得る。
【0098】
【発明の効果】
以上、詳述したようにこの発明によれば、従来と同等のチップ面積であってもよりESD耐量を向上させることが可能な半導体装置、もしくは、従来と同等のESD耐量をより小さなチップ面積でも実現することが可能な半導体装置を提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態にかかる半導体集積回路の構成例を示す回路図。
【図2】本発明の第2の実施形態にかかる半導体集積回路の構成例を示す回路図。
【図3】本発明の第3の実施形態にかかる半導体集積回路の構成例を示す回路図。
【図4】本発明の第3の実施形態にかかる半導体集積回路の他の構成例を示す回路図。
【図5】従来技術とその問題点を説明するために示す半導体集積回路の構成図。
【図6】従来のESD保護回路網における、任意の二端子間についての電圧と電流との関係を示す特性図。
【図7】図5に示した半導体集積回路において、サージ電圧が印加された場合の電流経路の一例を示す構成図。
【図8】図5に示した半導体集積回路の一構成例を示す回路図。
【図9】図5に示した半導体集積回路の他の構成例を示す回路図。
【図10】図9に示した半導体集積回路において、サージ電圧が印加された場合の電流経路の一例を示す回路図。
【符号の説明】
11…第1の電源系統
12…電源端子(VDD)
13…グランド端子(VSS)
14…第1の回路
21…第2の電源系統
22…電源端子
23…グランド端子
24…第2の回路
41,41L…信号線
51,52,53,54…電源配線
61…ESD保護回路網
62,63,64,65…端子
R1,R2,R3,R4,R11,R12…電源配線の寄生抵抗
MN1,MN3,MN11,MN12,MN13,MN14…NMOSトランジスタ
MP1,MP3,MP11,MP12,MP13,MP14…PMOSトランジスタ
MN2T,MN11T…NMOSトランジスタ(ゲート耐圧の高い素子)
MP2T,MP11T…PMOSトランジスタ(ゲート耐圧の高い素子)
INV1,INV2T,INV3…インバータ
OT…出力端子
IT…入力端子
OC1…出力回路
OC2,OC3…前段の回路
AS1…アナログスイッチ
Rlimit …抵抗素子

Claims (20)

  1. 第1の電源系統を有し、この第1の電源系統からの第1の電源電圧を供給するための第1の電源端子および第1のグランド端子のうち、少なくとも一方が独立して設けられた第1の回路ブロックと、
    前記第1の電源系統とは異なる第2の電源系統を有し、この第2の電源系統からの第2の電源電圧を供給するための第2の電源端子および第2のグランド端子のうち、少なくとも一方が独立して設けられた第2の回路ブロックと、
    前記第1の回路ブロックの出力端子および前記第2の回路ブロックの入力端子間に設けられた、信号を伝搬するための伝搬回路と
    を具備し、
    少なくとも、前記第2の回路ブロックは同等の入力耐圧を有する複数の素子により構成し得る回路であり、
    前記第1の回路ブロックは、前記第2の回路ブロックと同等か、もしくは、それよりも小さい入力耐圧を有する複数の素子により構成し得る回路であって、
    前記伝搬回路を介して、前記信号が入力される前記第2の回路ブロックの前記入力端子につながる信号入力用の素子は、その入力耐圧が、前記第2の回路ブロックを構成する他の素子の入力耐圧よりも大きいことを特徴とする半導体装置。
  2. 前記伝搬回路は、前記出力端子および前記入力端子間を短絡するための回路であることを特徴とする請求項1に記載の半導体装置。
  3. 前記第2の回路ブロックを構成する複数の素子は、MOS(Metal Oxide Semiconductor)形トランジスタであることを特徴とする請求項1または2に記載の半導体装置。
  4. 前記MOS形トランジスタにより構成される、信号入力用の素子のゲート酸化膜は、他の素子のゲート酸化膜よりも厚いことを特徴とする請求項3に記載の半導体装置。
  5. 第1の電源系統を有し、この第1の電源系統からの第1の電源電圧を供給するための第1の電源端子および第1のグランド端子のうち、少なくとも一方が独立して設けられた第1の回路ブロックと、
    前記第1の電源系統とは異なる第2の電源系統を有し、この第2の電源系統からの第2の電源電圧を供給するための第2の電源端子および第2のグランド端子のうち、少なくとも一方が独立して設けられた第2の回路ブロックと、
    前記第1の回路ブロックの出力端子および前記第2の回路ブロックの入力端子間に設けられた、信号を伝搬するための伝搬回路と
    を具備し、
    前記伝搬回路は、前記第1の回路ブロックの出力端子および前記第2の回路ブロックの入力端子間に接続される抵抗を有してなることを特徴とする半導体装置。
  6. 前記伝搬回路は、前記第1の回路ブロックの、第1のPN接合を構成する第1の半導体領域、および、前記第2の回路ブロックの、第2のPN接合を構成する第2の半導体領域間を接続するための回路であることを特徴とする請求項5に記載の半導体装置。
  7. 前記第1の回路ブロックおよび前記第2の回路ブロックは、共に同等の入力耐圧を有する複数の素子により構成し得る回路であることを特徴とする請求項5または6に記載の半導体装置。
  8. 前記第1の回路ブロックおよび前記第2の回路ブロックを構成する複数の素子は、MOS(Metal Oxide Semiconductor)形トランジスタであることを特徴とする請求項7に記載の半導体装置。
  9. 前記第1の回路ブロックの、第1のPN接合を構成する第1の半導体領域、および、前記第2の回路ブロックの、第2のPN接合を構成する第2の半導体領域は、前記MOS形トランジスタの寄生PN接合であることを特徴とする請求項8に記載の半導体装置。
  10. 前記第1の回路ブロックを構成する複数のMOS形トランジスタのうち、高電圧が印加される少なくとも1つのMOS形トランジスタは、その入力耐圧が、前記第1の回路ブロックを構成する他のMOS形トランジスタの入力耐圧よりも大きいか、あるいは、前記第2の回路ブロックを構成する複数のMOS形トランジスタのうち、高電圧が印加される少なくとも1つのMOS形トランジスタは、その入力耐圧が、前記第2の回路ブロックを構成する他のMOS形トランジスタの入力耐圧よりも大きいことを特徴とする請求項8または9に記載の半導体装置。
  11. 前記第1の回路ブロックを構成する複数のMOS形トランジスタのうち、前記信号の出力回路を構成するMOS形トランジスタは、そのゲート耐圧が、前記第1の回路ブロックを構成する他のMOS形トランジスタのゲート耐圧よりも大きいことを特徴とする請求項8または9に記載の半導体装置。
  12. 第1の電源系統を有し、この第1の電源系統からの第1の電源電圧を供給するための第1の電源端子および第1のグランド端子のうち、少なくとも一方が独立して設けられた第1の回路ブロックと、
    前記第1の電源系統とは異なる第2の電源系統を有し、この第2の電源系統からの第2の電源電圧を供給するための第2の電源端子および第2のグランド端子のうち、少なくとも一方が独立して設けられた第2の回路ブロックと、
    前記第1の回路ブロックの出力端子および前記第2の回路ブロックの入力端子間に設けられた、信号を伝搬するための伝搬回路と
    を具備し、
    前記第1の回路ブロックおよび前記第2の回路ブロックは共に同等の入力耐圧を有する複数の素子により構成し得る回路であって、
    前記第1の回路ブロックを構成する複数の素子のうち、高電圧が印加される少なくとも1つの素子は、その入力耐圧が、前記第1の回路ブロックを構成する他の素子の入力耐圧よりも大きいか、あるいは、前記第2の回路ブロックを構成する複数の素子のうち、高電圧が印加される少なくとも1つの素子は、その入力耐圧が、前記第2の回路ブロックを構成する他の素子の入力耐圧よりも大きいことを特徴とする半導体装置。
  13. 前記伝搬回路は、前記第1の回路ブロックの、第1のPN接合を構成する第1の半導体領域、および、前記第2の回路ブロックの、第2のPN接合を構成する第2の半導体領域間を接続するための回路であることを特徴とする請求項12に記載の半導体装置。
  14. 前記伝搬回路は、前記第1の半導体領域および前記第2の半導体領域間に接続される抵抗を有してなることを特徴とする請求項13に記載の半導体装置。
  15. 前記第1の回路ブロックおよび前記第2の回路ブロックを構成する複数の素子は、MOS(Metal Oxide Semiconductor)形トランジスタであることを特徴とする請求項12,13または14に記載の半導体装置。
  16. 前記第1の回路ブロックの、第1のPN接合を構成する第1の半導体領域、および、前記第2の回路ブロックの、第2のPN接合を構成する第2の半導体領域は、前記MOS形トランジスタの寄生PN接合であることを特徴とする請求項15に記載の半導体装置。
  17. 前記高電圧が印加される少なくとも1つの素子は、前記信号の出力回路を構成するMOS形トランジスタであって、
    そのゲート耐圧が、前記第1の回路ブロックを構成する他の素子に比べて大きいことを特徴とする請求項12乃至16のいずれかに記載の半導体装置。
  18. 前記第1の電源電圧および前記第2の電源電圧は共に等しいことを特徴とする請求項1乃至17のいずれかに記載の半導体装置。
  19. 前記第1の電源電圧および前記第2の電源電圧は互いに異なることを特徴とする請求項1乃至17のいずれかに記載の半導体装置。
  20. 前記第1,第2の電源端子および前記第1,第2のグランド端子には、ESD(Electrostatic Discharge)保護回路が接続されていることを特徴とする請求項1乃至19のいずれかに記載の半導体装置。
JP2002284329A 2002-09-27 2002-09-27 半導体装置 Pending JP2004119883A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002284329A JP2004119883A (ja) 2002-09-27 2002-09-27 半導体装置
US10/670,342 US20040120087A1 (en) 2002-09-27 2003-09-26 Semiconductor device including a plurality of power domains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284329A JP2004119883A (ja) 2002-09-27 2002-09-27 半導体装置

Publications (2)

Publication Number Publication Date
JP2004119883A true JP2004119883A (ja) 2004-04-15
JP2004119883A5 JP2004119883A5 (ja) 2005-02-17

Family

ID=32277924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284329A Pending JP2004119883A (ja) 2002-09-27 2002-09-27 半導体装置

Country Status (2)

Country Link
US (1) US20040120087A1 (ja)
JP (1) JP2004119883A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238074A (ja) * 2005-02-25 2006-09-07 Oki Electric Ind Co Ltd 異電源間インターフェースおよび半導体集積回路
US7307822B2 (en) 2003-12-22 2007-12-11 Kabushiki Kaisha Toshiba Semiconductor integrated circuit apparatus
US7872500B2 (en) 2008-01-30 2011-01-18 Kabushiki Kaisha Toshiba Semiconductor device
US7974051B2 (en) 2007-04-12 2011-07-05 Seiko Epson Corporation Integrated circuit device and electronic instrument
WO2015194482A1 (ja) * 2014-06-20 2015-12-23 ザインエレクトロニクス株式会社 半導体装置
JP2018085921A (ja) * 2017-11-28 2018-05-31 パナソニックIpマネジメント株式会社 電流計測器、計測器付き分電盤用キャビネットおよび分電盤

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647294B2 (ja) * 2004-11-26 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
KR101054946B1 (ko) * 2005-02-23 2011-08-08 삼성전자주식회사 전압 레벨 조정 기능을 가진 시스템 온 칩 및 전압 레벨 조정 방법
JP2009507425A (ja) * 2005-09-02 2009-02-19 サイプレス セミコンダクター コーポレイション ジッタを低減させて信号を多重化する回路、システム、方法
JP4986459B2 (ja) * 2006-01-24 2012-07-25 ルネサスエレクトロニクス株式会社 半導体集積回路装置
US7705404B2 (en) * 2006-12-20 2010-04-27 Amazing Microelectronic Corporation Electrostatic discharge protection device and layout thereof
JP4337903B2 (ja) * 2007-04-12 2009-09-30 セイコーエプソン株式会社 集積回路装置および電子機器
JP2009130119A (ja) * 2007-11-22 2009-06-11 Toshiba Corp 半導体集積回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168735A (ja) * 2001-11-30 2003-06-13 Hitachi Ltd 半導体集積回路装置
US6770938B1 (en) * 2002-01-16 2004-08-03 Advanced Micro Devices, Inc. Diode fabrication for ESD/EOS protection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307822B2 (en) 2003-12-22 2007-12-11 Kabushiki Kaisha Toshiba Semiconductor integrated circuit apparatus
JP2006238074A (ja) * 2005-02-25 2006-09-07 Oki Electric Ind Co Ltd 異電源間インターフェースおよび半導体集積回路
US7974051B2 (en) 2007-04-12 2011-07-05 Seiko Epson Corporation Integrated circuit device and electronic instrument
US7872500B2 (en) 2008-01-30 2011-01-18 Kabushiki Kaisha Toshiba Semiconductor device
WO2015194482A1 (ja) * 2014-06-20 2015-12-23 ザインエレクトロニクス株式会社 半導体装置
JP2016006837A (ja) * 2014-06-20 2016-01-14 ザインエレクトロニクス株式会社 半導体装置
CN106415818A (zh) * 2014-06-20 2017-02-15 哉英电子股份有限公司 半导体装置
CN106415818B (zh) * 2014-06-20 2019-06-25 哉英电子股份有限公司 半导体装置
US10504860B2 (en) 2014-06-20 2019-12-10 Thine Electronics, Inc. Semiconductor device
JP2018085921A (ja) * 2017-11-28 2018-05-31 パナソニックIpマネジメント株式会社 電流計測器、計測器付き分電盤用キャビネットおよび分電盤

Also Published As

Publication number Publication date
US20040120087A1 (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US6515337B1 (en) Input protection circuit connected to projection circuit power source potential line
JP4986459B2 (ja) 半導体集積回路装置
US7420789B2 (en) ESD protection system for multi-power domain circuitry
US8072720B2 (en) Electrostatic protection circuit
JP2007234718A (ja) 半導体集積回路装置
US7940138B2 (en) Electrostatic discharge protection oscillation circuit in LSI
JP2008182239A (ja) 静電気放電保護装置
JP5165356B2 (ja) 半導体集積回路装置
JP2004119883A (ja) 半導体装置
US6552594B2 (en) Output buffer with improved ESD protection
JP2010041013A (ja) 保護回路
US7417837B2 (en) ESD protection system for multi-power domain circuitry
US7250660B1 (en) ESD protection that supports LVDS and OCT
JP2004022950A (ja) 半導体装置の静電気破壊防止回路
JP2005142494A (ja) 半導体集積回路
US20050127444A1 (en) Semiconductor integrated circuit
JP2006210926A (ja) Esd保護回路を備える半導体素子
JP2002208644A (ja) 半導体装置
KR100631957B1 (ko) 정전기 방전 보호 회로
JP3535744B2 (ja) 半導体集積回路
JP4357916B2 (ja) 電源保護回路
KR100205099B1 (ko) 반도체 메모리 장치의 데이타 출력회로 및 그 출력방법
JPH02192760A (ja) 半導体集積回路装置の過電圧吸収回路
KR100193452B1 (ko) 반도체 메모리 장치의 데이타 출력회로 및 그 출력방법
KR20080111670A (ko) 정전기 방전 보호 회로 및 이를 포함하는 반도체 장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314