JP2004095583A - 磁気検出素子 - Google Patents

磁気検出素子 Download PDF

Info

Publication number
JP2004095583A
JP2004095583A JP2002250658A JP2002250658A JP2004095583A JP 2004095583 A JP2004095583 A JP 2004095583A JP 2002250658 A JP2002250658 A JP 2002250658A JP 2002250658 A JP2002250658 A JP 2002250658A JP 2004095583 A JP2004095583 A JP 2004095583A
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic layer
free
free magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002250658A
Other languages
English (en)
Other versions
JP4245318B2 (ja
Inventor
Masaji Saito
斎藤 正路
Yosuke Ide
井出 洋介
Naoya Hasegawa
長谷川 直也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002250658A priority Critical patent/JP4245318B2/ja
Priority to US10/641,538 priority patent/US6806804B2/en
Priority to GB0320095A priority patent/GB2392508B/en
Publication of JP2004095583A publication Critical patent/JP2004095583A/ja
Application granted granted Critical
Publication of JP4245318B2 publication Critical patent/JP4245318B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Abstract

【課題】ΔRの大きなスピンバルブ型の磁気検出素子を提供する。
【解決手段】第1フリー磁性層53、第2フリー磁性層55、固定磁性層24、それぞれを形成する磁性材料のβの正負を規定して、抵抗値が最も低くなるようにフリー磁性層26の磁化が変化したときに、全ての磁性層においてアップスピンの伝導電子に対する抵抗値をダウンスピンの伝導電子に対する抵抗値よりも小さくさせることにより、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、スピンバルブ型の磁気検出素子に係り、特に抵抗変化ΔRの向上を効果的に図ることが可能な磁気検出素子に関する。
【0002】
【従来の技術】
図10は、従来の磁気検出素子を示す断面図である。
【0003】
このスピンバルブ型磁気検出素子は、下から、反強磁性層2、固定磁性層3、非磁性材料層4、第1フリー磁性層5a、非磁性中間層5b、第2フリー磁性層5cからなるシンセティックフェリ型のフリー磁性層5からなる多層膜6、多層膜6の下と上に形成された電極層1及び電極層7と、フリー磁性層5の両側部に形成されたハードバイアス層8,8及びハードバイアス層8,8の上下に形成された絶縁層9,9並びに絶縁層10,10からなっている。
【0004】
反強磁性層2はPtMn、固定磁性層3、及びフリー磁性層5の第1フリー磁性層5a、第2フリー磁性層5cはCoFe、フリー磁性層5の非磁性中間層5bはRu、非磁性材料層4はCu、ハードバイアス層8はCoPtなどの硬磁性材料、絶縁層9、10はアルミナ、電極層1、7はCrなどの導電性材料によって形成されている。
【0005】
図10に示す磁気検出素子は、スピンバルブ型磁気検出素子と呼ばれるものであり、ハードディスクなどの記録媒体からの記録磁界を検出するものである。
【0006】
なお、図10に示される磁気検出素子は、多層膜6の各層の膜面と垂直方向に電流が流れるCPP(current perpendicular to the plane)型の磁気検出素子である。
【0007】
固定磁性層3の磁化方向は図示Y方向に固定されている。例えば、第2フリー磁性層5cの磁気的膜厚(飽和磁化Ms×膜厚t)が第1フリー磁性層5aの磁気的膜厚よりも大きいとき、外部磁界が印加されていない状態の第2フリー磁性層5cの磁化方向は、ハードバイアス層8,8からの縦バイアス磁界によってトラック幅方向(図示X方向)に向けられて単磁区化し、第1フリー磁性層5aの磁化方向はトラック幅方向に反平行な方向に向けられる。フリー磁性層5全体の磁化方向は、磁気的膜厚の大きい第2フリー磁性層5cの磁化方向になる。外部磁界が印加されると第1フリー磁性層5aと第2フリー磁性層5cの磁化が人工フェリ状態を維持したまま回転し、多層膜6の電気抵抗が変化する。この電気抵抗の変化を電圧変化または電流変化として取り出すことにより外部磁界を検出する。
【0008】
磁性材料に電流を流すと、この磁性材料中では、メジャーリティの伝導電子に対する比抵抗とマイノリティーの伝導電子に対する比抵抗が異なる値になる。
【0009】
磁性材料を構成する磁性原子は、主に3d軌道または4f軌道の電子の軌道磁気モーメント及びスピン磁気モーメントによって、その磁気モーメントが規定される。基本的に、磁性原子の3d軌道または4f軌道に存在する電子は、アップスピンとダウンスピンの数が異なっている。この3d軌道または4f軌道に存在するアップスピンの電子とダウンスピンの電子のうち数が多い方の電子のスピンをメジャーリティスピンといい、少ない方の電子のスピンをマイノリティスピンという。
【0010】
一方、磁性材料を流れる電流中には、アップスピンの伝導電子とダウンスピンの伝導電子がほぼ同数含まれている。アップスピンの伝導電子とダウンスピンの伝導電子のうち、磁性材料のメジャーリティスピンと同じスピンを有する方をメジャーリティ(majority)の伝導電子といい、磁性材料のマイノリティスピンと同じスピンを有する方をマイノリティー(minority)の伝導電子という。
【0011】
ここでρ↓をマイノリティーの伝導電子に対する磁性材料の比抵抗値とし、ρ↑をメジャーリティの伝導電子に対する比抵抗値とすると以下に示す関係式によって、磁性材料に固有の値βを定義できる。
【0012】
ρ↓/ρ↑=(1+β)/(1−β) (−1≦β≦1)
すなわち、磁性材料のβの値が正(β>0)のとき、ρ↓>ρ↑となり、磁性材料中を流れやすいのはメジャーリティの伝導電子の方になる。一方、磁性材料のβの値が負(β<0)のとき、ρ↓<ρ↑となり、磁性材料中を流れやすいのはマイノリティーの伝導電子の方になる。
【0013】
また、磁性材料からなる磁性層に非磁性材料からなる非磁性層が積層されると、磁性層と非磁性層の界面に界面抵抗が発生する。
【0014】
この界面抵抗も、メジャーリティの伝導電子に対する値とマイノリティーの伝導電子に対する値が異なる。
【0015】
r↓をマイノリティーの伝導電子に対する界面抵抗値とし、r↑を伝導電子のうちメジャーリティの伝導電子に対する界面抵抗値とすると以下に示す関係式によって、磁性材料と非磁性材料の組み合わせに固有の値γを定義できる。
【0016】
r↓/r↑=(1+γ)/(1−γ)(−1≦γ≦1)
すなわち、γの値が正(γ>0)のとき、r↓>r↑となり、界面を流れやすいのはメジャーリティの伝導電子の方になる。一方、γの値が負(γ<0)のとき、r↓<r↑となり、界面を流れやすいのはマイノリティーの伝導電子の方になる。
【0017】
図10に示される磁気検出素子は、固定磁性層2、第1フリー磁性層5a、第2フリー磁性層5cがすべて同じ組成の磁性材料CoFeによって形成されている。CoFeのβは正の値を示す。すなわち、固定磁性層2、第1フリー磁性層5a、第2フリー磁性層5c中を流れやすいのはメジャーリティの伝導電子である。
【0018】
また、非磁性材料層4はCuによって形成されている。このとき、非磁性材料層4と固定磁性層3の界面のγの値、非磁性材料層4と第1フリー磁性層5aの界面のγの値は、両方とも正の値を示す。
【0019】
非磁性中間層5bはRuによって形成されている。このとき、第1フリー磁性層5aと非磁性中間層5bの界面のγの値と第2フリー磁性層5cと非磁性中間層5bの界面のγの値は、両方とも負の値を示す。
【0020】
各磁性層とβとγの値の関係を図11にまとめる。図11には、図10に示された磁気検出素子の磁気抵抗効果に関係ある層を模式的に示している。固定磁性層3、第1フリー磁性層5a、第2フリー磁性層5cに記された矢印はそれぞれの磁性層の磁化方向を示している。ここで、磁化が図示右方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはアップスピンであり、磁化が図示左方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはダウンスピンであるとする。なお、第1フリー磁性層5aと第2フリー磁性層5cの磁化は、磁気検出素子の抵抗値が最も低くなるときの方向を向いている。
【0021】
【発明が解決しようとする課題】
磁気検出素子の抵抗変化ΔRを大きくするためには、フリー磁性層5の磁化方向が図11に示される方向を向いているときに、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層4及び非磁性中間層5b)との界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さいことが好ましい(または、全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層4及び非磁性中間層5b)との界面における、ダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さいことが好ましい)。
【0022】
しかし、図11をみると、メジャーリティスピンがアップスピンでありβ>0である固定磁性層3及び第1フリー磁性層5aは、アップスピンの伝導電子に対する抵抗値が小さくなっているが、メジャーリティスピンがダウンスピンであり、β>0である第2フリー磁性層5cはアップスピンの伝導電子に対する抵抗値が大きくなっている。
【0023】
また、非磁性材料層4と固定磁性層3の界面、非磁性材料層4と第1フリー磁性層5aの界面、及び非磁性中間層5bと第2フリー磁性層5cの界面におけるアップスピンの伝導電子に対する界面抵抗は、ダウンスピンの伝導電子に対する界面抵抗よりも小さくなっている。しかし、第1フリー磁性層5aと非磁性中間層5bの界面におけるアップスピンの伝導電子に対する界面抵抗は、ダウンスピンの伝導電子に対する界面抵抗よりも大きくなっている。
【0024】
このように、従来の磁気検出素子は、伝導電子の流れ方の制御の効率が低いものであった。
【0025】
本発明は、上記従来の課題を解決するためのものであり、低抵抗状態における伝導電子の流れやすさと高抵抗状態における伝導電子の流れやすさの差を大きくすることによって、抵抗変化ΔRを大きくすることができる磁気検出素子を提供することを目的としている。
【0026】
【課題を解決するための手段】
本発明は、反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
前記フリー磁性層は、第1フリー磁性層の上に第2フリー磁性層が、非磁性中間層を介して積層されたものであり、
前記第1フリー磁性層、前記固定磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第2フリー磁性層を形成している磁性材料のβの正負の符号は前記第1フリー磁性層のβと異なっているか、または、前記第2フリー磁性層、前記固定磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第1フリー磁性層を形成している磁性材料のβの正負の符号は前記第2フリー磁性層のβと異なっていることを特徴とするものである。
【0027】
ただし、βは、ρ↓/ρ↑=(1+β)/(1−β) (−1≦β≦1)の関係式を満たす磁性材料に固有の値である(なお、ρ↓は、伝導電子のうちマイノリティーの伝導電子に対する比抵抗値であり、ρ↑は、伝導電子のうちメジャーリティの伝導電子に対する比抵抗値である)。
【0028】
または、本発明は、反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
前記固定磁性層は、第1固定磁性層の上に第2固定磁性層が、非磁性中間層を介して積層されたものであり、
前記第2固定磁性層、前記フリー磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第1固定磁性層を形成している磁性材料のβの正負の符号は前記第2固定磁性層のβと異なっているか、または、前記第1固定磁性層、前記フリー磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第2固定磁性層を形成している磁性材料のβの正負の符号は前記第1固定磁性層のβと異なっていることを特徴とするものである。
【0029】
あるいは、本発明は、反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
前記フリー磁性層は、第1フリー磁性層、非磁性中間層、第2フリー磁性層、非磁性中間層、及び第3フリー磁性層順に積層されたものであり、
前記第3フリー磁性層、前記第1フリー磁性層及び前記固定磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第2フリー磁性層を形成している磁性材料のβの正負の符号は前記第1フリー磁性層のβと異なっているか、または、前記第2フリー磁性層、及び前記固定磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第1フリー磁性層及び前記第3フリー磁性層を形成している磁性材料のβの正負の符号は前記第2フリー磁性層のβと異なっていることを特徴とするものである。
【0030】
本発明のように、前記フリー磁性層(前記第1フリー磁性層、前記第2フリー磁性層、第3フリー磁性層)、前記固定磁性層(前記第1固定磁性層、前記第2固定磁性層)(以下これらをまとめて呼ぶときは単に磁性層と呼ぶ)それぞれを形成する磁性材料のβを規定すると、抵抗値が最も低くなるようにフリー磁性層の磁化が変化したときに、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さくなるか、または全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さくなり、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0031】
さらに、本発明では、前記第1フリー磁性層、第2フリー磁性層、第3フリー磁性層、第1固定磁性層、または第2固定磁性層と、前記非磁性材料層または前記非磁性中間層の界面におけるγの正負の符号が、その界面に接している磁性層のβの正負の符号と等しいことが好ましい。
【0032】
ただし、γは、r↓/r↑=(1+γ)/(1−γ)(−1≦γ≦1)の関係式を満たす界面に固有の値である(なお、r↓は、伝導電子のうちマイノリティーの伝導電子に対する界面抵抗値であり、r↑は、伝導電子のうちメジャーリティの伝導電子に対する界面抵抗値である)。
【0033】
本発明のように、γを規定すると、スピンバルブ型磁気検出素子において、抵抗値が最も低くなるようにフリー磁性層の磁化が変化したときに、全ての、磁性層と非磁性材料からなる層(非磁性材料層及び非磁性中間層)の界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さくなるか、または、全ての前記界面における,ダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さくなり、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0034】
なお、上記のようにγを規定するためには、前記非磁性材料層または前記非磁性中間層の上面と磁性層の界面におけるγの正負の符号と、前記非磁性材料層または前記非磁性中間層の下面と磁性層の界面におけるγの正負の符号を異ならせることが必要になる場合があるが、本発明では、前記非磁性材料層及び/または前記非磁性中間層を、種類の異なる非磁性材料からなる2層構造とすることによってそのような問題を解決できる。
【0035】
または、本発明は、反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
前記フリー磁性層は、第1フリー磁性層の上に第2フリー磁性層が、非磁性中間層を介して積層されたものであり、
NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)をA群に属する合金とし、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)をB群に属する合金としたときに、
前記第1フリー磁性層、及び前記固定磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第2フリー磁性層を形成している磁性材料は前記第1フリー磁性層が属する群と異なる群に属する合金であるか、または、前記第2フリー磁性層、及び前記固定磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第1フリー磁性層を形成している磁性材料は前記第2フリー磁性層が属する群と異なる群に属する合金であることを特徴とするものである。
【0036】
または、本発明の磁気検出素子は、前記固定磁性層は、第1固定磁性層の上に第2固定磁性層が、非磁性中間層を介して積層されたものであり、
前記第2固定磁性層及び前記フリー磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第1固定磁性層を形成している磁性材料は前記第2固定磁性層が属する群と異なる群に属する合金であるか、または、前記第1固定磁性層及び前記フリー磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第2固定磁性層を形成している磁性材料は前記第1固定磁性層が属する群と異なる群に属する合金であることを特徴とするものである。
【0037】
あるいは、本発明の磁気検出素子は、前記フリー磁性層が、第1フリー磁性層、非磁性中間層、第2フリー磁性層、非磁性中間層、及び第3フリー磁性層が順に積層されたものであり、
前記第3フリー磁性層、前記第1フリー磁性層及び前記固定磁性層を形成している磁性材料は、前記A群またはB群のうち同じ群に属する合金であり、前記第2フリー磁性層を形成している磁性材料は前記第1フリー磁性層が属する群とは異なる群に属する合金であるか、または、前記第1フリー磁性層、及び前記第3フリー磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第2フリー磁性層及び前記固定磁性層を形成している磁性材料は、前記第1フリー磁性層が属する群とは異なる群に属する合金であることを特徴とするものである。
【0038】
本発明のように、各磁性層を形成する磁性材料を規定すると、スピンバルブ型磁気検出素子において、抵抗値が最も低くなるようにフリー磁性層の磁化が変化したときに、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さくなるか、または全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さくなり、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0039】
さらに、本発明では、前記非磁性材料層または前記非磁性中間層のうち少なくとも一つはCu層とCr層が積層された積層膜であって、この積層膜が、前記A群に属している合金によって形成された磁性層と前記B群に属している合金によって形成された磁性層に挟まれることにより、全ての界面においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さくなるか、または全ての界面においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さくなり、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0040】
本発明では、前記非磁性中間層の膜厚、前記第1フリー磁性層の膜厚、前記非磁性材料層の膜厚がすべて、それぞれの層を形成している材料のスピン拡散長より小さくても、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0041】
また、前記フリー磁性層の膜厚、前記非磁性材料層の膜厚、前記第2固定磁性層の膜厚、前記非磁性中間層がすべて、それぞれの層を形成している材料のスピン拡散長より小さくても、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0042】
あるいは、前記非磁性中間層の膜厚、前記第2フリー磁性層の膜厚、前記非磁性中間層の膜厚、及び前記第1フリー磁性層の膜厚並びに、前記非磁性材料層の膜厚がすべて、それぞれの層を形成している材料のスピン拡散長より小さくても、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0043】
【発明の実施の形態】
図1は本発明における第1実施形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図である。
【0044】
図1に示す磁気検出素子は、いわゆるシングル型のスピンバルブ型薄膜素子である。
【0045】
第1の電極層20の中央上面には、下から下地層21、シード層22、反強磁性層23、第1固定磁性層50と第2固定磁性層52とその間に形成されたRuなどの非磁性中間層51からなる3層フェリ構造の固定磁性層24、非磁性材料層25及びフリー磁性層26が形成されている。フリー磁性層26は、第1フリー磁性層53と第2フリー磁性層55とその間に形成された非磁性中間層54からなる3層フェリ構造である。
【0046】
第1の電極層20、及び第2の電極層30は、例えばα−Ta、Au、Cr、Cu(銅)やW(タングステン)などで形成されている。下地層21は、Ta,Hf,Nb,Zr,Ti,Mo,Wのうち少なくとも1種以上で形成されることが好ましい。下地層21は50Å以下程度の膜厚で形成される。ただし、この下地層21は形成されていなくても良い。
【0047】
シード層22は、主として面心立方晶から成り、次に説明する反強磁性層23との界面と平行な方向に(111)面が優先配向されている。シード層22は、Cr、NiFe合金、あるいはNi−Fe−Y合金(ただしYは、Cr,Rh,Ta,Hf,Nb,Zr,Tiから選ばれる少なくとも1種以上)で形成されることが好ましい。これらの材質で形成されたシード層22はTa等で形成された下地層21上に形成されることにより反強磁性層23との界面と平行な方向に(111)面が優先配向しやすくなる。シード層22は、例えば30Å程度で形成される。
【0048】
なお本発明における磁気検出素子は各層の膜面と垂直方向にセンス電流が流れるCPP型であるため、シード層22にも適切にセンス電流が流れる必要性がある。よってシード層22は比抵抗の高い材質でないことが好ましい。すなわちCPP型ではシード層22はNiFe合金などの比抵抗の低い材質で形成されることが好ましい。ただし、シード層22は形成されなくても良い。
【0049】
反強磁性層23は、元素X(ただしXは、Pt,Pd,Ir,Rh,Ru,Osのうち1種または2種以上の元素である)とMnとを含有する反強磁性材料で形成されることが好ましい。あるいは反強磁性層23は、元素Xと元素X′(ただし元素X′は、Ne,Ar,Kr,Xe,Be,B,C,N,Mg,Al,Si,P,Ti,V,Cr,Fe,Co,Ni,Cu,Zn,Ga,Ge,Zr,Nb,Mo,Ag,Cd,Sn,Hf,Ta,W,Re,Au,Pb、及び希土類元素のうち1種または2種以上の元素である)とMnを含有する反強磁性材料により形成されることが好ましい。
【0050】
これらの反強磁性材料は、耐食性に優れしかもブロッキング温度も高く次に説明する固定磁性層24との界面で大きな交換異方性磁界を発生し得る。また反強磁性層23は80Å以上で300Å以下,例えば200Åの膜厚で形成されることが好ましい。
【0051】
この実施形態では、固定磁性層24が3層のフェリ構造で形成されている。
固定磁性層24を構成する符号50及び52の層は磁性層である。第1固定磁性層50,第2固定磁性層52間には非磁性材料によって形成された非磁性中間層51が介在している。固定磁性層24の材料については後述する。
【0052】
反強磁性層23と第1固定磁性層50の間には交換異方性磁界が発生している。
【0053】
例えば第1固定磁性層50の磁化がハイト方向(図示Y方向)と逆方向に固定された場合、もう一方の第2固定磁性層52はRKKY相互作用により、ハイト方向に磁化され固定される。この構成により固定磁性層24の磁化を安定した状態にでき、また固定磁性層24の磁化方向を強固に固定できる。
【0054】
なお例えば、第1固定磁性層50,第2固定磁性層52の膜厚はそれぞれ10〜70Å程度で形成される。また非磁性中間層51及び中間層61の膜厚は3Å〜10Å程度で形成される。
【0055】
なお固定磁性層24はフェリ構造ではなく単層膜あるいは磁性層のみからなる積層膜で形成されていても良い。
【0056】
非磁性材料層25は電気抵抗の低い導電性材料によって形成される。非磁性材料層25は例えば25Å程度の膜厚で形成される。非磁性材料層25は、第1層40と第2層41が積層された2層構造である。非磁性材料層25の材料については後述する。
【0057】
フリー磁性層26は、第1フリー磁性層53と第2フリー磁性層55とその間に形成された非磁性中間層54からなる3層フェリ構造である。
【0058】
第1フリー磁性層53と第2フリー磁性層55は磁性材料からなり、非磁性中間層54は非磁性材料からなる。トラック幅方向(図示X方向)に磁化されているハードバイアス層33,33からの縦バイアス磁界によって、第1フリー磁性層53と第2フリー磁性層55のうち、磁気的膜厚(単位面積当たりの磁気モーメント;飽和磁束密度Ms×膜厚t)の大きい方の磁化が図示X方向に揃えられ、他方の磁化は図示X方向と反平行方向を向く。
【0059】
例えば、図1では、第1フリー磁性層53の磁気的膜厚の方が、第2フリー磁性層55の磁気的膜厚より大きくなっているので、 第1フリー磁性層53の磁化が図示X方向にそろえられる。そして、RKKY相互作用によって、第2フリー磁性層55の磁化方向が図示X方向と反平行方向に向けられる。
【0060】
フリー磁性層26の合計の磁気的膜厚は、第1フリー磁性層53の磁気的膜厚と第2フリー磁性層55の磁気的膜厚の差になる。従って、本実施の形態のような人工フェリ型のフリー磁性層26であれば、第1フリー磁性層53と第2フリー磁性層55を安定して成膜できる膜厚で形成しても、フリー磁性層26の実質的な磁気的膜厚を減少させることができ、磁気検出素子の磁界検出感度を向上させることができる。
【0061】
第1フリー磁性層53、第2フリー磁性層55、非磁性中間層54の材料及び膜厚については後述する。
【0062】
図1に示すように、多層膜T1のトラック幅方向の両側領域の第1の電極層20上には、絶縁層31,31が形成されている。絶縁層31,31は例えばAl、SiOなど一般的な絶縁材料で形成される。
【0063】
絶縁層31,31の上面31a,31aは、フリー磁性層26の下面26aよりも図示下側(図示Z方向とは逆方向)に形成されていることが好ましい。
【0064】
絶縁層31,31の上には、バイアス下地層32,32が形成されている。またバイアス下地層32,32の上にはハードバイアス層33,33が形成されている。ハードバイアス層33,33は、フリー磁性層26の両側端面26b,26bに対向する位置に形成される。ハードバイアス層33,33は、トラック幅方向(図示X方向)に磁化されている。
【0065】
バイアス下地層32,32はハードバイアス層33,33の特性(保磁力Hc、角形比S)を向上させるために設けられたものである。
【0066】
本発明では、バイアス下地層32,32は、結晶構造が体心立方構造(bcc構造)の金属膜で形成されることが好ましい。なおこのときバイアス下地層32,32の結晶配向は(100)面が優先配向するのが好ましい。
【0067】
またハードバイアス層33,33は、CoPt合金やCoPtCr合金などで形成される。これら合金の結晶構造は、稠密六方構造(hcp)単相あるいは面心立方構造(fcc)と稠密六方構造(hcp)の混相となっている。
【0068】
ここで上記の金属膜で形成されたバイアス下地層32,32とハードバイアス層33,33を構成するCoPt系合金のhcp構造の界面での原子配列が近くなるために、CoPt系合金はfcc構造を形成しづらくhcp構造で形成されやすくなる。このときhcp構造のc軸はCoPt系合金とバイアス下地層の境界面内に優先配向される。hcp構造はfcc構造に比べてc軸方向に大きな磁気異方性を生じるため、ハードバイアス層33,33に磁界を与えたときの保磁力Hcは大きくなるのである。さらにhcpのc軸はCoPt系合金とバイアス下地層との境界面内で優先配向となっているため、残留磁化が増大し、残留磁化/飽和磁束密度で求められる角形比Sは大きくなる。その結果、ハードバイアス層33,33の特性を向上させることができ、ハードバイアス層33,33から発生するバイアス磁界を増大させることができる。結晶構造が体心立方構造(bcc構造)の金属膜は、Cr,W,Mo,V,Mn,Nb,Taのいずれか1種または2種以上の元素で形成されることが好ましい。
【0069】
また、バイアス下地層32はハードバイアス層33,33の下側にのみ形成されていることが好ましいが、フリー磁性層26の両側端面26b,26bとハードバイアス層33,33間にも若干介在してもよい。フリー磁性層26の両側端面26b,26bとハードバイアス層33,33間に形成されるバイアス下地層32,32のトラック幅方向(図示X方向)における膜厚は1nm以下であることが好ましい。
【0070】
これによりハードバイアス層33,33とフリー磁性層26とを磁気的に連続体にでき、フリー磁性層26の端部が反磁界の影響を受けるバックリング現象などの問題も発生せず、フリー磁性層26の磁区制御を容易にできる。
【0071】
図1の磁気検出素子は、ハードバイアス層33,33によって、フリー磁性層26の第1フリー磁性層53及び第2フリー磁性層55が単磁区化されるものであるが、本実施の形態のように第1フリー磁性層53と第2フリー磁性層55の磁化方向が互いに反平行方向を向くものであるときは、ハードバイアス層33,33の内側端面33a,33aが、第1フリー磁性層53及び第2フリー磁性層55のいずれか一方の端部とのみ対向していることが好ましい。
【0072】
図1では、ハードバイアス層33,33の内側端面33a,33aが第1フリー磁性層53の端部53a,53aにのみ対向している。これによって、ハードバイアス層33,33から供給されるトラック幅方向(図示X方向)の縦バイアス磁界は第1フリー磁性層53にのみ直接作用し、トラック幅方向と反平行方向の磁化を有する第2フリー磁性層55の磁化に乱れが生じることを抑制または防止できる。
【0073】
また図1に示すように、ハードバイアス層33,33の上には絶縁層34,34が形成されている。絶縁層34,34は、AlやSiOなどの一般的な絶縁材料で形成される。なおこの実施形態では、絶縁層34,34の上面とフリー磁性層26の上面とが連続面となっている。
【0074】
絶縁層34,34及びフリー磁性層26の上には、第2の電極層30が形成されている。
【0075】
この実施形態では、第2の電極層30から第1の電極層20に向けてセンス電流が流れるが、第1の電極層20から第2の電極層30に向けてセンス電流が流れても良い。従ってセンス電流は、磁気検出素子の各層を膜面と垂直方向に流れ、このようなセンス電流の流れ方向はCPP型と呼ばれる。
【0076】
フリー磁性層26、非磁性材料層25及び固定磁性層24に検出電流(センス電流)が与えられ、走行方向がZ方向であるハードディスクなどの記録媒体からの洩れ磁界がY方向に与えられると、フリー磁性層26の磁化が図示X方向からY方向へ向けて変化する。第1フリー磁性層53と第2固定磁性層52の磁化方向の関係で電気抵抗が変化し(これを磁気抵抗効果という)、この電気抵抗値の変化に基づく電圧変化または電流変化により、記録媒体からの洩れ磁界が検出される。
【0077】
図1に示される磁気検出素子は、下地層21、シード層22、反強磁性層23、固定磁性層24、非磁性材料層25、フリー磁性層26からなる多層膜T1のトラック幅方向(図示X方向)の両側端面S1,S1が連続した傾斜面となっている。
【0078】
図1に示された磁気検出素子の特徴部分について説明する。
本実施の形態の磁気検出素子は、固定磁性層24、非磁性材料層25、フリー磁性層26を形成する材料を本発明特有の規定に基づいて適切に選択するによって、抵抗変化ΔRを向上させるものである。
【0079】
図1に示される磁気検出素子の固定磁性層24、非磁性材料層25、フリー磁性層26の材料は以下に示すとおりである。
【0080】
ケース1.第2フリー磁性層55、固定磁性層24の第2固定磁性層52は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成され、
第1フリー磁性層53は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成される。
【0081】
非磁性材料層25は、第1層40と第2層41の積層体であって、第1層40はCu、第2層41はCrによって形成されている。フリー磁性層26の非磁性中間層54も第1層42と第2層43の積層体であって、第1層42はCr、第2層43はCuによって形成されている。
【0082】
ケース2.第2フリー磁性層55、固定磁性層24の第2固定磁性層52は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成され、
第1フリー磁性層53は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成される。
【0083】
非磁性材料層25は、第1層40と第2層41の積層体であって、第1層40はCr、第2層41はCuによって形成されている。フリー磁性層26の非磁性中間層54も第1層42と第2層43の積層体であって、第1層42はCu、第2層43はCrによって形成されている。
【0084】
固定磁性層24の第1固定磁性層50は第2固定磁性層52と同じ材料で形成されている。
【0085】
上記のNiX合金、CoT合金、FeZ合金、Co−Mn−D合金をA群に属する合金とし、NiM合金、CoQ合金、FeA合金をB群に属する合金とすると、A群に属する合金はβ>0である磁性材料であり、B群に属する合金はβ<0である磁性材料である。NiX合金の1例としてNi80Fe20合金をあげることができ、FeA合金の1例としてFe90Cr10合金をあげることができる。
【0086】
なお、βは、ρ↓/ρ↑=(1+β)/(1−β)(−1≦β≦1)の関係式を満たす磁性材料に固有の値である(なお、ρ↓は、伝導電子のうちマイノリティの伝導電子に対する比抵抗値であり、ρ↑は、伝導電子のうちメジャーリティの伝導電子に対する比抵抗値である)。すなわち、磁性材料のβの値が正(β>0)のとき、ρ↓>ρ↑となり、磁性材料中を流れやすいのはメジャーリティの伝導電子の方になる。一方、磁性材料のβの値が負(β<0)のとき、ρ↓<ρ↑となり、磁性材料中を流れやすいのはマイノリティの伝導電子の方になる。
【0087】
また、固定磁性層24の第2固定磁性層52と非磁性材料層25との界面、非磁性材料層25と第1フリー磁性層53の界面、第1フリー磁性層53と非磁性中間層54との界面、非磁性中間層54と第2フリー磁性層55の界面におけるγの正負の符号が、その界面に接している磁性層のβの正負の符号と等しくなっている。
【0088】
なお、γは、r↓/r↑=(1+γ)/(1−γ)(−1≦γ≦1)の関係式を満たす界面に固有の値である(なお、r↓は、伝導電子のうちマイノリティの伝導電子に対する界面抵抗値であり、r↑は、伝導電子のうちメジャーリティの伝導電子に対する界面抵抗値である)。すなわち、γの値が正(γ>0)のとき、r↓>r↑となり、界面を流れやすいのはメジャーリティの伝導電子の方になる。一方、γの値が負(γ<0)のとき、r↓<r↑となり、界面を流れやすいのはマイノリティの伝導電子の方になる。
【0089】
導電性材料の中を電流が流れるとき、伝導電子はある距離だけ進むとスピンの向きが変化する。導電性材料の中を伝導電子がスピンを変えずに進む距離をスピン拡散長(Spin Diffusion Length)という。スピン拡散長は導電性材料によって特有の値を示す。
【0090】
本実施の形態では、第1フリー磁性層53の膜厚t1、非磁性中間層54の膜厚t2、第2フリー磁性層55の膜厚t3、非磁性材料層25の膜厚t4、第2固定磁性層52の膜厚t5がすべて、それぞれの層を形成している材料のスピン拡散長より小さくなっている。
【0091】
従って、磁気抵抗効果に関与する伝導電子が例えばアップスピンの伝導電子のとき、このアップスピンの伝導電子は、スピンの方向の同一性を保持したまま第2フリー磁性層55、非磁性中間層54、第1フリー磁性層53、非磁性材料層25、第2固定磁性層52を流れることになる。
【0092】
例えば、Co90Fe10のスピン拡散長は150Å、Ni80Fe20のスピン拡散長は120Å、Ni97Crのスピン拡散長は50Å、Fe95Crのスピン拡散長は90Å、Fe80Cr20のスピン拡散長は40Å、Cuのスピン拡散長は1000Å、Crのスピン拡散長は100Åである。
【0093】
ケース1及びケース2の材料の組み合わせにおける、各磁性層とβとγの値の関係を図2にまとめる。図2には、図1に示された磁気検出素子の磁気抵抗効果に関係ある層を模式的に示している。固定磁性層24の第2固定磁性層52、第1フリー磁性層53、第2フリー磁性層55に記された矢印はそれぞれの磁性層の磁化方向を示している。ここで、磁化が図示右方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはアップスピンであり、磁化が図示左方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはダウンスピンであるとする。なお、第1フリー磁性層53と第2フリー磁性層55の磁化は、磁気検出素子の抵抗値が最も低くなるときの方向を向いている。図2では、第2固定磁性層52と第1フリー磁性層53の磁化方向が互いに反平行方向を向くときに、磁気検出素子の抵抗値が最も低くなる。
【0094】
図2をみると、ケース1の材料の組み合わせのときは、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層25、非磁性中間層54、第2非磁性材料層27)との界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0095】
また、ケース2の材料の組み合わせのときは、全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層25、非磁性中間層54)との界面における、ダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0096】
従って、低抵抗状態における伝導電子の流れやすさと高抵抗状態における伝導電子の流れやすさの差を大きくすることができ、抵抗変化ΔRを大きくすることができる。
【0097】
また、固定磁性層24、非磁性材料層25、フリー磁性層26を以下に示す材料の組み合わせで形成してもよい。
【0098】
ケース3.第2フリー磁性層55は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成され、
第1フリー磁性層53及び固定磁性層24の第2固定磁性層52は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成される。
【0099】
非磁性材料層25はCrによって形成されている。フリー磁性層26の非磁性中間層54は、第1層42と第2層43の積層体であって、第1層42はCr、第2層43はCuによって形成されている。
【0100】
ケース4.第2フリー磁性層55は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成され、
第1フリー磁性層53及び固定磁性層24の第2固定磁性層52は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成される。
【0101】
非磁性材料層25はCuによって形成されている。フリー磁性層26の非磁性中間層54は、第1層42と第2層43の積層体であって、第1層42はCu、第2層43はCrによって形成されている。
【0102】
ケース3及びケース4の材料の組み合わせにおける、各磁性層とβとγの値の関係を図3にまとめる。固定磁性層24の第2固定磁性層52、第1フリー磁性層53、第2フリー磁性層55に記された矢印はそれぞれの磁性層の磁化方向を示している。また、図3では、非磁性材料層25が単層構造である点が図2と異なっている。
【0103】
ここでも、磁化が図示右方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはアップスピンであり、磁化が図示左方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはダウンスピンであるとする。なお、第1フリー磁性層53と第2フリー磁性層55の磁化は、磁気検出素子の抵抗値が最も低くなるときの方向を向いている。図3では、第2固定磁性層52と第1フリー磁性層53の磁化方向が互いに平行方向を向くときに、磁気検出素子の抵抗値が最も低くなる。
【0104】
図3をみると、ケース3の材料の組み合わせのときは、全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層25、非磁性中間層54)との界面における、ダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0105】
また、ケース4の材料の組み合わせのときは、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層25、非磁性中間層54)との界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0106】
従って、低抵抗状態における伝導電子の流れやすさと高抵抗状態における伝導電子の流れやすさの差を大きくすることができ、抵抗変化ΔRを大きくすることができる。
【0107】
上述したケース1からケース4では、固定磁性層24の第2固定磁性層52、非磁性材料層25、第1フリー磁性層53、非磁性中間層54、第2フリー磁性層55の材料を選択して、各層のβ及び各界面のγの正負を調節した。
【0108】
ただし、本発明では、固定磁性層24の第1固定磁性層50、非磁性中間層51、第2固定磁性層52、非磁性材料層25、及び第1フリー磁性層53の材料を選択して、各層のβ及び各界面のγの正負を調節することによっても、磁気検出素子のΔRを大きくすることができる。
【0109】
具体的な材料の組み合わせ例を以下に示す。
ケース5.第2固定磁性層52は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成され、
第1固定磁性層50及び第1フリー磁性層53は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成される。
【0110】
固定磁性層24の非磁性中間層51は第1層44と第2層45の積層体であって、第1層44はCr、第2層45はCuによって形成されている。非磁性材料層25も、第1層40と第2層41の積層体であって、第1層40はCu、第2層41はCrによって形成されている。
【0111】
ケース6.第2固定磁性層52は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成され、
第1固定磁性層50及び第1フリー磁性層53は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成される。
【0112】
固定磁性層24の非磁性中間層51は第1層44と第2層45の積層体であって、第1層44はCu、第2層45はCrによって形成されている。非磁性材料層25も、第1層40と第2層41の積層体であって、第1層40はCr、第2層41はCuによって形成されている。
【0113】
ケース5及びケース6の材料の組み合わせにおける、各磁性層とβとγの値の関係を図4にまとめる。第1固定磁性層50、第2固定磁性層52、第1フリー磁性層53に記された矢印はそれぞれの磁性層の磁化方向を示している。
【0114】
ここでも、磁化が図示右方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはアップスピンであり、磁化が図示左方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはダウンスピンであるとする。なお、第1フリー磁性層53の磁化は、磁気検出素子の抵抗値が最も低くなるときの方向を向いている。図4では、第2固定磁性層52と第1フリー磁性層53の磁化方向が互いに反平行方向を向くときに磁気検出素子の抵抗値が最も低くなる。
【0115】
図4をみると、ケース5の材料の組み合わせのときは、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性中間層51、非磁性材料層25)との界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0116】
また、ケース6の材料の組み合わせのときは、全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性中間層51、非磁性材料層25)との界面における、ダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0117】
従って、低抵抗状態における伝導電子の流れやすさと高抵抗状態における伝導電子の流れやすさの差を大きくすることができ、抵抗変化ΔRを大きくすることができる。
【0118】
また、第1固定磁性層50、非磁性中間層51、第2固定磁性層52、非磁性材料層25、フリー磁性層26を以下に示す材料の組み合わせで形成してもよい。
【0119】
ケース7.第1フリー磁性層53、及び第2固定磁性層52は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成され、
第1固定磁性層50は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成される。
【0120】
固定磁性層24の非磁性中間層51は第1層44と第2層45の積層体であって、第1層44はCr、第2層45はCuによって形成されている。非磁性材料層25はCuによって形成されている。
【0121】
ケース8.第1フリー磁性層53、及び第2固定磁性層52は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成され、
第1固定磁性層50は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成される。
【0122】
固定磁性層24の非磁性中間層51は第1層44と第2層45の積層体であって、第1層44はCu、第2層45はCrによって形成されている。非磁性材料層25はCrによって形成されている。
【0123】
ケース7及びケース8の材料の組み合わせにおける、各磁性層とβとγの値の関係を図5にまとめる。第1固定磁性層50、第2固定磁性層52、第1フリー磁性層53に記された矢印はそれぞれの磁性層の磁化方向を示している。また、図5では、非磁性材料層25が単層構造である点が図4と異なっている。
【0124】
ここでも、磁化が図示右方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはアップスピンであり、磁化が図示左方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはダウンスピンであるとする。なお、第1フリー磁性層53と第2フリー磁性層55の磁化は、磁気検出素子の抵抗値が最も低くなるときの方向を向いている。図5では、第2固定磁性層52と第1フリー磁性層53の磁化方向が互いに平行方向を向くときに、磁気検出素子の抵抗値が最も低くなる。
【0125】
図5をみると、ケース7の材料の組み合わせのときは、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性中間層51、非磁性材料層25)との界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0126】
また、ケース8の材料の組み合わせのときは、全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性中間層51、非磁性材料層25)との界面における、ダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0127】
従って、低抵抗状態における伝導電子の流れやすさと高抵抗状態における伝導電子の流れやすさの差を大きくすることができ、抵抗変化ΔRを大きくすることができる。
【0128】
なお、上述した実施の形態では、フリー磁性層26及び固定磁性層24の両方が人工フェリ構造であるものとした。ただし、ケース1から4の場合には固定磁性層24は単層また磁性層のみの積層体であってもよく、ケース5から8の場合には、フリー磁性層26が単層または磁性層のみの積層体であってもよい。
【0129】
図6は本発明における第2実施形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図である。
【0130】
図6に示された磁気検出素子は図1に示された磁気検出素子に類似しており、フリー磁性層26に縦バイアスを与える方式が、図1に示された磁気検出素子と異なっている。
【0131】
なお、図1と同じ符号で示される層は、特に説明がない限り図1と同じ材料及び膜厚で形成された同一の層である。
【0132】
図6に示される磁気検出素子では、フリー磁性層26の両側領域にハードバイアス層が形成されず、かわりにフリー磁性層26上に、中間層81を介してインスタックバイアス層82が形成されている。下地層21からインスタックバイアス層82まで重ねられた各層によって多層膜T2が形成されている。
【0133】
このインスタックバイアス層82はCoPtなどの硬磁性材料によって形成され、図示X方向に着磁されている。なお、インスタックバイアス層82と中間層81の間に、Crからなる下地層が形成されてもよい。中間層81の材料はTa、W、Mo、Cr、Cuなどの非磁性導伝性材料である。
この実施形態では、インスタックバイアス層82の両側端部からフリー磁性層26に向けて縦バイアス磁界(静磁界)が供給され(矢印Mで示す)、フリー磁性層26の第2フリー磁性層55の磁化が図示X方向と反平行方向に向けられている。
【0134】
また、図6では、第2フリー磁性層55の単位面積当たりの磁気モーメントが、第1フリー磁性層53の単位面積当たりの磁気モーメントより大きくなっており、第2フリー磁性層55の磁化がインスタックバイアス層82から与えられる縦バイアス磁界と同じ方向を向いている状態を安定化させている。
【0135】
図6に示されるインスタックバイアス層82が設けられた磁気検出素子は、フリー磁性層26が強固に磁化されることがなくフリー磁性層26の磁区制御を適正化でき、フリー磁性層26の外部磁界に対する磁化変動を良好にすることが可能である。また多層膜T2の両側端面S2,S2の両側領域にはアルミナまたはSiOからなる絶縁層83,83のみが形成されている。したがってセンス電流の分流ロスを低減させることが可能である。
【0136】
なお、図6に示される磁気検出素子は、フリー磁性層26上にのみインスタックバイアス層82を形成しているが、下側の反強磁性層23の下にインスタックバイアス層を設けてもよいし、フリー磁性層26上と反強磁性層23の下の両方にインスタックバイアス層を設けてもよい。
【0137】
ただし、フリー磁性層26の第1フリー磁性層53と第2フリー磁性層55の磁化方向を反平行にさせるために、フリー磁性層26の上または下側の反強磁性層23の下のどちらか一方にのみインスタックバイアス層を設けることが好ましい。その上で、フリー磁性層26の第1フリー磁性層53と第2フリー磁性層55のうち、インスタックバイアス層に近い方の膜厚を厚くすることがより好ましい。
【0138】
図7は本発明における第3実施形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図である。
【0139】
図7に示された磁気検出素子は図1に示された磁気検出素子に類似しており、フリー磁性層84が3層の人工フェリ構造である点で図1に示された磁気検出素子と異なっている。
【0140】
フリー磁性層84は、第1フリー磁性層85、非磁性中間層86、第2フリー磁性層87、非磁性中間層88、第3フリー磁性層89からなっている。第1フリー磁性層85と第2フリー磁性層87の磁化方向は、非磁性中間層86を介したRKKY相互作用によって互いに反平行方向になっている。同様に、第2フリー磁性層87と第3フリー磁性層89の磁化方向も、非磁性中間層88を介したRKKY相互作用によって互いに反平行方向になっている。
【0141】
フリー磁性層84を3層の人工フェリ構造にすると、第1フリー磁性層85
、第2フリー磁性層87、第3フリー磁性層89の磁化方向を互いに反平行方向に固定するスピンフロップ磁界が、図1ないし図6に示された2層の人工フェリ構造のフリー磁性層26に比べて2倍以上になる。従って、第1フリー磁性層85、第2フリー磁性層87、第3フリー磁性層89の磁化方向の反平行状態が縦バイアス磁界によって崩されることを防止でき、フリー磁性層全体の単磁区構造が安定化し、バルクハウゼンノイズを著しく低減できる。
【0142】
図7に示される磁気検出素子の固定磁性層24、フリー磁性層84、及び非磁性材料層25の材料は以下に示すとおりである。
【0143】
ケース1.第1フリー磁性層85、第3フリー磁性層89は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成され、
第2フリー磁性層87、第2固定磁性層52は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成される。
【0144】
非磁性材料層25は第1層40と第2層41の積層体であって、第1層40はCr、第2層41はCuよって形成されている。フリー磁性層84の非磁性中間層86は、第1層90と第2層91の積層体であって、第1層90はCu、第2層91はCrによって形成されている。非磁性中間層88も第1層92と第2層93の積層体であって、第1層92はCr、第2層93はCuによって形成されている。
【0145】
ケース2.第1フリー磁性層85、第3フリー磁性層89は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成され、
第2フリー磁性層87及び第2固定磁性層52は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成される。
【0146】
非磁性材料層25は第1層40と第2層41の積層体であって、第1層40はCu、第2層41はCrよって形成されている。フリー磁性層84の非磁性中間層86は、第1層90と第2層91の積層体であって、第1層90はCr、第2層91はCuによって形成されている。非磁性中間層88も第1層92と第2層93の積層体であって、第1層92はCu、第2層93はCrによって形成されている。
【0147】
固定磁性層24の第1固定磁性層50は第2固定磁性層52と同じ材料で形成されている。
【0148】
上記のNiX合金、CoT合金、FeZ合金、Co−Mn−D合金をA群に属する合金とし、NiM合金、CoQ合金、FeA合金をB群に属する合金とすると、A群に属する合金はβ>0である磁性材料であり、B群に属する合金はβ<0である磁性材料である。NiX合金の1例としてNi80Fe20合金をあげることができ、FeA合金の1例としてFe90Cr10合金をあげることができる。
【0149】
なお、βは、ρ↓/ρ↑=(1+β)/(1−β)(−1≦β≦1)の関係式を満たす磁性材料に固有の値である(なお、ρ↓は、伝導電子のうちマイノリティの伝導電子に対する比抵抗値であり、ρ↑は、伝導電子のうちメジャーリティの伝導電子に対する比抵抗値である)。すなわち、磁性材料のβの値が正(β>0)のとき、ρ↓>ρ↑となり、磁性材料中を流れやすいのはメジャーリティの伝導電子の方になる。一方、磁性材料のβの値が負(β<0)のとき、ρ↓<ρ↑となり、磁性材料中を流れやすいのはマイノリティの伝導電子の方になる。
【0150】
また第2固定磁性層52と非磁性材料層25との界面、非磁性材料層25と第1フリー磁性層85の界面、第1フリー磁性層85と非磁性中間層86との界面、非磁性中間層86と第2フリー磁性層87の界面、第2フリー磁性層87と非磁性中間層88の界面、非磁性中間層88と第3フリー磁性層89の界面におけるγの正負の符号が、その界面に接している磁性層のβの正負の符号と等しくなっている。
【0151】
なお、γは、r↓/r↑=(1+γ)/(1−γ)(−1≦γ≦1)の関係式を満たす界面に固有の値である(なお、r↓は、伝導電子のうちマイノリティの伝導電子に対する界面抵抗値であり、r↑は、伝導電子のうちメジャーリティの伝導電子に対する界面抵抗値である)。すなわち、γの値が正(γ>0)のとき、r↓>r↑となり、界面を流れやすいのはメジャーリティの伝導電子の方になる。一方、γの値が負(γ<0)のとき、r↓<r↑となり、界面を流れやすいのはマイノリティの伝導電子の方になる。
【0152】
導電性材料の中を電流が流れるとき、伝導電子はある距離だけ進むとスピンの向きが変化する。導電性材料の中を伝導電子がスピンを変えずに進む距離をスピン拡散長(Spin Diffusion Length)という。スピン拡散長は導電性材料によって特有の値を示す。
【0153】
例えば、Co90Fe10のスピン拡散長は150Å、Ni80Fe20のスピン拡散長は120Å、Ni97Crのスピン拡散長は50Å、Fe95Crのスピン拡散長は90Å、Fe80Cr20のスピン拡散長は40Å、Cuのスピン拡散長は1000Å、Crのスピン拡散長は100Åである。
【0154】
本実施の形態では、第1フリー磁性層85の膜厚t10、非磁性中間層86の膜厚t11、第2フリー磁性層87の膜厚t12、非磁性中間層88の膜厚t13、第3フリー磁性層89の膜厚t14、非磁性材料層25の膜厚t4、第2固定磁性層52の膜厚t5がすべて、それぞれの層を形成している材料のスピン拡散長より小さくなっている。
【0155】
従って、磁気抵抗効果に関与する伝導電子が例えばアップスピンの伝導電子のとき、このアップスピンの伝導電子は、スピンの方向の同一性を保持したまま第2固定磁性層52、非磁性材料層25、第1フリー磁性層85、非磁性中間層86、第2フリー磁性層87、非磁性中間層88、第3フリー磁性層89を流れることになる。
【0156】
ケース1及びケース2の材料の組み合わせにおける、各磁性層とβとγの値の関係を図8にまとめる。図8には、図7に示された磁気検出素子の磁気抵抗効果に関係ある層を模式的に示している。固定磁性層24の第2固定磁性層52、第1フリー磁性層85、第2フリー磁性層87、第3フリー磁性層89に記された矢印はそれぞれの磁性層の磁化方向を示している。ここで、磁化が図示右方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはアップスピンであり、磁化が図示左方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはダウンスピンであるとする。なお、第1フリー磁性層85、第2フリー磁性層87、第3フリー磁性層89の磁化は、磁気検出素子の抵抗値が最も低くなるときの方向を向いている。図8では、第2固定磁性層52と第1フリー磁性層85の磁化方向が互いに反平行方向を向くときに、磁気検出素子の抵抗値が最も低くなる。
【0157】
図8をみると、ケース1の材料の組み合わせのときは、全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層25、非磁性中間層86、非磁性中間層88)との界面における、ダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0158】
また、ケース2の材料の組み合わせのときは、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層25、非磁性中間層86、非磁性中間層88)との界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0159】
従って、低抵抗状態における伝導電子の流れやすさと高抵抗状態における伝導電子の流れやすさの差を大きくすることができ、抵抗変化ΔRを大きくすることができる。
【0160】
また、固定磁性層24、非磁性材料層25、フリー磁性層84を以下に示す材料の組み合わせで形成してもよい。
【0161】
ケース3.第1フリー磁性層85、第3フリー磁性層89、第2固定磁性層52は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成され、
第2フリー磁性層87は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成される。
【0162】
非磁性材料層25はCrよって形成されている。フリー磁性層84の非磁性中間層86は、第1層90と第2層91の積層体であって、第1層90はCr、第2層91はCuによって形成されている。非磁性中間層88も第1層92と第2層93の積層体であって、第1層92はCu、第2層93はCrによって形成されている。
【0163】
ケース4.第1フリー磁性層85、第3フリー磁性層89、第2固定磁性層52は、NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)によって形成され、
第2フリー磁性層87は、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)によって形成される。
【0164】
非磁性材料層25はCuによって形成されている。フリー磁性層84の非磁性中間層86は、第1層90と第2層91の積層体であって、第1層90はCu、第2層91はCrによって形成されている。非磁性中間層88は、第1層92と第2層93の積層体であって、第1層92はCr、第2層93はCuによって形成されている。
【0165】
固定磁性層24の第1固定磁性層50は第2固定磁性層52と同じ材料で形成されている。
【0166】
ケース3及びケース4の材料の組み合わせにおける、各磁性層とβとγの値の関係を図9にまとめる。第2固定磁性層52、第1フリー磁性層85、第2フリー磁性層87、第3フリー磁性層89に記された矢印はそれぞれの磁性層の磁化方向を示している。また、図9では、非磁性材料層25が単層構造である点が図8と異なっている。
【0167】
ここでも、磁化が図示右方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはアップスピンであり、磁化が図示左方向を向いている磁性層の磁性に関わる電子のメジャーリティスピンはダウンスピンであるとする。なお、第1フリー磁性層85、第2フリー磁性層87、第3フリー磁性層89の磁化は、磁気検出素子の抵抗値が最も低くなるときの方向を向いている。図9では、第2固定磁性層52と第1フリー磁性層85の磁化方向が互いに平行方向を向くときに、磁気検出素子の抵抗値が最も低くなる。
【0168】
図9をみると、ケース3の材料の組み合わせのときは、全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層25、非磁性中間層86、非磁性中間層88)との界面における、ダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0169】
また、ケース4の材料の組み合わせのときは、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さく、また、全ての磁性層と非磁性材料からなる層(非磁性材料層25、非磁性中間層86、非磁性中間層88)との界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さくなっている。
【0170】
従って、低抵抗状態における伝導電子の流れやすさと高抵抗状態における伝導電子の流れやすさの差を大きくすることができ、抵抗変化ΔRを大きくすることができる。
【0171】
図1に示された磁気検出素子の製造方法について説明する。
まず、第1の電極層20の中央上に、下から下地層21、シード層22、反強磁性層23、第1固定磁性層50、非磁性中間層51、第2固定磁性層52(固定磁性層24)、非磁性材料層25、第1フリー磁性層53、非磁性中間層54、第2フリー磁性層55(フリー磁性層26)を真空中でベタ膜状に連続成膜して多層膜T1の積層構造を形成する。各層の材料及び膜厚は、図1に示された完成後の磁気検出素子と同じである。
【0172】
多層膜T1をハイト方向(図示Y方向)の磁場中でアニールして、反強磁性層23と固定磁性層24の第1固定磁性層50間に交換結合磁界を発生させる。
【0173】
磁場中アニールの温度は例えば270℃であり、磁界の大きさは、800kA/mの強磁場で行うか、または8〜30(kA/m)、例えば24(kA/m)である。
【0174】
次に、フリー磁性層26上に、磁気検出素子の光学的な素子面積と同程度かあるいはそれよりも若干小さい面積を覆うリフトオフ用のレジスト層を形成する。
【0175】
次に、前記レジスト層に覆われていない、フリー磁性層26から下地層21までの多層膜T1をイオンミリングなどで除去する。これにより第1の電極層20の上面中央には、下地層21からフリー磁性層までで構成される多層膜T1が略台形状となって残される。なおイオンミリング後、多層膜T1の両側端面S1,S1にはミリングで除去された物質の一部が再付着するので、再付着物をサイドミリングで除去することが好ましい。
【0176】
次に、第1の電極層20上から多層膜T1の両側端面S1,S1上にかけて、Alなどで形成された絶縁層31,31、Crなどで形成されたバイアス下地層32,32、CoPtCrなどで形成されたハードバイアス層33,33及びAlなどで形成された絶縁層34,34をスパッタ成膜する。
【0177】
なお、絶縁層31,31から絶縁層34,34までの各層のスパッタ成膜の際におけるスパッタ粒子照射角度は基板に対しほぼ垂直方向とすることが好ましい。
【0178】
多層膜T1の両側領域に絶縁層31,31から絶縁層34,34までの各層を積層した後、前記レジスト層を除去する。
【0179】
その後、絶縁層34,34上から多層膜T1のフリー磁性層26上にかけて第2の電極層30をスパッタ成膜することにより、図1に示された磁気検出素子を形成できる。
【0180】
なお、上述した実施の形態では、磁性層及び非磁性材料からなる層のβ、γ両方の正負をアップスピンまたはダウンスピンの伝導電子に対する比抵抗や界面抵抗の観点から最適化するように調節した。ただし、本発明には、磁性層のβのみ実施の形態に示したように調節したり、界面のγのみを調節したものも含まれる。例えば、各磁性層を実施の形態に示したβの組み合わせになる材料で形成し、各非磁性材料層はCu、各非磁性中間層はRuで形成するという形態でもよい。
【0181】
なお、上述した実施の形態では、磁気検出素子の各層の膜厚上下方向にセンス電流が流れるCPP型(current perpendicular to the plane)のスピンバルブ型磁気検出素子を示した。ただし、本発明には、磁気検出素子の各層の膜厚水平方向にセンス電流が流れるCIP型(current in the plane)のスピンバルブ型磁気検出素子も含まれる。
【0182】
【発明の効果】
以上詳細に説明した本発明では、前記第1フリー磁性層、前記第2フリー磁性層、前記第3フリー磁性層、前記第1固定磁性層、前記第2固定磁性層(以下これらをまとめて呼ぶときは単に磁性層と呼ぶ)それぞれを形成する磁性材料のβを規定することにより、抵抗値が最も低くなるようにフリー磁性層の磁化が変化したときに、全ての磁性層においてアップスピンの伝導電子に対する抵抗値がダウンスピンの伝導電子に対する抵抗値よりも小さくなるか、または全ての磁性層においてダウンスピンの伝導電子に対する抵抗値がアップスピンの伝導電子に対する抵抗値よりも小さくなり、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0183】
さらに、本発明では、前記第1フリー磁性層、前記第2フリー磁性層、前記第3フリー磁性層、前記第1固定磁性層、または前記第2固定磁性層と、前記非磁性材料層または前記非磁性中間層の界面におけるγの正負の符号を、その界面に接している磁性層のβの正負の符号と等しくすることにより、抵抗値が最も低くなるようにフリー磁性層の磁化が変化したときに、磁性層と非磁性材料からなる層(非磁性材料層及び非磁性中間層)との全ての界面における、アップスピンの伝導電子に対する界面抵抗値がダウンスピンの伝導電子に対する界面抵抗値よりも小さくなるか、または、全ての前記界面におけるダウンスピンの伝導電子に対する界面抵抗値がアップスピンの伝導電子に対する界面抵抗値よりも小さくなり、磁気検出素子の抵抗変化ΔRを大きくすることができる。
【0184】
なお、上記のようにγを規定するためには、前記非磁性材料層または前記非磁性中間層の上面と磁性層との界面におけるγの正負の符号と、前記非磁性材料層または前記非磁性中間層の下面と磁性層との界面におけるγの正負の符号を異ならせることが必要になる場合があるが、本発明では、前記非磁性材料層及び/または前記非磁性中間層を、種類の異なる非磁性材料からなる2層構造とすることによってそのような問題を解決できる。
【図面の簡単な説明】
【図1】本発明における第1の実施形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図2】本発明の磁気検出素子の磁性層のβの正負と、磁性層と非磁性材料からなる層の界面におけるγの組み合わせの例を示す様式図、
【図3】本発明の磁気検出素子の磁性層のβの正負と、磁性層と非磁性材料からなる層の界面におけるγの組み合わせの例を示す様式図、
【図4】本発明の磁気検出素子の磁性層のβの正負と、磁性層と非磁性材料からなる層の界面におけるγの組み合わせの例を示す様式図、
【図5】本発明の磁気検出素子の磁性層のβの正負と、磁性層と非磁性材料からなる層の界面におけるγの組み合わせの例を示す様式図、
【図6】本発明における第2の実施形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図7】本発明における第3の実施形態の磁気検出素子を記録媒体との対向面側から見た断面図、
【図8】本発明の磁気検出素子の磁性層のβの正負と、磁性層と非磁性材料からなる層の界面におけるγの組み合わせの例を示す様式図、
【図9】本発明の磁気検出素子の磁性層のβの正負と、磁性層と非磁性材料からなる層の界面におけるγの組み合わせの例を示す様式図、
【図10】従来の磁気検出素子を記録媒体との対向面側から見た断面図、
【図11】従来の磁気検出素子の磁性層のβの正負と、磁性層と非磁性材料からなる層の界面におけるγの組み合わせを示す様式図、
【符号の説明】
20 第1の電極層
21 下地層
22 シード層
23 反強磁性層
24 固定磁性層
25 非磁性材料層
26、84 フリー磁性層
53 第1フリー磁性層
54 非磁性中間層
55 第2フリー磁性層
30 第2の電極層
31、34 絶縁層
32 バイアス下地層
33 ハードバイアス層
80 インスタックバイアス層
81 中間層

Claims (15)

  1. 反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
    前記フリー磁性層は、第1フリー磁性層の上に第2フリー磁性層が、非磁性中間層を介して積層されたものであり、
    前記第1フリー磁性層、前記固定磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第2フリー磁性層を形成している磁性材料のβの正負の符号は前記第1フリー磁性層のβと異なっているか、または、前記第2フリー磁性層、前記固定磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第1フリー磁性層を形成している磁性材料のβの正負の符号は前記第2フリー磁性層のβと異なっていることを特徴とする磁気検出素子。
    ただし、βは、ρ↓/ρ↑=(1+β)/(1−β) (−1≦β≦1)の関係式を満たす磁性材料に固有の値である(なお、ρ↓は、伝導電子のうちマイノリティーの伝導電子に対する比抵抗値であり、ρ↑は、伝導電子のうちメジャーリティの伝導電子に対する比抵抗値である)。
  2. 前記非磁性中間層の膜厚、前記第1フリー磁性層の膜厚、前記非磁性材料層の膜厚がすべて、それぞれの層を形成している材料のスピン拡散長より小さい請求項1記載の磁気検出素子。
  3. 反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
    前記固定磁性層は、第1固定磁性層の上に第2固定磁性層が、非磁性中間層を介して積層されたものであり、
    前記第2固定磁性層、前記フリー磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第1固定磁性層を形成している磁性材料のβの正負の符号は前記第2固定磁性層のβと異なっているか、または、前記第1固定磁性層、前記フリー磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第2固定磁性層を形成している磁性材料のβの正負の符号は前記第1固定磁性層のβと異なっていることを特徴とする磁気検出素子。
    ただし、βは、ρ↓/ρ↑=(1+β)/(1−β) (−1≦β≦1)の関係式を満たす磁性材料に固有の値である(なお、ρ↓は、伝導電子のうちマイノリティーの伝導電子に対する比抵抗値であり、ρ↑は、伝導電子のうちメジャーリティの伝導電子に対する比抵抗値である)。
  4. 前記フリー磁性層の膜厚、前記非磁性材料層の膜厚、前記第2固定磁性層の膜厚、前記非磁性中間層の膜厚がすべて、それぞれの層を形成している材料のスピン拡散長より小さい請求項3記載の磁気検出素子。
  5. 反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
    前記フリー磁性層は、第1フリー磁性層、非磁性中間層、第2フリー磁性層、非磁性中間層、及び第3フリー磁性層順に積層されたものであり、
    前記第3フリー磁性層、前記第1フリー磁性層、前記固定磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第2フリー磁性層を形成している磁性材料のβの正負の符号は前記第1フリー磁性層のβと異なっているか、または、前記第2フリー磁性層、及び前記固定磁性層を形成している磁性材料のβは正負の符号が同じものであり、前記第1フリー磁性層及び前記第3フリー磁性層を形成している磁性材料のβの正負の符号は前記第2フリー磁性層のβと異なっていることを特徴とする磁気検出素子。
    ただし、βは、ρ↓/ρ↑=(1+β)/(1−β) (−1≦β≦1)の関係式を満たす磁性材料に固有の値である(なお、ρ↓は、伝導電子のうちマイノリティーの伝導電子に対する比抵抗値であり、ρ↑は、伝導電子のうちメジャーリティの伝導電子に対する比抵抗値である)。
  6. 前記非磁性中間層の膜厚、前記第2フリー磁性層の膜厚、前記非磁性中間層の膜厚、及び前記第1フリー磁性層の膜厚並びに、前記非磁性材料層の膜厚がすべて、それぞれの層を形成している材料のスピン拡散長より小さい請求項5記載の磁気検出素子。
  7. 前記第1フリー磁性層、第2フリー磁性層又は第3フリー磁性層、或いは第1固定磁性層又は第2固定磁性層と、前記非磁性材料層又は前記非磁性中間層との界面におけるγの正負の符号が、その界面に接している磁性層のβの正負の符号と等しい請求項1ないし6のいずれかに記載の磁気検出素子。
    ただし、γは、r↓/r↑=(1+γ)/(1−γ)(−1≦γ≦1)の関係式を満たす界面に固有の値である(なお、r↓は、伝導電子のうちマイノリティーの伝導電子に対する界面抵抗値であり、r↑は、伝導電子のうちメジャーリティの伝導電子に対する界面抵抗値である)。
  8. 前記非磁性材料層及び/または前記非磁性中間層が、種類の異なる非磁性材料からなる2層構造を有することにより、前記非磁性材料層または前記非磁性中間層の上面と磁性層の界面におけるγの正負の符号と、前記非磁性材料層または前記非磁性中間層の下面と磁性層の界面におけるγの正負の符号が異なっている請求項7記載の磁気検出素子。
  9. 反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
    前記フリー磁性層は、第1フリー磁性層の上に第2フリー磁性層が、非磁性中間層を介して積層されたものであり、
    NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)をA群に属する合金とし、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)をB群に属する合金としたときに、
    前記第1フリー磁性層、及び前記固定磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第2フリー磁性層を形成している磁性材料は前記第1フリー磁性層が属する群と異なる群に属する合金であるか、または、前記第2フリー磁性層、及び前記固定磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第1フリー磁性層を形成している磁性材料は前記第2フリー磁性層が属する群と異なる群に属する合金であることを特徴とする磁気検出素子。
  10. 前記非磁性中間層の膜厚、前記第1フリー磁性層の膜厚、前記非磁性材料層の膜厚がすべて、それぞれの層を形成している材料のスピン拡散長より小さい請求項9記載の磁気検出素子。
  11. 反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
    前記固定磁性層は、第1固定磁性層の上に第2固定磁性層が、非磁性中間層を介して積層されたものであり、
    NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)をA群に属する合金とし、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)をB群に属する合金としたときに、
    前記第2固定磁性層及び前記フリー磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第1固定磁性層を形成している磁性材料は前記第2固定磁性層が属する群と異なる群に属する合金であるか、または、前記第1固定磁性層及び前記フリー磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第2固定磁性層を形成している磁性材料は前記第1固定磁性層が属する群と異なる群に属する合金であることを特徴とする磁気検出素子。
  12. 前記フリー磁性層の膜厚、前記非磁性材料層の膜厚、前記第2固定磁性層の膜厚、前記非磁性中間層がすべて、それぞれの層を形成している材料のスピン拡散長より小さい請求項11記載の磁気検出素子。
  13. 反強磁性層、固定磁性層、非磁性材料層、フリー磁性層が順に積層されている多層膜を有する磁気検出素子において、
    前記フリー磁性層は、第1フリー磁性層、非磁性中間層、第2フリー磁性層、非磁性中間層、及び第3フリー磁性層が順に積層されたものであり、
    NiX合金(ただし、XはCo、Fe、Mn、Zr、Hf、Cu、Auから選ばれる1種の元素である)、CoT合金(ただし、Tは、Fe、Zr、Ta、Hfから選ばれる1種の元素である)、FeZ合金(ただし、ZはNi、Co、Rh、Pt、Ir、Be、Al、Si、Ga、Geから選ばれる1種の元素である)、またはCo−Mn−D合金(ただし、DはAl、Ga、Si、Ge、Snから選ばれる1種の元素である)をA群に属する合金とし、NiM合金(ただし、MはCr、Rh、Ru、Mo、Nb、Pt、Ir、Os、Re、W、Taから選ばれる1種の元素である)、CoQ合金(ただし、QはMn、Cr、Ru、Mo、Ir、Os、Re、Wから選ばれる1種の元素である)、またはFeA合金(ただし、AはMn、Cr、V、Ti、Ru、Mo、Os、Re、Wから選ばれる1種の元素である)をB群に属する合金としたときに、
    前記第3フリー磁性層、前記第1フリー磁性層及び前記固定磁性層を形成している磁性材料は、前記A群またはB群のうち同じ群に属する合金であり、前記第2フリー磁性層を形成している磁性材料は前記第1フリー磁性層が属する群とは異なる群に属する合金であるか、または、前記第1フリー磁性層、及び前記第3フリー磁性層を形成している磁性材料は前記A群またはB群のうち同じ群に属する合金であり、前記第2フリー磁性層及び前記固定磁性層を形成している磁性材料は、前記第1フリー磁性層が属する群とは異なる群に属する合金であることを特とする磁気検出素子。
  14. 前記非磁性中間層の膜厚、前記第2フリー磁性層の膜厚、前記非磁性中間層の膜厚、及び前記第1フリー磁性層の膜厚並びに、前記非磁性材料層の膜厚がすべて、それぞれの層を形成している材料のスピン拡散長より小さい請求項13記載の磁気検出素子。
  15. 前記非磁性材料層、または前記非磁性中間層のうち少なくとも一つはCu層とCr層が積層された積層膜であって、この積層膜が、前記A群に属している合金によって形成された磁性層と前記B群に属している合金によって形成された磁性層に挟まれている請求項9ないし14のいずれかに記載の磁気検出素子。
JP2002250658A 2002-08-29 2002-08-29 磁気検出素子 Expired - Fee Related JP4245318B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002250658A JP4245318B2 (ja) 2002-08-29 2002-08-29 磁気検出素子
US10/641,538 US6806804B2 (en) 2002-08-29 2003-08-14 Magnetic detecting element having β-values selected for free magnetic layer and pinned magnetic layer
GB0320095A GB2392508B (en) 2002-08-29 2003-08-28 Magnetic detecting element having ß-values selected for free magnetic layer and pinned magnetic layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250658A JP4245318B2 (ja) 2002-08-29 2002-08-29 磁気検出素子

Publications (2)

Publication Number Publication Date
JP2004095583A true JP2004095583A (ja) 2004-03-25
JP4245318B2 JP4245318B2 (ja) 2009-03-25

Family

ID=28786855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250658A Expired - Fee Related JP4245318B2 (ja) 2002-08-29 2002-08-29 磁気検出素子

Country Status (3)

Country Link
US (1) US6806804B2 (ja)
JP (1) JP4245318B2 (ja)
GB (1) GB2392508B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158058A (ja) * 2005-12-06 2007-06-21 Alps Electric Co Ltd 磁気検出素子
US7466525B2 (en) 2004-09-03 2008-12-16 Tdk Corporation Magnetic sensing element including laminated film composed of half-metal and NiFe alloy as free layer

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130166B2 (en) * 2003-07-02 2006-10-31 Hitachi Global Storage Technologies Netherlands B.V. CPP GMR with improved synthetic free layer
JP2005050842A (ja) * 2003-07-29 2005-02-24 Alps Electric Co Ltd 交換結合膜及びこの交換結合膜の製造方法並びに前記交換結合膜を用いた磁気検出素子
JP2005109241A (ja) * 2003-09-30 2005-04-21 Tdk Corp 磁気抵抗効果素子及びその製造方法並びに磁気ヘッド
US7236336B2 (en) * 2004-04-30 2007-06-26 Hitachi Global Storage Technologies Inc, Netherlands B.V. Method and apparatus for providing a free layer having higher saturation field capability and optimum sensitivity
US7414816B2 (en) * 2004-05-28 2008-08-19 Hitachi Global Storage Technologies Netherlands B.V. Planar magnetic thin film head
US7324312B2 (en) * 2004-08-30 2008-01-29 Hitachi Global Storage Technologies Netherlands B.V. Sensor with in-stack bias structure providing exchange stabilization
US7397637B2 (en) * 2004-08-30 2008-07-08 Hitachi Global Storage Technologies Netherlands B.V. Sensor with in-stack bias structure providing enhanced magnetostatic stabilization
US20060050446A1 (en) * 2004-09-03 2006-03-09 Alps Electric Co., Ltd. Magnetic sensing element including laminated film composed of half-metal and NiFe alloy as free layer
JP2006128410A (ja) * 2004-10-28 2006-05-18 Alps Electric Co Ltd 磁気検出素子及びその製造方法
US7612970B2 (en) * 2005-02-23 2009-11-03 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with a free layer stabilized by direct coupling to in stack antiferromagnetic layer
US7394624B2 (en) 2005-02-23 2008-07-01 Hitachi Global Storage Technologies Netherlands B.V. Read sensor with a uniform longitudinal bias stack
JP2006319259A (ja) * 2005-05-16 2006-11-24 Fujitsu Ltd 強磁性トンネル接合素子、これを用いた磁気ヘッド、磁気記録装置、および磁気メモリ装置
US7646568B2 (en) * 2005-12-23 2010-01-12 Headway Technologies, Inc. Ultra thin seed layer for CPP or TMR structure
US7768749B2 (en) * 2006-02-10 2010-08-03 Hitachi Global Storage Technologies Netherlands B.V. Tunnel MR head with long stripe height stabilized through side-extended bias layer
JP4622953B2 (ja) * 2006-08-01 2011-02-02 Tdk株式会社 磁気抵抗効果素子の製造方法及び薄膜磁気ヘッドの製造方法
US20090161268A1 (en) * 2007-12-22 2009-06-25 Tsann Lin Current-perpendicular-to-plane read sensor with amorphous ferromagnetic and polycrystalline nonmagnetic seed layers
US9442171B2 (en) * 2008-01-09 2016-09-13 Seagate Technology Llc Magnetic sensing device with reduced shield-to-shield spacing
JP2014007339A (ja) 2012-06-26 2014-01-16 Ibiden Co Ltd インダクタ部品、その製造方法及びプリント配線板
US9099115B2 (en) * 2013-11-12 2015-08-04 HGST Netherlands B.V. Magnetic sensor with doped ferromagnetic cap and/or underlayer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287238A (en) 1992-11-06 1994-02-15 International Business Machines Corporation Dual spin valve magnetoresistive sensor
KR950704820A (ko) 1993-10-06 1995-11-20 프레데릭 얀 스미트 자기 저항 장치 및, 이 장치를 이용한 자기헤드(Magneto-resistance device, and magnetic head employing such a device)
JP3253556B2 (ja) 1997-05-07 2002-02-04 株式会社東芝 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気記憶装置
US6905780B2 (en) 2001-02-01 2005-06-14 Kabushiki Kaisha Toshiba Current-perpendicular-to-plane-type magnetoresistive device, and magnetic head and magnetic recording-reproducing apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466525B2 (en) 2004-09-03 2008-12-16 Tdk Corporation Magnetic sensing element including laminated film composed of half-metal and NiFe alloy as free layer
JP2007158058A (ja) * 2005-12-06 2007-06-21 Alps Electric Co Ltd 磁気検出素子

Also Published As

Publication number Publication date
GB2392508B (en) 2005-11-16
GB0320095D0 (en) 2003-10-01
JP4245318B2 (ja) 2009-03-25
US20040041679A1 (en) 2004-03-04
GB2392508A (en) 2004-03-03
US6806804B2 (en) 2004-10-19

Similar Documents

Publication Publication Date Title
JP3974587B2 (ja) Cpp型巨大磁気抵抗効果ヘッド
US7599155B2 (en) Self-pinned CPP giant magnetoresistive head with antiferromagnetic film absent from current path
JP4245318B2 (ja) 磁気検出素子
US7106561B2 (en) Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling to an antiparallel pinned biasing layer
US7295408B2 (en) Dual type magnetic sensing element wherein ΔR×A in upstream part in flow direction of electric current is smaller than ΔR×A in downstream part
JP2004031545A (ja) 磁気検出素子及びその製造方法
JP4237991B2 (ja) 磁気検出素子
JP2004335931A (ja) Cpp型巨大磁気抵抗効果素子
JP2003008100A (ja) 磁気検出素子及び前記磁気検出素子を用いた薄膜磁気ヘッド
JP2003309305A (ja) 磁気検出素子
JP2004335071A (ja) Cpp型巨大磁気抵抗効果ヘッド
US7218485B2 (en) GMR element having fixed magnetic layer provided on side surface of free magnetic layer
JP2008192827A (ja) トンネル型磁気検出素子
JP2004095587A (ja) 磁気検出素子
JP2004119755A (ja) 磁気検出素子及びその製造方法
JPH0936455A (ja) 磁気抵抗効果素子
JP2004095584A (ja) 磁気検出素子
JP3939519B2 (ja) 磁気検出素子及びその製造方法
JP3243092B2 (ja) 薄膜磁気ヘッド
JP2002329903A (ja) 磁気検出素子及びその製造方法
GB2413856A (en) GMR magnetic sensor
JP2004221299A (ja) 磁気検出素子
JP2001216613A (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及び浮上式磁気ヘッド並びにスピンバルブ型薄膜磁気素子の製造方法
JP2004221300A (ja) 磁気検出素子
JP2001209911A (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及び浮上式磁気ヘッド並びにスピンバルブ型薄膜磁気素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees