JP2004029113A - 光走査装置および画像形成装置 - Google Patents

光走査装置および画像形成装置 Download PDF

Info

Publication number
JP2004029113A
JP2004029113A JP2002181393A JP2002181393A JP2004029113A JP 2004029113 A JP2004029113 A JP 2004029113A JP 2002181393 A JP2002181393 A JP 2002181393A JP 2002181393 A JP2002181393 A JP 2002181393A JP 2004029113 A JP2004029113 A JP 2004029113A
Authority
JP
Japan
Prior art keywords
scanning
mirror
image forming
laser beam
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002181393A
Other languages
English (en)
Inventor
Mitsuo Suzuki
鈴木 光夫
Seizo Suzuki
鈴木 清三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002181393A priority Critical patent/JP2004029113A/ja
Publication of JP2004029113A publication Critical patent/JP2004029113A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Color Electrophotography (AREA)
  • Laser Beam Printer (AREA)

Abstract

【課題】走査結像手段の温度上昇等により被走査面上でビームスポットの位置ずれが発生しないように、ビームスポット位置を所定の位置に調整、補正し、高画質のカラー画像を得ることができる光走査装置および画像形成装置を得る。
【解決手段】光源装置210から放射されたレーザビームを、偏向手段22により主走査方向に偏向走査し、走査結像手段216により被走査面に向かって集光する光走査装置。光源装置210と偏向手段22との間の光路内にレーザビームの向きを変えるミラー部を有する振動体233が配置され、振動体233はレーザビームの走査位置が所定位置となるように駆動制御される。振動体233は、電磁力により振動する振動素子とミラー部とが一体化された単一基板からなる。振動体233は、圧電効果により振動する振動素子とミラー部とが一体化されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光源装置から放射されたレーザビームを、偏向手段により主走査方向に偏向走査し、走査結像手段により被走査面に向かって集光する光走査装置およびこれを用いた画像形成装置に関するもので、特にカラー画像形成装置に適用することによって高品質の画像を得ることができるものである。
【0002】
【従来の技術】
従来、カラーレーザプリンタ等のカラー画像形成装置の一形式として、駆動機構により回転駆動される複数の感光体を有し、各感光体に対して独立して複数の書込手段により複数の異なった色の情報をそれぞれレーザビームの走査線で書き込み、静電潜像を形成するタンデム型のカラー画像形成装置がある。各感光体に形成された静電潜像は複数の顕像化手段により異なった色の像にそれぞれ顕像化し、顕像化された各画像を転写材上に重ね合わせて転写しカラー画像を得ている。上記書込手段の各々は、読み出される各色の画像情報信号に応じて駆動制御される半導体レーザを有し、各半導体レーザから各色の画像情報信号に応じたレーザビームを出射する。レーザビームは、ポリゴンミラー、レンズ等の光学部品を介して、一様に帯電された感光体面に集光されるとともに主走査方向に走査される。感光体は回転駆動されることによって副走査が行われ、感光体面には、所定ピッチの走査線として画像情報が書き込まれ、静電潜像が形成される。
【0003】
上記のように複数の書込手段としてのレーザビーム走査装置を備えたカラー画像形成装置では、それぞれの書込手段において、ポリゴンスキャナや定着装置の発熱により温度が変化し、この温度変化を原因として、走査装置内のレンズや光源に位置ずれを生じ、あるいは屈折率変化等の光学特性の変化を生じ、これによって被走査面上のレーザビームのスポット位置ずれや走査線の曲がりが発生することがある。その結果、被走査面上において各色毎の走査線の相対位置が異なり、色ずれが起ってカラー画像の品質が低下するという不具合があった。
【0004】
上記のような不具合に対処したカラー画像形成装置の従来例として特開2001−228416公報に記載されている「多色画像形成装置」がある。この従来例は、起動することにより、片側に配置された光走査装置以外の駆動部が発熱し、光走査装置の光学ハウジングが上記発熱を受けて副走査方向に膨張するが、駆動部と反対側にポリゴンスキャナ制御回路のドライバを配置することにより、その発熱によって同じく副走査方向に膨張させることを特徴としている。こうすることによって、光学ハウジングを副走査方向に均一に膨張させることができ、被走査面を走査するレーザビームの、主走査方向の一方側(例えば前半)における副走査方向の伸びと、主走査方向の他方側(例えば後半)における伸びとの間との差が軽減される。従って、この光走査装置を用いてカラー画像形成装置を構成すれば、各感光体上の走査線は互いに平行な関係を保ち、画像の色ずれを防止することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来例は、ポリゴンスキャナ制御回路のドライバの発熱を利用して光学ハウジングの不均一な熱膨張を防止するものであるため、高速画像形成を実現するために回転数を25,000rpm以上とした高速回転のポリゴンスキャナでは、全体システムの温度上昇が激しく、プラスチック等で作られた走査レンズの場合、屈折率の変化が大きく、ビームスポットの位置ずれが発生する難点がある。また、副走査方向の膨張による色ずれ要因が残るため、書き込み開始タイミングを制御するような電気的補正が必要となるなどの問題がある。
【0006】
本発明は以上のような従来技術の問題点を解消するためになされたもので、走査結像手段の温度上昇等により被走査面上でビームスポットの位置ずれが発生しないように、ビームスポット位置を所定の位置に調整、補正し、もって高品質の画像、特にカラー画像形成装置では高画質のカラー画像を得ることができる光走査装置および画像形成装置を提供することを目的とする。
【0007】
【発明の実施の形態】
以下、図面を参照しながら本発明にかかる光走査装置および画像形成装置の実施の形態について説明する。
図1に本発明にかかる光走査装置の実施形態を示す。この光走査装置は、カラー画像形成装置用の光走査装置として構成されており、4色分の走査結像光学系、すなわち、イエロ、マゼンダ、シアン、ブラックにそれぞれ対応する走査結像光学系をもち、各色に相当するレーザビームが、被走査面である感光体ドラム220の表面に集光するように構成されている。符号22は光偏向手段としてのポリゴンミラーを示しており、このポリゴンミラー22を挟んで片側2色に相当する部分が図示され、他方は省略されている。また太線で表した直線は概略の光路を示している。
【0008】
図1に示す実施形態では、単一の光学ハウジング20に、以下のような光走査装置が組み込まれている。光学ハウジング20の略中央部にはポリゴンミラー22が配置されている。ポリゴンミラー22の下側には、ポリゴンミラー22を回転駆動する1つのモータによる駆動装置が配置されるが、図示は省略されている。ポリゴンミラー22は偏向反射面が上下2段に形成されていて、上下2段の偏向反射面が関係する光源装置およびそれ以後の光路が独立に形成されている。二つの光源装置210,211のうち、一方の光源装置211から放射された複数のレーザビームは、シリンドリカルレンズ212で副走査方向にのみ集束させられた後、あとで詳細に説明するミラー振動体233のミラー部で反射され、さらに折り返しミラー213で折り返され、ポリゴンミラー22の下段の偏向反射面22bに至るように構成されている。ポリゴンミラー22はモータによって回転駆動されているため、入射するレーザビームが偏向反射面22bで偏向反射される。この偏向されたレーザビームが形成する面が主走査平面である。
【0009】
図1では簡略化するため光路を示す線が1本で描かれている。ポリゴンミラー22の偏向反射面22bで偏向反射された複数のレーザビームは、それぞれ偏向レーザビームとなって等角速度的に偏向される。上記のように、シリンドリカルレンズ212と折り返しミラー213との間にミラー振動体233が配置されている。ミラー振動体233は、レーザビームの向きを変えるミラー部を有するとともに、電磁力あるいは圧電効果などによって上記ミラー部を振動させる振動体を有してなる。ミラー振動体233を配置する箇所は、光源装置211と偏向手段であるポリゴンミラー22間であればよいが、図示の例のように、シリンドリカルレンズ212でレーザビームを副走査方向に収束させた後に配置するのが、ミラー振動体233の高さ寸法を短くできるので、最も好適である。
【0010】
上記偏向反射面22bで偏向反射された複数のレーザビームの光路上には、第1のfθレンズ216と第2のfθレンズ217とからなる2枚玉fθレンズが配置されている。2枚玉fθレンズは、偏向反射されたレーザビームを被走査面に向かって集光する走査結像手段を構成している。この2枚玉fθレンズは上下に分かれていて、上記偏向反射面22bで偏向反射された複数のレーザビームは、第1のfθレンズ216の下部、第2のfθレンズ217の下部、第1の折り返しミラー218、長尺シリンダレンズ219、第2の折り返しミラー222を通り、被走査面である感光体220の周面上にビームスポットととして集光するように、各光学部品が載置固定されている。被走査面上に形成される複数のレーザビームのスポットは、互いに副走査方向に分離しており、一つの偏向反射面による走査で被走査面の複数のラインを同時に走査する。なお、第1および第2のfθレンズとも上下段が一体成形されている。2枚のレンズを上下に接着剤で張り合わせてもよい。上記第1の折り返しミラー218はハーフミラーからなり、この折り返しミラー218を透過したレーザビームはビーム検出器232に至る。
【0011】
前記他方の光源装置210から放射された複数のレーザビームは、シリンドリカルレンズ223で副走査方向にのみ集束させられた後、ミラー部を有するミラー振動体234で折り返され、ポリゴンミラー22の上段の偏向反射面22aに至り、レーザビームが偏向反射面22aで偏向反射されるように構成されている。偏向反射されたレーザビームは、上記第1のfθレンズ216の上部、第2のfθレンズ217の上部、第1の折り返しミラー228、長尺シリンダレンズ229、第2の折り返しミラー230を通り、被走査面である感光体ドラム221の周面上にビームスポットととして集光するように、各光学部品が載置固定されている。感光体ドラム221に集光するレーザビームは光源装置210から放射された複数のレーザビームであり、前述の場合と同様にミラー振動体234で所望の角度で反射され、ポリゴンミラー22の上段部22aで偏向反射される。
【0012】
図1は、一つの光学ハウジングの略中央に配置された一つのポリゴンスミラー22の片側のみを示している。ポリゴンスミラー22の他方側にも同様に構成された走査結像手段とミラーおよび感光体ドラムが配置され、4色分の偏向走査を行うことができるように構成されている。
【0013】
図3、図4は、ミラー振動体233、234の構造の一例を示す。図3は、基板301にミラー部302とコイル303とを形成し、電磁力により振動するタイプの振動素子を示す。基板301を上下から挟んで永久磁石307と永久磁石308が配置され、その間に磁界を形成している。駆動回路306は所望の駆動電流を生成し、この駆動電流はコイル303に沿って矢印309で示すように流れ、この電流と永久磁石307および永久磁石308からの磁界により、基板301に水平方向の回転軸304を中心とした磁気力を発生させ、矢印305方向すなわち副走査方向の振動を発生させる。図3に示す例の場合、上記駆動電流は直流で、所定の直流電流を流すことにより、ミラー部302を所定の角度で維持することができる。基板301はシリコン等からなり、基板301上に、コイル303に相当するパターンや、ミラー部302が、蒸着やメッキなどの方法で薄膜状に形成されている。従って、ミラー振動体233、234は、シリコン基板301と、その上に形成された振動素子部としてのコイル303と、ミラー部302とが一体化された単一化基板からなっていて、半導体生成プロセスと同じプロセスを使用でき、軽量かつ安価に製作可能である。特に、振動部の軽量化を図ることによって、振動周波数を高めることができるため、応答性の良好な振動部を得る上で重要である。
【0014】
ミラー部302は幅Wが6mm以上、高さHは5mm以下、平面度0.1μm以下となっている。幅Wは感光体面上のビームスポット径により決定している。1200dpi(1インチ当たりの画素数)以上の高画質化を達成するためには、ビームスポット径は50μm以下(1/e)が必要で、そのスポット径を達成するためにはシリンダレンズ212、223を通ったのちの主走査方向のビーム径を6mm以上とする必要がある。したがって、ミラー部302の幅Wは6mm以上としている。また振動周波数は2KHz以上で駆動できるように構成されている。振動周波数Pは下記の式(1)で設定されている。たとえば、ポリゴンミラー回転数Nが50000rpm、ポリゴンミラー面数が6面、1走査ラインにおけるビームスポット位置の補正区間数が5の場合、P=25KHzとなる。また、ポリゴンミラー回転数Nが25000rpm、ポリゴンミラー面数が5面、1走査ラインにおけるビームスポット位置の補正区間数が1の場合、P=2.1KHzとなる。
式(1)
P[Hz]=(N/60)×A×K
ただし、N:ポリゴンミラーの回転数[rpm]、A:ポリゴンミラー面数、
K:1走査ラインにおけるビームスポット位置の補正区間数(正の整数)
【0015】
なお、「1走査ラインにおけるビームスポット位置の補正区間数」は走査線の形状により決定される。補正区間数に関して図7に示した走査線の例で説明する。図7は、図1に示す感光体ドラム面上の走査線の例を示したもので、代表例として(a)(b)の2例を示した。(a)は理想走査線に対する走査線の曲がり量hをもち、曲がりの周期が画像幅で略1サイクル(U型または逆U型)となっている例を示している。(b)は理想走査線に対する走査線の曲がり成分hをもち、曲がりの周期が画像幅で略2サイクル(M型またはW型)となっている例を示している。(a)の場合はK=1、それ以上のサイクルであれば、例えばK=5というように適宜設定される。区関数が大きいほど高周波となり、振動体に負荷がかかる。安定して振動させるためには2KHz以上は必要である。図7(a)のように、1走査ライン内の画像幅で曲がり周期が略1サイクルとなっているものは、ミラー振動体233、234を正弦波電流で連続振動させることにより理想走査線に補正する。
【0016】
ポリゴンミラーの回転方向、感光体ドラム面上での走査方向を図1と図7とで同一とすると、副走査方向上側の走査線曲がり分hを補正するためには、ポリゴンミラーに入射する面は振動体233、234が上向きとなるときにレーザビームが書き込まれるように光源装置のレーザビーム点灯タイミングを制御する。なお、振動角は補正量、すなわち曲がり量(例えば、上記hやh)に応じて決める。具体的には、曲がり量100μmを補正する場合、図8に示す偏向反射面22bにおけるビームの副走査方向の補正量tが100μmとなるように振動角を設定している。図8に示すように、上記tの量は振動体とポリゴンミラーの間隔Lに依存するが、振動体を2KHz以上の高周波で振動させるため振動角θを1°以下とする必要がある。走査線の補正量を2mmとする場合、横倍率を等倍で「t=2mm」となり、L=115mm以上で配置する必要がある。なお、偏向反射面近傍の集光位置と被走査面とは共役の位置にあるため、上記補正量tがそのまま感光体ドラム状のビームスポット位置の補正量として反映される。
【0017】
上記間隔Lは光学ハウジング20の大きさに関係するため短縮する必要がある。そのために走査線曲がりを組立工程で初期調整し、かつ温度環境変化に強い、したがって熱膨張率の小さいガラスレンズ(熱膨張率0.5×10−5/℃)を用いることにより、走査線の補正量を約1/10の、最大200μmまで可能にすることができる。このような走査結像光学系の場合、横倍率が0.7倍でも「t=約140μm」とし、L=8mm以上であればよく、光学ハウジングの大型化を回避することができる。
【0018】
一方、図7(b)に示すように、画像幅で略2サイクルとなっているものは、画像幅を複数(例えば5分割)の区間に分け、振動周波数を高周波化することにより、補正精度を向上することができる。
式(1)における「1走査ラインにおけるビームスポット位置の補正区間数」は図7(a)ではK=1、図7(b)ではK=5となる。
【0019】
感光体ドラム面上とポリゴンミラーの偏向反射面は光学的に共役関係となっているため、感光体ドラム面上でのビームスポット位置の補正量は、ポリゴンミラー以降の走査結像光学系の横倍率で決まる。本説明では等倍としている。走査結像光学系の構成によって倍率は異なるものの、0.7〜1.2倍の範囲内である。等倍の場合、曲がり量100μmに対して、t=100μm、1.2倍の場合、曲がり量100μmに対して、t=83μmとなる。
【0020】
次に、走査線の検出について図1を参照しながら詳述する。図1において、基板231に複数のビーム検出器232が主走査方向に配置されている。図示の例では、例えば画像領域を5等分し、均等な間隔で5点にビーム検出器232が配置されている。各点でビームの走査位置を検出し、ビーム検出器間のデータを補間して走査線の位置データを得るように構成されている。ビーム検出器の配置数は多いほど高精度データとなるが、実質的には組立工程での初期調整(レンズ、ミラーを含む光学素子の位置調整)により走査線曲がりは所定量矯正され、かつ温度変化による光学素子の変形は画像中央部に対して左右対象となっており、均等に配置されて5点での検出としている。
【0021】
あらかじめ設定した基準となる走査結像光学系、例えば感光体ドラム220を走査する走査結像光学系で検出したレーザビームの基準走査位置のデータと、他の走査結像光学系で検出したレーザビームの走査位置データとの比較演算結果から、走査位置の補正量に応じた駆動信号を生成し、振動体234を所望角度振動(偏向)させ、走査位置を補正する。基準となる走査結像光学系に配置された振動体233は予め設定されている理想走査線との差異分を補正するように所望角度振動(偏向)させ、走査位置を補正する。振動体233は駆動回路306で矩形波や正弦波の交流電圧または直流電圧の電気信号を入力することにより、入射するレーザビームを図8に示すように振動(偏向)させる。
【0022】
実際には画像信号出力の前に、少なくとも画像幅内で連続点灯され、ハーフミラー218を透過する走査位置検出用レーザビーム230の走査位置をビーム検出器232で検出する。ビーム検出器は各色に相当する複数の走査光路に各々配置される。走査位置検出結果に基づき、所望の値(例えば視覚に影響しない10μm)以上であれば振動体233を振動(偏向)させ、走査位置の補正を行うことになる。なお、ビーム検出器232は固定の固定板231に設置されている。固定板231は熱膨張率1.0×10−5/℃以下の材質からなり、温度変動による、ビーム検出器の移動、および相対位置関係の移動により正確な検出ができなくなる、という問題を実質的になくしている。さらにビーム検出器をフォトダイオードで構成した場合に複数のビーム検出器間に発生する電気ノイズの影響をなくすために、固定板231は非導電性であることが好適である。具体的には、ガラス(熱膨張率0.5×10−5/℃)、セラミック材質(アルミナ:熱膨張率0.7×10−5/℃、炭化珪素:熱膨張率0.4×10−5/℃)が好適である。なお、アルミ合金(熱膨張率2.4×10−5/℃)では温度変動によりビーム検出精度が劣化する。
【0023】
以上説明した光走査装置は、複写機、プリンターなどの画像形成装置に適用することができる。図2に、上記実施例にかかる光走査装置をタンデム型カラー画像形成装置に適用した例を示す。
装置内の下部側には、給紙カセット1が水平方向に配設されており、給紙カセット1から給紙される転写紙(図示せず)を図2において右から左に向かって搬送する搬送ベルト2が給紙カセット1の上方に水平方向に設けられている。この搬送ベルト2の上側には、イエロー(Y)用の感光体ドラム3Y,マゼンタ(M)用の感光体ドラム3M,シアン(C)用の感光体ドラム3Cおよびブラック(K)用の感光体ドラム3Kが、転写紙搬送方向上流側から順に等間隔で配設されている。以下、符号に対する添字Y,M,C,Kを適宜付けて区別するものとする。
【0024】
これらの感光体ドラム3Y,3M,3C,3Kは全て同一径に形成されたもので、その周囲には、電子写真プロセスを実行して画像を形成するプロセス部材が順に配設されている。感光体ドラム3Yを例に採れば、帯電チャージャ4Y、走査結像光学系5Y、現像装置6Y、転写チャージャ7Y、クリーニング装置8Y等が順に配設されている。他の感光体3M,3C,3Kに対しても同様である。すなわち、本実施の形態では、感光体ドラム3Y,3M,3C,3Kが各色毎に設定され、それぞれの表面を被走査面ないしは被照射面とするものであり、各感光体ドラムに対して走査結像光学系5Y,5M,5C,5Kが1対1の対応関係で設けられている。
【0025】
また、搬送ベルト2の周囲には、感光体ドラム3Yよりも転写紙搬送方向上流側に位置させてレジストローラ9と、ベルト帯電チャージャ10が設けられ、感光体ドラム3Kよりも下流側に位置させてベルト分離チャージャ11、除電チャージャ12、クリーニング装置13等が順に設けられている。また、ベルト分離チャージャ11よりも搬送方向下流側には定着装置14が設けられ、定着装置14の後ろ側に、排紙トレイ15に向けて転写紙を搬送する排紙ローラ16が配置されている。
【0026】
このような概略構成において、例えば、フルカラーモード(複数色モード)時であれば、各感光体ドラム3Y,3M,3C,3Kに対してY,M,C,K用の各色の画像信号に基づき各々の走査結像光学系5Y,5M,5C,5Kにより光ビームの走査が行われることにより、各感光体ドラムにそれぞれの画像信号に応じた静電潜像が形成される。これらの静電潜像は各々の対応する色トナーで現像されてトナー像となり、搬送ベルト2上に静電的に吸着されて搬送される転写紙上に順次転写されることにより重ね合わせられ、フルカラー画像が形成される。この転写紙上のフルカラー画像は定着装置14で転写紙に定着された後、排紙される。
【0027】
また、黒色モード(単色モード)時であれば、感光体ドラム3Y,3M,3Cおよびそのプロセス部材は非動作状態とされ、感光体ドラム3Kに対してのみ、黒色用の画像信号に基づき走査結像光学系5Kによる光ビームの走査で静電潜像が形成される。この静電潜像は黒色トナーで現像されてトナー像となり、搬送ベルト2上に静電的に吸着されて搬送される転写紙上に転写され、黒色トナーからなるモノクロ画像として転写紙に定着された後、排紙される。
【0028】
なお、図2において符号31M、32Mはfθレンズを構成する2枚のレンズを示している。各fθレンズ31M、32Mはプレート33M上に載置され、プレート33Mが光学ハウジング31に固定されることによって各fθレンズ31M、32Mが光学ハウジング31に固定されている。プレート33Mはfθレンズ31M、32Mの当接面側の全面または一部と接触している。fθレンズ31M、32Mの材質は、非球面形状に成形するのが容易で低コストなプラスチック材質からなる。より具体的には、低吸水性や高透明性、成形性に優れたポリカーボネートや、ポリカーボネートを主成分とする合成樹脂が好適である。
【0029】
走査結像光学系5Kは走査位置基準となる光学系であり、温度変動による影響をなくすため光学レンズを熱膨張率の小さい材質、例えばガラス(熱膨張率0.5×10−5/℃)とするのが前述の通り好適である。なお、プラスチックレンズ(ポリカーボネート:熱膨張率7.0×10−5/℃)では温度変動によりビーム位置が大きく変動し、基準となり得ない。
【0030】
上記の例のように、ミラー振動体を全ての走査結像光学系に搭載する必要はなく、少なくとも基準となる走査結像光学系においては、固定した平面ミラーのみでもよい。また高価なガラスレンズは、基準となる走査結像光学系のみに使用してもよい。
【0031】
一方、図1に示すミラー振動体233のミラー部とポリゴンミラー22の偏向反射面は、像面湾曲によるレーザビーム径の劣化を防止するために、いずれの平面度も0.1μm以下としているが、特にポリゴンミラー平面度を安定して加工することは困難で、歩留まり悪化により高価となっている。ポリゴンミラーの形状は各偏向反射面で凹凸が混在し、あるいは偏向反射面の一部または全面が波型(1面内での凹凸)になっており、その平面度は0.1〜0.15μmが一般的である。そこで、本発明にかかる前記実施形態では、ポリゴンミラーの平面形状とミラー振動体のミラー部の平面形状を、主走査方向のパワーを相殺するように所定の面形状とした。これによりポリゴンミラーを高精度化せずに小径ビームを達成している。
【0032】
具体的には、図6に示すように、ポリゴンミラー90の偏向反射面102aの形状を、全面(本実施形態では6面)ともに凹面形状とした。図6(b)はこれを強調して示しており、ハッチングを付した領域はポリゴンミラー中心側である。偏向反射面102a部のうちレーザ偏向に寄与する部分(有効範囲:有効範囲外の加工時に発生する角部のバリ等の部分を除く部分)の平面形状を図6(b)に示す。実際には微少な凹凸(表面粗さ成分)が存在するが、レーザビームの偏向走査精度に関係する湾曲成分のみを図示している。
【0033】
一方、振動体233のミラー部302のミラー形状を図6(c)に示した。これはいわゆる凸面形状をしており、有効範囲の両端X、Yを結んだ直線よりも中心側に凹む形状(Z部)としている。そこで、上記のように、ポリゴンミラーの偏向反射面を全面ともに凹面に揃え、振動体233のミラー部302のミラー形状を凸面形状として主走査方向のパワーを相殺することにより、小径ビームを安定して得ることが可能となる。換言すれば、ビーム径が50μm以上の場合でも、ミラー平面度の許容範囲を広くすることができる。図6(b)(c)中のD1、D2は、ポリゴンミラーの偏向反射面と、振動体のミラー面の平面度を表しており、これらの平面度はともに、従来一般の偏向反射面やミラー面の平面度よりも大きくてもよい。例えば0.16μm以上の平面度であってもよい。ただし、平面度の上限は0.70μmとするのが好適である。0.7μm以上の平面度の場合、ポリゴンミラー各面の平面度ばらつきが大きくなり易く、fθレンズによる主走査方向の補正の許容範囲を超えてしまい、主走査方向のずれ量が大きくなってしまう。なお、上記平面度の数値はレーザ干渉計(Zygo社製)で測定し、PV(Peak to Valley)値を記載している。
【0034】
図5は、図1に示した光走査装置に用いることができるポリゴンスキャナの例を示す。このポリゴンスキャナは、25000rpm以上で回転する動圧空気軸受型である。円筒形状をしたセラミック製の回転スリーブ101の外周には、上下に偏向反射面22a、22bを有するアルミ合金からなるポリゴンミラー22が焼き嵌めによって固定されている。偏向反射面22a、22bは、周方向に等間隔に形成された多数のミラー面からなる。これら回転スリーブ101、ポリゴンミラー22を含む回転体Rの上方には、磁性体からなり磁気軸受を構成する回転ヨーク103が、アルミ合金からなる部材104の中心部に固定されている。部材104はポリゴンミラー22の上部に圧入または焼き嵌めまたは接着で固定され、回転スリーブ101の上端開放部を閉止する機能も有している。ポリゴンミラー22の下部には周壁がスカート状に形成されていて、この周壁の内周面にロータ磁石105が配置され、ロータ磁石105の内周側において周方向に対向するステータコア111とともにアウターロータ型のブラシレスモータを構成している。
【0035】
ポリゴンミラー22には図5において上面側から円筒形状に掘り下げた形で円周溝102eが設けられている。この円周溝102eは、スリーブ101および閉止部材104の固定時や温度上昇に伴ってポリゴンミラー部にかかる応力歪を防止するためのものである。ラジアル方向の動圧軸受を構成する固定軸116は回転スリーブ101と同様に円筒形状のセラミック材料からなり、外径表面にはヘリングボーン状の動圧発生溝116aが形成されている。固定軸116の外周面側に回転スリーブ101の内周面が数μmの隙間で嵌合され、固定軸116の外周面側と回転スリーブ101の内周面とで空気動圧軸受が構成されている。
【0036】
固定軸116の内周部にはアキシャル磁気軸受を構成する永久磁石組立体が配置されている。この永久磁石組立体は、リング状の永久磁石132とこの永久磁石132を上下から挟み込む磁性板130、131とを有してなる。ポリゴンミラー22、回転スリーブ101と一体の前記部材104には、その回転中心部において磁性体103の上端部が固定されている。磁性体103は全体として円柱状に形成されるとともに、長さ方向の中間部と他端部にフランジ状の突起部103aを有している。磁性体103は、上記磁気軸受を構成する永久磁石組立体の内周側に延びていて、磁性体103の二つの突起部103aと永久磁石組立体の上記磁性板130、131とが磁気ギャップをもって径方向に対向している。この磁気ギャップ間にはたらく吸引力を利用して、磁性体103、部材104、ポリゴンミラー22、回転スリーブ101などからなる回転体Rが、アキシャル方向へ非接触で支持されている。
【0037】
また、固定軸116と回転体Rとで形成される上部の空気溜り134と回転体Rの外部とを連通させる微細孔(図示されず)が、磁性体103または下部閉止部材135、または部材104など、空気溜り134を形成している部材に形成されており、磁気軸受にダンピング特性をもたせている。また、回転体Rは、回転体Rを覆うようにして配置されたモータハウジング115と上カバー117とレーザビーム透過部材(図示されず)とで略密閉されており、ゴミによる動圧軸受とポリゴンミラーの損傷を防止するとともに高速回転するポリゴンミラーの風切音が外部に漏れるのを防止している。
【0038】
また、高速回転時の振動を低減するために回転体Rのバランス修正を行なっている。25000rpm以上の高速回転で低振動を実現するためには,回転体Rのアンバランス量が10mg・mm以下であることが必要である。例えば半径10mmの箇所で修正量は1mg以下を達成しなければならない。修正箇所は回転体の上部と下部の軸方向2箇所であり、その上下2箇所は回転体重心を挟んで配置するのが好適である。なお、1mg以下の微少な修正を実行するのに、接着剤等の付着物による修正では管理がしにくく、また量が少ないため接着力が弱く、25000rpm以上の高速回転時には剥離、飛散してしまう。その点、回転体の部品の一部を削除する方法、例えば、ドリルによる切削やレーザ加工などであれば上記不具合は発生せず、好適である。
【0039】
ロータ磁石105の磁界をモータ基板113に実装されているホール素子112で検出し、このホール素子112から出力される信号を位置信号として参照し、この位置信号に応じて駆動回路によりステータ巻線の励磁切り替えを行うことによって、モータを回転駆動することができる。ここで、ロータ磁石105は径方向に、かつ、S極とN極が周方向に交互に着磁されており、ステータコア111の外周との間の磁気的吸引反発力で回転トルクを発生し回転駆動される。ロータ磁石105はポリゴンミラーと実質一体であるため、ロータ磁石105とともにポリゴンミラーも回転する。ロータ磁石105は内径以外の外径および高さ方向は磁路を開放しており、モータの励磁切り換えのためのホール素子112をロータ磁石105の外径側に配置している。
【0040】
ポリゴンミラーの反射面22a、22bは少なくとも回転スリーブ101とポリゴンミラー22が焼き嵌め固定されたのちに鏡面加工される。図9は、この鏡面加工の例を示す。ポリゴンミラーの反射面22a、22bの鏡面加工は、回転体Rの上端面90部を基準として治具925に載置され、高精度に加工される。図6(b)に示すような凹面形状は、図9に示した方法で加工することにより安定して得ることができる。回転体Rの端面と当接する治具925の対向面925aは、端面90とともに振れ精度を5μm以下としている。回転体Rを上方から所定の押圧力で治具925に押圧し固定する。固定部材929には回転体Rとの当接部に弾性部材928が配置される。弾性部材928により回転体Rを全周均等に固定することが可能であり、局部的な固定力により鏡面加工品質を劣化させることがなく、所定の押圧力を円周上に均等に分布させることができる。
【0041】
上記押圧力により、ミラー部は図9に符号91aで示すように、また図6(a)に符号91bで示すように、外径側に微少変形する。この微小変形量を図6(a)ではδで示している。この状態で回転体Rを固定維持して加工することにより、ミラー部の外径側の変形分が削除されることになる。上記押圧力を解除すると、上記外径側への微小変形がなくなり、ミラー部に微少変形量δ分の凹面形状が形成されることになる。弾性部材928の当接面位置は、この当接面と、回転体Rの端面と当接する治具925の対向面925aとを結ぶ直線93が、治具925による押圧方向と一致するような位置にするとよい。こうすることによって押圧力を直接上記当接面と対向面925aに伝達することができ、ねじれなどの異変形が起きにくい。なお、符号921aで示す1点鎖線は、鏡面加工時のバイト921の先端位置、符号922は加工バイト921の回転軸心をそれぞれ示している。
【0042】
回転スリーブ101の端面が基準の場合は、あらかじめ内径中心に対する振れを5μm以下の高精度に加工しておく必要がある。振れ精度は鏡面加工時の平面度、面倒れ品質に影響するからである。なお、回転体Rのポリゴンミラー反射面部以外はポリゴンミラー反射面部の内接円径よりも小径となっている。直径で0.1mmの小径になっていればよい。その理由は、鏡面加工時に切削用バイト(刃物)の先端が回転部材外径部に衝突することを避けるためである。
【0043】
鏡面加工を上記のような工程としたことにより、ポリゴンミラーを板バネのような別部品により固定する必要がなくなり、高精度に加工されたポリゴンミラーの平面度を、固定によって悪化させることがない。さらには従来、面倒れ特性を維持するために必要であったポリゴンミラー搭載面の平面度や直角度を、部品単位で高精度に加工する必要がなくなる。
【0044】
図3において、前記振動体233のミラー部302の面形状を凸面にするには、基板301の主走査方向中央部の下面に所定量の突起を設けた第二の基板(図示しない)上に固定するなどして変形させる方法、あるいは、蒸着膜の厚さを調整する方法、例えば、中央部を厚く、周辺を薄くする方法がある。
また、図5に示すロータ磁石105は、バインダーとして樹脂を使用したボンド磁石とし、ロータ磁石105の外径部には高速回転時の遠心力による破壊が発生しないように、ポリゴンミラー22の下部の周壁がロータ磁石105の外径を保持した構造になっている。ロータ磁石105は上記周壁内周面に圧入固定されている。
【0045】
図5において、ポリゴンスキャナは、そのモータハウジング115の外壁部に設けられた固定部110が光学ハウジングにネジ止めによって着脱自在に固定されている。光学ハウジングも放熱性のあるアルミ合金からなり、ポリゴンスキャナから伝達された熱を速やかに外部へ放散することが可能となっている。したがって、温度上昇に対して問題となっていたプラスチック製の安価なレンズを使用することが可能となる。ポリゴンスキャナを光学ハウジングに対して着脱自在とすることにより、ポリゴンスキャナが故障した際にもポリゴンスキャナ単位で交換が可能となるほか、20000rpm以下というように回転数が低く、温度上昇が問題とならないポリゴンスキャナの場合、放熱性を考慮することなく樹脂製のモータハウジングを採用することができ、光学ハウジング等の部品を共通の使用することが可能な光走査装置を提供することができる。
【0046】
図4は、本発明に適用可能なミラー振動体の別の例を示す。このミラー振動体は圧電効果により振動する振動素子とミラー部とが一体化されることによって構成されている。図4において、基板600上に蒸着やメッキ等の方法で薄膜成形された、あるいは、アルミ金属基板を鏡面加工して形成されたミラー部601の一端縁側には、振動方向が基板600の厚み方向となるようにして圧電素子602が固定されている。符号604で示す矢印は、圧電素子602に給電することによって圧電素子602が振動する方向を示している。また、圧電素子602のミラー側とは反対側の面も固定板603に固定され、圧電素子602がミラー部601と固定板603で挟まれたいわゆるサンドイッチ状態となっている。基板600、ミラー部601と、固定板603は、軸心607で回動自在に指示されており、2KHz以上の高周波電気信号を発生する駆動回路606により圧電素子602が矢印604で示す方向に振動することにより、矢印605で示す方向の振動が発生し、レーザビームを偏向することができる。なお、ミラー面の主走査方向の幅Wは図3の例と同等に必要となるが、高さ方向Hについては所望の角度(矢印605で示す方向の回転量)を満足するために適宜設定され、矢印604方向の振動振幅量に対して角度を大きくしたい場合は、高さHを小さくし、矢印605方向の回転量を確保する。
【0047】
また、ポリゴンミラーの偏向反射面ごとにレーザビームの走査位置を検出し、その結果から副走査方向の偏向反射面ごとの走査位置ずれ量を演算することにより、ポリゴンミラー回転中の面倒れを算出し、その結果に基づき振動体の駆動を制御して走査位置補正することにより、ポリゴンミラーの面倒れ成分を除去することができる。
【0048】
【発明の効果】
請求項1記載の発明によれば、光源装置から放射されたレーザビームを、偏向手段により主走査方向に偏向走査し、走査結像手段により被走査面に向かって集光する光走査装置において、光源装置と偏向手段との間の光路内にレーザビームの向きを変えるミラー部を有する振動体を配置し、この振動体はレーザビームの走査位置が所定位置となるように制御されるため、ビームスポットの位置ずれの少ない高画質の画像形成に対応可能な光走査装置を提供することができる。
【0049】
請求項2、3および4記載の発明によれば、ビームスポット位置ずれを高周波に対応して高精度に補正することができ、高画質の画像形成に対応可能な光走査装置を提供することができる。
【0050】
請求項5記載の発明によれば、小径ビームに対応したビームスポット位置ずれを高周波に対応して高精度に補正することができ、高画質の画像形成に対応可能な光走査装置を提供することができる。
【0051】
請求項6および7記載の発明によれば、偏向手段はポリゴンスキャナであり、ポリゴンミラーの平面形状と振動素子のミラー平面形状を、主走査方向のパワーを相殺するような面形状としたことにより、像面湾曲に伴うビーム径の劣化を抑えるとともに、ポリゴンミラーおよび振動素子のミラーの平面度を高精度にする必要はなく、安価で高画質の画像形成に対応可能な光走査装置を提供することができる。
【0052】
請求項8記載の発明によれば、走査結像光学系の結像レンズの熱膨張係数を適正にすることにより、温度変動に対して変化の少ない走査結像光学系を得ることができ、走査位置が高精度化され、ビームスポットの位置ずれの少ない高画質の画像形成に対応可能な光走査装置を提供することができる。
【0053】
請求項9および10記載の発明によれば、各色に対応する複数の光源装置から放射されたレーザビームを偏向手段により主走査方向に偏向走査し、複数の走査結像手段により被走査面に向かって集光する光走査装置において、複数の光源装置と偏向手段との間の光路内にレーザビームの向きを変える振動素子が配置され、この振動素子はレーザビームの走査位置が所定位置となるように各色独立に駆動制御されるため、色ずれの少ない高画質のカラー画像形成に対応するカラー画像形成装置用の光走査装置を提供することができる。
【0054】
請求項11記載の発明によれば、複数の走査結像手段が単一のハウジング内に収容され、ハウジング中央部に複数段のポリゴンミラーを有するポリゴンスキャナが配置され、複数段のポリゴンミラーにより複数のレーザビームが走査されるため、全体として小型化することが可能であり、かつ安価で色ずれの少ない高画質のカラー画像形成に対応するカラー画像形成装置用の光走査装置を提供することができる。
【0055】
請求項12記載の発明によれば、請求項1〜11に記載にされている特徴をもつ光走査装置をカラー画像形成装置に適用することにより、小型で、安価な、色ずれの少ない高画質のカラー画像を得ることができる画像形成装置を提供することができる。
【図面の簡単な説明】
【図1】本発明にかかる光走査装置の実施形態を示す斜視図である。
【図2】上記光走査装置を用いた画像形成装置の実施形態を示す正面図である。
【図3】上記光走査装置に適用可能な振動体の一例を示す正面図である。
【図4】上記光走査装置に適用可能な振動体の別の例を示す正面図である。
【図5】上記光走査装置に用いられているポリゴンスキャナの例を示す断面図である。
【図6】上記光走査装置に用いられるポリゴンミラーと他のミラーの反射面形状を示すもので、(a)はポリゴンミラーの平面図、(b)はポリゴンミラーの偏向反射面の拡大平面図、(c)は他のミラー反射面の拡大平面図である。
【図7】被走査面上の走査線の例を理想走査線とともに示すもので、(a)は走査線曲がりの周期が画像幅で略1サイクルの例を示す曲線図、(b)は略2サイクルの例例を示す曲線図である。
【図8】上記光走査装置に用いられている振動体の振動角とビーム位置変動の関係を示す側面図である。
【図9】本発明に適用可能なポリゴンスキャナの組立および加工工程の例を示す断面図である。
【符号の説明】
22 偏向手段
210 光源装置
211 光源装置
216 走査結像手段としてのfθレンズ
217 走査結像手段としてのfθレンズ
233 振動体
234 振動体

Claims (12)

  1. 光源装置から放射されたレーザビームを、偏向手段により主走査方向に偏向走査し、走査結像手段により被走査面に向かって集光する光走査装置において、
    光源装置と偏向手段との間の光路内にレーザビームの向きを変えるミラー部を有する振動体が配置され、
    上記振動体はレーザビームの走査位置が所定位置となるように駆動制御されることを特徴とする光走査装置。
  2. 振動体は、電磁力により振動する振動素子とミラー部とが一体化された単一基板からなることを特徴とする請求項1記載の光走査装置。
  3. 振動体は、圧電効果により振動する振動素子とミラー部とが一体化されていることを特徴とする請求項1記載の光走査装置。
  4. 振動素子は、一走査ライン内を2KHz以上で連続振動することを特徴とする請求項2または3記載の光走査装置。
  5. 振動素子は、少なくとも主走査方向に6mm以上の有効領域を有するミラー部を副走査方向に偏向することを特徴とする請求項2または3記載の光走査装置。
  6. 偏向手段はポリゴンミラーを有するポリゴンスキャナであり、ポリゴンミラーの偏向反射面形状と振動素子のミラー面形状が主走査方向のパワーを相殺するような面形状となっていることを特徴とする請求項1記載の光走査装置。
  7. ポリゴンミラーの各偏向反射面は凹形状であり、振動素子のミラー面は凸形状であることを特徴とする請求項6記載の光走査装置。
  8. 走査結像手段の結像レンズは、熱膨張係数が1.0×10−5/℃以下の材料で構成されていることを特徴とする請求項1記載の光走査装置。
  9. 各色に対応する複数の光源装置から放射されたレーザビームを偏向手段により主走査方向に偏向走査し、複数の走査結像手段により被走査面に向かって集光する光走査装置において、
    複数の光源装置と偏向手段との間の光路内にレーザビームの向きを変える振動素子が配置され、
    上記振動素子はレーザビームの走査位置が所定位置となるように各色独立に駆動制御されることを特徴とするカラー画像形成装置用の光走査装置。
  10. 複数の走査結像手段のうち、基準となる走査結像手段とは別の走査結像手段の光路内に振動素子が配置され、この振動素子は複数のレーザビーム走査位置が相対的に一致するように走査位置を補正することを特徴とする請求項9記載のカラー画像形成装置用の光走査装置。
  11. 複数の走査結像手段が単一のハウジング内に収容され、ハウジング中央部に複数段のポリゴンミラーを有するポリゴンスキャナが配置され、複数段のポリゴンミラーにより複数のレーザビームが走査されることを特徴とする請求項9記載のカラー画像形成装置用の光走査装置。
  12. 潜像担持体に潜像を形成し、この潜像を可視化して所望の記録画像を得る画像形成装置において、上記潜像の形成手段として請求項1から11のいずれかに記載の光走査装置が用いられていることを特徴とするカラー画像形成装置。
JP2002181393A 2002-06-21 2002-06-21 光走査装置および画像形成装置 Pending JP2004029113A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181393A JP2004029113A (ja) 2002-06-21 2002-06-21 光走査装置および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181393A JP2004029113A (ja) 2002-06-21 2002-06-21 光走査装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2004029113A true JP2004029113A (ja) 2004-01-29

Family

ID=31178241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181393A Pending JP2004029113A (ja) 2002-06-21 2002-06-21 光走査装置および画像形成装置

Country Status (1)

Country Link
JP (1) JP2004029113A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258244A (ja) * 2004-03-15 2005-09-22 Ricoh Co Ltd 光走査装置、光路調整方法及び画像形成装置
JP2005352059A (ja) * 2004-06-09 2005-12-22 Ricoh Co Ltd 光偏向器、光偏向器の製造方法、光走査装置及び画像形成装置
JP2012053438A (ja) * 2010-05-20 2012-03-15 Ricoh Co Ltd 光走査装置及び画像形成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258244A (ja) * 2004-03-15 2005-09-22 Ricoh Co Ltd 光走査装置、光路調整方法及び画像形成装置
JP4643159B2 (ja) * 2004-03-15 2011-03-02 株式会社リコー 光路調整方法
JP2005352059A (ja) * 2004-06-09 2005-12-22 Ricoh Co Ltd 光偏向器、光偏向器の製造方法、光走査装置及び画像形成装置
JP2012053438A (ja) * 2010-05-20 2012-03-15 Ricoh Co Ltd 光走査装置及び画像形成装置

Similar Documents

Publication Publication Date Title
EP2157467B1 (en) Mirror Scanner, Optical Scanning Unit and Image Forming Apparatus including the Optical Scanning Unit
JP4880302B2 (ja) 光偏向器、光走査装置及び画像形成装置
US20060061847A1 (en) Light deflector, method of manufacturing the same, optical scanning device, and image-forming apparatus
US8111276B2 (en) Optical scanning device and image forming apparatus with a center adjusting mechanism
US8451308B2 (en) Image forming apparatus
JP5041835B2 (ja) 光走査装置及び画像形成装置
JP2006251513A (ja) 光源装置、光走査装置および画像形成装置
JP2007025009A (ja) 光スキャナユニット及びこれを備えた画像形成装置
JP2004029113A (ja) 光走査装置および画像形成装置
JP4496747B2 (ja) 光走査装置および画像形成装置
JP4701593B2 (ja) 光走査装置および画像形成装置
JP2006337677A (ja) 光偏向器、ポリゴンミラーの加工方法、光走査装置、画像形成装置
JP2004117377A (ja) 回転多面鏡、光偏向器とその製造方法、光走査装置及び画像形成装置
JP6157128B2 (ja) 光走査装置及び画像形成装置
JP2011257696A (ja) 光走査装置及び画像形成装置
JP4500526B2 (ja) 光走査装置および画像形成装置
JP2005352059A (ja) 光偏向器、光偏向器の製造方法、光走査装置及び画像形成装置
JP4488862B2 (ja) 光偏向器、光走査装置および画像形成装置
JP2011186098A (ja) 光偏向器、光走査装置および画像形成装置
JP2011095458A (ja) 光走査装置及びこれを備えた画像形成装置
US8432593B2 (en) Optical scanning apparatus and image forming apparatus using the same
JPH10288747A (ja) 偏向走査装置
JP2005173354A (ja) 光偏向器
JP2006072038A (ja) 光偏向器、光走査装置及び画像形成装置
JP2004219749A (ja) ポリゴンスキャナおよび光走査装置および画像形成装置