JP2004079932A - 固体撮像素子及びその製造方法 - Google Patents
固体撮像素子及びその製造方法 Download PDFInfo
- Publication number
- JP2004079932A JP2004079932A JP2002241493A JP2002241493A JP2004079932A JP 2004079932 A JP2004079932 A JP 2004079932A JP 2002241493 A JP2002241493 A JP 2002241493A JP 2002241493 A JP2002241493 A JP 2002241493A JP 2004079932 A JP2004079932 A JP 2004079932A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- photoelectric conversion
- conversion element
- layer
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000007787 solid Substances 0.000 title claims abstract 3
- 238000006243 chemical reaction Methods 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 238000003384 imaging method Methods 0.000 claims description 28
- 238000005229 chemical vapour deposition Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 230000007423 decrease Effects 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 44
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 239000005380 borophosphosilicate glass Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Light Receiving Elements (AREA)
Abstract
【課題】レンズ層間の境界面での反射成分を増大させるような大きな屈折を行わせる必要がなく、なおかつ、微細な画素サイズであっても光電変換素子の受光面への集光効率を高めることのできる固体撮像素子及びその製造方法を提供すること。
【解決手段】基板2に形成された光電変換素子3と、この光電変換素子3に対応して配置されたオンチップレンズ15との間に、屈折率の異なる複数のレンズ層7〜11が積層されてなる層内レンズ12が設けられており、更に、光電変換素子3に対向する位置では、隣接するレンズ層7〜11間の境界面は全て、光電変換素子3の受光面3aに向かって曲面状にくぼんでいる。
【選択図】 図1
【解決手段】基板2に形成された光電変換素子3と、この光電変換素子3に対応して配置されたオンチップレンズ15との間に、屈折率の異なる複数のレンズ層7〜11が積層されてなる層内レンズ12が設けられており、更に、光電変換素子3に対向する位置では、隣接するレンズ層7〜11間の境界面は全て、光電変換素子3の受光面3aに向かって曲面状にくぼんでいる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、光電変換素子と、この光電変換素子の受光面に光を集光させるオンチップレンズとを有する固体撮像素子及びその製造方法に関し、更に詳しくは、オンチップレンズと受光面との間に形成された層内レンズに係るものである。
【0002】
【従来の技術】
固体撮像素子において、画素の高密度化や微細化を推し進めると、光電変換素子の受光面の面積が小さくなり、その分受光できる光量も少なくなり、感度が低下する。これを改善すべく、受光面上に設けられた平坦化された膜の上にオンチップレンズ(マイクロレンズとも呼ばれる)を形成して、このオンチップレンズにて光を受光面に集光させて感度を向上させる技術が知られている。
【0003】
しかし、近年の更なる画素の微細化に対しては、オンチップレンズだけでは十分な集光ができなくなってきている。すなわち、画素の微細化は基板の面方向に関するものがほとんどであり、基板の厚み方向の微細化に関しては、面方向に比べ技術的に困難であることから遅れているのが現状である。このため、単位画素について注目した場合、そのアスペクト比(基板の面方向に対する垂直方向の比率)は上昇する一方となっており、オンチップレンズだけでは、光を受光面へと効率的に集光させることができなくなってきている。
【0004】
そこで、オンチップレンズと光電変換素子の受光面との間に層内レンズを設け、オンチップレンズで集光された光を層内レンズにて更に集光させて受光面へと導くようにしたものがある(例えば、特許文献1参照。)。
【0005】
この固体撮像素子について図9を参照して説明する。
基板41表面に形成された光電変換素子42と、オンチップレンズ51との間に、第1の層内レンズ46と第2の層内レンズ49が形成されている。
【0006】
第1の層内レンズ46は、曲面状の上面を有する絶縁層44と、上面が平坦化された絶縁層45により形成されている。同様に、第2の層内レンズ49は、曲面状の上面を有する絶縁層47と、上面が平坦化された絶縁層48により形成されている。
【0007】
基板41上に形成された絶縁層43の平坦な上面の上には、第1の配線パターン52aが形成されている。絶縁層45と絶縁層47との境界面は平坦にされており、この平坦な境界面の上に第2の配線パターン52bが形成されている。
【0008】
絶縁層44、45、47、48の屈折率をそれぞれn1、n2、n3、n4とすると、n1<n2、n2>n3、n3<n4の関係になっている。したがって、入射光Lはオンチップレンズ51にて屈折した後、第2の層内レンズ49によって集光され、更に、第1の層内レンズ46によって再び集光されて、光電変換素子42の受光面に入射する。なお、絶縁層47と絶縁層45との間の境界面では、両絶縁層47、45間における屈折率の相対的な関係により、光Lが集光方向と逆向きの発散する方向に屈折する。
【0009】
【特許文献1】
特開2001−94086号公報
【0010】
【発明が解決しようとする課題】
上記特許文献1に示される固体撮像素子では、層内レンズ中に配線(第1の配線パターン52a、第2の配線パターン52b)を多層に積層する関係上、その配線の下地とするべく、層内レンズ内に平坦な境界面(絶縁層45、47間の境界面)を形成せざるを得ない。
【0011】
しかし、このような平坦な境界面は、集光を行わせるレンズとしては好ましい形状ではなく、曲面形状の境界面に比べて光電変換素子42の方へと光Lを集光させる作用が小さく、更に、その平坦な境界面上に形成された第2の配線パターン52bを避けるために、平坦な境界面への光の入射角が大きくなってしまい、そうすると、このままでは光電変換素子42の上方で焦点を結んでしまうことになるので、平坦な境界面で光を大きく屈折させている。このように、上記特許文献1の構成では、図示からも明らかなように光路を大きく調整する必要がある。
【0012】
そのためには、平坦な境界面を挟む2つの層45、47間の屈折率差を大きくして光を大きく屈折させて、光電変換素子42の方へと導いてやらなければならない。しかし、隣接する層間の屈折率差を大きくすると、その境界面での反射成分が増大し、その分透過成分(光電変換素子42への入射成分)が低減し、結果として、感度の低下を招くことになる。すなわち、層内レンズ中に配線やその下地となる平坦な境界面があると大きな屈折をさせる必要性が高くなり、よって反射率も高くなる傾向になりやすい。
【0013】
本発明は上述の問題に鑑みてなされ、その目的とするところは、レンズ層間の境界面での反射成分を増大させるような大きな屈折を行わせる必要がなく、なおかつ、微細な画素サイズであっても光電変換素子の受光面への集光効率を高めることのできる固体撮像素子及びその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
本発明の固体撮像素子は、屈折率の異なる複数のレンズ層が積層されてなる層内レンズを有し、更に、光電変換素子に対向する位置では、隣接するレンズ層間の境界面は全て、光電変換素子の受光面に向かって曲面状にくぼんでいることを特徴としている。
【0015】
本発明の固体撮像素子の製造方法は、基板に形成された光電変換素子と、前記光電変換素子に対応して配置されたオンチップレンズとの間に、屈折率の異なる複数のレンズ層を積層して層内レンズを形成する工程を有し、この工程に際しては、隣接するレンズ層間の境界面が光電変換素子に対向する位置で全て、光電変換素子の受光面に向かって曲面状にくぼむようにレンズ層を積層させることを特徴としている。
【0016】
隣接するレンズ層間の屈折率は、これらレンズ層間の境界面での反射を抑制するために小さくしている。したがって、1つの境界面における屈折の程度は小さいが、レンズ層を複数積層して境界面を複数とすることで何回も屈折を行わせている。このような構成のため、光を受光面へと損失なく導くことができる。更に、受光面に対向する位置で全ての境界面は曲面状にくぼんだ形状であるので、最初に設計した光路を大きく逸脱しないようにすることができ、層内レンズ内で大きな屈折を伴う光路調整を行う必要がない。
【0017】
ここで、屈折率n1のレンズ層から屈折率n2のレンズ層に垂直に光が入射する場合を考えると、そのときの反射率は、(n1−n2)2/(n1+n2)2で表されるので、例えばn1を1.9、n2を1.5とした場合には、反射率は1.4%となり、98.6%の光が透過する。
なお、透過率は、1−[(n1−n2)2/(n1+n2)2]=4×n1×n2/(n1+n2)2で表されることからも同様に98.6%が求められる。
【0018】
次に、屈折率n1とn2のレンズ層間に屈折率n3のレンズ層を挟み込んだ場合を考える。n3を例えば1.7とすると、各レンズ層間の境界面での反射率は0.3%、0.4%となり、3層のレンズ層全体を透過する光の透過率は、99.3%となる。
【0019】
次に、屈折率n1とn2のレンズ層間に屈折率n4、n3の媒質を挟み込んだ場合を考える。ここで、n4を1.8、n3を1.7とすると、各レンズ層間の境界面での反射率は0.07%、0.08%、0.4%となり、4層のレンズ層全体を透過する光の透過率は99.5%となる。
【0020】
更に、上記4層の場合において、屈折率が1.6のレンズ層を屈折率1.7のレンズ層と、屈折率1.5のレンズ層の間に挟み込んだ場合、これら5層のレンズ層全体を透過する光の透過率は99.7%となる。
【0021】
このように、反射率、透過率は隣接するレンズ層間の屈折率差で決まるため、レンズ層間の境界面の数が増加しても単純に透過率は減少せず、隣接するレンズ層間の屈折率差を小さくすることで、逆に各レンズ層全体を透過する光の透過率を増加させることができる。
【0022】
レンズ層の材料としては、光電変換素子にて検出されるべき光に対して透明な材料であればよく、例えば固体撮像素子の多くは可視光や赤外光の検出用なので、これらの光に対して透明な材料であればよい。一例として、酸化シリコン、窒化シリコン、窒化酸化シリコン、アクリル樹脂、これらにリン、ホウ素、フッ素などを添加したもの、などが挙げられる。
【0023】
また、境界面の曲面状のくぼみの深さを、光電変換素子の受光面側からオンチップレンズ側にいくにつれて段階的に浅くするようにすれば、同一方向から入射してくる光に対しては、くぼみが浅い方が入射角が小さくなり、全反射の危険性を小さくできる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について、CCD(Charge Coupled Device)型の固体撮像素子を例に挙げて説明する。
【0025】
(第1の実施の形態)
図1は、本発明の第1の実施の形態による固体撮像素子のある1画素についての断面図を示す。
【0026】
基板2に形成された、1画素を構成する光電変換素子3の両脇に垂直転送用の転送電極4が配置され、この転送電極4を覆うようにして遮光膜5が形成されている。その、遮光膜5を覆うようにして基板2上には、層内レンズ12、カラーフィルタ13、平坦層14が、順次積層されており、更に、平坦層14上にオンチップレンズ15が形成されている。
【0027】
次に、この固体撮像素子1の製造方法について、図2を参照して説明する。
【0028】
先ず、例えばシリコンなどでなる基板2表面に、光電変換素子としてのフォトダイオード3を形成する。次いで、その光電変換素子3の両脇に、絶縁膜を介して例えばポリシリコンでなる転送電極4を形成する。更に、転送電極4を覆うようにして、例えばアルミニウムでなる遮光膜5を形成する。この遮光膜5は、光電変換素子3の受光面3a以外への光の入射を防ぐ。転送電極4と遮光膜5との間には絶縁膜が介在されている。また、光電変換素子3上では、遮光膜5は開口され、光電変換素子3の受光面3aへの光の入射を可能としている。
【0029】
次いで、図2Aに示すように、遮光膜5を覆うようにして、層内レンズ下地層6を例えば化学気相成長法(CVD;Chemical Vapor Deposition)にて、基板2上に堆積する。層内レンズ下地層6の材料は、例えば、屈折率1.45を有するBPSG(borophosphosilicate glass)である。
【0030】
次いで、熱処理を行い、図2Bに示すように、光電変換素子3の受光面3a上に位置する層内レンズ下地層6の段差を緩和する。これにより、層内レンズ下地層6の上面に、曲面状にくぼんだくぼみが形成される。このくぼみは、光電変換素子3の受光面3aの真上に位置する。このくぼみの形状は、CVDによる成膜時の原料ガスであるB(ホウ素)、P(リン)の組成比や、CVD後の熱処理時の温度や時間などの加熱条件の制御により、受光面3aに集光させるレンズとして最適な形状に制御される。
【0031】
次いで、図2Cに示すように、層内レンズ下地層6の上に、5層のレンズ層7〜11を例えばCVD法にて順次積層していく。最上層のレンズ層11を除く4つのレンズ層7〜10の各上面には、層内レンズ下地層6の上面のくぼみと、同じ曲面状のくぼみが形成され、受光面3aの上方には、屈折率に差のある層どうしが隣接して形成される5つの曲面状にくぼんだ境界面が形成されることになる。これら境界面は、各レンズ層7〜10の厚さ分だけの間隔(ピッチ)でもって、重ねられている。
【0032】
5つのレンズ層7〜11は互いに屈折率が異なり、その材料は、例えば、酸化シリコン、窒化シリコン、窒化酸化シリコンであり、図8に示すように、これら材料中の窒素と酸素の比率を変えることで、屈折率に違いを持たせている。すなわち、CVDが行われる処理室内に導入する酸素ガスと窒素ガスの比率を制御することで、互いに屈折率の異なる5つのレンズ層7〜11を、同一処理室内で連続的に積層させて成膜することができる。なお、処理室内には、その他シリコンの供給源となるガスなども供給される。
【0033】
具体的には、レンズ層7の屈折率は1.5、レンズ層8の屈折率は1.6、レンズ層9の屈折率は1.7、レンズ層10の屈折率は1.8、レンズ層11の屈折率は1.9に設定している。したがって、最上層のレンズ層11から層内レンズ下地層6(屈折率1.45)にかけて、段階的に屈折率が小さくなっている。
【0034】
最上層のレンズ層11の上面は、例えばCMP(Chemical Mechanical Polishing)法にて平坦化される。その平坦化されたレンズ層11の上にカラーフィルタ13を形成し、更に、そのカラーフィルタ13の上に平坦層14を介してオンチップレンズ15を形成して、図1に示す固体撮像素子1が得られる。
【0035】
カラーフィルタ13は、例えば、色素を含有するアクリル系樹脂であり、屈折率は1.6〜1.7である。オンチップレンズ15及び平坦層14は、例えば、ポリスチレン系樹脂であり、屈折率は共に1.6である。
【0036】
オンチップレンズ15は、平坦化された平坦層14の表面上に、各画素に対応させて樹脂のパターンを形成し、これを加熱して溶融させた後、硬化させて形成する。この時に生じる溶融樹脂の表面張力により、上に凸の曲面形状が得られ、所望のレンズ形状とされる。
【0037】
以上のように構成される固体撮像素子1において、次にその作用について説明する。オンチップレンズ15に入射する入射光Lは、隣接する各層間の屈折率差の関係によって、図1に示すような光路でもって、光電変換素子3の受光面3aに集光される。
【0038】
先ず、入射光Lは空気とオンチップレンズ15との境界面で、集光方向に屈折される。オンチップレンズ15、平坦層14及びカラーフィルタ13の屈折率はほぼ等しいので、オンチップレンズ15を出た光は、屈折しないでそのまま平坦層14及びカラーフィルタ13中を直進する。
【0039】
カラーフィルタ13と最上層のレンズ層11との境界面では、光は発散する方向に屈折する。以降、各レンズ層7〜11間の境界面及び層内レンズ下地層6とレンズ層7との境界面では、集光する方向への小さな屈折を繰り返し、受光面3aに至る。
【0040】
層内レンズ12における隣接する層間の屈折率差が小さい(例えば、本実施の形態では屈折率差は0.1)ことにより、各境界面での反射は抑制され、なおかつ、各境界面での1回の屈折は小さくても、複数回屈折を行わせているので、画素の微細化に伴いオンチップレンズ15と受光面3a間のアスペクト比が大きくなっても、受光面3a上に光を集光させることができる。
【0041】
また、層内レンズ12内に配線や電極は形成されておらず、よって、層内レンズ12内に配線の下地となる平坦面を形成する必要はなく、受光面3aの真上に位置する部分では、受光面3aに向かって曲面状にくぼんだ形状の境界面のみを存在させることができる。
【0042】
したがって、層内レンズ内における配線や平坦な境界面の存在を考慮しなくて済み、上記特許文献1に見られるような光を大きく屈折させての光路調整を行う必要はなく、よって隣接する層間の屈折率差を小さくして、反射を抑制できる。
【0043】
最上層を除くレンズ層7〜10の膜厚は、それぞれが例えば50nm以下のほぼ等しい膜厚で形成されている。50nm以下という薄い膜厚とすることでアスペクト比の増大を抑えて、当初設計された集光光路を大きく逸脱させることなく受光面3aに集光させることができる。このことも、無理に大きな屈折を行わせることの回避につながる。
【0044】
なお、層内レンズ12は必ずしも5層である必要はなく、少なくとも2層以上の屈折率の異なる層から形成されていればよい。少ない回数の屈折となっても入射光を受光面3aへと導くことができれば5層よりも少ない層数であってもよい。もちろん、上記構成の層内レンズ12において、隣接する2層間にこれらの中間の屈折率のレンズ層を介在させて、境界面での屈折率差をより小さいものとし、更なる反射抑制を図ってもよい。
【0045】
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。図3は、第2の実施の形態による固体撮像素子21のある1画素についての断面図を示す。
【0046】
基板2に形成された、1画素を構成する光電変換素子3の両脇に垂直転送用の転送電極4が配置され、この転送電極4を覆うようにして遮光膜5が形成されている。その、遮光膜5を覆うようにして基板2上には、層内レンズ25、カラーフィルタ13、平坦層14が、順次積層されており、更に、平坦層14上にオンチップレンズ15が形成されている。
【0047】
層内レンズ25は3層のレンズ層22〜24から構成される。最下層のレンズ層22とこの上に隣接するレンズ層23との間の境界面の曲面状のくぼみの深さは、層内レンズ下地層6と最下層のレンズ層22との間の境界面の曲面状のくぼみの深さより浅い。最上層のレンズ層24とこの下に隣接するレンズ層23との間の境界面の曲面状のくぼみの深さは、上記した最下層のレンズ層22とこの上に隣接するレンズ層23との間の境界面の曲面状のくぼみの深さより浅い。したがって、層内レンズ下地層6と最上層のレンズ層24との間に形成されている、3つの境界面のくぼみは、その深さが上層にいくにつれて浅くなっている。
【0048】
次に、この固体撮像素子21の製造方法について、図4〜図7を参照して説明する。
【0049】
先ず、例えばシリコンでなる基板2の表面に、光電変換素子としてのフォトダイオード3を形成する。次いで、その光電変換素子3の両脇に、絶縁膜を介して例えばポリシリコンでなる転送電極4を形成する。更に、転送電極4を覆うようにして、例えばアルミニウムでなる遮光膜5を形成する。転送電極4と遮光膜5との間には絶縁膜が介在されている。また、光電変換素子3上では、遮光膜5は開口され、光電変換素子3の受光面3aへの光の入射を可能としている。
【0050】
次いで、図4Aに示すように、遮光膜5を覆うようにして、層内レンズ下地層6を例えばCVD法にて、基板2上に堆積する。層内レンズ下地層6の材料は、例えば、屈折率1.45を有するBPSGである。
【0051】
次いで、熱処理を行い、図4Bに示すように、光電変換素子3の受光面3aの真上に位置する層内レンズ下地層6の段差を緩和する。これにより、層内レンズ下地層6の上面に曲面状のくぼみが形成される。このくぼみは、光電変換素子3の受光面3aの真上に位置する。このくぼみの形状は、CVDによる成膜時のB(ホウ素)とP(リン)の組成比や、CVD後の熱処理時の温度や時間などの制御により、入射してきた光を受光面3aに集光させるレンズとして最適な形状に制御される。
【0052】
次いで、図4Cに示すように、層内レンズ下地層6の上に、CVD法によりレンズ層22を形成する。このレンズ層22は、上記第1の実施の形態と同様に、CVD時の窒素ガスと酸素ガスの流量比を調整することで、屈折率1.7の窒化酸化シリコン膜として形成される。
【0053】
次いで、図5Dに示すように、レンズ層22の上に、CVD法により転写膜31を形成する。転写膜31の材料は、CVD後の熱処理によって所望のレンズ形状としやすい、例えばBPSGである。
【0054】
次いで、図5Eに示すように、転写膜31に熱処理を行うことにより、転写膜31上面の凹凸を緩和する。すなわち、層内レンズ下地層6とこれに隣接するレンズ層22との間の境界面のくぼみの深さよりも、転写膜31の上面のくぼみを浅くする。
【0055】
このとき、先に形成され転写膜31と同じBPSGでなる、層内レンズ下地層6の上面のくぼみ形状を崩さないために、そのくぼみを形成するときに行った熱処理温度よりも低い温度で熱処理を行う。この低い温度での凹凸緩和処理を可能とするため、転写膜31をCVD法にて形成する際に(図5Dの工程)、B(ホウ素)とP(リン)の濃度の制御を行っている。
【0056】
次いで、上記にて上面のくぼみが所望の深さとされた転写膜31を、その下層のレンズ層22の途中まで異方性ドライエッチングする。転写膜31の上面形状に沿って、その下層のレンズ層22もエッチバックされるので、図5Fに示すように、レンズ層22の上面に、転写膜31上面のくぼみが転写される。したがって、レンズ層22の上面のくぼみの深さは、そのレンズ層22と層内レンズ下地層6との間の境界面のくぼみの深さより浅くなる。
【0057】
次いで、図6Gに示すように、レンズ層22の上に、CVD法によりレンズ層23を形成する。このレンズ層23も、上記第1の実施の形態と同様に、CVD時の窒素ガスと酸素ガスの流量比を調整することで、例えば屈折率2.0の窒化シリコン膜として形成される。
【0058】
次いで、図6Hに示すように、レンズ層23の上に、CVD法により、BPSGでなる転写膜32を形成し、更に、熱処理を行うことにより、先に形成されたレンズ層22の上面のくぼみの深さよりも、転写膜32の上面のくぼみを浅くする。
【0059】
このときもやはり、先に形成され転写膜32と同じBPSGでなる層内レンズ下地層6上面のくぼみ形状を崩さないために、そのくぼみを形成するときに行った熱処理温度よりも低い温度で熱処理を行う。
【0060】
次いで、上記にて上面のくぼみが所望の深さとされた転写膜32を、その下層のレンズ層23の途中まで異方性ドライエッチングする。転写膜32上面のくぼみ形状に沿って、その下層のレンズ層23もエッチバックされるので、図6Iに示すように、レンズ層23の上面に、転写膜32上面のくぼみ形状が転写される。したがって、レンズ層23上面のくぼみの深さは、レンズ層23とレンズ層22との間の境界面のくぼみの深さより浅くなる。
【0061】
次いで、図7Jに示すように、レンズ層23の上に、CVD法によりレンズ層24を形成する。このレンズ層24は、上記第1の実施の形態と同様に、CVD時の窒素ガスと酸素ガスの流量比を調整することで、例えば屈折率1.9の窒化酸化シリコン膜として形成される。
【0062】
このレンズ層24の上面は、図7Kに示すように、例えばCMP法にて平坦化される。その平坦化されたレンズ層24の上にカラーフィルタ13を形成し、更に、そのカラーフィルタ13の上に平坦層14を介してオンチップレンズ15を形成して、図3に示す第2の実施の形態の固体撮像素子21が得られる。
【0063】
上記第1の実施の形態と同様に、カラーフィルタ13は、例えば、色素を含有するアクリル系樹脂であり、屈折率は1.6〜1.7である。オンチップレンズ15及び平坦層14は、例えば、ポリスチレン系樹脂であり、屈折率は共に1.6である。
【0064】
本実施の形態では、オンチップレンズ15入射する入射光Lは、隣接する各層間の屈折率差の関係によって、図3に示すような光路でもって、光電変換素子3の受光面3aに集光される。
【0065】
本実施の形態においても、上記第1の実施の形態と同様、層内レンズ25における隣接する層間の屈折率差が小さいことにより、各境界面での反射は抑制され、なおかつ、各境界面での1回の屈折は小さくても、複数回屈折を行わせているので、画素の微細化に伴いオンチップレンズ15と受光面3a間のアスペクト比が大きくなっても、受光面3a上に光を集光させることができる。
【0066】
更に、層内レンズ25内に配線や電極は形成されていないため、受光面3aの真上に位置する部分では、受光面3aに向かって曲面状にくぼんだ形状の境界面のみを存在させることができる。したがって、本実施の形態においても、上記特許文献1に見られるような光を大きく屈折させての光路調整を行う必要はなく、よって隣接する層間の屈折率差を小さくして、反射を抑制できる。
【0067】
また、本実施の形態では、各境界面のくぼみの深さを揃えるのではなく、上層側で浅くしているので、この固体撮像素子21の厚さ方向に対して角度の大きい光(斜め光)が入射しても、その浅くした境界面では入射角がそれほど大きくならずに、全反射条件となる確率を減少させることができる。
【0068】
更に、(レンズ層24の屈折率<レンズ層23の屈折率)という関係にすることで、レンズ層24、23間の境界面では焦点の位置を下げる方向に光を屈折させて、このことにより、レンズ層23とレンズ層22との境界面に入射する光の入射角を小さくできる。したがって、レンズ層23とレンズ層22との境界面での全反射条件となる確率を減少させることができる。
【0069】
なお、本実施の形態においても、層内レンズ25は必ずしも3層である必要はない。また、中間のレンズ層23の屈折率を例えば1.8にして、上記第1の実施の形態のように、最上層のレンズ層24から層内レンズ下地層6にかけて、段階的に屈折率が小さくなる構成としてもよい。
【0070】
以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0071】
層内レンズを構成するレンズ層の成膜方法としては、CVD法に限らず、スパッタ法などの物理気相成長法を用いてもよい。
また、上記実施の形態で挙げた各層の具体的な屈折率の数値は一例であって、これらに限られることはない。
【0072】
本発明は、CCD型固体撮像素子に限らず、CMOS型固体撮像素子や、その他、光電変換素子の受光面とオンチップレンズとの間に層内レンズを有する固体撮像素子全てに適用可能である。
【0073】
【発明の効果】
以上述べたように、本発明によれば、層内レンズを屈折率の異なる複数のレンズ層の積層構造とし、なおかつ、光電変換素子に対向する位置では、隣接するレンズ層間の境界面は全て、光電変換素子の受光面に向かって曲面状にくぼんだ構成としたので、オンチップレンズに入射した光の損失を抑えて受光面への集光効率を向上させることができる。結果として、画素の微細化に伴う感度の低下を防げる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による、固体撮像素子のある1画素についての断面図である。
【図2】同第1の実施の形態による固体撮像素子の製造工程を示す断面図である。
【図3】本発明の第2の実施の形態による、固体撮像素子のある1画素についての断面図である。
【図4】同第2の実施の形態による固体撮像素子の製造工程を示す断面図である。
【図5】図4に続く製造工程を示す断面図である。
【図6】図5に続く製造工程を示す断面図である。
【図7】図6に続く製造工程を示す断面図である。
【図8】SiON膜の、酸素と窒素の比率に対する屈折率の変化を示すグラフである。
【図9】従来例の固体撮像素子のある1画素についての断面図である。
【符号の説明】
1…固体撮像素子、2…基板、3…光電変換素子、3a…受光面、4…転送電極、5…遮光膜、6…層内レンズ下地層、7…レンズ層(屈折率1.5)、7…レンズ層(屈折率1.5)、8…レンズ層(屈折率1.6)、9…レンズ層(屈折率1.7)、10…レンズ層(屈折率1.8)、11…レンズ層(屈折率1.9)、12…層内レンズ、13…カラーフィルタ、14…平坦層、15…オンチップレンズ、21…固体撮像素子、22…レンズ層(屈折率1.7)、23…レンズ層(屈折率2.0)、24…レンズ層(屈折率1.9)、25…層内レンズ、31…転写膜、32…転写膜。
【発明の属する技術分野】
本発明は、光電変換素子と、この光電変換素子の受光面に光を集光させるオンチップレンズとを有する固体撮像素子及びその製造方法に関し、更に詳しくは、オンチップレンズと受光面との間に形成された層内レンズに係るものである。
【0002】
【従来の技術】
固体撮像素子において、画素の高密度化や微細化を推し進めると、光電変換素子の受光面の面積が小さくなり、その分受光できる光量も少なくなり、感度が低下する。これを改善すべく、受光面上に設けられた平坦化された膜の上にオンチップレンズ(マイクロレンズとも呼ばれる)を形成して、このオンチップレンズにて光を受光面に集光させて感度を向上させる技術が知られている。
【0003】
しかし、近年の更なる画素の微細化に対しては、オンチップレンズだけでは十分な集光ができなくなってきている。すなわち、画素の微細化は基板の面方向に関するものがほとんどであり、基板の厚み方向の微細化に関しては、面方向に比べ技術的に困難であることから遅れているのが現状である。このため、単位画素について注目した場合、そのアスペクト比(基板の面方向に対する垂直方向の比率)は上昇する一方となっており、オンチップレンズだけでは、光を受光面へと効率的に集光させることができなくなってきている。
【0004】
そこで、オンチップレンズと光電変換素子の受光面との間に層内レンズを設け、オンチップレンズで集光された光を層内レンズにて更に集光させて受光面へと導くようにしたものがある(例えば、特許文献1参照。)。
【0005】
この固体撮像素子について図9を参照して説明する。
基板41表面に形成された光電変換素子42と、オンチップレンズ51との間に、第1の層内レンズ46と第2の層内レンズ49が形成されている。
【0006】
第1の層内レンズ46は、曲面状の上面を有する絶縁層44と、上面が平坦化された絶縁層45により形成されている。同様に、第2の層内レンズ49は、曲面状の上面を有する絶縁層47と、上面が平坦化された絶縁層48により形成されている。
【0007】
基板41上に形成された絶縁層43の平坦な上面の上には、第1の配線パターン52aが形成されている。絶縁層45と絶縁層47との境界面は平坦にされており、この平坦な境界面の上に第2の配線パターン52bが形成されている。
【0008】
絶縁層44、45、47、48の屈折率をそれぞれn1、n2、n3、n4とすると、n1<n2、n2>n3、n3<n4の関係になっている。したがって、入射光Lはオンチップレンズ51にて屈折した後、第2の層内レンズ49によって集光され、更に、第1の層内レンズ46によって再び集光されて、光電変換素子42の受光面に入射する。なお、絶縁層47と絶縁層45との間の境界面では、両絶縁層47、45間における屈折率の相対的な関係により、光Lが集光方向と逆向きの発散する方向に屈折する。
【0009】
【特許文献1】
特開2001−94086号公報
【0010】
【発明が解決しようとする課題】
上記特許文献1に示される固体撮像素子では、層内レンズ中に配線(第1の配線パターン52a、第2の配線パターン52b)を多層に積層する関係上、その配線の下地とするべく、層内レンズ内に平坦な境界面(絶縁層45、47間の境界面)を形成せざるを得ない。
【0011】
しかし、このような平坦な境界面は、集光を行わせるレンズとしては好ましい形状ではなく、曲面形状の境界面に比べて光電変換素子42の方へと光Lを集光させる作用が小さく、更に、その平坦な境界面上に形成された第2の配線パターン52bを避けるために、平坦な境界面への光の入射角が大きくなってしまい、そうすると、このままでは光電変換素子42の上方で焦点を結んでしまうことになるので、平坦な境界面で光を大きく屈折させている。このように、上記特許文献1の構成では、図示からも明らかなように光路を大きく調整する必要がある。
【0012】
そのためには、平坦な境界面を挟む2つの層45、47間の屈折率差を大きくして光を大きく屈折させて、光電変換素子42の方へと導いてやらなければならない。しかし、隣接する層間の屈折率差を大きくすると、その境界面での反射成分が増大し、その分透過成分(光電変換素子42への入射成分)が低減し、結果として、感度の低下を招くことになる。すなわち、層内レンズ中に配線やその下地となる平坦な境界面があると大きな屈折をさせる必要性が高くなり、よって反射率も高くなる傾向になりやすい。
【0013】
本発明は上述の問題に鑑みてなされ、その目的とするところは、レンズ層間の境界面での反射成分を増大させるような大きな屈折を行わせる必要がなく、なおかつ、微細な画素サイズであっても光電変換素子の受光面への集光効率を高めることのできる固体撮像素子及びその製造方法を提供することにある。
【0014】
【課題を解決するための手段】
本発明の固体撮像素子は、屈折率の異なる複数のレンズ層が積層されてなる層内レンズを有し、更に、光電変換素子に対向する位置では、隣接するレンズ層間の境界面は全て、光電変換素子の受光面に向かって曲面状にくぼんでいることを特徴としている。
【0015】
本発明の固体撮像素子の製造方法は、基板に形成された光電変換素子と、前記光電変換素子に対応して配置されたオンチップレンズとの間に、屈折率の異なる複数のレンズ層を積層して層内レンズを形成する工程を有し、この工程に際しては、隣接するレンズ層間の境界面が光電変換素子に対向する位置で全て、光電変換素子の受光面に向かって曲面状にくぼむようにレンズ層を積層させることを特徴としている。
【0016】
隣接するレンズ層間の屈折率は、これらレンズ層間の境界面での反射を抑制するために小さくしている。したがって、1つの境界面における屈折の程度は小さいが、レンズ層を複数積層して境界面を複数とすることで何回も屈折を行わせている。このような構成のため、光を受光面へと損失なく導くことができる。更に、受光面に対向する位置で全ての境界面は曲面状にくぼんだ形状であるので、最初に設計した光路を大きく逸脱しないようにすることができ、層内レンズ内で大きな屈折を伴う光路調整を行う必要がない。
【0017】
ここで、屈折率n1のレンズ層から屈折率n2のレンズ層に垂直に光が入射する場合を考えると、そのときの反射率は、(n1−n2)2/(n1+n2)2で表されるので、例えばn1を1.9、n2を1.5とした場合には、反射率は1.4%となり、98.6%の光が透過する。
なお、透過率は、1−[(n1−n2)2/(n1+n2)2]=4×n1×n2/(n1+n2)2で表されることからも同様に98.6%が求められる。
【0018】
次に、屈折率n1とn2のレンズ層間に屈折率n3のレンズ層を挟み込んだ場合を考える。n3を例えば1.7とすると、各レンズ層間の境界面での反射率は0.3%、0.4%となり、3層のレンズ層全体を透過する光の透過率は、99.3%となる。
【0019】
次に、屈折率n1とn2のレンズ層間に屈折率n4、n3の媒質を挟み込んだ場合を考える。ここで、n4を1.8、n3を1.7とすると、各レンズ層間の境界面での反射率は0.07%、0.08%、0.4%となり、4層のレンズ層全体を透過する光の透過率は99.5%となる。
【0020】
更に、上記4層の場合において、屈折率が1.6のレンズ層を屈折率1.7のレンズ層と、屈折率1.5のレンズ層の間に挟み込んだ場合、これら5層のレンズ層全体を透過する光の透過率は99.7%となる。
【0021】
このように、反射率、透過率は隣接するレンズ層間の屈折率差で決まるため、レンズ層間の境界面の数が増加しても単純に透過率は減少せず、隣接するレンズ層間の屈折率差を小さくすることで、逆に各レンズ層全体を透過する光の透過率を増加させることができる。
【0022】
レンズ層の材料としては、光電変換素子にて検出されるべき光に対して透明な材料であればよく、例えば固体撮像素子の多くは可視光や赤外光の検出用なので、これらの光に対して透明な材料であればよい。一例として、酸化シリコン、窒化シリコン、窒化酸化シリコン、アクリル樹脂、これらにリン、ホウ素、フッ素などを添加したもの、などが挙げられる。
【0023】
また、境界面の曲面状のくぼみの深さを、光電変換素子の受光面側からオンチップレンズ側にいくにつれて段階的に浅くするようにすれば、同一方向から入射してくる光に対しては、くぼみが浅い方が入射角が小さくなり、全反射の危険性を小さくできる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態について、CCD(Charge Coupled Device)型の固体撮像素子を例に挙げて説明する。
【0025】
(第1の実施の形態)
図1は、本発明の第1の実施の形態による固体撮像素子のある1画素についての断面図を示す。
【0026】
基板2に形成された、1画素を構成する光電変換素子3の両脇に垂直転送用の転送電極4が配置され、この転送電極4を覆うようにして遮光膜5が形成されている。その、遮光膜5を覆うようにして基板2上には、層内レンズ12、カラーフィルタ13、平坦層14が、順次積層されており、更に、平坦層14上にオンチップレンズ15が形成されている。
【0027】
次に、この固体撮像素子1の製造方法について、図2を参照して説明する。
【0028】
先ず、例えばシリコンなどでなる基板2表面に、光電変換素子としてのフォトダイオード3を形成する。次いで、その光電変換素子3の両脇に、絶縁膜を介して例えばポリシリコンでなる転送電極4を形成する。更に、転送電極4を覆うようにして、例えばアルミニウムでなる遮光膜5を形成する。この遮光膜5は、光電変換素子3の受光面3a以外への光の入射を防ぐ。転送電極4と遮光膜5との間には絶縁膜が介在されている。また、光電変換素子3上では、遮光膜5は開口され、光電変換素子3の受光面3aへの光の入射を可能としている。
【0029】
次いで、図2Aに示すように、遮光膜5を覆うようにして、層内レンズ下地層6を例えば化学気相成長法(CVD;Chemical Vapor Deposition)にて、基板2上に堆積する。層内レンズ下地層6の材料は、例えば、屈折率1.45を有するBPSG(borophosphosilicate glass)である。
【0030】
次いで、熱処理を行い、図2Bに示すように、光電変換素子3の受光面3a上に位置する層内レンズ下地層6の段差を緩和する。これにより、層内レンズ下地層6の上面に、曲面状にくぼんだくぼみが形成される。このくぼみは、光電変換素子3の受光面3aの真上に位置する。このくぼみの形状は、CVDによる成膜時の原料ガスであるB(ホウ素)、P(リン)の組成比や、CVD後の熱処理時の温度や時間などの加熱条件の制御により、受光面3aに集光させるレンズとして最適な形状に制御される。
【0031】
次いで、図2Cに示すように、層内レンズ下地層6の上に、5層のレンズ層7〜11を例えばCVD法にて順次積層していく。最上層のレンズ層11を除く4つのレンズ層7〜10の各上面には、層内レンズ下地層6の上面のくぼみと、同じ曲面状のくぼみが形成され、受光面3aの上方には、屈折率に差のある層どうしが隣接して形成される5つの曲面状にくぼんだ境界面が形成されることになる。これら境界面は、各レンズ層7〜10の厚さ分だけの間隔(ピッチ)でもって、重ねられている。
【0032】
5つのレンズ層7〜11は互いに屈折率が異なり、その材料は、例えば、酸化シリコン、窒化シリコン、窒化酸化シリコンであり、図8に示すように、これら材料中の窒素と酸素の比率を変えることで、屈折率に違いを持たせている。すなわち、CVDが行われる処理室内に導入する酸素ガスと窒素ガスの比率を制御することで、互いに屈折率の異なる5つのレンズ層7〜11を、同一処理室内で連続的に積層させて成膜することができる。なお、処理室内には、その他シリコンの供給源となるガスなども供給される。
【0033】
具体的には、レンズ層7の屈折率は1.5、レンズ層8の屈折率は1.6、レンズ層9の屈折率は1.7、レンズ層10の屈折率は1.8、レンズ層11の屈折率は1.9に設定している。したがって、最上層のレンズ層11から層内レンズ下地層6(屈折率1.45)にかけて、段階的に屈折率が小さくなっている。
【0034】
最上層のレンズ層11の上面は、例えばCMP(Chemical Mechanical Polishing)法にて平坦化される。その平坦化されたレンズ層11の上にカラーフィルタ13を形成し、更に、そのカラーフィルタ13の上に平坦層14を介してオンチップレンズ15を形成して、図1に示す固体撮像素子1が得られる。
【0035】
カラーフィルタ13は、例えば、色素を含有するアクリル系樹脂であり、屈折率は1.6〜1.7である。オンチップレンズ15及び平坦層14は、例えば、ポリスチレン系樹脂であり、屈折率は共に1.6である。
【0036】
オンチップレンズ15は、平坦化された平坦層14の表面上に、各画素に対応させて樹脂のパターンを形成し、これを加熱して溶融させた後、硬化させて形成する。この時に生じる溶融樹脂の表面張力により、上に凸の曲面形状が得られ、所望のレンズ形状とされる。
【0037】
以上のように構成される固体撮像素子1において、次にその作用について説明する。オンチップレンズ15に入射する入射光Lは、隣接する各層間の屈折率差の関係によって、図1に示すような光路でもって、光電変換素子3の受光面3aに集光される。
【0038】
先ず、入射光Lは空気とオンチップレンズ15との境界面で、集光方向に屈折される。オンチップレンズ15、平坦層14及びカラーフィルタ13の屈折率はほぼ等しいので、オンチップレンズ15を出た光は、屈折しないでそのまま平坦層14及びカラーフィルタ13中を直進する。
【0039】
カラーフィルタ13と最上層のレンズ層11との境界面では、光は発散する方向に屈折する。以降、各レンズ層7〜11間の境界面及び層内レンズ下地層6とレンズ層7との境界面では、集光する方向への小さな屈折を繰り返し、受光面3aに至る。
【0040】
層内レンズ12における隣接する層間の屈折率差が小さい(例えば、本実施の形態では屈折率差は0.1)ことにより、各境界面での反射は抑制され、なおかつ、各境界面での1回の屈折は小さくても、複数回屈折を行わせているので、画素の微細化に伴いオンチップレンズ15と受光面3a間のアスペクト比が大きくなっても、受光面3a上に光を集光させることができる。
【0041】
また、層内レンズ12内に配線や電極は形成されておらず、よって、層内レンズ12内に配線の下地となる平坦面を形成する必要はなく、受光面3aの真上に位置する部分では、受光面3aに向かって曲面状にくぼんだ形状の境界面のみを存在させることができる。
【0042】
したがって、層内レンズ内における配線や平坦な境界面の存在を考慮しなくて済み、上記特許文献1に見られるような光を大きく屈折させての光路調整を行う必要はなく、よって隣接する層間の屈折率差を小さくして、反射を抑制できる。
【0043】
最上層を除くレンズ層7〜10の膜厚は、それぞれが例えば50nm以下のほぼ等しい膜厚で形成されている。50nm以下という薄い膜厚とすることでアスペクト比の増大を抑えて、当初設計された集光光路を大きく逸脱させることなく受光面3aに集光させることができる。このことも、無理に大きな屈折を行わせることの回避につながる。
【0044】
なお、層内レンズ12は必ずしも5層である必要はなく、少なくとも2層以上の屈折率の異なる層から形成されていればよい。少ない回数の屈折となっても入射光を受光面3aへと導くことができれば5層よりも少ない層数であってもよい。もちろん、上記構成の層内レンズ12において、隣接する2層間にこれらの中間の屈折率のレンズ層を介在させて、境界面での屈折率差をより小さいものとし、更なる反射抑制を図ってもよい。
【0045】
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。図3は、第2の実施の形態による固体撮像素子21のある1画素についての断面図を示す。
【0046】
基板2に形成された、1画素を構成する光電変換素子3の両脇に垂直転送用の転送電極4が配置され、この転送電極4を覆うようにして遮光膜5が形成されている。その、遮光膜5を覆うようにして基板2上には、層内レンズ25、カラーフィルタ13、平坦層14が、順次積層されており、更に、平坦層14上にオンチップレンズ15が形成されている。
【0047】
層内レンズ25は3層のレンズ層22〜24から構成される。最下層のレンズ層22とこの上に隣接するレンズ層23との間の境界面の曲面状のくぼみの深さは、層内レンズ下地層6と最下層のレンズ層22との間の境界面の曲面状のくぼみの深さより浅い。最上層のレンズ層24とこの下に隣接するレンズ層23との間の境界面の曲面状のくぼみの深さは、上記した最下層のレンズ層22とこの上に隣接するレンズ層23との間の境界面の曲面状のくぼみの深さより浅い。したがって、層内レンズ下地層6と最上層のレンズ層24との間に形成されている、3つの境界面のくぼみは、その深さが上層にいくにつれて浅くなっている。
【0048】
次に、この固体撮像素子21の製造方法について、図4〜図7を参照して説明する。
【0049】
先ず、例えばシリコンでなる基板2の表面に、光電変換素子としてのフォトダイオード3を形成する。次いで、その光電変換素子3の両脇に、絶縁膜を介して例えばポリシリコンでなる転送電極4を形成する。更に、転送電極4を覆うようにして、例えばアルミニウムでなる遮光膜5を形成する。転送電極4と遮光膜5との間には絶縁膜が介在されている。また、光電変換素子3上では、遮光膜5は開口され、光電変換素子3の受光面3aへの光の入射を可能としている。
【0050】
次いで、図4Aに示すように、遮光膜5を覆うようにして、層内レンズ下地層6を例えばCVD法にて、基板2上に堆積する。層内レンズ下地層6の材料は、例えば、屈折率1.45を有するBPSGである。
【0051】
次いで、熱処理を行い、図4Bに示すように、光電変換素子3の受光面3aの真上に位置する層内レンズ下地層6の段差を緩和する。これにより、層内レンズ下地層6の上面に曲面状のくぼみが形成される。このくぼみは、光電変換素子3の受光面3aの真上に位置する。このくぼみの形状は、CVDによる成膜時のB(ホウ素)とP(リン)の組成比や、CVD後の熱処理時の温度や時間などの制御により、入射してきた光を受光面3aに集光させるレンズとして最適な形状に制御される。
【0052】
次いで、図4Cに示すように、層内レンズ下地層6の上に、CVD法によりレンズ層22を形成する。このレンズ層22は、上記第1の実施の形態と同様に、CVD時の窒素ガスと酸素ガスの流量比を調整することで、屈折率1.7の窒化酸化シリコン膜として形成される。
【0053】
次いで、図5Dに示すように、レンズ層22の上に、CVD法により転写膜31を形成する。転写膜31の材料は、CVD後の熱処理によって所望のレンズ形状としやすい、例えばBPSGである。
【0054】
次いで、図5Eに示すように、転写膜31に熱処理を行うことにより、転写膜31上面の凹凸を緩和する。すなわち、層内レンズ下地層6とこれに隣接するレンズ層22との間の境界面のくぼみの深さよりも、転写膜31の上面のくぼみを浅くする。
【0055】
このとき、先に形成され転写膜31と同じBPSGでなる、層内レンズ下地層6の上面のくぼみ形状を崩さないために、そのくぼみを形成するときに行った熱処理温度よりも低い温度で熱処理を行う。この低い温度での凹凸緩和処理を可能とするため、転写膜31をCVD法にて形成する際に(図5Dの工程)、B(ホウ素)とP(リン)の濃度の制御を行っている。
【0056】
次いで、上記にて上面のくぼみが所望の深さとされた転写膜31を、その下層のレンズ層22の途中まで異方性ドライエッチングする。転写膜31の上面形状に沿って、その下層のレンズ層22もエッチバックされるので、図5Fに示すように、レンズ層22の上面に、転写膜31上面のくぼみが転写される。したがって、レンズ層22の上面のくぼみの深さは、そのレンズ層22と層内レンズ下地層6との間の境界面のくぼみの深さより浅くなる。
【0057】
次いで、図6Gに示すように、レンズ層22の上に、CVD法によりレンズ層23を形成する。このレンズ層23も、上記第1の実施の形態と同様に、CVD時の窒素ガスと酸素ガスの流量比を調整することで、例えば屈折率2.0の窒化シリコン膜として形成される。
【0058】
次いで、図6Hに示すように、レンズ層23の上に、CVD法により、BPSGでなる転写膜32を形成し、更に、熱処理を行うことにより、先に形成されたレンズ層22の上面のくぼみの深さよりも、転写膜32の上面のくぼみを浅くする。
【0059】
このときもやはり、先に形成され転写膜32と同じBPSGでなる層内レンズ下地層6上面のくぼみ形状を崩さないために、そのくぼみを形成するときに行った熱処理温度よりも低い温度で熱処理を行う。
【0060】
次いで、上記にて上面のくぼみが所望の深さとされた転写膜32を、その下層のレンズ層23の途中まで異方性ドライエッチングする。転写膜32上面のくぼみ形状に沿って、その下層のレンズ層23もエッチバックされるので、図6Iに示すように、レンズ層23の上面に、転写膜32上面のくぼみ形状が転写される。したがって、レンズ層23上面のくぼみの深さは、レンズ層23とレンズ層22との間の境界面のくぼみの深さより浅くなる。
【0061】
次いで、図7Jに示すように、レンズ層23の上に、CVD法によりレンズ層24を形成する。このレンズ層24は、上記第1の実施の形態と同様に、CVD時の窒素ガスと酸素ガスの流量比を調整することで、例えば屈折率1.9の窒化酸化シリコン膜として形成される。
【0062】
このレンズ層24の上面は、図7Kに示すように、例えばCMP法にて平坦化される。その平坦化されたレンズ層24の上にカラーフィルタ13を形成し、更に、そのカラーフィルタ13の上に平坦層14を介してオンチップレンズ15を形成して、図3に示す第2の実施の形態の固体撮像素子21が得られる。
【0063】
上記第1の実施の形態と同様に、カラーフィルタ13は、例えば、色素を含有するアクリル系樹脂であり、屈折率は1.6〜1.7である。オンチップレンズ15及び平坦層14は、例えば、ポリスチレン系樹脂であり、屈折率は共に1.6である。
【0064】
本実施の形態では、オンチップレンズ15入射する入射光Lは、隣接する各層間の屈折率差の関係によって、図3に示すような光路でもって、光電変換素子3の受光面3aに集光される。
【0065】
本実施の形態においても、上記第1の実施の形態と同様、層内レンズ25における隣接する層間の屈折率差が小さいことにより、各境界面での反射は抑制され、なおかつ、各境界面での1回の屈折は小さくても、複数回屈折を行わせているので、画素の微細化に伴いオンチップレンズ15と受光面3a間のアスペクト比が大きくなっても、受光面3a上に光を集光させることができる。
【0066】
更に、層内レンズ25内に配線や電極は形成されていないため、受光面3aの真上に位置する部分では、受光面3aに向かって曲面状にくぼんだ形状の境界面のみを存在させることができる。したがって、本実施の形態においても、上記特許文献1に見られるような光を大きく屈折させての光路調整を行う必要はなく、よって隣接する層間の屈折率差を小さくして、反射を抑制できる。
【0067】
また、本実施の形態では、各境界面のくぼみの深さを揃えるのではなく、上層側で浅くしているので、この固体撮像素子21の厚さ方向に対して角度の大きい光(斜め光)が入射しても、その浅くした境界面では入射角がそれほど大きくならずに、全反射条件となる確率を減少させることができる。
【0068】
更に、(レンズ層24の屈折率<レンズ層23の屈折率)という関係にすることで、レンズ層24、23間の境界面では焦点の位置を下げる方向に光を屈折させて、このことにより、レンズ層23とレンズ層22との境界面に入射する光の入射角を小さくできる。したがって、レンズ層23とレンズ層22との境界面での全反射条件となる確率を減少させることができる。
【0069】
なお、本実施の形態においても、層内レンズ25は必ずしも3層である必要はない。また、中間のレンズ層23の屈折率を例えば1.8にして、上記第1の実施の形態のように、最上層のレンズ層24から層内レンズ下地層6にかけて、段階的に屈折率が小さくなる構成としてもよい。
【0070】
以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0071】
層内レンズを構成するレンズ層の成膜方法としては、CVD法に限らず、スパッタ法などの物理気相成長法を用いてもよい。
また、上記実施の形態で挙げた各層の具体的な屈折率の数値は一例であって、これらに限られることはない。
【0072】
本発明は、CCD型固体撮像素子に限らず、CMOS型固体撮像素子や、その他、光電変換素子の受光面とオンチップレンズとの間に層内レンズを有する固体撮像素子全てに適用可能である。
【0073】
【発明の効果】
以上述べたように、本発明によれば、層内レンズを屈折率の異なる複数のレンズ層の積層構造とし、なおかつ、光電変換素子に対向する位置では、隣接するレンズ層間の境界面は全て、光電変換素子の受光面に向かって曲面状にくぼんだ構成としたので、オンチップレンズに入射した光の損失を抑えて受光面への集光効率を向上させることができる。結果として、画素の微細化に伴う感度の低下を防げる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による、固体撮像素子のある1画素についての断面図である。
【図2】同第1の実施の形態による固体撮像素子の製造工程を示す断面図である。
【図3】本発明の第2の実施の形態による、固体撮像素子のある1画素についての断面図である。
【図4】同第2の実施の形態による固体撮像素子の製造工程を示す断面図である。
【図5】図4に続く製造工程を示す断面図である。
【図6】図5に続く製造工程を示す断面図である。
【図7】図6に続く製造工程を示す断面図である。
【図8】SiON膜の、酸素と窒素の比率に対する屈折率の変化を示すグラフである。
【図9】従来例の固体撮像素子のある1画素についての断面図である。
【符号の説明】
1…固体撮像素子、2…基板、3…光電変換素子、3a…受光面、4…転送電極、5…遮光膜、6…層内レンズ下地層、7…レンズ層(屈折率1.5)、7…レンズ層(屈折率1.5)、8…レンズ層(屈折率1.6)、9…レンズ層(屈折率1.7)、10…レンズ層(屈折率1.8)、11…レンズ層(屈折率1.9)、12…層内レンズ、13…カラーフィルタ、14…平坦層、15…オンチップレンズ、21…固体撮像素子、22…レンズ層(屈折率1.7)、23…レンズ層(屈折率2.0)、24…レンズ層(屈折率1.9)、25…層内レンズ、31…転写膜、32…転写膜。
Claims (6)
- 基板に形成された光電変換素子と、前記光電変換素子に対応して配置されたオンチップレンズとの間に、屈折率の異なる複数のレンズ層が積層されてなる層内レンズが設けられた固体撮像素子において、
前記光電変換素子に対向する位置では、隣接する前記レンズ層間の境界面は全て、前記光電変換素子の受光面に向かって曲面状にくぼんでいる
ことを特徴とする固体撮像素子。 - 前記境界面のくぼみの深さは、前記受光面側から前記オンチップレンズ側にいくにつれて段階的に浅くなっている
ことを特徴とする請求項1に記載の固体撮像素子。 - 基板に形成された光電変換素子と、前記光電変換素子に対応して配置されたオンチップレンズとの間に、屈折率の異なる複数のレンズ層を積層して層内レンズを形成する工程を有する固体撮像素子の製造方法であって、
隣接する前記レンズ層間の境界面が前記光電変換素子に対向する位置で全て、前記光電変換素子の受光面に向かって曲面状にくぼむように前記レンズ層を積層する
ことを特徴とする固体撮像素子の製造方法。 - 前記レンズ層の上に転写膜を形成し、
前記転写膜を熱処理することによって前記転写膜に所望の曲面状のくぼみを形成し、
前記転写膜をこの下層の前記レンズ層の途中まで異方性エッチングすることによって、前記転写膜の前記曲面状のくぼみを前記レンズ層に転写する
ことを特徴とする請求項3に記載の固体撮像素子の製造方法。 - 前記転写膜の前記熱処理の条件を変えることによって、前記くぼみの深さを調整する
ことを特徴とする請求項4に記載の固体撮像素子の製造方法。 - 前記レンズ層を化学気相成長法にて形成し、原料ガスの成分比を制御することで、前記レンズ層の屈折率を制御する
ことを特徴とする請求項3に記載の固体撮像素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241493A JP2004079932A (ja) | 2002-08-22 | 2002-08-22 | 固体撮像素子及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241493A JP2004079932A (ja) | 2002-08-22 | 2002-08-22 | 固体撮像素子及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004079932A true JP2004079932A (ja) | 2004-03-11 |
Family
ID=32023957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002241493A Pending JP2004079932A (ja) | 2002-08-22 | 2002-08-22 | 固体撮像素子及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004079932A (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006032897A (ja) * | 2004-07-15 | 2006-02-02 | Dongbuanam Semiconductor Ltd | Cmosイメージセンサー及びその製造方法 |
JP2007088306A (ja) * | 2005-09-22 | 2007-04-05 | Sony Corp | 固体撮像装置の製造方法、固体撮像装置およびカメラ |
JP2007158312A (ja) * | 2005-11-10 | 2007-06-21 | Victor Co Of Japan Ltd | 固体撮像素子 |
JP2007180156A (ja) * | 2005-12-27 | 2007-07-12 | Fujifilm Corp | 固体撮像素子 |
JP2007248494A (ja) * | 2006-03-13 | 2007-09-27 | Seiko Epson Corp | マイクロレンズ基板及びその製造方法、電気光学装置並びに電子機器 |
JP2007316077A (ja) * | 2007-06-08 | 2007-12-06 | Matsushita Electric Works Ltd | 赤外線センサ |
JP2007316076A (ja) * | 2007-06-08 | 2007-12-06 | Matsushita Electric Works Ltd | 赤外線センサ |
US7439554B2 (en) | 2003-12-05 | 2008-10-21 | Sharp Kabushiki Kaisha | Semiconductor device and method for fabricating the same |
JP2009260445A (ja) * | 2008-04-11 | 2009-11-05 | Sharp Corp | 固体撮像素子およびその製造方法、電子情報機器 |
JP2010103458A (ja) * | 2008-09-29 | 2010-05-06 | Sony Corp | 固体撮像装置とその製造方法、及び電子機器 |
JP2010205994A (ja) * | 2009-03-04 | 2010-09-16 | Sony Corp | 固体撮像装置、および、その製造方法、電子機器 |
JP2011082324A (ja) * | 2009-10-07 | 2011-04-21 | Canon Inc | 固体撮像素子 |
US8097850B2 (en) | 2006-05-25 | 2012-01-17 | Panasonic Electric Works Co., Ltd. | Infrared sensor |
JP2012227510A (ja) * | 2012-01-13 | 2012-11-15 | Panasonic Corp | 固体撮像装置及びその製造方法 |
JP2015144298A (ja) * | 2015-03-04 | 2015-08-06 | キヤノン株式会社 | 半導体装置の製造方法 |
JP2015158663A (ja) * | 2014-01-27 | 2015-09-03 | キヤノン株式会社 | マイクロレンズの形成方法および固体撮像素子の製造方法 |
JP2015230427A (ja) * | 2014-06-06 | 2015-12-21 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、マイクロレンズアレイ基板の製造方法、電気光学装置、および電子機器 |
JP2016024293A (ja) * | 2014-07-18 | 2016-02-08 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、電気光学装置、電子機器、マイクロレンズアレイ基板の製造方法、及び電子機器の製造方法 |
JP2016075796A (ja) * | 2014-10-07 | 2016-05-12 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、マイクロレンズアレイ基板を備えた電気光学装置、及び投写型表示装置 |
-
2002
- 2002-08-22 JP JP2002241493A patent/JP2004079932A/ja active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7439554B2 (en) | 2003-12-05 | 2008-10-21 | Sharp Kabushiki Kaisha | Semiconductor device and method for fabricating the same |
JP2006032897A (ja) * | 2004-07-15 | 2006-02-02 | Dongbuanam Semiconductor Ltd | Cmosイメージセンサー及びその製造方法 |
JP2007088306A (ja) * | 2005-09-22 | 2007-04-05 | Sony Corp | 固体撮像装置の製造方法、固体撮像装置およびカメラ |
JP2007158312A (ja) * | 2005-11-10 | 2007-06-21 | Victor Co Of Japan Ltd | 固体撮像素子 |
JP2007180156A (ja) * | 2005-12-27 | 2007-07-12 | Fujifilm Corp | 固体撮像素子 |
JP2007248494A (ja) * | 2006-03-13 | 2007-09-27 | Seiko Epson Corp | マイクロレンズ基板及びその製造方法、電気光学装置並びに電子機器 |
US8097850B2 (en) | 2006-05-25 | 2012-01-17 | Panasonic Electric Works Co., Ltd. | Infrared sensor |
JP2007316077A (ja) * | 2007-06-08 | 2007-12-06 | Matsushita Electric Works Ltd | 赤外線センサ |
JP2007316076A (ja) * | 2007-06-08 | 2007-12-06 | Matsushita Electric Works Ltd | 赤外線センサ |
JP2009260445A (ja) * | 2008-04-11 | 2009-11-05 | Sharp Corp | 固体撮像素子およびその製造方法、電子情報機器 |
US8217481B2 (en) | 2008-04-11 | 2012-07-10 | Sharp Kabushiki Kaisha | Solid-state image capturing device and electronic information device |
JP2010103458A (ja) * | 2008-09-29 | 2010-05-06 | Sony Corp | 固体撮像装置とその製造方法、及び電子機器 |
JP2010205994A (ja) * | 2009-03-04 | 2010-09-16 | Sony Corp | 固体撮像装置、および、その製造方法、電子機器 |
JP2011082324A (ja) * | 2009-10-07 | 2011-04-21 | Canon Inc | 固体撮像素子 |
JP2012227510A (ja) * | 2012-01-13 | 2012-11-15 | Panasonic Corp | 固体撮像装置及びその製造方法 |
JP2015158663A (ja) * | 2014-01-27 | 2015-09-03 | キヤノン株式会社 | マイクロレンズの形成方法および固体撮像素子の製造方法 |
JP2015230427A (ja) * | 2014-06-06 | 2015-12-21 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、マイクロレンズアレイ基板の製造方法、電気光学装置、および電子機器 |
JP2016024293A (ja) * | 2014-07-18 | 2016-02-08 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、電気光学装置、電子機器、マイクロレンズアレイ基板の製造方法、及び電子機器の製造方法 |
JP2016075796A (ja) * | 2014-10-07 | 2016-05-12 | セイコーエプソン株式会社 | マイクロレンズアレイ基板、マイクロレンズアレイ基板を備えた電気光学装置、及び投写型表示装置 |
JP2015144298A (ja) * | 2015-03-04 | 2015-08-06 | キヤノン株式会社 | 半導体装置の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004079932A (ja) | 固体撮像素子及びその製造方法 | |
TWI399849B (zh) | 固態成像裝置,製造固態成像裝置之方法,及電子設備 | |
US7777260B2 (en) | Solid-state imaging device | |
US9087761B2 (en) | Solid-state imaging device including an on-chip lens with two inorganic films thereon | |
US7842980B2 (en) | Image sensor microlens structures and methods of forming the same | |
JP3620237B2 (ja) | 固体撮像素子 | |
JP4939206B2 (ja) | イメージセンサ及びその製造方法 | |
CN100536156C (zh) | 图像传感器及其制造方法 | |
US20060060896A1 (en) | Solid-state imaging device and manufacturing method thereof | |
JP2004327998A (ja) | マイクロレンズ集積化 | |
TWI235405B (en) | Solid photographing device and its manufacturing method | |
JP2007180157A (ja) | 固体撮像素子 | |
JP2006049825A (ja) | 固体撮像素子およびその製造方法 | |
TW201017873A (en) | Solid-state imaging device, method of manufacturing the same, and electronic apparatus | |
TWI768582B (zh) | 積體晶片以及形成積體晶片的方法 | |
CN100438051C (zh) | 图像传感器及其制造方法 | |
JP4232213B2 (ja) | 固体撮像素子 | |
CN102881700A (zh) | 一种cmos图像传感器及其制造方法 | |
TWI244757B (en) | Semiconductor device and method for fabricating the same | |
JP3992713B2 (ja) | Cmosイメージセンサー及びその製造方法 | |
JP2011243885A (ja) | 固体撮像装置及びその製造方法 | |
JP2007141873A (ja) | 固体撮像素子、撮像装置、及び固体撮像素子の製造方法 | |
CN103022068A (zh) | 一种cmos图像传感器及其制造方法 | |
WO2007097062A1 (ja) | 固体撮像装置 | |
JP2005033074A (ja) | 固体撮像装置およびその製造方法 |