JP2004056187A - 状態検出機能を備えた光送信装置 - Google Patents

状態検出機能を備えた光送信装置 Download PDF

Info

Publication number
JP2004056187A
JP2004056187A JP2002206908A JP2002206908A JP2004056187A JP 2004056187 A JP2004056187 A JP 2004056187A JP 2002206908 A JP2002206908 A JP 2002206908A JP 2002206908 A JP2002206908 A JP 2002206908A JP 2004056187 A JP2004056187 A JP 2004056187A
Authority
JP
Japan
Prior art keywords
signal
optical
data signal
modulator
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002206908A
Other languages
English (en)
Other versions
JP3883919B2 (ja
Inventor
Norio Nakajima
中島 功雄
Kazunori Hayamizu
速水 数徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002206908A priority Critical patent/JP3883919B2/ja
Priority to US10/365,442 priority patent/US20040013428A1/en
Publication of JP2004056187A publication Critical patent/JP2004056187A/ja
Application granted granted Critical
Publication of JP3883919B2 publication Critical patent/JP3883919B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/071Monitoring an optical transmission system using a supervisory signal using alarms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/075Monitoring an optical transmission system using a supervisory signal using a pilot tone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

【課題】光送信装置において、光変調器を駆動するためのデータ信号の停止または消滅を容易に検出する。
【解決手段】光源1は、連続光を生成する。データ信号源2は、データ信号を生成する。データ信号にパイロット信号が重畳される。パイロット信号は、データ信号と比較して十分に周波数の低い低周波信号である。LN変調器3は、パイロット信号が重畳されたデータ信号を用いて連続光を変調する。データ検出部30は、LN変調器3から出力される出力光の中にパイロット信号の周波数の2倍の周波数成分が存在しているかをモニタする。パイロット信号の周波数の2倍の周波数成分が存在しない場合は、データ信号が停止または消滅したものと判断してアラームを出力する。
【選択図】   図5

Description

【0001】
【発明の属する技術分野】
本発明は、データ信号の状態を検出する機能を備えた光送信装置、および光送信装置の動作状態を検出する方法に係わる。
【0002】
【従来の技術】
光通信システムにおいて伝送すべき信号を光信号に変換する方法としては、レーザダイオード等の発光素子を駆動する電流を制御する直接変調方式が知られている。この直接変調方式は、簡易な構成で実現することができるため、従来から広く利用されてきた。しかし、直接変調方式では、ギガビットオーダーの高速信号(特に、10GHz以上の高速信号)を伝送することは困難である。そこで、ギガビットオーダーの高速信号を伝送することが可能な外部変調方式の開発が進められている。
【0003】
図24は、外部変調方式を利用した従来の光送信装置の構成図である。なお、ここでは、外部変調器として、マッハツェンダ型光変調器が使用されているものとする。
【0004】
多重化部(MUX)100は、複数の入力信号を多重化し、その多重化したデータ信号を電気/光変換部(E/O)110へ送る。電気/光変換部110は、光源(LD)111、波形整形デバイス112、ドライバアンプ113、およびLN変調器114を備え、与えられたデータ信号に対応する光信号を生成して送出する。
【0005】
光源111は、レーザダイオードであって、連続(CW:Continuous Wave )光を生成する。波形整形デバイス112は、入力されたデータ信号の波形を整形する。なお、波形整形デバイス112は、入力されたデータ信号を、例えば、NRZ(No−Returnto Zero )信号、あるいはRZ(Return to Zero)信号に変換することができる。ドライバアンプ113は、波形整形デバイス112の出力信号を増幅してLN変調器114に与える。LN変調器114は、リチウムナイオベイド(LiNbO3)を用いたマッハツェンダ型光変調器であって、ドライバアンプ113から与えられるデータ信号で連続光を変調する。従って、電気/光変換部110から送出された光信号は、データ信号を伝送することになる。
【0006】
ところで、光通信システムにおいて使用される光送信装置は、通常、異常状態の発生を検出する機能を備えている。そして、図24に示す装置では、光出力の停止を検出する機能、およびデータ信号の停止または消滅を検出する機能を備えている。
【0007】
光出力の停止は、受光素子(PD)115を用いてLN変調器114の出力パワーをモニタすることにより検出される。この場合、検出部116は、例えば、LN変調器114の出力パワーが所定値よりも低くなったときに、アラームを出力する。
【0008】
一方、データ信号の停止または消滅は、多重化部100において検出される。すなわち、多重化部100に信号が入力されなくなったとき、或いは、多重化部100からデータ信号が出力されなくなったとき、データ信号が断状態であることが検出される。
【0009】
このように、光通信システムにおいて使用される光装置装置は、送信動作の状態を検出する機能を備えている。
【0010】
【発明が解決しようとする課題】
しかし、上述した検出方法では、以下の問題がある。
(1)電気/光変換部110の内部でデータ信号が停止または消滅した場合、それを検出することができない。また、動作異常の原因を特定できない。
(2)多重化部100により多重化されたデータ信号をモニタすることは、論理的には可能であるが、ギガビットオーダーの高速信号をモニタするためには、高価なデバイスが必要になる。
【0011】
本発明の目的は、光送信装置において、データ信号の停止または消滅を検出できるようにすることである。また、光送信装置において、動作異常の原因を特定できるようにすることである。
【0012】
【課題を解決するための手段】
本発明の光送信装置は、入力電圧に対して出力光パワーが周期的に変化する光変調器を用いて光信号を送出する構成であって、上記光変調器を駆動するためのデータ信号よりも周波数の低い低周波信号を生成する生成手段、上記データ信号に対して上記低周波信号を重畳し、その低周波信号が重畳されたデータ信号を上記光変調器に与える重畳手段、上記光変調器から出力される出力光から上記低周波信号の周波数の2倍の周波数成分を検出する検出手段、および上記検出手段による検出結果に基づいて上記データ信号の状態を判断する判断手段、を有する。
【0013】
上記構成によれば、データ信号に重畳された低周波信号を利用してデータ信号の状態が判定される。すなわち、光変調器の出力に基づいてデータ信号の状態が判定される。したがって、データ信号が実際に光変調器に入力されているのか否かをモニタすることができる。
【0014】
上記光送信装置において、上記データ信号のデューティを変更するデューティ調整手段をさらに有するようにしてもよい。この構成によれば、データ信号がNRZ信号であっても、そのデータ信号のHレベルの存在確率とLレベルの存在確率とを互いに異ならせることができる。そして、そのデータ信号で上記光変調器を駆動すれば、その光変調器の出力光に上記低周波信号の周波数の2倍の周波数成分が存在することになる。
【0015】
また、上記光送信装置において、上記光変調器の動作点を制御する動作点制御手段、および上記判断手段により上記データ信号の異常が検出されたときに上記光変調器の動作点として予め決められている所定の値を設定する動作切替え手段をさらに有するようにしてもよい。この構成によれば、データ信号が停止または消滅したときに、上記光変調器が初期化されるので、その光変調器の動作が不安定になることを回避できる。
【0016】
本発明の他の態様の光送信装置は、入力されたデータ信号に対応する光信号を出力する電気/光変換部、その電気/光変換部に入力されるべき上記データ信号の正常性をモニタする入力モニタ部、および上記光信号を出力する動作の状態を監視する監視部を備え、上記電気/光変換部が、入力電圧に対して出力光パワーが周期的に変化する光変調器、上記光変調器を駆動するためのデータ信号よりも周波数の低い低周波信号を生成する生成手段、上記データ信号に対して上記低周波信号を重畳してその低周波信号が重畳されたデータ信号を上記光変調器に与える重畳手段、上記光変調器から出力される出力光から上記低周波信号の周波数の2倍の周波数成分を検出する検出手段、および上記検出手段による検出結果に基づいて上記データ信号の状態を判断する判断手段、および上記光変調器の出力パワーをモニタする出力モニタ手段、を有し、上記監視部が、上記入力モニタ部によるモニタ結果、上記判断手段による判断結果、および上記出力モニタ手段によるモニタ結果に基づいて、上記光信号を出力する動作の状態を監視する。
【0017】
上記構成によれば、光送信装置の動作異常が発生したときに、その原因を特定できる。具体的には、電気/光変換部に入力される前にデータ信号が停止または消滅したのか、電気/光変換部の内部でデータ信号が停止または消滅したのか、あるいは光源に障害が発生したのか等を検出できる。
【0018】
【発明の実施の形態】
本発明の実施形態について図面を参照しながら説明する。
本発明の実施形態の光装置装置は、入力電圧に対して出力光パワーが周期的に変化する光変調器を用いて光信号を送出する。ここで、入力電圧に対して出力光パワーが周期的に変化する光変調器としては、この実施例では、マッハツェンダ型光変調器が使用される。そして、マッハツェンダ型光変調器の一例として、LN変調器が使用されるものとする。なお、LN変調器は、リチウムナイオベイド(LiNbO3 )を用いて形成された導波路を有する光変調器である。
【0019】
本発明は、上述の光送信装置においてLN変調器を駆動するためのデータ信号の異常を検出する方法に係わるものであるが、その方法の理解を容易にするために、まず、LN変調器の動作について簡単に説明をする。
【0020】
図1は、LN変調器の構成を示す図である。LN変調器には、通常、連続(CW)光が入力される。そして、入力された連続光は、分岐されて第1の経路および第2の経路に導かれる。ここで、第2の経路は、リチウムナイオベイド(LiNbO3 )を用いて形成された導波路であり、印加される電圧により、その経路を通過する光の伝搬速度が制御される。したがって、第2の経路に印加する電圧を制御することにより、上記2つの経路の光路差が調整される。
【0021】
上記2つの経路を通過した光は、互いに合成される。このとき、第1の経路を通過した光と第2の経路を通過した光の位相差により、合成光の光パワーが変化する。すなわち、例えば、上記1組の光の位相が互いに一致していれば、合成光の光パワーは最大になり、上記1組の光の位相が互いに反転していれば、合成光の光パワーは最小になる。
【0022】
上記LN変調器には、データ信号が与えられる。このデータ信号は、電気信号であって、第2の経路に印加される電圧を制御する。ここで、LN変調器から出力される光のパワーは、第2の経路に印加される電圧に依存する。したがって、LN変調器から出力される光のパワーは、データ信号により制御される。すなわち、入力された連続光は、データ信号により変調されることになる。
【0023】
図2は、LN変調器の特性を示す図である。図2において、印加電圧Vは、図1における第2の伝送路に印加される電圧を表す。一方、出力光パワーは、LN変調器に一定の光パワーに連続光が与えられているときのLN変調器の出力光パワーを表す。
【0024】
LN変調器の出力光パワーは、図1を参照しながら説明したように、第1の伝送路および第2の伝送路の光路差により決まる。ここで、第1の伝送路の光路長が固定であるのに対し、第2の伝送路の光路長は印加電圧Vに応じて変化する。したがって、LN変調器の出力光パワーは、図2に示すように、印加電圧Vに対して周期的に変化することになる。具体的には、サインカーブ特性を示すことになる。
【0025】
例えば、印加電圧V=V1のときは、出力パワーは極小値P1なる。また、印加電圧V=V3のときは、出力パワーは極大値P3になる。この場合、LN変調器は、通常、印加電圧Vが「V1」〜「V3」の範囲で変化するようにして使用される。これにより、LN変調器は、「P1」〜「P3」の範囲で、印加電圧Vに対応するパワーの出力光を生成できる。なお、出力光パワーの極大値を得るための印加電圧と、出力光パワーの極小値を得るための印加電圧の差電圧のことを、しばしば、「Vπ」と定義されることがある。
【0026】
また、LN変調器の出力光パワーは印加電圧Vに対してサインカーブ特性を示すので、印加電圧Vが「V1」〜「V3」の範囲から外れた場合であっても、その出力光パワーは、「P1」〜「P3」の範囲内の対応する値になる。例えば、印加電圧V=V4のときは、印加電圧V=V2のときと同じ出力光パワーが得られる。なお、ここでは、「V4−V3 = V3−V2」であるものとする。
【0027】
図3は、LN変調器の動作原理を説明する図である。LN変調器は、上述したように、印加電圧Vにより制御される。ここで、印加電圧Vは、図1に示すバイアス信号により設定される電位(動作点電圧)を基準としたデータ信号電圧により決まる。したがって、動作点電圧が一定であるものとすると、LN変調器の出力光パワーは、データ信号により制御されることになる。すなわち、データ信号は、LN変調器を駆動する駆動信号として使用されることになる。なお、図3に示す例は、理想的な動作状態(動作点電圧=0.5Vπ、およびデータ信号の振幅=Vπ)を示している。
【0028】
このように、LN変調器は、所定の振幅を持ったデータ信号が与えられると、そのデータ信号のデータパターンに対応する光信号を生成する。
図4は、実施形態の光送信装置における状態検出機能の基本構成図である。図4において、光源(LD)1は、例えば、レーザダイオードであって、連続(CW:Continuous Wave )光を生成する。また、データ信号源2は、データ信号を生成する。そして、LN変調器3は、図1〜図3を参照しながら説明したように、データ信号を用いて連続光を変調することにより、そのデータ信号に対応する光信号を出力する。
【0029】
上記データ信号には、パイロット信号が重畳される。ここで、パイロット信号は、データ信号と比較してその周波数が十分に低い低周波信号である。そして、検出部4は、LN変調器3の出力光の中に、パイロット信号の周波数の2倍の周波数成分が含まれているか否かをモニタする。そして、そのような周波数成分が検出されれば、データ信号がLN変調器3に与えられているものと判断する。一方、そのような周波数成分が検出されなければ、検出部4は、データ信号がLN変調器3に与えられていないものと判断し、アラームを出力する。
【0030】
図5は、実施形態の光送信装置の構成図である。この光送信装置は、データ信号に対応する光信号を送出する装置であって、図4を参照しながら説明した状態検出機能を備えている。なお、図5において、光源1、データ信号源2、LN変調器3は、図4を参照しながら説明した通りである。また、図4に示した検出部4は、図5に示すデータ検出部30に相当する。
【0031】
自動バイアス制御(ABC:Auto−Bias Control )回路10は、パイロット信号を生成する機能、および図3を参照しながら説明した動作点電圧を調整する機能を備える。なお、自動バイアス制御回路10の構成および動作については、後で詳しく説明する。
【0032】
スイッチ21は、当該光送信装置が正常動作をしているときは、自動バイアス制御回路10により生成されたバイアス電圧を動作点電圧としてLN変調器3に導き、当該光送信装置において動作異常が発生したときは、動作点電圧として予め決められた電圧(例えば、ゼロボルト)をLN変調器3に与える。
【0033】
受光素子22は、例えばフォトダイオードであって、LN変調器3の出力光の一部を受光して、その光信号を電気信号に変換する。そして、受光素子22の出力は、検出信号として自動バイアス制御回路10およびデータ検出部30に送られる。
【0034】
データ検出部30は、受光素子22から与えられる信号に基づいて、当該光送信装置の状態をモニタする。具体的には、データ信号の有無をモニタし、そのデータ信号が停止または消滅したときに、アラームを出力する。なお、データ検出部30の構成および動作については、後で詳しく説明する。
【0035】
上記光送信装置において、データ信号源1により生成されるデータ信号は、LN変調器3を駆動する駆動信号であって、10GHz以上の高速信号である。また、このデータ信号は、例えば、NRZ信号またはRZ信号である。
【0036】
一方、パイロット信号は、データ信号と比較して十分に周波数の低い低周波信号であって、以下のようにして生成される。即ち、パイロット信号源11は、所定周波数の矩形波信号を生成する。また、パイロット信号源12は、パイロット信号源11により生成された矩形波信号を2分周する。さらに、ローパスフィルタ13は、パイロット信号12により分周された矩形波信号の高周波成分を除去する。そして、このローパスフィルタ13を通過した信号が、パイロット信号として出力される。したがって、パイロット信号源11により生成される矩形波信号の周波数は、パイロット信号の周波数の2倍である。なお、パイロット信号の周波数は、例えば、1kHzである。
【0037】
図6は、データ信号にパイロット信号を重畳する様子を示す図である。データ信号(主信号)は、NRZ信号またはRZ信号であって、その振幅は「Vπ」である。ここで、NRZ信号では、図7(a)に示すように、「0」が「Lレベル」により表され、「1」が「Hレベル」により表される。したがって、この場合、マーク率=1/2であるものとすると、すなわち、データ信号系列の中の「0」を表すビットの数(または、ゼロが存在する確率)および「1」を表すビットの数(または、1が存在する確率)が実質的に互いに同じであるとすると、データ信号が「Hレベル」になる確率および「Lレベル」になる確率は、それぞれ1/2である。
【0038】
これに対して、RZ信号は、図7(b)に示すように、「0」が「Lレベル」により表され、「1」が「Hレベル」と「Lレベル」との組合せにより表される。したがって、この場合、マーク率=1/2であるものとすると、データ信号が「Hレベル」になる確率が1/4であるのに対し、「Lレベル」になる確率は3/4になる。
【0039】
パイロット信号は、データ信号と比較して十分に周波数の低い低周波信号であって、その振幅は「Vπ」よりも小さい。そして、乗算機5を用いてデータ信号にパイロット信号が重畳されると、すなわち、パイロット信号を用いてデータ信号を振幅変調すると、図6の中央部に描かれているような信号が得られる。
【0040】
そして、パイロット信号が重畳されたデータ信号は、実施形態の光送信装置においては、容量(コンデンサ)6を用いてその直流成分がカットされた後、LN変調器3に与えられる。このとき、データ信号がNRZ信号であれば、直流成分がカットされると、正側の波形および負側の波形は、互いに同じになる。この理由は、以下の通りである。すなわち、信号の直流成分がカットされると、その信号の振幅の平均値はゼロになる。また、NRZ信号の場合、上述したように、「Hレベル」及び「Lレベル」の存在確率が共に1/2である。したがって、「Hレベル」のときの振幅を「a」とし、「Lレベル」のときの振幅を「b」とすると、下式が成立する。
a×(1/2)+b×(1/2)=0
すなわち、a:b=1:1が得られる。
【0041】
一方、RZ信号の場合は、直流成分がカットされると、正側の波形および負側の波形は、互いに異なることになる。この理由は、以下の通りである。即ち、直流成分がカットされた信号の振幅の平均値がゼロになることは、NRZ信号の場合と同様である。ただし、RZ信号の場合は、上述したように、「Hレベル」の存在確率が1/4になるのに対して、「Lレベル」の存在確率は3/4になる。従って、「Hレベル」のときの振幅を「a」とし、「Lレベル」のときの振幅を「b」とすると、下式が成立する。
【0042】
a×(1/4)+b×(3/4)=0
すなわち、a:b=3:1が得られる。
このように、データ信号がNRZ信号であった場合には、正側および負側の波形が互いに同じ対称的なデータ信号がLN変調器3に与えられる。一方、データ信号がRZ信号であった場合には、正側および負側の波形が互いに異なる非対称的なデータ信号がLN変調器3に与えられる。
【0043】
次に、自動バイアス制御回路10の動作を説明する。ここでは、データ信号がRZ信号であるものとする。なお、自動バイアス制御回路10は、図3を参照しながら説明した動作点電圧を調整する役割を実行する。
【0044】
上述したように、データ信号の振幅は「Vπ」である。このため、パイロット信号が重畳されると、そのデータ信号の振幅は、図8に示すように、そのパイロット信号の周期に従って「Vπ」よりも大きくなったり、小さくなったりする。ここで、データ信号の振幅が「Vπ」よりも大きくなったときのLN変調器3の出力光パワーは、図2を参照しながら説明したように、LN変調器3の出力光パワーの極大値よりも小さくなる。したがって、LN変調器3から出力される光信号のパワーは、パイロット信号に同期して、変動することになる。
【0045】
LN変調器3から出力される光信号は、受光素子22により電気信号に変換され、自動バイアス制御回路10に送られる。この電気信号は、パイロット信号の周波数と同じ周波数成分を通過させるバンドパスフィルタ14を通過した後、位相比較器15に送られる。位相比較器15は、パイロット信号(パイロット信号源12から出力された矩形波信号)と、バンドパスフィルタ14を介して与えられる信号とを比較する。ここで、位相比較器15は、例えば掛け算器により実現され、上記2つの信号の乗算を行う。さらに、位相比較器15の出力は、ローパスフィルタ16を通過した後、動作点電圧としてLN変調器3へ与えられる。そして、LN変調器3は、与えられた動作点電圧を基準として、データ信号に従って光信号を生成する。
【0046】
このように、実施形態の光送信装置は、動作点電圧を調整するためのフィードバック系を備える。
ここで、上記フィードバック系において、例えば、図9に示すように、動作点電圧が正側にずれたとする。この場合、LN変調器3から出力される光信号は、図9の右上部に示すように変化する。ここで、データ信号がRZ信号であるときは、その信号が「Hレベル」になる確率が1/4であるのに対して、その信号が「Lレベル」になる確率が3/4なので、LN変調器3から出力される光信号の平均パワーは、「Hレベル」のときの光パワーと「Lレベル」のときの光パワーとを1:3の割合で加重平均した値となる。したがって、LN変調器3から出力される光信号を電気信号に変換した後、ローパスフィルタ14を通過させると、パイロット信号と同じ周期のサイン波が得られるはずである。
【0047】
一方、上記フィードバック系において、例えば、図10に示すように、動作点電圧が負側にずれたとする。この場合、LN変調器3から出力される光信号は、図10の右上部に示すように変化する。従って、この光信号を電気信号に変換した後、ローパスフィルタ14を通過させると、図9に示したケースと同様に、パイロット信号と同じ周期のサイン波が得られるはずである。ただし、動作点電圧が正側にずれたときと、動作点電圧が負側にずれたときとでは、ローパスフィルタ14から出力される信号の位相は互いに反転している。
【0048】
図11は、動作点を制御する処理を説明する図である。位相比較器15は、上述したように、パイロット信号(パイロット信号源12から出力された矩形波信号)と、バンドパスフィルタ14を介して与えられる検出信号とを乗算する。ここで、動作点電圧が正側にずれていたときに、パイロット信号および検出信号の位相が互いに一致しているものとすると、ローパスフィルタ16を用いて位相比較器15の出力の直流成分を取り出すと、ずれ量に対応する正の値が得られることになる。一方、動作点電圧が負側にずれていたときは、検出電圧の位相が反転するので、ローパスフィルタ16を用いて位相比較器15の出力の直流成分を取り出すと、ずれ量に対応する負の値が得られることになる。
【0049】
そして、フィードバック系は、このローパスフィルタ16の出力をゼロにするように動作する。したがって、実施形態の光送信装置においては、動作点電圧が自動的に最適値に収束する。具体的には、バイアス電圧が「0.5Vπ」なるように制御される。
【0050】
次に、データ検出部30の構成及び動作を説明する。データ検出部30は、バンドバスフィルタ31、位相比較器32、ローパスフィルタ33、コンパレータ34、35、および論理積回路36を備える。ここで、バンドバスフィルタ31および位相比較器32は、基本的に、上述したバンドバスフィルタ14および位相比較器15と同じ動作を行う。ただし、バンドバスフィルタ14がパイロット信号の周波数と同じ周波数成分を通過させるのに対し、バンドバスフィルタ31は、パイロット信号の周波数の2倍の周波数成分を通過させる。また、位相比較器15はパイロット信号と検出信号とを乗算するが、位相比較器32は、パイロット信号の2倍の周波数を持った矩形波信号と検出信号とを乗算する。そして、この位相比較器32の出力は、ローパスフィルタ33によって平均化される。
【0051】
ローパスフィルタ33の出力は、もし、LN変調器3から送出される出力光の中にパイロット信号の周波数の2倍の周波数成分が含まれていれば、図11を参照しながら説明したように、ゼロでない所定の値になるはずである。従って、コンパレータ34、35を用いてローパスフィルタ33の出力をモニタすれば、LN変調器3から送出される出力光の中にパイロット信号の周波数の2倍の周波数成分が含まれているか否かを検出できる。
【0052】
ここで、光送信装置が正常に動作しているときに、LN変調器3から送出される出力光の中にパイロット信号の周波数の2倍の周波数成分が含まれていることを説明する。なお、「正常に動作」とは、ここでは、データ信号が停止または消滅することなくLN変調器3に与えられていることを言うものとする。
【0053】
図12は、データ信号がRZ信号であった場合のLN変調器3の動作を示す図である。データ信号がRZ信号であった場合は、パイロット信号の周波数に着目すると、図5〜図6を参照しながら説明したように、パイロット信号が重畳されたデータ信号の正側の成分と負側の成分との比率が3:1になる。従って、この場合、パイロット信号が重畳されたデータ信号の正側の波形の振幅aと負側の波形の振幅bとの比率も3:1になる。このとき、データ信号の振幅が「Vπ」であるとすると、データ信号の正側の波形は、LN変調器3の出力光パワー特性を表すサインカーブの極大値を中心として振幅aで周期的に変化することになる。一方、データ信号の負側の波形は、LN変調器3の出力光パワー特性を表すサインカーブの極小値を中心として振幅bで周期的に変化することになる。
【0054】
ところで、サインカーブは、図13に示すように、その極大値または極小値の近傍ではその変化率が小さく、極大値または極小値から離れるにつれてその変化率が大きくなる。すなわち、サインカーブの極大値(又は、極小値)において、LN変調器3への印加電圧が「Δa」だけ変化すると、そのLN変調器3の出力光パワーは「ΔA」だけ変化する。一方、サインカーブの極小値(または、極大値)において、LN変調器3への印加電圧が「Δb」だけ変化すると、そのLN変調器3の出力光パワーは「ΔB」だけ変化する。そして、この場合、サイン関数の特性により、以下の関係が得られる。
Δa/Δb ≠ ΔA/ΔB   (ただし、Δa≠Δb)
具体的には、データ信号がRZ信号であった場合は、「Δa/Δb=3」に対して、「ΔA/ΔB>3」が得られる。したがって、図12に示す例では、LN変調器3から出力される光信号の波形において「A/B>3」が得られる。
【0055】
図14は、LN変調器3から出力される光信号を模式的に示す図である。ここで、データ信号は、RZ信号である。そして、データ信号がRZ信号であるときは、上述したように、その信号が「Hレベル」になる確率が1/4であるのに対して、その信号が「Lレベル」になる確率が3/4である。従って、この光信号の平均パワーは、「Hレベル」のときの光パワーと「Lレベル」のときの光パワーとを1:3の割合で加重平均した値となる。このとき、この光信号の波形は、Hレベル側の振幅AとLレベル側の振幅Bとの比率が「3:1」ではない。このため、この光信号の平均パワーは、周期的に変化することになる。そして、その平均パワーの変動周期T2は、パイロット信号の周期T1の2分の1になる。
【0056】
このように、データ信号がRZ信号であった場合は、パイロット信号が重畳されたデータ信号を用いてLN変調器3を駆動すると、そのLN変調器3から出力される光信号の平均パワーは、パイロット信号の周波数の2倍の周波数で変動することになる。すなわち、LN変調器3から出力される光信号がパイロット信号の周波数の2倍の周波数成分を含んでいる。
【0057】
しかし、データ信号が停止または消滅した場合は、LN変調器3からの出力光には、パイロット信号の周波数の2倍の周波数成分が存在しなくなる。以下、このことについて説明する。
【0058】
データ信号が停止または消滅すると、図15(a)に示すように、そのデータ信号の電圧は常に一定の値(0ボルトを含む)に固定される。したがって、この固定電圧信号にパイロット信号を乗算すると、図15(b)に示すように、乗算結果としてそのパイロット信号がそのまま得られることになる。そして、この信号は、容量6を用いて直流成分が除去さらた後、LN変調器3に与えられる。なお、この信号の周波数は、パイロット信号の周波数と同じである。すなわち、この場合、LN変調器3は、実質的に、パイロット信号により駆動されることになる。
【0059】
図16は、パイロット信号によりLN変調器3が駆動されたときの出力光を示す図である。この場合、LN変調器3から出力される出力光のパワーは、パイロット信号の周波数と同じ周波数で変動する。すなわち、LN変調器3からの出力光には、パイロット信号の周波数の2倍の周波数成分は存在していない。
【0060】
このように、実施形態の光送信装置において、データ信号が停止または消滅した場合は、LN変調器3からの出力光にはパイロット信号の周波数の2倍の周波数成分は存在していない。
【0061】
したがって、LN変調器3からの出力光をモニタし、その出力光の中にパイロット信号の周波数の2倍の周波数成分が存在しているか否かを調べれば、データ信号が正しくLN変調器3に与えられているか否かを判断できる。そして、実施形態の光送信装置では、データ検出部30においてこの判断を行っている。
【0062】
すなわち、まず、LN変調器3から出力される光信号は、受光素子22により電気信号に変換される。そして、受光素子22から出力される信号は、バンドパスフィルタ31に入力される。ここで、このバンドパスフィルタ31の通過周波数は、パイロット信号の周波数の2倍の周波数である。従って、LN変調器3から出力される光信号の中に、パイロット信号の周波数の2倍の周波数を持った信号が含まれていれば、その信号が位相比較器32に与えられることになる。
【0063】
図17は、位相比較器32およびローパスフィルタ33による処理を説明する図である。LN変調器3からの出力光にパイロット信号の周波数の2倍の周波数を持った信号が含まれていれば、図17(a)に示すように、バンドパスフィルタ31からパイロット信号の周波数の2倍の周波数を持った信号が出力される。したがって、この場合、位相比較器32の出力をローパスフィルタ33で平滑下すれば、その出力電圧Vx は、ゼロでない所定の値になる。これに対して、LN変調器3からの出力光にパイロット信号の周波数の2倍の周波数を持った信号が含まれていなければ、図17(b)に示すように、バンドパスフィルタ31の出力が無信号になる。したがって、この場合、電圧Vxはゼロになる。
【0064】
上記ローパスフィルタ33の出力は、コンパレータ34、35に与えられる。ここで、コンパレータ34は、電圧Vx が参照電圧Vref1よりも大きかったときに「H」を出力し、電圧Vx が参照電圧Vref1よりも小さかったときに「L」を出力する。なお、参照電圧Vref1は、ゼロに近い所定の負電圧である。一方、コンパレータ35は、電圧Vxが参照電圧Vref2よりも小さかったときに「H」を出力し、電圧Vx が参照電圧Vref2よりも大きかったときに「L」を出力する。なお、参照電圧Vref2は、ゼロに近い所定の正電圧である。
【0065】
従って、電圧Vx が、参照電圧Vref1よりも大きく、且つ、参照電圧Vref2よりも小さかったときにのみ、コンパレータ34、35の出力が両方とも「H」になり、論理積回路36の出力も「H」になる。そして、論理積回路36の出力が「H」になると、アラームが出力される。
【0066】
このように、実施形態の光送信装置では、データ信号がLN変調器3に与えられているときは、そのLN変調器3の出力光にパイロット信号の周波数の2倍の周波数の信号が存在し、論理積回路36の出力は「L」になる。一方、LN変調器3にデータ信号が与えられなくなると、そのLN変調器3の出力光にパイロット信号の周波数の2倍の周波数の信号が存在しなくなり、論理積回路36の出力は「H」になる。そして、これにより、アラームが出力される。
【0067】
なお、このアラームが出力されると、スイッチ21は、動作点電圧として「ゼロ」を選択してLN変調器3に供給する。すなわち、LN変調器3の動作点を初期化する。したがって、データ信号が停止または消滅した場合であっても、LN変調器3の動作が不安定になることが回避される。なお、動作点電圧として「ゼロ」が供給されると、LN変調器3の出力光レベルがその極小値またはその近傍に設定されることになる。このため、データ信号の停止または消滅に伴ってアラームが出力されると、光送信装置の出力光が停止されるか、あるいはその出力パワーが小さくなるように制御される。
【0068】
ところで、上述の実施例では、データ信号がRZ信号であるものとして光送信装置の動作を説明したが、データ信号がNRZ信号である場合には、同じ構成ではデータ信号の停止または消滅を検出できない。以下、このことについて説明する。
【0069】
図18は、データ信号がNRZ信号であった場合のLN変調器の動作を示す図である。
NRZのデータ信号は、図6を参照しながら説明したように、パイロット信号が重畳されると、Hレベル側の波形とLレベル側の波形が互いに同じになる。図18においては、Hレベル側の振幅aとLレベル側の振幅bが互いに同じになっている。このため、この信号を用いてLN変調器3を駆動すると、出力される光信号のHレベル側の波形とLレベル側の波形も、互いに同じになる。すなわち、図18においては、Hレベル側の振幅AとLレベル側の振幅Bが互いに同じになっている。
【0070】
したがって、この場合、LN変調器3から出力される光信号の平均パワーは、一定の値になる。すなわち、LN変調器3から出力される光信号の中にパイロット信号の周波数の2倍の周波数成分は存在しないことになる。換言すれば、図5に示す構成では、LN変調器3の出力光をモニタしても、データ信号の停止または消滅を検出できないことになる。
【0071】
図19は、本発明の他の実施形態の光送信装置の構成図である。ここで、この光送信装置は、NRZのデータ信号が使用されるものとする。
図19に示す光送信装置構成は、基本的には、図5に示した光送信装置と同じである。ただし、この光送信装置は、データ信号源2により生成されたNRZのデータ信号のデューティを変更するデューティ調整部41、およびLN変調器3から出力される光信号の波形を整形する波形整形部42を備える。なお、波形整形部42は、デューティ調整部41により変更されたデューティを元のデューティに戻すために設けられており、一例としては、分散補償ファイバにより実現される。
【0072】
図20は、デューティ調整部41によるデューティ調整処理を説明する図である。図20(a)は、データ信号源2により生成されたNRZのデータ信号を表す。このデータ信号は、デューティ=100パーセントである。デューティ調整部41は、図20(a)に示すデータ信号のデューティを変更する。データ信号のデューティを100パーセントよりも小さくした場合を図20(b)に、データ信号のデューティを100パーセントよりも大きくした場合を図20(c)に示す。
【0073】
図21は、デューティ調整部41の実施例である。この実施例のデューティ調整部41は、入力信号の直流成分をカットする容量と、その容量により直流成分がカットされた信号を増幅するアンプから構成されている。そして、このアンプの負端子には、参照電圧Vref が印加されている。
【0074】
上記構成のデューティ調整部41において、参照電圧Vref =0にすると、出力信号のデューティは、入力信号のデューティと同じままである。しかし、参照電圧Vref >0のときは、出力信号のデューティは、入力信号のデューティよりも小さくなる。すなわち、100パーセントよりも小さなデューティを持った信号が得られる。一方、参照電圧Vref<0にすれば、出力信号のデューティは、入力信号のデューティよりも大きくなる。すなわち、100パーセントよりも大きなデューティを持った信号が得られる。
【0075】
上述のようにしてデータ信号のデューティを変更すると、その信号が「Hレベル」になる時間と「Lレベル」になる時間との比率が、1:1ではなくなる。このため、このようにしてデューティが変更されたデータ信号にパイロット信号が重畳されると、RZ信号が使用された場合と同様に、LN変調器3から出力される光信号のHレベル側の波形とLレベル側の波形とが非対称になる。そして、この結果、図12〜図14を参照しながら説明したように、LN変調器3の出力光の中に、パイロット信号の周波数の2倍の周波数成分が存在することになる。
【0076】
このように、本発明に係わる光送信装置は、データ信号がRZ信号であった場合だけでなく、NRZ信号であった場合においても、LN変調器3の出力光をモニタすることにより、データ信号の停止または消滅を検出することができる。
【0077】
さらに、本発明に係わる光送信装置は、データ信号がRZ信号またはNRZ信号であった場合だけでなく、マーク率が1/2である場合に「Hレベル」が存在する時間と「Lレベル」が存在する時間との比率が1:1にならないような変調方式で生成されたデータ信号を使用することができる。
【0078】
図22は、本発明のさらに他の実施形態の光送信装置の構成図である。なお、図22に示す光送信装置の構成は、基本的には、図19に示した光送信装置と同じである。ただし、この光送信装置は、動作異常が発生したときに、その原因を特定する機能を備えている。
【0079】
多重化部(MUX)100は、複数の入力信号を多重化し、その多重化データ信号を、LN変調器3を駆動するデータ信号として電気/光変換部(E/O)200へ送る。なお、複数の入力信号は、それぞれ比較的速度の遅い電気信号である。また、このデータ信号は、図5または図19に示すデータ信号源2により生成されるデータ信号に相当する。
【0080】
多重化部100は、入力信号の有無を検出する機能および/またはデータ信号が出力されているか否かを検出する機能を備えている。そして、この機能による検出結果は、後述するアラーム監視部60に通知される。すなわち、多重化部100は、入力信号またはデータ信号を検出できなかったときは、「MUXデータ断アラーム」を出力する。なお、上述の検出機能は、例えば、電気信号の立上りエッジまたは立下りエッジの有無をモニタするものであって、既存の技術により実現される。
【0081】
自動バイアス制御(ABC)回路10は、上述したように、LN変調器3を駆動する際の動作点電圧を制御すると共に、データ信号に重畳すべきパイロット信号を生成する。また、データ検出部30は、上述したように、LN変調器3から出力される出力光にパイロット信号の周波数の2倍の周波数成分が含まれているか否かに基づいて、データ信号の停止または消滅を判断する。そして、データ検出部30は、パイロット信号の周波数の2倍の周波数成分を検出できなかったときは、データ信号が停止または消滅しているものとみなし、「E/Oデータ断アラーム」を出力する。
【0082】
光検出部50は、LN変調器3から出力される光信号のパワーをモニタし、そのパワーが所定値以下であったときに「光断アラーム」を出力する。このため、光検出部50は、受光素子22から出力される検出信号の振幅を平均化するローパスフィルタ51、及びそのローパスフィルタ51の出力を予め設定されているしきい値と比較するコンパレータ52を備える。なお、ローパスフィルタ51の出力は、LN変調器3から出力される光信号の直流成分を表している。
【0083】
アラーム監視部60は、上述した各種アラームに基づいて、光送信装置の状態をモニタする。そして、動作異常が発生した場合は、スイッチ21に対してシャットダウンアラームを通知する。この場合、スイッチ21は、シャットダウンアラームを受信すると、動作点電圧として「ゼロ」を選択してLN変調器3に供給する。ここで、動作点電圧として「ゼロ」が供給されると、LN変調器3の出力光レベルがその極小値またはその近傍に設定され、不安定な動作の発生が回避される。なお、アラーム監視部60は、予め用意されているプログラムを実行するマイコン等により実現されてもよいし、ハードウェア回路により実現されてもよい。
【0084】
図23は、アラーム監視部60の動作を示すフローチャートである。なお、この動作は、例えば、タイマ割込などにより、所定時間ごとに実行される。
ステップS1では、E/Oデータ断アラームを受信したか否かを調べる。そして、このアラームを受信していなければ、光送信装置が正常に動作しているものとみなし、処理を終了する。一方、E/Oデータ断アラームを受信した場合は、ステップS2へ進む。
【0085】
ステップS2では、MUXデータ断アラームを受信したか否かを調べる。そして、このアラームを受信していなければ、E/Oデータ断アラームのみを受信していることになるので、電気/光変換部200の内部でデータ信号が消滅したものと判断する。そして、この場合、ステップS4においてシャットダウンアラームを出力する。一方、MUXデータ断アラームを受信した場合は、ステップS3へ進む。
【0086】
ステップS3では、光断アラームを受信したか否かを調べる。そして、このアラームを受信していなければ、電気/光変換部200にデータ信号が入力されていないと判断する。すなわち、電気/光変換部200が故障している可能性があると判断される。そして、この場合、ステップS4においてシャットダウンアラームを出力する。一方、光断アラームを受信した場合には、光源1、LN変調器3、または光信号を伝送する伝送路の障害が発生した可能性が高いと判断する。そして、この場合にも、ステップS4においてシャットダウンアラームを出力する。
【0087】
なお、図23に示すフローチャートにおける各ステップの処理順序は、これに限定されるものではなく、例えば、ステップS3の処理がステップS2の処理よりも先に実行されてもよい。
【0088】
また、図23に示す例では、故障の原因にかかわらず同じシャットダウンアラームが生成されているが、シャットダウンアラームが故障原因を識別する情報を含むようにしてもよい。このような構成とすれば、動作異常が発生したときに、その原因を容易に認識できる。
【0089】
さらに、上述の実施例では、光変調器としてLN変調器を使用する構成を示したが、本発明はこれに限定されるものではない。すなわち、光変調器は、LN変調器に限定されるものではなく、出力光パワーが印加電圧に応じて周期的に変化する任意の変調器を利用することができる。
【0090】
さらに、データ信号の振幅は、「Vπ」であることが理想的であるが、これに限定されるものではない。ただし、パイロット信号が重畳されたデータ信号の最大振幅が「Vπ」よりも大きくなることが望ましい。
【0091】
(付記1)入力電圧に対して出力光パワーが周期的に変化する光変調器を用いて光信号を送出する光送信装置であって、
上記光変調器を駆動するためのデータ信号よりも周波数の低い低周波信号を生成する生成手段、
上記データ信号に対して上記低周波信号を重畳し、その低周波信号が重畳されたデータ信号を上記光変調器に与える重畳手段、
上記光変調器から出力される出力光から上記低周波信号の周波数の2倍の周波数成分を検出する検出手段、
上記検出手段による検出結果に基づいて上記データ信号の状態を判断する判断手段、
を有する光送信装置。
【0092】
(付記2)付記1に記載の光送信装置であって、
上記光変調器は、マッハツェンダ型の光変調器である。
(付記3)付記1に記載の光送信装置であって、
上記光変調器は、LN変調器である。
【0093】
(付記4)付記1に記載の光送信装置であって、
上記データ信号は、RZ信号である。
(付記5)付記1に記載の光送信装置であって、
上記データ信号は、ゼロを表すビットの数と1を表すビットの数が実質的に互いに同じであるときに、Hレベルの存在確率とLレベルの存在確率とが互いに異なる信号である。
【0094】
(付記6)付記1に記載の光送信装置であって、
上記データ信号のデューティを変更するデューティ調整手段をさらに有する。
(付記7)付記6に記載の光送信装置であって、
上記光変調器から出力される光信号の波形を整形する波形整形手段をさらに有する。
【0095】
(付記8)付記1に記載の光送信装置であって、
上記光変調器の動作点を制御する動作点制御手段、
上記判断手段により上記データ信号の異常が検出されたときに、上記光変調器の動作点として予め決められている所定の値を設定する動作切替え手段、
をさらに有する。
【0096】
(付記9)入力されたデータ信号に対応する光信号を出力する電気/光変換部、その電気/光変換部に入力されるべき上記データ信号の正常性をモニタする入力モニタ部、および上記光信号を出力する動作の状態を監視する監視部を有する光送信装置であって、
上記電気/光変換部は、
入力電圧に対して出力光パワーが周期的に変化する光変調器、
上記光変調器を駆動するためのデータ信号よりも周波数の低い低周波信号を生成する生成手段、
上記データ信号に対して上記低周波信号を重畳し、その低周波信号が重畳されたデータ信号を上記光変調器に与える重畳手段、
上記光変調器から出力される出力光から上記低周波信号の周波数の2倍の周波数成分を検出する検出手段、
上記検出手段による検出結果に基づいて上記データ信号の状態を判断する判断手段、
上記光変調器の出力パワーをモニタする出力モニタ手段、を有し、
上記監視部が、上記入力モニタ部によるモニタ結果、上記判断手段による判断結果、および上記出力モニタ手段によるモニタ結果に基づいて、上記光信号を出力する動作の状態を監視する光送信装置。
【0097】
(付記10)付記9に記載の光送信装置であって、
上記光変調器の出力光の一部を受光して対応する電気信号を生成する受光手段をさらに有し、
上記検出手段は、上記受光手段の出力を利用して上記低周波信号の周波数の2倍の周波数成分を検出し、上記出力モニタ手段は、上記受光手段の出力を利用して上記出力パワーをモニタする。
【0098】
(付記11)付記9に記載の光送信装置であって、
上記光変調器の動作点を制御する動作点制御手段、
上記判断手段により上記データ信号の異常が検出されたときに、上記光変調器の動作点として予め決められている所定の値を設定する動作切替え手段、
をさらに有する。
【0099】
(付記12)入力電圧に対して出力光パワーが周期的に変化する光変調器を用いて光信号を送出する光送信装置において、上記光変調器を駆動するデータ信号の停止または消滅を検出する方法であって、
上記データ信号よりも周波数の低い低周波信号を生成し、
上記データ信号に対して上記低周波信号を重畳し、
その低周波信号が重畳されたデータ信号を上記光変調器に与え、
上記光変調器から出力される出力光の中に上記低周波信号の周波数の2倍の周波数成分が存在するか否かをモニタし、
そのモニタ結果に基づいて上記データ信号の状態を判断する、
を特徴とするデータ信号の状態を検出する方法。
【0100】
【発明の効果】
本発明においては、光変調器を駆動するためのデータ信号に低周波信号を重畳し、その低周波信号を利用して上記データ信号の停止または消滅をモニタするので、電気/光変換装置の内部における動作異常を検出できる。また、低周波信号を利用する構成なので、データ信号を直接的にモニタする構成と比べて、障害検出機能を低コストで実現できる。
【図面の簡単な説明】
【図1】LN変調器の構成を示す図である。
【図2】LN変調器の特性を示す図である。
【図3】LN変調器の動作原理を説明する図である。
【図4】実施形態の光送信装置における状態検出機能の基本構成図である。
【図5】実施形態の光送信装置の構成図である。
【図6】データ信号にパイロット信号を重畳する様子を示す図である。
【図7】NRZ信号およびRZ信号を模式的に示した図である。
【図8】パイロット信号が重畳されたデータ信号により生成される光信号を示す図である。
【図9】動作点電圧が正側にずれたときの動作を説明する図である。
【図10】動作点電圧が負側にずれたときの動作を説明する図である。
【図11】動作点を制御する処理を説明する図である。
【図12】データ信号がRZ信号であった場合のLN変調器の動作を示す図である。
【図13】サイン関数の特性を説明する図である。
【図14】LN変調器から出力される光信号を模式的に示す図である。
【図15】データ信号が停止または消滅したときにLN変調器に与えられる信号を説明する図である。
【図16】データ信号が停止または消滅したときのLN変調器の出力を示す図である。
【図17】検出部における処理を説明する図である。
【図18】データ信号がNRZ信号であった場合のLN変調器の動作を示す図である。
【図19】本発明の他の実施形態の光送信装置の構成図である。
【図20】デューティ調整部の処理を説明する図である。
【図21】デューティ調整部の実施例である。
【図22】本発明のさらに他の実施形態の光送信装置の構成図である。
【図23】アラーム監視部の動作を示すフローチャートである。
【図24】従来の光送信装置の構成図である。
【符号の説明】
1  光源(LD)
2  データ信号源
3  LN変調器
4  検出部
10 自動バイアス制御回路
11 パイロット信号源
12 パイロット信号源
14 バンドバスフィルタ(パイロット信号の周波数)
15 位相比較器
21 スイッチ
22 受光素子(PD)
30 データ検出部
31 バンドバスフィルタ(パイロット信号の周波数の2倍の周波数)
32 位相比較器
41 デューティ調整部
42 波形整形部
50 光検出部
60 アラーム監視部

Claims (5)

  1. 入力電圧に対して出力光パワーが周期的に変化する光変調器を用いて光信号を送出する光送信装置であって、
    上記光変調器を駆動するためのデータ信号よりも周波数の低い低周波信号を生成する生成手段、
    上記データ信号に対して上記低周波信号を重畳し、その低周波信号が重畳されたデータ信号を上記光変調器に与える重畳手段、
    上記光変調器から出力される出力光から上記低周波信号の周波数の2倍の周波数成分を検出する検出手段、
    上記検出手段による検出結果に基づいて上記データ信号の状態を判断する判断手段、
    を有する光送信装置。
  2. 請求項1に記載の光送信装置であって、
    上記データ信号は、ゼロを表すビットの数と1を表すビットの数が実質的に互いに同じであるときに、Hレベルの存在確率とLレベルの存在確率とが互いに異なる信号である。
  3. 請求項1に記載の光送信装置であって、
    上記データ信号のデューティを変更するデューティ調整手段をさらに有する。
  4. 請求項1に記載の光送信装置であって、
    上記光変調器の動作点を制御する動作点制御手段、
    上記判断手段により上記データ信号の異常が検出されたときに、上記光変調器の動作点として予め決められている所定の値を設定する動作切替え手段、
    をさらに有する。
  5. 入力されたデータ信号に対応する光信号を出力する電気/光変換部、その電気/光変換部に入力されるべき上記データ信号の正常性をモニタする入力モニタ部、および上記光信号を出力する動作の状態を監視する監視部を有する光送信装置であって、
    上記電気/光変換部は、
    入力電圧に対して出力光パワーが周期的に変化する光変調器、
    上記光変調器を駆動するためのデータ信号よりも周波数の低い低周波信号を生成する生成手段、
    上記データ信号に対して上記低周波信号を重畳し、その低周波信号が重畳されたデータ信号を上記光変調器に与える重畳手段、
    上記光変調器から出力される出力光から上記低周波信号の周波数の2倍の周波数成分を検出する検出手段、
    上記検出手段による検出結果に基づいて上記データ信号の状態を判断する判断手段、
    上記光変調器の出力パワーをモニタする出力モニタ手段、を有し、
    上記監視部が、上記入力モニタ部によるモニタ結果、上記判断手段による判断結果、および上記出力モニタ手段によるモニタ結果に基づいて、上記光信号を出力する動作の状態を監視する光送信装置。
JP2002206908A 2002-07-16 2002-07-16 状態検出機能を備えた光送信装置 Expired - Fee Related JP3883919B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002206908A JP3883919B2 (ja) 2002-07-16 2002-07-16 状態検出機能を備えた光送信装置
US10/365,442 US20040013428A1 (en) 2002-07-16 2003-02-13 Optical transmission apparatus with function of detecting status

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206908A JP3883919B2 (ja) 2002-07-16 2002-07-16 状態検出機能を備えた光送信装置

Publications (2)

Publication Number Publication Date
JP2004056187A true JP2004056187A (ja) 2004-02-19
JP3883919B2 JP3883919B2 (ja) 2007-02-21

Family

ID=30437471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206908A Expired - Fee Related JP3883919B2 (ja) 2002-07-16 2002-07-16 状態検出機能を備えた光送信装置

Country Status (2)

Country Link
US (1) US20040013428A1 (ja)
JP (1) JP3883919B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189616A (ja) * 2006-01-16 2007-07-26 Oki Electric Ind Co Ltd 光位相差制御装置および光位相差制御方法並びに光信号送信装置
JP2009060533A (ja) * 2007-09-03 2009-03-19 Nippon Telegr & Teleph Corp <Ntt> ロック検出及び動作アラーム検出回路
JP2012029058A (ja) * 2010-07-23 2012-02-09 Opnext Japan Inc 光送信器およびその制御方法
JP2013127519A (ja) * 2011-12-16 2013-06-27 Fujitsu Optical Components Ltd 光変調装置、及び、光変調装置における制御方法
US8891959B2 (en) 2011-07-27 2014-11-18 Fujitsu Limited Optical modulation device and bias voltage control method
WO2019168092A1 (ja) * 2018-03-02 2019-09-06 日本電気株式会社 光受信機及び光受信方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300405B2 (en) * 2011-12-02 2016-03-29 Semtech Corporation Closed loop optical modulation amplitude control
CN102590668B (zh) * 2012-02-14 2014-02-19 西南交通大学 一种基于光子技术的微波信号类型和频率检测方法及装置
DE102014001001A1 (de) * 2014-01-29 2015-07-30 Rosen Swiss Ag Molch und Molchscheibe für einen Molch
US9270370B2 (en) * 2014-01-29 2016-02-23 Huawei Technologies Co., Ltd. System and method for pilot tone modulation by data bias
US9929805B2 (en) * 2016-05-11 2018-03-27 Huawei Technologies Co., Ltd. Generating a pilot tone for an optical telecommunications system
US10523315B2 (en) * 2017-04-05 2019-12-31 Huawei Technologies Co., Ltd. Systems and method of multi-band pilot tone based optical performance monitoring

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142504A (ja) * 1991-11-19 1993-06-11 Fujitsu Ltd 光送信機
JPH09243972A (ja) * 1996-03-13 1997-09-19 Nec Corp 光出力遮断回路
JPH1048582A (ja) * 1996-08-08 1998-02-20 Mitsubishi Electric Corp 変調装置、送信装置、変調方法及び通信システム
JPH1051389A (ja) * 1996-07-29 1998-02-20 Fujitsu Ltd 光送信装置
JPH11136104A (ja) * 1997-10-28 1999-05-21 Nec Corp デューティ可変回路及びそれを用いた光素子駆動回路
JP2002023124A (ja) * 2000-07-11 2002-01-23 Fujitsu Ltd 光送信器および光伝送システム
JP2002023122A (ja) * 2000-06-30 2002-01-23 Mitsubishi Electric Corp 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136264A (en) * 1990-12-05 1992-08-04 At&T Bell Laboratories Transmitter including an fsk modulator having a switched capacitor
CA2083219C (en) * 1991-11-19 1999-01-05 Hiroshi Nishimoto Optical transmitter having optical modulator
JPH07254890A (ja) * 1994-03-16 1995-10-03 Fujitsu Ltd 光双方向伝送制御方式
US6285475B1 (en) * 1995-12-29 2001-09-04 Mci Communications Corporation Method and system for detecting optical faults in a network fiber link
JP3723358B2 (ja) * 1998-11-25 2005-12-07 富士通株式会社 光変調装置及び光変調器の制御方法
US6671465B1 (en) * 2000-04-07 2003-12-30 Lucent Technologies Inc. Apparatus and methods for improving linearity and noise performance of an optical source
JP3765967B2 (ja) * 2000-06-30 2006-04-12 三菱電機株式会社 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142504A (ja) * 1991-11-19 1993-06-11 Fujitsu Ltd 光送信機
JPH09243972A (ja) * 1996-03-13 1997-09-19 Nec Corp 光出力遮断回路
JPH1051389A (ja) * 1996-07-29 1998-02-20 Fujitsu Ltd 光送信装置
JPH1048582A (ja) * 1996-08-08 1998-02-20 Mitsubishi Electric Corp 変調装置、送信装置、変調方法及び通信システム
JPH11136104A (ja) * 1997-10-28 1999-05-21 Nec Corp デューティ可変回路及びそれを用いた光素子駆動回路
JP2002023122A (ja) * 2000-06-30 2002-01-23 Mitsubishi Electric Corp 光送信装置およびこれに用いる光変調器のバイアス電圧制御方法
JP2002023124A (ja) * 2000-07-11 2002-01-23 Fujitsu Ltd 光送信器および光伝送システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189616A (ja) * 2006-01-16 2007-07-26 Oki Electric Ind Co Ltd 光位相差制御装置および光位相差制御方法並びに光信号送信装置
JP4635877B2 (ja) * 2006-01-16 2011-02-23 沖電気工業株式会社 光位相差制御装置および光位相差制御方法並びに光信号送信装置
JP2009060533A (ja) * 2007-09-03 2009-03-19 Nippon Telegr & Teleph Corp <Ntt> ロック検出及び動作アラーム検出回路
JP4696254B2 (ja) * 2007-09-03 2011-06-08 日本電信電話株式会社 ロック検出及び動作アラーム検出回路
JP2012029058A (ja) * 2010-07-23 2012-02-09 Opnext Japan Inc 光送信器およびその制御方法
US8891959B2 (en) 2011-07-27 2014-11-18 Fujitsu Limited Optical modulation device and bias voltage control method
JP2013127519A (ja) * 2011-12-16 2013-06-27 Fujitsu Optical Components Ltd 光変調装置、及び、光変調装置における制御方法
US9063355B2 (en) 2011-12-16 2015-06-23 Fujitsu Optical Components Limited Optical modulation device and control method in optical modulation device
WO2019168092A1 (ja) * 2018-03-02 2019-09-06 日本電気株式会社 光受信機及び光受信方法

Also Published As

Publication number Publication date
US20040013428A1 (en) 2004-01-22
JP3883919B2 (ja) 2007-02-21

Similar Documents

Publication Publication Date Title
US10833761B2 (en) Optical transceiver
EP1906564B1 (en) Optical transmitter
EP0963065B1 (en) Control signal superimposing system with Raman amplifier
EP2875599B1 (en) Method and apparatus for stabilization of optical transmitter
JP3883919B2 (ja) 状態検出機能を備えた光送信装置
US5570227A (en) Method and apparatus for preventing occurrence of surge light in optical amplifier/transmitter apparatus
US20020089737A1 (en) Optical communication system, optical receiver and wavelength converter
JP4975775B2 (ja) 送信器、及び送信方法
JP5487547B2 (ja) 光変調装置および光変調方法
JP2009004903A (ja) 光データリンク及び光出力制御方法
EP2541805B1 (en) Optical transmitter
US20070160374A1 (en) Optical transmitter and method for controlling optical transmitter
JP2762986B2 (ja) 光出力遮断回路
JP2002044035A (ja) 波長多重分割伝送方法およびそのシステム
JP2003110505A (ja) 光送信機及び波長分割多重伝送システム
US20120082467A1 (en) Optical transmitter, optical transmission device, and method of controlling optical transmitter
JP2000089178A (ja) 光送信方法及びその装置
JP3269980B2 (ja) 光送信器
JP2010011098A (ja) 光伝送装置
US7013091B2 (en) Synchronization of pulse and data sources
JP3214893B2 (ja) 光送信器
JPH04301934A (ja) 光送信器並びに光送信器を用いた光通信装置
JP3673751B2 (ja) 信号断検出回路及びそれを用いた光受信装置
JPH02240627A (ja) 光変調制御方式
JPH08204268A (ja) 半導体レーザ駆動回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees