JP2004087158A - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- JP2004087158A JP2004087158A JP2002242957A JP2002242957A JP2004087158A JP 2004087158 A JP2004087158 A JP 2004087158A JP 2002242957 A JP2002242957 A JP 2002242957A JP 2002242957 A JP2002242957 A JP 2002242957A JP 2004087158 A JP2004087158 A JP 2004087158A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- electrode
- emitter
- gate electrode
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Cold Cathode And The Manufacture (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
Abstract
【課題】低いドライブ電圧で駆動し、かつ、フォーカス専用の電極を設けなくても良好なフォーカス特性が得られるようにする。
【解決手段】本発明に係る表示装置は、アノード電極11を有するアノード基板2と、アノード基板2と対向する側の基板面に積層状態で形成されたカソード電極4、絶縁層5およびゲート電極6と、絶縁層5とゲート電極6の積層部分を貫通する状態で形成されたゲートホール7と、ゲートホール7内のカソード電極4上に形成されたエミッタ8とを有するカソード基板1とを備えるもので、ゲートホール7の側壁部に露出するゲート電極6の壁面高さ寸法T1を絶縁層5の壁面高さ寸法T2以上とするとともに、ゲートホール7の開口径φDをゲートホール7の深さ寸法Hd以上とし、アノード電極11にアノード電圧を印加した際に発生する電界を利用してエミッタ8から電子放出させる構成とした。
【選択図】 図6
【解決手段】本発明に係る表示装置は、アノード電極11を有するアノード基板2と、アノード基板2と対向する側の基板面に積層状態で形成されたカソード電極4、絶縁層5およびゲート電極6と、絶縁層5とゲート電極6の積層部分を貫通する状態で形成されたゲートホール7と、ゲートホール7内のカソード電極4上に形成されたエミッタ8とを有するカソード基板1とを備えるもので、ゲートホール7の側壁部に露出するゲート電極6の壁面高さ寸法T1を絶縁層5の壁面高さ寸法T2以上とするとともに、ゲートホール7の開口径φDをゲートホール7の深さ寸法Hd以上とし、アノード電極11にアノード電圧を印加した際に発生する電界を利用してエミッタ8から電子放出させる構成とした。
【選択図】 図6
Description
【0001】
【発明の属する技術分野】
本発明は、電界放出型の電子放出素子を用いた平面型の表示装置に関する。
【0002】
【従来の技術】
真空中におかれた金属等の導体あるいは半導体の表面に、ある閾値以上の電界を与えると、トンネル効果によって電子が障壁を通過し、常温時においても真空中に電子が放出される。この現象は電界放出(Field Emission)と呼ばれ、これによって電子を放出するカソードは電界放出型カソード(Field Emission Cathode)と呼ばれている。近年では、ミクロンサイズの電界放出型カソードを、半導体加工技術を駆使して基板上に多数形成したフラットディスプレイ装置(平面型の表示装置)としてFED(Field Emission Display)が注目されている。FEDは、電気的に選択(アドレッシング)されたエミッタから電界の集中によって電子を放出させるとともに、この電子をアノード基板側の蛍光体に衝突させて、蛍光体の励起・発光により画像を表示するものである。
【0003】
図11は従来の表示装置(FED)の主要部の構成例を示す概略断面図であり、図12はその概略斜視図である。図においては、カソード基板51とアノード基板52とが微小なギャップを介して対向状態に配置されている。カソード基板51とアノード基板52との間は真空状態に維持される。カソード基板51は、ベース基板53と、カソード電極54と、抵抗層55と、絶縁層56と、ゲート電極57、エミッタ58とを備えている。ゲート電極57および絶縁層56にはゲートホール59が形成されている。また、ゲートホール59内にはコーン形状(略円錐形)のエミッタ58が形成されている。このエミッタ58はスピント型エミッタとも呼ばれる。一方、アノード基板52は、ベース基板60と、アノード電極61と、蛍光体層62とを備えている。アノード電極61はITO(Indium Tin Oxide)等の透明電極からなるもので、蛍光体層62は1画素分のエリア内に赤、緑、青の各色に対応する蛍光体を並べて配置したものである。
【0004】
ここで、上記構成の表示装置(FED)の製造プロセスについて簡単に説明する。先ず、カソード基板51を得るにあたっては、ベース基板53上に、カソード電極54、抵抗層55、絶縁層56およびゲート電極57を蒸着法によって順に積層する。次に、フォトプロセス(フォトレジスト塗布、パターニング、エッチング)を施して、ゲート電極57および絶縁層56にゲートホール59を形成した後、フォトレジストを除去する。
【0005】
次いで、ベース基板53を回転させながら、その基板面に対して斜め方向からアルミニウムなどを蒸着させることにより、ゲート電極57の表面とその開口縁部にのみアルミニウムからなる剥離層を形成する。続いて、剥離層の上からエミッタ材料となる金属、例えばモリブデンを堆積させる。これにより、ゲートホール59の開口径がモリブデンの堆積とともに徐々に小さくなり、最終的にゲートホール59が完全に閉じられる。その結果、ゲートホール59内にエミッタ材料(モリブデン)の堆積によってコーン形状のエミッタ58が形成される。その後、ゲート電極57上の不要なエミッタ材料を剥離層とともにエッチングによって除去する。
【0006】
一方、アノード基板52を得るにあたっては、ベース基板60上にITO等のアノード電極61を形成した後、蛍光体材料の塗布によって蛍光体層62を形成する。また、こうして得られたカソード基板51とアノード基板52とを、例えば0.2〜1.0mmのギャップで真空状態に封止する。以上の製造プロセスでは、エミッタ58とゲート電極57との間の距離がサブミクロンレベルに制御されることから、それらの間に数十ボルトの電圧を印加することにより、エミッタ58の先端部に電界を集中させ、これに伴うトンネル効果によってエミッタ58から真空中に電子を放出させることができる。その際、抵抗層55は、例えばエミッタ58への放電電流が大きくなった場合に、抵抗による電圧降下の増大によってエミッタ58に作用する実効電圧を減少させ、逆に放電電流が小さくなった場合はエミッタ58に作用する実効電圧を増加させることにより、放電電流を安定化させる役目を果たす。
【0007】
ところで近年においては、図13に示すように、非常に鋭利な先端が無数に得られるカーボンナノチューブ63を用いた面放出タイプのエミッタ構造が提案されている。一般にカーボンナノチューブ63は高いアスペクト比を有し、先端の曲率半径も非常に小さいため、高い発光効率を実現するエミッタ材料として注目されている。カーボンナノチューブ63でエミッタを形成する手法の一つとしては、例えばカーボンナノチューブ63を他の材料に混ぜてペースト化し、これによって得られたペースト材料を印刷法等によってカソード電極上に塗布する方法が知られている。
【0008】
【発明が解決しようとする課題】
しかしながら、カーボンナノチューブ63を用いてエミッタを形成した場合は、ゲートホール内に多数のカーボンナノチューブ63が面的な広がりをもって高密度に配列した状態となる。これに対して、ゲート電極にゲート電圧を印加してエミッタに電界を作用させる場合に、ゲートホール内の電位分布はゲートホールの開口縁からの距離に応じて変化するため、全てのカーボンナノチューブから同じ電界強度でかつ同じ電界方向で電子を放出させることはきわめて困難となる。また、ゲートホール内の全てのカーボンナノチューブに均一に電界を作用させるうえでは、図14に示すように、ゲートホール59の開口径(直径)φDと深さ寸法Hdの関係を1:1にすることが理想的であるとされている。
【0009】
現状では、絶縁層56の厚みに対してゲート電極57の厚みが非常に薄いため、ゲートホール59の深さ寸法Hdが絶縁層56の厚み寸法に依存したものとなっている。また、現状におけるゲートホール59の開口径φDと深さ寸法Hd(絶縁層56の厚み)の関係はφD>Hdとなっている。そのため、図15に示すように、ゲートホール59内の電位分布が不均一になり、これに伴う水平方向の電界成分によって電子ビームが水平方向に膨らんでフォーカス特性が悪化してしまう。したがって、従来では電子ビームを集束するためのフォーカス電極を別途設ける必要があった。
【0010】
また、上述した理想状態を得るには、現状に比較して、ゲートホール59の開口径φDを小さくするか、ゲートホール59の深さ寸法Hdを大きくする(絶縁層56を厚くする)、或いはその両方を実現する必要がある。しかしながら、ゲートホール59の開口径φDを小さくするには製造プロセス上の限界もあって容易に実現できない状況にある。また、ゲートホール59の深さ寸法Hdを大きくした場合は、ゲート電極57からエミッタまでの距離が長くなり、その距離分を補うためにゲート電極57に印加するゲート電圧を高く設定する必要がある。そのため、エミッタから電子を放出させる際に、より高いドライブ電圧が必要となる。
【0011】
本発明は、上記課題を解決するためになされたもので、その目的とするところは、画像を表示するにあたって、低いドライブ電圧で駆動し、かつ、フォーカス専用の電極を設けなくても良好なフォーカス特性を得ることが可能な表示装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明に係る表示装置は、アノード電極を有するアノード基板と、このアノード基板と対向する側の基板面に積層状態で形成されたカソード電極、絶縁層およびゲート電極と、絶縁層とゲート電極の積層部分を貫通する状態で形成されたゲートホールと、このゲートホール内のカソード電極上に形成されたエミッタとを有するカソード基板とを備えるもので、ゲートホールの側壁部に露出するゲート電極の壁面高さ寸法を絶縁層の壁面高さ寸法以上とするとともに、ゲートホールの開口径をゲートホールの深さ寸法以上とし、アノード電極にアノード電圧を印加した際に発生する電界を利用してエミッタから電子放出させる構成としたものである。
【0013】
上記構成の表示装置においては、ゲートホールの側壁部に露出するゲート電極の壁面高さ寸法を絶縁層の壁面高さ寸法以上とすることで、ゲート電極にゲート電圧を印加した際に発生する電界がより強くエミッタに作用するようになるとともに、ゲート電極がフォーカス機能を奏するようになる。また、ゲートホールの開口径をゲートホールの深さ寸法以上とすることにより、製造プロセス上ではゲートホールの形成が容易になり、動作上ではアノード電極からの電界がゲートホール内にしみこみ易くなる。したがって、アノード電極からの電界を利用してエミッタから電子を放出させることが可能となる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しつつ説明する。図1は本発明の実施形態に係る表示装置(FED)の主要部の構成例を示す概略断面図であり、図2はその概略斜視図である。図においては、カソード基板1とアノード基板2とが微小なギャップを介して対向状態に配置されている。カソード基板1とアノード基板2との間(ギャップ空間)は真空状態に維持される。カソード基板1は、ガラス基板等からなるベース基板3と、このベース基板3上に順に積層されたカソード電極4、絶縁層5およびゲート電極6と、ベース基板3上に形成されたゲートホール7と、このゲートホール7内に形成されたエミッタ8とを備え、これらの構成要素によって電界放出型の電子放出素子が構成されている。また、カソード電極4、絶縁層5およびゲート電極6は、アノード基板2と対向する側の基板面(図1におけるベース基板3の上面)に積層状態で形成されている。なお、図1および図2においては、電子放出素子の1画素に相当する部分のみを示している。また、放電電流の安定化のための抵抗層(不図示)は、カソード電極4と同一のパターンで形成される。
【0015】
上述した構成要素のうち、カソード電極4は、図3に示すように、ベース基板3上で複数のカソードラインを構成するようにストライプ状(帯状)に形成され、ゲート電極6は、ベース基板3上で上記カソードラインに交又する複数のゲートラインを構成するようにストライプ状(帯状)に形成されている。カソード電極4とゲート電極6の交叉部分は一つの画素を構成するものとなる。絶縁層5はカソード電極4とゲート電極6との間で電気的な絶縁作用をなすもので、それらの電極間に層状に形成されている。
【0016】
ゲートホール7は、絶縁層5およびゲート電極6の積層部分を貫通する状態で、カソード電極4とゲート電極6の交叉部分に複数個形成されている。ゲートホール7の孔形状は円形状となっている。また、ゲートホール7の側壁部は、この側壁部に露出する絶縁層5の壁面とゲート電極6の壁面によって形成されている。エミッタ8は、ゲートホール7内でカソード電極4上に形成されている。このエミッタ8は、面放出タイプのエミッタ構造をなすもので、炭素系材料で針状構造をなすカーボンナノチューブ9を用いて形成されている。
【0017】
カーボンナノチューブ9を用いたエミッタ8の電子放出特性は、図4に示すように、1〜2V/μmといった非常に低い閾値電界値で電子を放出するものとなる。ただし、エミッタ8の形成材料としては、上記カーボンナノチューブ9のほかにも、例えばフラーレンや、ダイヤモンドの薄膜などように、エミッタ8の表面部分に微細な先鋭部が多数得られるもので、かつ電子放出のための閾値電界値が低い材料(例えば、閾値電界値が5V/μm以下で、より好ましくは3V/μm以下の材料)であればよい。
【0018】
一方、アノード基板2は、FEDの前面パネルを構成するもので、透明ガラス基板からなるベース基板10と、このベース基板10上に積層されたアノード電極11および蛍光体12を備えて構成されている。アノード電極11はITO等の透明電極によって形成され、蛍光体12は1画素分のエリア内に赤、緑、青の各色に対応する蛍光体を並べて形成されている。
【0019】
上記構成からなる電子放出素子を備える表示装置において、アノード電極11にアノード電圧(高圧)を印加する一方、カソード電極4にカソード電圧、ゲート電極6にゲート電圧をそれぞれ所定の条件で印加すると、エミッタ8を形成する各々のカーボンナノチューブ9の先鋭なエッジ部(先端部)に電界が集中し、この電界集中に伴うトンネル効果によってエミッタ8から真空中に電子が放出される。こうして放出された電子は、アノード基板2のアノード電極11に引き寄せられて蛍光体12に衝突する。これにより、蛍光体12が励起されて発光し、画像が表示される。このとき、エミッタ8からの電子放出によって得られるエミッション電流の大きさによって表示画像の輝度(蛍光体の発光量)が変化する。
【0020】
続いて、本発明の実施形態に係る表示装置(FED)の製造方法として、特に電子放出素子を構成するカソード基板1の製造プロセスについて図5(A)〜(B)を用いて説明する。カソード基板1は、主に、カソード電極の形成工程と、絶縁層の形成工程と、ゲート電極の形成工程と、ゲートホールの形成工程と、エミッタの形成工程とを順に経て製造される。以下、各工程について説明する。
【0021】
[カソード電極の形成工程]
先ず、ベース基板3上にカソード電極4を形成する。カソード電極4を構成する電極材料としては、例えば、クロム、タンタル、タングステン、モリブデン等の金属のように電気的に抵抗値の低い材料であれば、どのような材料を用いてもよい。カソード電極4の形成パターンはストライプ状であって、その形成方法としてはペースト状の電極材料を印刷により塗布する印刷法を採用することが簡便である。ただし、他の形成方法として、周知のフォトリソグラフィ工程によってカソード電極4をストライプ状に形成してもよい。この場合の塗布方法としてはスピンコート法を用いることができる。
【0022】
[絶縁層の形成工程]
次に、カソード電極4を覆う状態でベース基板3上に絶縁層5を形成する。絶縁層5を構成する材料としては、SiO2(二酸化シリコン)などのように電気的に高い絶縁性を有する材料であれば、どのような材料を用いてもよい。絶縁層5はベース基板3の上面を全体的に覆うように層状に形成される。絶縁層5の形成方法としては、例えば、スピンコート法、印刷法、スパッタ法、蒸着法などのいわゆる成膜法を用いることができる。
【0023】
[ゲート電極の形成工程]
次いで、上述のように積層したベース基板3の絶縁層5上にゲート電極6を形成する。ゲート電極6を構成する電極材料としては、例えば、クロム、タンタル、タングステン、モリブデン等の金属のように電気的に抵抗値の低い材料であれば、どのような材料を用いてもよい。ゲート電極6の形成パターンは、カソード電極4にほぼ直交するストライプ状であって、その形成方法としては上記カソード電極4の形成方法と同様の方法を用いることができる。これにより、図5(A)に示すように、ベース基板3上にカソード電極4、絶縁層5およびゲート電極6を順に積層した状態の構造体が得られる。また、ゲート電極を厚く成膜するには電界メッキ(電着)法も有効である。
【0024】
[ゲートホールの形成工程]
続いて、ゲート電極6および絶縁層5の所定部位(カソード電極4とゲート電極6の各電極ラインが交叉する部分;1画素部分)を、所望するゲートホール7の配置に合わせて部分的にエッチングすることにより、図5(B)に示すように、カソード電極4の一部を露出する状態でベース基板3上にゲートホール7を形成する。このゲートホール7は、ゲート電極6および絶縁層5の積層部分を貫通する状態で、上記所定部位に複数形成される。エッチング方法としては、ウェット式、ドライ式のどちらを採用してもよい。
【0025】
[エミッタの形成工程]
次いで、図5(C)に示すように、ゲートホール7の内部に複数のカーボンナノチューブ9を配列してエミッタ8を形成する。エミッタ8の形成手法としては、CVD法を用いることができる。CVD法を用いる場合は、ゲートホール7内で所望の部位にエミッタ8を形成するため、このエミッタ形成部位に対して予め触媒層を設けておく。触媒層は、ベース基板3上にカソード電極4を形成した後(絶縁層5を形成する前)に、当該カソード電極4上に設ける。触媒層は、カーボンナノチューブ9となるカーボンナノチューブの成長反応を促すもので、例えばニッケル、コバルト、鉄、又はこれらの金属の少なくとも2種からなる合金を、蒸着法、スパッタ法、電解メッキ法等によりカソード電極4に被着させた後、フォトリソグラフィーによる選択的エッチングによってパターニングすることにより得られる。また、エミッタ8の他の形成方法として、複数のカーボンナノチューブ9を混合したペースト材料(不図示)を用いて行う。具体的には、例えば、複数(多数)のカーボンナノチューブを感光性の有機バインダと混合し、これによって得られたペースト材料を印刷法等によりベース基板3の表面側の全面に塗布した後、フォトリソグラフィのマスキング技術を用いてゲートホール7内にペースト材料を選択的に残すことによりエミッタ形成を行ってもよい。以上の製造プロセスによってカソード基板1が得られる。
【0026】
ここで、本発明の実施形態に係る表示装置(FED)では、図6に示すように、ゲート電極6の厚み寸法T1を絶縁層5の厚み寸法T2以上に設定することにより、ゲートホール7の側壁部7Aに露出するゲート電極6の壁面高さ寸法(T1)を絶縁層5の壁面高さ寸法(T2)以上とするとともに、ゲートホール7の開口径φDをこのゲートホール7の深さ寸法Hd以上とし、アノード電極11にアノード電圧(正の高電圧)を印加した際に発生する電界を用いてエミッタ8から電子放出させる構成としたことを特徴としている。
【0027】
ゲート電極6の壁面高さ寸法とは、ゲートホール7の深さ方向(カソード基板1の厚み方向)において、ゲートホール7の側壁部7Aに露出しているゲート電極6の壁面の高さ寸法をいう。同様に、絶縁層5の壁面高さ寸法とは、ゲートホール7の深さ方向において、ゲートホール7の側壁部7Aに露出している絶縁層5の壁面の高さ寸法をいう。図6においては、ゲート電極6の壁面高さ寸法がゲート電極6の厚み寸法T1と等しい寸法となっており、絶縁層5の壁面高さ寸法は絶縁層5の厚み寸法T2と等しい寸法となっている。また、ゲートホール7の深さ寸法Hdは、ゲート電極6の厚みT1と絶縁層5の厚みT2を足し合わせた寸法(T1+T2)と等しい寸法となっている。
【0028】
以下に、本発明の実施形態をより具体的に説明する。先ず、本実施形態においては、アノード電極11にアノード電圧を印加するにあたって、例えば高い輝度が得られるようにアノード電圧を10kV程度に設定するものとする。アノード電極11にアノード電圧を印加した際に発生する電界は、アノード電極11からの離間距離に応じてその電界値が変化する。そこで、アノード電極11からの電界が上記エミッタ8の閾値電界値を超える電界値をもってエミッタ8に作用する条件で、アノード基板2とカソード基板1との距離(より具体的にはアノード電極11とカソード電極4との距離)を例えば2mmに設定する。この場合、アノード電極11とカソード電極4との間にゲート電極6が無い、いわゆる2極構造であれば、アノード電極11からの電界がエミッタ8に作用する電界値は5V/μmとなるため、この電界を受けてエミッタ8から電子が放出することになる。
【0029】
ただし、実際にはアノード電極11とカソード電極4の間にゲート電極6が存在するとともに、このゲート電極6と絶縁層5の積層部分を貫通するゲートホール7内にエミッタ8が存在する。そのため、アノード電極11からの電界がエミッタ8に作用するときの実効的な電界値は、ゲートホール7の寸法(開口径、深さなど)によって左右される。すなわち、ゲートホール7のアスペクト比(開口径と深さの比)が大きくなるとアノード電極11からの電界強度が弱まり、逆に、ゲートホール7のアスペクト比が小さくなるとアノード電極11からの電界強度が強まる。
【0030】
そこで、本実施形態においては、ゲートホール7の開口径φDをゲートホール7の深さ寸法Hdよりも大きくすることにより、ゲートホール7の孔形状としてアスペクト比が小さい孔形状(浅い孔形状)を採用している。このようにアスペクト比が小さい孔形状を採用することにより、アノード電極11からの電界がゲートホール7内にしみこみ易くなるため、アノード電極11からの電界を用いてエミッタ8から電子を放出させることが可能となる。また、アスペクト比の小さい孔形状の採用により、ゲートホール7の開口径φDを大きく確保できるため、カソード基板1の製造プロセスにおいてゲートホール7の形成が容易になる。
【0031】
具体的な数値例として、ゲートホール7の開口径φDと深さ寸法Hdの相対的な寸法関係を4:1.5とした場合、ゲートホール7の開口径φDを40μmとすると、ゲートホール7の深さ寸法Hdは15μmとなる。この状態では、アノード電極11にアノード電圧を印加した際に発生する電界と、ゲート電極6にゲート電圧を印加した際に発生する電界とを合成した合成電界により、エミッタ8からの電子放出を制御して所望のエミッション電流を得ることが可能となる。
【0032】
この場合、ゲート電極11は、当該ゲート電極11に印加されるゲート電圧を適宜調整することにより、ゲートホール7からの電子の引き出し量を可変してエミッション電流を制御する機能を奏するものとなる。また、ゲート電極11によるエミッション電流の制御形態は、ゲート電極11に印加されるゲート電圧の極性に応じて3つに分けられる。
【0033】
第1の制御形態は、ゲート電極6に正(プラス)のゲート電圧のみを印加する場合である。この第1の制御形態は、アノード電極11からの電界がエミッタ8に作用するものの、この電界だけではエミッタ8から電子が放出されない状況で適用されるものである。この場合、ゲート電極6に正のゲート電圧を印加することにより、アノード電極11からの電界がゲート電極6の電界によって強められるため、エミッタ8からの電子放出が促進される。したがって、ゲート電極6に所定以上の正のゲート電圧を印加することにより、エミッタ8から電子を放出させ、かつそのゲート電圧値を調整することにより、エミッタ8からの電子放出量を可変してエミッション電流を制御することが可能となる。
【0034】
第2の制御形態は、ゲート電極6に負(マイナス)のゲート電圧のみを印加する場合である。この第2の制御形態は、アノード電極11からの電界だけでエミッタ8から電子が放出され、しかもこの電子放出により画像表示のための十分なエミッション電流が得られる状況で適用されるものである。この場合、ゲート電極6に所定以上の負のゲート電圧を印加することにより、アノード電極11からの電界がゲート電極6の電界によって弱められるため、エミッタ8からの電子放出が抑制される。したがって、ゲート電極6に所定以上の負のゲート電圧を印加することにより、エミッタ8からの電子放出を停止させ、かつそのゲート電圧値を調整することにより、エミッタ8からの電子放出量を可変してエミッション電流を制御することが可能となる。ちなみに、第2の制御形態を採用した場合は、エミッタ8から放出された電子と、負のゲート電圧が印加されたゲート電極6との間に反発力が作用する。そのため、エミッタ8から放出された電子は図7に示すような軌道を描いてアノード電極11に到達することになる。
【0035】
第3の制御形態は、ゲート電極6に正と負の両方のゲート電圧を印加する場合である。この第3の制御形態は、アノード電極11からの電界だけでエミッタ8から電子が放出されるものの、その電子放出によって得られるエミッション電流の値が小さいため、画像表示に際して十分なエミッション電流が得られない状況で適用されるものである。この場合、ゲート電極6に正のゲート電圧を印加するとアノード電極11からの電界が強められるため、エミッタ8からの電子放出が促進され、反対に、ゲート電極6に負のゲート電圧を印加するとアノード電極11からの電界が弱められるため、エミッタ8からの電子放出が抑制される。したがって、ゲート電極6に所定以上の負のゲート電圧を印加することにより、エミッタ8からの電子放出を停止させ、かつそのゲート電圧の極性と電圧値を調整することにより、エミッタ8からの電子放出量を可変してエミッション電流を制御することが可能となる。
【0036】
上記第1〜第3の制御形態のいずれを採用する場合でも、アノード電極11からの電界を利用してエミッタ8から電子を放出させるため、ゲート電極6に印加するゲート電圧を低く抑えてドライブ電圧の低電圧化を図ることができる。ちなみに、第1〜第3の制御形態のいずれを採用するかは、エミッタ8の電子放出特性や面積、アノード電圧、基板(1,2)間距離、ゲートホール寸法など、FEDの設計上の各種の因子によって決定(又は選択)されるものである。
【0037】
また、本実施形態においては、ゲート電極6の厚み寸法T1を絶縁層5の厚み寸法T2よりも大きく設定することにより、ゲートホール7の側壁部7Aに露出するゲート電極6の壁面高さ寸法(T1)を絶縁層5の壁面高さ寸法(T2)よりも大きいものとしている。具体的な数値例として、絶縁層5の厚み寸法T2を5μmとすると、ゲート電極6の厚み寸法T1をそれよりも大きい10μmに設定(ゲートホール7の開口径φDは15μmに設定)し、これにしたがってゲートホール7の側壁部7Aに露出するゲート電極6の壁面高さ寸法(T1)を絶縁層5の壁面高さ寸法(T2)の2倍の寸法とする。
【0038】
このようにゲートホール7の側壁部7Aでゲート電極6の壁面高さ寸法(T1)を大きく確保することにより、ゲート電極6にゲート電圧を印加した際に発生する電界の強度が高まるため、ゲート電極6でエミッション電流を制御する際のドライブ電圧(オフ電圧とオン電圧の差)を下げることができる。また、エミッタ8から放出する電子を収束させるフォーカス機能をゲート電極6に持たせることができるため、別途、フォーカス電極を設ける必要がなくなる。
【0039】
ちなみに、カソード電極4上でのエミッタ8の面積については、より多くのエミッション電流を得るために、できるだけ広く確保することが望ましい。ただし、ゲート電極6とエミッタ8との距離が近すぎると、両者の接触によって電気的なショートを引き起こす恐れがある。そのため、エミッタ8の形成領域は、ゲートホール7の開口径φDに対して、製造プロセス上のマージンを見込んだ内側の領域に設定することが肝要である。
【0040】
図8はゲート電極の厚み寸法とドライブ電圧の関係をシミュレーションした結果を示すもので、図9はゲート電極の厚み寸法と電子ビームのスポット径比の関係をシミュレーションした結果を示すものである。図8および図9においては、いずれも絶縁層5の厚み寸法T2を5μmで一定とし、ゲート電極6の厚み寸法T1を、T2よりも小さい0.3μm、T2と同じ5μm、T2よりも大きい10μmに変えた場合のシミュレーション結果を示している。また、図9においては、ゲート電極6の厚み寸法T1が5μmのときのスポット径を「1」として正規化した場合の値をスポット径比として表している。図8のシミュレーション結果では、ゲート電極6の厚み寸法が大きくなるにつれてドライブ電圧が低下することが分かる。また、図9のシミュレーション結果では、ゲート電極6の厚み寸法が大きくなるについてスポット径比が小さくなる、つまりゲート電極6によるフォーカス作用が強くなることが分かる。
【0041】
以上のことから、本実施形態に係る表示装置によれば、エミッタ8から電子を放出させるにあたってアノード電極11からの電界を利用するとともに、エミッタ8からの電子放出を制御するゲート電極6を厚膜で形成しているため、従来よりもドライブ電圧を低く抑えることができる。これにより、発光効率の向上と駆動ドライバの低価格化を図ることができる。また、ゲートホール7の開口径φDをゲートホール7の深さ寸法Hd以上とすることにより、アノード電極11からの電界をエミッタ8に作用させることができるとともに、ゲートホール7の開口径φDを大きく設定してカソード基板1の製造を容易にすることができる。これにより、ゲートホール7の形成に際して、特殊な微細加工や製造装置を必要としないため、表示装置の低価格化と大型化の実現が容易になる。さらに、ゲート電極6を厚膜とすることでゲート電極6自体にフォーカス機能を持たせることができるため、フォーカス電極とその形成工程が不要になる。
【0042】
なお、上記実施形態においては、ゲート電極6の厚み寸法T1を絶縁層6の厚み寸法T1以上に設定するにより、ゲートホール7の側壁部に露出するゲート電極6の壁面高さ寸法を絶縁層5の壁面高さ寸法以上としたが、本発明はこれに限らず、例えば図10に示すように、ゲート電極6の厚み寸法T1を絶縁層5の厚み寸法T2未満に設定した場合でも、ゲートホール7の開口縁部で斜め蒸着などの成膜手法によりゲート電極6を形成し、これによってゲートホール7の側壁部の一部をゲート電極6で覆うことにより、ゲートホール7の側壁部を形成するゲート電極6の壁面高さ寸法T3を絶縁層5の壁面高さ寸法T4以上として上記同様の作用効果を得ることができる。
【0043】
【発明の効果】
以上説明したように本発明の表示装置によれば、ゲート電極にゲート電圧を印加した際により強い電界が得られるとともに、アノード電極にアノード電圧を印加した際に発生する電界を利用してエミッタから電子放出させるため、従来よりも低いドライブ電圧で駆動することができる。また、ゲート電極を厚膜とすることにより、ゲート電極自体がフォーカス機能を奏するため、フォーカス専用の電極を設けなくても良好なフォーカス特性を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る表示装置の主要部の構成例を示す概略断面図である。
【図2】本発明の実施形態に係る表示装置の主要部の構成例を示す概略斜視図である。
【図3】本発明の実施形態に係る表示装置の主要部の構成例を示す概略平面図である。
【図4】本発明の実施形態で採用したエミッタの電子放出特性を示す図である。
【図5】本発明の実施形態に係る表示装置の製造方法の一例を説明する図である。
【図6】表示装置の各部の寸法関係を説明する図である。
【図7】本発明の実施形態における電子ビームの軌道を説明する図である。
【図8】ゲート電極の厚み寸法とドライブ電圧の関係をシミュレーションした結果を示す図である。
【図9】ゲート電極の厚み寸法と電子ビームのスポット径比の関係をシミュレーションした結果を示す図である。
【図10】本発明の他の実施形態を説明する図である。
【図11】従来の表示装置の主要部の構成例を示す概略断面図である。
【図12】従来の表示装置の主要部の構成例を示す概略斜視図である。
【図13】カーボンナノチューブを用いたエミッタ構造を示す図である。
【図14】ゲート電極による電位分布の理想状態を説明する図である。
【図15】従来における電子ビームの軌道を説明する図である。
【符号の説明】
1…カソード基板、2…アノード基板、3…ベース基板、4…カソード電極、5…絶縁層、6…ゲート電極、7…ゲートホール、8…エミッタ、9…カーボンナノチューブ、10…ベース基板、11…アノード電極、12…蛍光体
【発明の属する技術分野】
本発明は、電界放出型の電子放出素子を用いた平面型の表示装置に関する。
【0002】
【従来の技術】
真空中におかれた金属等の導体あるいは半導体の表面に、ある閾値以上の電界を与えると、トンネル効果によって電子が障壁を通過し、常温時においても真空中に電子が放出される。この現象は電界放出(Field Emission)と呼ばれ、これによって電子を放出するカソードは電界放出型カソード(Field Emission Cathode)と呼ばれている。近年では、ミクロンサイズの電界放出型カソードを、半導体加工技術を駆使して基板上に多数形成したフラットディスプレイ装置(平面型の表示装置)としてFED(Field Emission Display)が注目されている。FEDは、電気的に選択(アドレッシング)されたエミッタから電界の集中によって電子を放出させるとともに、この電子をアノード基板側の蛍光体に衝突させて、蛍光体の励起・発光により画像を表示するものである。
【0003】
図11は従来の表示装置(FED)の主要部の構成例を示す概略断面図であり、図12はその概略斜視図である。図においては、カソード基板51とアノード基板52とが微小なギャップを介して対向状態に配置されている。カソード基板51とアノード基板52との間は真空状態に維持される。カソード基板51は、ベース基板53と、カソード電極54と、抵抗層55と、絶縁層56と、ゲート電極57、エミッタ58とを備えている。ゲート電極57および絶縁層56にはゲートホール59が形成されている。また、ゲートホール59内にはコーン形状(略円錐形)のエミッタ58が形成されている。このエミッタ58はスピント型エミッタとも呼ばれる。一方、アノード基板52は、ベース基板60と、アノード電極61と、蛍光体層62とを備えている。アノード電極61はITO(Indium Tin Oxide)等の透明電極からなるもので、蛍光体層62は1画素分のエリア内に赤、緑、青の各色に対応する蛍光体を並べて配置したものである。
【0004】
ここで、上記構成の表示装置(FED)の製造プロセスについて簡単に説明する。先ず、カソード基板51を得るにあたっては、ベース基板53上に、カソード電極54、抵抗層55、絶縁層56およびゲート電極57を蒸着法によって順に積層する。次に、フォトプロセス(フォトレジスト塗布、パターニング、エッチング)を施して、ゲート電極57および絶縁層56にゲートホール59を形成した後、フォトレジストを除去する。
【0005】
次いで、ベース基板53を回転させながら、その基板面に対して斜め方向からアルミニウムなどを蒸着させることにより、ゲート電極57の表面とその開口縁部にのみアルミニウムからなる剥離層を形成する。続いて、剥離層の上からエミッタ材料となる金属、例えばモリブデンを堆積させる。これにより、ゲートホール59の開口径がモリブデンの堆積とともに徐々に小さくなり、最終的にゲートホール59が完全に閉じられる。その結果、ゲートホール59内にエミッタ材料(モリブデン)の堆積によってコーン形状のエミッタ58が形成される。その後、ゲート電極57上の不要なエミッタ材料を剥離層とともにエッチングによって除去する。
【0006】
一方、アノード基板52を得るにあたっては、ベース基板60上にITO等のアノード電極61を形成した後、蛍光体材料の塗布によって蛍光体層62を形成する。また、こうして得られたカソード基板51とアノード基板52とを、例えば0.2〜1.0mmのギャップで真空状態に封止する。以上の製造プロセスでは、エミッタ58とゲート電極57との間の距離がサブミクロンレベルに制御されることから、それらの間に数十ボルトの電圧を印加することにより、エミッタ58の先端部に電界を集中させ、これに伴うトンネル効果によってエミッタ58から真空中に電子を放出させることができる。その際、抵抗層55は、例えばエミッタ58への放電電流が大きくなった場合に、抵抗による電圧降下の増大によってエミッタ58に作用する実効電圧を減少させ、逆に放電電流が小さくなった場合はエミッタ58に作用する実効電圧を増加させることにより、放電電流を安定化させる役目を果たす。
【0007】
ところで近年においては、図13に示すように、非常に鋭利な先端が無数に得られるカーボンナノチューブ63を用いた面放出タイプのエミッタ構造が提案されている。一般にカーボンナノチューブ63は高いアスペクト比を有し、先端の曲率半径も非常に小さいため、高い発光効率を実現するエミッタ材料として注目されている。カーボンナノチューブ63でエミッタを形成する手法の一つとしては、例えばカーボンナノチューブ63を他の材料に混ぜてペースト化し、これによって得られたペースト材料を印刷法等によってカソード電極上に塗布する方法が知られている。
【0008】
【発明が解決しようとする課題】
しかしながら、カーボンナノチューブ63を用いてエミッタを形成した場合は、ゲートホール内に多数のカーボンナノチューブ63が面的な広がりをもって高密度に配列した状態となる。これに対して、ゲート電極にゲート電圧を印加してエミッタに電界を作用させる場合に、ゲートホール内の電位分布はゲートホールの開口縁からの距離に応じて変化するため、全てのカーボンナノチューブから同じ電界強度でかつ同じ電界方向で電子を放出させることはきわめて困難となる。また、ゲートホール内の全てのカーボンナノチューブに均一に電界を作用させるうえでは、図14に示すように、ゲートホール59の開口径(直径)φDと深さ寸法Hdの関係を1:1にすることが理想的であるとされている。
【0009】
現状では、絶縁層56の厚みに対してゲート電極57の厚みが非常に薄いため、ゲートホール59の深さ寸法Hdが絶縁層56の厚み寸法に依存したものとなっている。また、現状におけるゲートホール59の開口径φDと深さ寸法Hd(絶縁層56の厚み)の関係はφD>Hdとなっている。そのため、図15に示すように、ゲートホール59内の電位分布が不均一になり、これに伴う水平方向の電界成分によって電子ビームが水平方向に膨らんでフォーカス特性が悪化してしまう。したがって、従来では電子ビームを集束するためのフォーカス電極を別途設ける必要があった。
【0010】
また、上述した理想状態を得るには、現状に比較して、ゲートホール59の開口径φDを小さくするか、ゲートホール59の深さ寸法Hdを大きくする(絶縁層56を厚くする)、或いはその両方を実現する必要がある。しかしながら、ゲートホール59の開口径φDを小さくするには製造プロセス上の限界もあって容易に実現できない状況にある。また、ゲートホール59の深さ寸法Hdを大きくした場合は、ゲート電極57からエミッタまでの距離が長くなり、その距離分を補うためにゲート電極57に印加するゲート電圧を高く設定する必要がある。そのため、エミッタから電子を放出させる際に、より高いドライブ電圧が必要となる。
【0011】
本発明は、上記課題を解決するためになされたもので、その目的とするところは、画像を表示するにあたって、低いドライブ電圧で駆動し、かつ、フォーカス専用の電極を設けなくても良好なフォーカス特性を得ることが可能な表示装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明に係る表示装置は、アノード電極を有するアノード基板と、このアノード基板と対向する側の基板面に積層状態で形成されたカソード電極、絶縁層およびゲート電極と、絶縁層とゲート電極の積層部分を貫通する状態で形成されたゲートホールと、このゲートホール内のカソード電極上に形成されたエミッタとを有するカソード基板とを備えるもので、ゲートホールの側壁部に露出するゲート電極の壁面高さ寸法を絶縁層の壁面高さ寸法以上とするとともに、ゲートホールの開口径をゲートホールの深さ寸法以上とし、アノード電極にアノード電圧を印加した際に発生する電界を利用してエミッタから電子放出させる構成としたものである。
【0013】
上記構成の表示装置においては、ゲートホールの側壁部に露出するゲート電極の壁面高さ寸法を絶縁層の壁面高さ寸法以上とすることで、ゲート電極にゲート電圧を印加した際に発生する電界がより強くエミッタに作用するようになるとともに、ゲート電極がフォーカス機能を奏するようになる。また、ゲートホールの開口径をゲートホールの深さ寸法以上とすることにより、製造プロセス上ではゲートホールの形成が容易になり、動作上ではアノード電極からの電界がゲートホール内にしみこみ易くなる。したがって、アノード電極からの電界を利用してエミッタから電子を放出させることが可能となる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しつつ説明する。図1は本発明の実施形態に係る表示装置(FED)の主要部の構成例を示す概略断面図であり、図2はその概略斜視図である。図においては、カソード基板1とアノード基板2とが微小なギャップを介して対向状態に配置されている。カソード基板1とアノード基板2との間(ギャップ空間)は真空状態に維持される。カソード基板1は、ガラス基板等からなるベース基板3と、このベース基板3上に順に積層されたカソード電極4、絶縁層5およびゲート電極6と、ベース基板3上に形成されたゲートホール7と、このゲートホール7内に形成されたエミッタ8とを備え、これらの構成要素によって電界放出型の電子放出素子が構成されている。また、カソード電極4、絶縁層5およびゲート電極6は、アノード基板2と対向する側の基板面(図1におけるベース基板3の上面)に積層状態で形成されている。なお、図1および図2においては、電子放出素子の1画素に相当する部分のみを示している。また、放電電流の安定化のための抵抗層(不図示)は、カソード電極4と同一のパターンで形成される。
【0015】
上述した構成要素のうち、カソード電極4は、図3に示すように、ベース基板3上で複数のカソードラインを構成するようにストライプ状(帯状)に形成され、ゲート電極6は、ベース基板3上で上記カソードラインに交又する複数のゲートラインを構成するようにストライプ状(帯状)に形成されている。カソード電極4とゲート電極6の交叉部分は一つの画素を構成するものとなる。絶縁層5はカソード電極4とゲート電極6との間で電気的な絶縁作用をなすもので、それらの電極間に層状に形成されている。
【0016】
ゲートホール7は、絶縁層5およびゲート電極6の積層部分を貫通する状態で、カソード電極4とゲート電極6の交叉部分に複数個形成されている。ゲートホール7の孔形状は円形状となっている。また、ゲートホール7の側壁部は、この側壁部に露出する絶縁層5の壁面とゲート電極6の壁面によって形成されている。エミッタ8は、ゲートホール7内でカソード電極4上に形成されている。このエミッタ8は、面放出タイプのエミッタ構造をなすもので、炭素系材料で針状構造をなすカーボンナノチューブ9を用いて形成されている。
【0017】
カーボンナノチューブ9を用いたエミッタ8の電子放出特性は、図4に示すように、1〜2V/μmといった非常に低い閾値電界値で電子を放出するものとなる。ただし、エミッタ8の形成材料としては、上記カーボンナノチューブ9のほかにも、例えばフラーレンや、ダイヤモンドの薄膜などように、エミッタ8の表面部分に微細な先鋭部が多数得られるもので、かつ電子放出のための閾値電界値が低い材料(例えば、閾値電界値が5V/μm以下で、より好ましくは3V/μm以下の材料)であればよい。
【0018】
一方、アノード基板2は、FEDの前面パネルを構成するもので、透明ガラス基板からなるベース基板10と、このベース基板10上に積層されたアノード電極11および蛍光体12を備えて構成されている。アノード電極11はITO等の透明電極によって形成され、蛍光体12は1画素分のエリア内に赤、緑、青の各色に対応する蛍光体を並べて形成されている。
【0019】
上記構成からなる電子放出素子を備える表示装置において、アノード電極11にアノード電圧(高圧)を印加する一方、カソード電極4にカソード電圧、ゲート電極6にゲート電圧をそれぞれ所定の条件で印加すると、エミッタ8を形成する各々のカーボンナノチューブ9の先鋭なエッジ部(先端部)に電界が集中し、この電界集中に伴うトンネル効果によってエミッタ8から真空中に電子が放出される。こうして放出された電子は、アノード基板2のアノード電極11に引き寄せられて蛍光体12に衝突する。これにより、蛍光体12が励起されて発光し、画像が表示される。このとき、エミッタ8からの電子放出によって得られるエミッション電流の大きさによって表示画像の輝度(蛍光体の発光量)が変化する。
【0020】
続いて、本発明の実施形態に係る表示装置(FED)の製造方法として、特に電子放出素子を構成するカソード基板1の製造プロセスについて図5(A)〜(B)を用いて説明する。カソード基板1は、主に、カソード電極の形成工程と、絶縁層の形成工程と、ゲート電極の形成工程と、ゲートホールの形成工程と、エミッタの形成工程とを順に経て製造される。以下、各工程について説明する。
【0021】
[カソード電極の形成工程]
先ず、ベース基板3上にカソード電極4を形成する。カソード電極4を構成する電極材料としては、例えば、クロム、タンタル、タングステン、モリブデン等の金属のように電気的に抵抗値の低い材料であれば、どのような材料を用いてもよい。カソード電極4の形成パターンはストライプ状であって、その形成方法としてはペースト状の電極材料を印刷により塗布する印刷法を採用することが簡便である。ただし、他の形成方法として、周知のフォトリソグラフィ工程によってカソード電極4をストライプ状に形成してもよい。この場合の塗布方法としてはスピンコート法を用いることができる。
【0022】
[絶縁層の形成工程]
次に、カソード電極4を覆う状態でベース基板3上に絶縁層5を形成する。絶縁層5を構成する材料としては、SiO2(二酸化シリコン)などのように電気的に高い絶縁性を有する材料であれば、どのような材料を用いてもよい。絶縁層5はベース基板3の上面を全体的に覆うように層状に形成される。絶縁層5の形成方法としては、例えば、スピンコート法、印刷法、スパッタ法、蒸着法などのいわゆる成膜法を用いることができる。
【0023】
[ゲート電極の形成工程]
次いで、上述のように積層したベース基板3の絶縁層5上にゲート電極6を形成する。ゲート電極6を構成する電極材料としては、例えば、クロム、タンタル、タングステン、モリブデン等の金属のように電気的に抵抗値の低い材料であれば、どのような材料を用いてもよい。ゲート電極6の形成パターンは、カソード電極4にほぼ直交するストライプ状であって、その形成方法としては上記カソード電極4の形成方法と同様の方法を用いることができる。これにより、図5(A)に示すように、ベース基板3上にカソード電極4、絶縁層5およびゲート電極6を順に積層した状態の構造体が得られる。また、ゲート電極を厚く成膜するには電界メッキ(電着)法も有効である。
【0024】
[ゲートホールの形成工程]
続いて、ゲート電極6および絶縁層5の所定部位(カソード電極4とゲート電極6の各電極ラインが交叉する部分;1画素部分)を、所望するゲートホール7の配置に合わせて部分的にエッチングすることにより、図5(B)に示すように、カソード電極4の一部を露出する状態でベース基板3上にゲートホール7を形成する。このゲートホール7は、ゲート電極6および絶縁層5の積層部分を貫通する状態で、上記所定部位に複数形成される。エッチング方法としては、ウェット式、ドライ式のどちらを採用してもよい。
【0025】
[エミッタの形成工程]
次いで、図5(C)に示すように、ゲートホール7の内部に複数のカーボンナノチューブ9を配列してエミッタ8を形成する。エミッタ8の形成手法としては、CVD法を用いることができる。CVD法を用いる場合は、ゲートホール7内で所望の部位にエミッタ8を形成するため、このエミッタ形成部位に対して予め触媒層を設けておく。触媒層は、ベース基板3上にカソード電極4を形成した後(絶縁層5を形成する前)に、当該カソード電極4上に設ける。触媒層は、カーボンナノチューブ9となるカーボンナノチューブの成長反応を促すもので、例えばニッケル、コバルト、鉄、又はこれらの金属の少なくとも2種からなる合金を、蒸着法、スパッタ法、電解メッキ法等によりカソード電極4に被着させた後、フォトリソグラフィーによる選択的エッチングによってパターニングすることにより得られる。また、エミッタ8の他の形成方法として、複数のカーボンナノチューブ9を混合したペースト材料(不図示)を用いて行う。具体的には、例えば、複数(多数)のカーボンナノチューブを感光性の有機バインダと混合し、これによって得られたペースト材料を印刷法等によりベース基板3の表面側の全面に塗布した後、フォトリソグラフィのマスキング技術を用いてゲートホール7内にペースト材料を選択的に残すことによりエミッタ形成を行ってもよい。以上の製造プロセスによってカソード基板1が得られる。
【0026】
ここで、本発明の実施形態に係る表示装置(FED)では、図6に示すように、ゲート電極6の厚み寸法T1を絶縁層5の厚み寸法T2以上に設定することにより、ゲートホール7の側壁部7Aに露出するゲート電極6の壁面高さ寸法(T1)を絶縁層5の壁面高さ寸法(T2)以上とするとともに、ゲートホール7の開口径φDをこのゲートホール7の深さ寸法Hd以上とし、アノード電極11にアノード電圧(正の高電圧)を印加した際に発生する電界を用いてエミッタ8から電子放出させる構成としたことを特徴としている。
【0027】
ゲート電極6の壁面高さ寸法とは、ゲートホール7の深さ方向(カソード基板1の厚み方向)において、ゲートホール7の側壁部7Aに露出しているゲート電極6の壁面の高さ寸法をいう。同様に、絶縁層5の壁面高さ寸法とは、ゲートホール7の深さ方向において、ゲートホール7の側壁部7Aに露出している絶縁層5の壁面の高さ寸法をいう。図6においては、ゲート電極6の壁面高さ寸法がゲート電極6の厚み寸法T1と等しい寸法となっており、絶縁層5の壁面高さ寸法は絶縁層5の厚み寸法T2と等しい寸法となっている。また、ゲートホール7の深さ寸法Hdは、ゲート電極6の厚みT1と絶縁層5の厚みT2を足し合わせた寸法(T1+T2)と等しい寸法となっている。
【0028】
以下に、本発明の実施形態をより具体的に説明する。先ず、本実施形態においては、アノード電極11にアノード電圧を印加するにあたって、例えば高い輝度が得られるようにアノード電圧を10kV程度に設定するものとする。アノード電極11にアノード電圧を印加した際に発生する電界は、アノード電極11からの離間距離に応じてその電界値が変化する。そこで、アノード電極11からの電界が上記エミッタ8の閾値電界値を超える電界値をもってエミッタ8に作用する条件で、アノード基板2とカソード基板1との距離(より具体的にはアノード電極11とカソード電極4との距離)を例えば2mmに設定する。この場合、アノード電極11とカソード電極4との間にゲート電極6が無い、いわゆる2極構造であれば、アノード電極11からの電界がエミッタ8に作用する電界値は5V/μmとなるため、この電界を受けてエミッタ8から電子が放出することになる。
【0029】
ただし、実際にはアノード電極11とカソード電極4の間にゲート電極6が存在するとともに、このゲート電極6と絶縁層5の積層部分を貫通するゲートホール7内にエミッタ8が存在する。そのため、アノード電極11からの電界がエミッタ8に作用するときの実効的な電界値は、ゲートホール7の寸法(開口径、深さなど)によって左右される。すなわち、ゲートホール7のアスペクト比(開口径と深さの比)が大きくなるとアノード電極11からの電界強度が弱まり、逆に、ゲートホール7のアスペクト比が小さくなるとアノード電極11からの電界強度が強まる。
【0030】
そこで、本実施形態においては、ゲートホール7の開口径φDをゲートホール7の深さ寸法Hdよりも大きくすることにより、ゲートホール7の孔形状としてアスペクト比が小さい孔形状(浅い孔形状)を採用している。このようにアスペクト比が小さい孔形状を採用することにより、アノード電極11からの電界がゲートホール7内にしみこみ易くなるため、アノード電極11からの電界を用いてエミッタ8から電子を放出させることが可能となる。また、アスペクト比の小さい孔形状の採用により、ゲートホール7の開口径φDを大きく確保できるため、カソード基板1の製造プロセスにおいてゲートホール7の形成が容易になる。
【0031】
具体的な数値例として、ゲートホール7の開口径φDと深さ寸法Hdの相対的な寸法関係を4:1.5とした場合、ゲートホール7の開口径φDを40μmとすると、ゲートホール7の深さ寸法Hdは15μmとなる。この状態では、アノード電極11にアノード電圧を印加した際に発生する電界と、ゲート電極6にゲート電圧を印加した際に発生する電界とを合成した合成電界により、エミッタ8からの電子放出を制御して所望のエミッション電流を得ることが可能となる。
【0032】
この場合、ゲート電極11は、当該ゲート電極11に印加されるゲート電圧を適宜調整することにより、ゲートホール7からの電子の引き出し量を可変してエミッション電流を制御する機能を奏するものとなる。また、ゲート電極11によるエミッション電流の制御形態は、ゲート電極11に印加されるゲート電圧の極性に応じて3つに分けられる。
【0033】
第1の制御形態は、ゲート電極6に正(プラス)のゲート電圧のみを印加する場合である。この第1の制御形態は、アノード電極11からの電界がエミッタ8に作用するものの、この電界だけではエミッタ8から電子が放出されない状況で適用されるものである。この場合、ゲート電極6に正のゲート電圧を印加することにより、アノード電極11からの電界がゲート電極6の電界によって強められるため、エミッタ8からの電子放出が促進される。したがって、ゲート電極6に所定以上の正のゲート電圧を印加することにより、エミッタ8から電子を放出させ、かつそのゲート電圧値を調整することにより、エミッタ8からの電子放出量を可変してエミッション電流を制御することが可能となる。
【0034】
第2の制御形態は、ゲート電極6に負(マイナス)のゲート電圧のみを印加する場合である。この第2の制御形態は、アノード電極11からの電界だけでエミッタ8から電子が放出され、しかもこの電子放出により画像表示のための十分なエミッション電流が得られる状況で適用されるものである。この場合、ゲート電極6に所定以上の負のゲート電圧を印加することにより、アノード電極11からの電界がゲート電極6の電界によって弱められるため、エミッタ8からの電子放出が抑制される。したがって、ゲート電極6に所定以上の負のゲート電圧を印加することにより、エミッタ8からの電子放出を停止させ、かつそのゲート電圧値を調整することにより、エミッタ8からの電子放出量を可変してエミッション電流を制御することが可能となる。ちなみに、第2の制御形態を採用した場合は、エミッタ8から放出された電子と、負のゲート電圧が印加されたゲート電極6との間に反発力が作用する。そのため、エミッタ8から放出された電子は図7に示すような軌道を描いてアノード電極11に到達することになる。
【0035】
第3の制御形態は、ゲート電極6に正と負の両方のゲート電圧を印加する場合である。この第3の制御形態は、アノード電極11からの電界だけでエミッタ8から電子が放出されるものの、その電子放出によって得られるエミッション電流の値が小さいため、画像表示に際して十分なエミッション電流が得られない状況で適用されるものである。この場合、ゲート電極6に正のゲート電圧を印加するとアノード電極11からの電界が強められるため、エミッタ8からの電子放出が促進され、反対に、ゲート電極6に負のゲート電圧を印加するとアノード電極11からの電界が弱められるため、エミッタ8からの電子放出が抑制される。したがって、ゲート電極6に所定以上の負のゲート電圧を印加することにより、エミッタ8からの電子放出を停止させ、かつそのゲート電圧の極性と電圧値を調整することにより、エミッタ8からの電子放出量を可変してエミッション電流を制御することが可能となる。
【0036】
上記第1〜第3の制御形態のいずれを採用する場合でも、アノード電極11からの電界を利用してエミッタ8から電子を放出させるため、ゲート電極6に印加するゲート電圧を低く抑えてドライブ電圧の低電圧化を図ることができる。ちなみに、第1〜第3の制御形態のいずれを採用するかは、エミッタ8の電子放出特性や面積、アノード電圧、基板(1,2)間距離、ゲートホール寸法など、FEDの設計上の各種の因子によって決定(又は選択)されるものである。
【0037】
また、本実施形態においては、ゲート電極6の厚み寸法T1を絶縁層5の厚み寸法T2よりも大きく設定することにより、ゲートホール7の側壁部7Aに露出するゲート電極6の壁面高さ寸法(T1)を絶縁層5の壁面高さ寸法(T2)よりも大きいものとしている。具体的な数値例として、絶縁層5の厚み寸法T2を5μmとすると、ゲート電極6の厚み寸法T1をそれよりも大きい10μmに設定(ゲートホール7の開口径φDは15μmに設定)し、これにしたがってゲートホール7の側壁部7Aに露出するゲート電極6の壁面高さ寸法(T1)を絶縁層5の壁面高さ寸法(T2)の2倍の寸法とする。
【0038】
このようにゲートホール7の側壁部7Aでゲート電極6の壁面高さ寸法(T1)を大きく確保することにより、ゲート電極6にゲート電圧を印加した際に発生する電界の強度が高まるため、ゲート電極6でエミッション電流を制御する際のドライブ電圧(オフ電圧とオン電圧の差)を下げることができる。また、エミッタ8から放出する電子を収束させるフォーカス機能をゲート電極6に持たせることができるため、別途、フォーカス電極を設ける必要がなくなる。
【0039】
ちなみに、カソード電極4上でのエミッタ8の面積については、より多くのエミッション電流を得るために、できるだけ広く確保することが望ましい。ただし、ゲート電極6とエミッタ8との距離が近すぎると、両者の接触によって電気的なショートを引き起こす恐れがある。そのため、エミッタ8の形成領域は、ゲートホール7の開口径φDに対して、製造プロセス上のマージンを見込んだ内側の領域に設定することが肝要である。
【0040】
図8はゲート電極の厚み寸法とドライブ電圧の関係をシミュレーションした結果を示すもので、図9はゲート電極の厚み寸法と電子ビームのスポット径比の関係をシミュレーションした結果を示すものである。図8および図9においては、いずれも絶縁層5の厚み寸法T2を5μmで一定とし、ゲート電極6の厚み寸法T1を、T2よりも小さい0.3μm、T2と同じ5μm、T2よりも大きい10μmに変えた場合のシミュレーション結果を示している。また、図9においては、ゲート電極6の厚み寸法T1が5μmのときのスポット径を「1」として正規化した場合の値をスポット径比として表している。図8のシミュレーション結果では、ゲート電極6の厚み寸法が大きくなるにつれてドライブ電圧が低下することが分かる。また、図9のシミュレーション結果では、ゲート電極6の厚み寸法が大きくなるについてスポット径比が小さくなる、つまりゲート電極6によるフォーカス作用が強くなることが分かる。
【0041】
以上のことから、本実施形態に係る表示装置によれば、エミッタ8から電子を放出させるにあたってアノード電極11からの電界を利用するとともに、エミッタ8からの電子放出を制御するゲート電極6を厚膜で形成しているため、従来よりもドライブ電圧を低く抑えることができる。これにより、発光効率の向上と駆動ドライバの低価格化を図ることができる。また、ゲートホール7の開口径φDをゲートホール7の深さ寸法Hd以上とすることにより、アノード電極11からの電界をエミッタ8に作用させることができるとともに、ゲートホール7の開口径φDを大きく設定してカソード基板1の製造を容易にすることができる。これにより、ゲートホール7の形成に際して、特殊な微細加工や製造装置を必要としないため、表示装置の低価格化と大型化の実現が容易になる。さらに、ゲート電極6を厚膜とすることでゲート電極6自体にフォーカス機能を持たせることができるため、フォーカス電極とその形成工程が不要になる。
【0042】
なお、上記実施形態においては、ゲート電極6の厚み寸法T1を絶縁層6の厚み寸法T1以上に設定するにより、ゲートホール7の側壁部に露出するゲート電極6の壁面高さ寸法を絶縁層5の壁面高さ寸法以上としたが、本発明はこれに限らず、例えば図10に示すように、ゲート電極6の厚み寸法T1を絶縁層5の厚み寸法T2未満に設定した場合でも、ゲートホール7の開口縁部で斜め蒸着などの成膜手法によりゲート電極6を形成し、これによってゲートホール7の側壁部の一部をゲート電極6で覆うことにより、ゲートホール7の側壁部を形成するゲート電極6の壁面高さ寸法T3を絶縁層5の壁面高さ寸法T4以上として上記同様の作用効果を得ることができる。
【0043】
【発明の効果】
以上説明したように本発明の表示装置によれば、ゲート電極にゲート電圧を印加した際により強い電界が得られるとともに、アノード電極にアノード電圧を印加した際に発生する電界を利用してエミッタから電子放出させるため、従来よりも低いドライブ電圧で駆動することができる。また、ゲート電極を厚膜とすることにより、ゲート電極自体がフォーカス機能を奏するため、フォーカス専用の電極を設けなくても良好なフォーカス特性を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る表示装置の主要部の構成例を示す概略断面図である。
【図2】本発明の実施形態に係る表示装置の主要部の構成例を示す概略斜視図である。
【図3】本発明の実施形態に係る表示装置の主要部の構成例を示す概略平面図である。
【図4】本発明の実施形態で採用したエミッタの電子放出特性を示す図である。
【図5】本発明の実施形態に係る表示装置の製造方法の一例を説明する図である。
【図6】表示装置の各部の寸法関係を説明する図である。
【図7】本発明の実施形態における電子ビームの軌道を説明する図である。
【図8】ゲート電極の厚み寸法とドライブ電圧の関係をシミュレーションした結果を示す図である。
【図9】ゲート電極の厚み寸法と電子ビームのスポット径比の関係をシミュレーションした結果を示す図である。
【図10】本発明の他の実施形態を説明する図である。
【図11】従来の表示装置の主要部の構成例を示す概略断面図である。
【図12】従来の表示装置の主要部の構成例を示す概略斜視図である。
【図13】カーボンナノチューブを用いたエミッタ構造を示す図である。
【図14】ゲート電極による電位分布の理想状態を説明する図である。
【図15】従来における電子ビームの軌道を説明する図である。
【符号の説明】
1…カソード基板、2…アノード基板、3…ベース基板、4…カソード電極、5…絶縁層、6…ゲート電極、7…ゲートホール、8…エミッタ、9…カーボンナノチューブ、10…ベース基板、11…アノード電極、12…蛍光体
Claims (3)
- アノード電極を有するアノード基板と、
前記アノード基板と対向する側の基板面に積層状態で形成されたカソード電極、絶縁層およびゲート電極と、前記絶縁層と前記ゲート電極の積層部分を貫通する状態で形成されたゲートホールと、前記ゲートホール内の前記カソード電極上に形成されたエミッタとを有するカソード基板とを備え、
前記ゲートホールの側壁部に露出する前記ゲート電極の壁面高さ寸法を前記絶縁層の壁面高さ寸法以上とするとともに、前記ゲートホールの開口径を当該ゲートホールの深さ寸法以上とし、前記アノード電極にアノード電圧を印加した際に発生する電界を利用して前記エミッタから電子放出させる構成としてなる
ことを特徴とする表示装置。 - 前記ゲート電極の厚み寸法を前記絶縁層の厚み寸法以上に設定することにより、前記ゲートホールの側壁部を形成する前記ゲート電極の壁面高さ寸法を前記絶縁層の壁面高さ寸法以上としてなる
ことを特徴とする請求項1記載の表示装置。 - 前記ゲートホールの側壁部の一部を前記ゲート電極で覆うことにより、前記ゲートホールの側壁部を形成する前記ゲート電極の壁面高さ寸法を前記絶縁層の壁面高さ寸法以上としてなる
ことを特徴とする請求項1記載の表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002242957A JP2004087158A (ja) | 2002-08-23 | 2002-08-23 | 表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002242957A JP2004087158A (ja) | 2002-08-23 | 2002-08-23 | 表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004087158A true JP2004087158A (ja) | 2004-03-18 |
Family
ID=32051844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002242957A Pending JP2004087158A (ja) | 2002-08-23 | 2002-08-23 | 表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004087158A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006049287A (ja) * | 2004-07-30 | 2006-02-16 | Samsung Sdi Co Ltd | 電子放出素子とその製造方法 |
JP2006134794A (ja) * | 2004-11-09 | 2006-05-25 | Sony Corp | 電界放出素子およびその製造方法ならびにその電界放出素子を利用した画像表示装置 |
JP2006179846A (ja) * | 2004-11-25 | 2006-07-06 | Tokyo Electron Ltd | 基板処理装置 |
US9564640B2 (en) | 2006-06-26 | 2017-02-07 | Sony Corporation | Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery |
-
2002
- 2002-08-23 JP JP2002242957A patent/JP2004087158A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006049287A (ja) * | 2004-07-30 | 2006-02-16 | Samsung Sdi Co Ltd | 電子放出素子とその製造方法 |
JP2006134794A (ja) * | 2004-11-09 | 2006-05-25 | Sony Corp | 電界放出素子およびその製造方法ならびにその電界放出素子を利用した画像表示装置 |
JP2006179846A (ja) * | 2004-11-25 | 2006-07-06 | Tokyo Electron Ltd | 基板処理装置 |
US9564640B2 (en) | 2006-06-26 | 2017-02-07 | Sony Corporation | Electrode current collector and method for producing the same, electrode for battery and method for producing the same, and secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1113478B1 (en) | Triode structure field emission device | |
JPH08505259A (ja) | フラットな電界放出カソードを用いたトライオード構造のフラットパネルディスプレイ | |
JP2005243641A (ja) | 電子放出素子とその製造方法 | |
JP2006502555A (ja) | カーボンナノチューブ・フラットパネルディスプレイのバリア金属層 | |
JP2005243648A (ja) | 電子放出素子 | |
JPH08264109A (ja) | 粒子放出装置、電界放出型装置及びこれらの製造方法 | |
JP2006156388A (ja) | 電界放出表示装置 | |
US6958499B2 (en) | Triode field emission device having mesh gate and field emission display using the same | |
JPWO2002027745A1 (ja) | 冷陰極電子源及びフィールドエミッションディスプレイ | |
JP2004087158A (ja) | 表示装置 | |
JP2009135100A (ja) | 電子放出素子及びそれを備えた発光装置 | |
JP2006253100A (ja) | 電子/イオン源装置とその製造方法、表示装置及びその製造方法 | |
JP2000348602A (ja) | 電子放出源およびその製造方法ならびに電子放出源を用いたディスプレイ装置 | |
JPH0973869A (ja) | 電界放射型ディスプレイ、その製造方法及びその駆動方法 | |
JP2001023506A (ja) | 電子放出源およびその製造方法ならびにディスプレイ装置 | |
JP3964600B2 (ja) | 電界放出型表示装置 | |
JP2003016918A (ja) | 電子放出素子、電子源及び画像形成装置 | |
JP2002124180A (ja) | 電子放出素子の製造方法、電子放出素子、電子源及び画像形成装置 | |
JP2004055484A (ja) | 電子放出素子の製造方法、及び表示装置 | |
JP2004265745A (ja) | 表示装置の製造方法 | |
JP2001035359A (ja) | 電子放出源の製造方法および電子放出源ならびにディスプレイ装置 | |
JP2003100200A (ja) | 電子放出素子、電子源、及び画像形成装置 | |
JP2003109489A (ja) | 電子放出素子、電子源及び画像形成装置 | |
US20060113917A1 (en) | Electron emission device | |
JP2007227348A (ja) | 電子放出デバイス、および電子放出デバイスを用いる電子放出表示デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061205 |