JP2003511640A - 静電的流体加速装置 - Google Patents

静電的流体加速装置

Info

Publication number
JP2003511640A
JP2003511640A JP2001530889A JP2001530889A JP2003511640A JP 2003511640 A JP2003511640 A JP 2003511640A JP 2001530889 A JP2001530889 A JP 2001530889A JP 2001530889 A JP2001530889 A JP 2001530889A JP 2003511640 A JP2003511640 A JP 2003511640A
Authority
JP
Japan
Prior art keywords
accelerator
fluid
electrode
electrostatic fluid
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001530889A
Other languages
English (en)
Other versions
JP5050280B2 (ja
Inventor
クリクタフォビッチ、イゴール・エー
フーリマン、ロバート・エル・ジュニア
Original Assignee
クリクタフォビッチ、イゴール・エー
フーリマン、ロバート・エル・ジュニア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23663466&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2003511640(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by クリクタフォビッチ、イゴール・エー, フーリマン、ロバート・エル・ジュニア filed Critical クリクタフォビッチ、イゴール・エー
Publication of JP2003511640A publication Critical patent/JP2003511640A/ja
Application granted granted Critical
Publication of JP5050280B2 publication Critical patent/JP5050280B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrostatic Separation (AREA)
  • Electron Tubes For Measurement (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 近接した間隔の多数のコロナ電極1 を有する静電気流体加速装置である。コロナ電極1 が励起電極2 により相互に隔離されているので、コロナ電極1 の近接した間隔を得ることができる。励起電極2 は隣接するコロナ電極1 間に非対称的に位置されるか、または加速電極が使用される。加速電極は吸引電極13または反撥電極19である。コロナ電極1 と励起電極2 の間の電圧はフレキシブルトップ高電圧電源によってコロナ開始電圧と破壊電圧の間に維持される。コロナ電極1 と励起電極2 の間の電圧はコロナ開始電圧と破壊電圧の間の領域まで変化されてもよく、それによって流体の流動を変化させる。個々の静電気流体加速装置の多数の段28,29,30は連続的な段28,29,30間の集収電極31 または32で使用され、それによって実質上全てのイオンその他の帯電粒子が次の段28,29 または30へ通過することを防止する。最終的に所望の流体流動方向に関して下流方向に延在するプレート形状の励起電極2 の構成も多くのイオン、流体粒子が下流方向に流れることを確実にする。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】
本発明は、加速を行い、それによってイオンおよび電界の使用により流体、と
くに、空気に対して速度と運動量とを与える装置に関する。
【0002】
【従来の技術】
いくつかの特許明細書(たとえば、米国特許第 4,210,847号明細書および第 4
,231,766号明細書を参照)には、イオンが電極(“コロナ電極”と呼ばれる)に
よって発生され、別の電極(“吸引電極”と呼ばれる)に向かって吸引され(お
よび、したがって加速され)、周囲の空気分子と衝突することによりこのような
分子に吸引電極に向かって導かれる運動量を与えることが記載されている。
【0003】 コロナ電極は、コロナ放電を発生させ、それによって周囲の空気中で空気分
子のイオンを発生させるために、細いワイヤのような、尖ったエッジを有するか
、あるいは寸法の小さいものでなければならない。このようなイオンは、コロナ
電極と同じ電気的極性を有している。
【0004】 電極間の電位差がイオン発生コロナ放電をコロナ電極で生じさせるようにコ
ロナ電極の任意の他の構造および別の電極がイオン発生とその結果の流体加速の
ために使用されてもよい。
【0005】 イオンが他の空気分子と衝突したとき、このようなイオンはこのような空気
分子に運動量を与えるだけでなく、それらの過度の電荷の一部をこれらの他の空
気分子に移動させ、それによって吸引電極に向かって吸引される付加的な分子を
生じさせる。これらの組合せられた効果は、いわゆる対流放電(イオン風)を発
生させる。
【0006】 しかしながら、コロナ電極付近の空気分子の数と比較して少数のイオンしか
コロナ電極によって発生することができないため、現在の対流放電発生器の中の
イオンは、周囲の空気を移動させるために高い初期速度を与えられなければなら
ない。今までのところ、これらの高い初期イオン速度でさえ十分な速度の空気の
運動を生じさせることはできていない。さらに悪いことに、このような高いイオ
ン速度はまた、周囲の空気分子を励起させて環境に有害な影響を及ぼすことがよ
く知られているオゾンと酸化窒素が多量に発生される。
【0007】 現在まで、十分な速度の空気運動を実現した発明は1つもなく、とくに、望
ましくない多量のオゾンおよび酸化窒素を発生させることなくそれを実現したも
のはない。
【0008】
【発明が解決しようとする課題】
しかしながら、3つの米国特許明細書、すなわち米国特許第 3,638,058号明細
書、第 4,380,720号明細書および第 5,077,500号明細書において、本発明者が非
常に高速の空気運動を達成し、かつ望ましくない多量のオゾンおよび酸化窒素を
発生させずにこれを実現することを可能にした技術が基本レベルで使用されてい
る。
【0009】 米国特許第 5,077,500号明細書に記載された技術は、全てのコロナ電極が“
互いに同じ条件下で動作し、それによって全てが互いに同じコロナ放電を生じる
”ことを確実にするために、ダクト(この特許明細書に記載されている装置が内
部に設置されている)の壁および別のコロナ電極からコロナ電極を遮蔽するため
に別の電極を使用している。これらの別の電極は、この特許明細書のコラム3の
中の59乃至60行目によると、“…コロナ電流を集め(take up)ない
”と記載されている。
【0010】 また、米国特許第 4,380,720号明細書に記載された技術は、1つの段により
所定の速度に加速された空気分子が後続する段によってさらに速い速度にさらに
加速されるように、それぞれがコロナ電極と吸引電極の対から構成された多数の
段を使用している。しかしながら、米国特許第 4,380,720号明細書では、実質的
に全てのイオンおよび別の電気的に帯電された埃塵のような粒子が後続する段の
コロナ電極に近づく前にそれらを中和して、このようなイオンおよび粒子がその
コロナ電極によって上流方向、すなわち前の段の吸引電極により生成された速度
とは反対の方向にはね返されることを防ぐ必要性が認識されていない。
【0011】 また米国特許第 5,077,500号明細書のコラム1の25乃至29行目には、“
空気イオンは、電界の影響下でコロナ電極からターゲット電極に迅速に移動し、
それらの電荷をターゲット電極に与え、電気的に中性の空気分子に戻る”と記載
されている。しかしながら、ターゲット電極は実質的に全ての空気イオンを中和
するほど効果的でないことは、コラム4の15乃至27行目に説明されているコ
ロナ電極Kと表面4 との間におけるイオン電流の説明から明らかである。
【0012】 同様に、米国特許第 3,638,058号明細書のコラム1の66行乃至コラム2の
13行には、“…陰極地点12とリング陽極18との間に印加された高い直流電圧に
より、電界が地点14を取囲むコロナ放電領域を発生させることが認められる”と
記載されている。このコロナ放電領域では、地点14付近の空気分子がイオン化さ
れ、これら分子は陰極と同じ極性の帯電された粒子であり、次に収束陽極として
も作用するリング陽極18に向かって吸引されるものである。加速されたイオンは
、反復的な衝突および付着によって運動エネルギを中性空気分子に与える。この
ように加速された中性空気分子は、イオン風発生器の有用な機械的出力を構成す
る。しかしながら、大部分のイオンは、それらが半径方向に広がってリング生成
陽極電流と衝突するリング18に到達して有用でなくなる。ごく一部のイオンは、
中性粒子と共にリングを通って進行するのに十分な運動エネルギを有している。
これらは陽極に引き戻される傾向があるため、結果的に効率の損失はわずかであ
る。同じ理論は、陰極13および陽極17にも当てはまる。逆の極性が各陰極−陽極
対に与えられ、それらの出て行く気流は、混合して中和する、すなわち、逆の極
性のものである逆に帯電されたイオンを含み、そのイオンは互いに吸引し、再結
合によって中和される。しかしながら、電極から出てきた実質的に全てのイオン
が混合するのかは不明である。これは、左側の陽極から生じた多くのイオンが左
向きの運動量を有し、右向きの運動量を有する右側の陽極から生じたイオンに対
する電気引力がこのような逆の運動量を克服するには不十分である可能性がある
ためである。さらに、このような再結合が生じるために必要な距離はおそらく非
常に大きいため、多くの段を使用して空気の速度を増加させるには不利である。
【0013】
【課題を解決するための手段】
本発明の静電的流体加速装置は、流体の流動速度を著しく増加させるために2
つの基本的な技術を使用し、この流体は実質的に任意の流体であることができる
が、ほとんどの場合空気であり、また流体が空気である場合、望ましくない多量
のオゾンおよび酸化窒素が発生しない。
【0014】 最初に、イオンの速度を高速化する必要なしに流体分子を十分に加速するた
めに、高い密度または圧力のイオンが生じるように所定の領域内において多量の
イオンが生成される。これは互いに隣接した多数のコロナ電極によって行われる
。コロナ電極は、コロナ放電を生じさせるためにコロナ電極と比較して十分な電
位差を有する励起電極によって互いに電気的に遮蔽されているため、互いに近接
して配置されることができる。励起電極は、隣接するコロナ電極間に、したがっ
て流体分子のために予定された流動方向を横切って配置されている。
【0015】 イオンに流体流動を生じさせるために、各励起電極を隣接するコロナ電極間
に非対称的に(対称的な電界とは異なり、イオンを好ましい方向に収束する非対
称的に成形された電界を生成するために)配置するか、あるいは加速電極を設け
なければならない。
【0016】 加速電極の場合、このような加速電極は、イオンを予定した方向に移動させ
るためにコロナ電極の下流に配置された吸引電極であることが好ましい。吸引電
極の電気的極性はコロナ電極のそれの逆である。
【0017】 しかしながら、コロナ電極が互いに隣接している場合、米国特許第 5,077,50
0号明細書に記載されているケースのように励起電極の電位がコロナ電極の電位
と吸引電極の電位の間であるならば、流体流動の速度は減少することが実験的に
確定されている。事実、励起電極の電位がコロナ電極の電位と同じであるとき、
流体の流動は発生しない。これは、励起電極とコロナ電極との間の電界強度がコ
ロナ放電を発生させてイオンを生成するには不十分であり;コロナ電極と吸引電
極との間のコロナ放電が抑制され;結果的に生じた低密度のイオンが所望の流体
流動を発生するには不十分であるか、あるいは上記に説明したように励起電極の
電位がコロナ電極の電位と同じである場合は流動が全く生じないためである。さ
らに、上述したように、イオン密度を増加するためにコロナ電極が隣接して配置
されている場合、コロナ電極と励起電極との間の電界がコロナ電極と吸引電極と
の間の電界に影響を与える。したがって、所望の流動速度を達成するために、励
起電極とコロナ電極との間の電界強度を、コロナ放電を生じさせ、結果的にコロ
ナ電極から励起電極への電流を生成するレベルに維持することか好ましい。
【0018】 しかしながら、流体の流動速度は励起電極とコロナ電極との間の電界強度を
変化させることにより制御されることが可能であり、またこのような電界強度は
励起電極の電位を変化させることによって調節されることができるため、吸引電
極の電位を制御することによってこれが行われる場合よりも少ないエネルギ消費
量で、励起電極の電位を変化させて流動速度を制御することができる。
【0019】 上述のように、吸引電極を加速電極として使用するのではなく、反撥電極を
随意にコロナ電極の上流に配置することができる。反撥電極の電気的極性は、コ
ロナ電極と同じである。しかしながら、反撥電極からコロナ放電は発生しない。
【0020】 次に、最大の流体流動を達成するために、多段のコロナ放電装置が各段の間
の集収電極と共に使用される。集収電極の電気的極性はコロナ電極と反対である
。集収電極は、実質的に全てのイオンおよびその他の電気的に帯電された粒子が
次の段に進行して、次の段のコロナ電極によって反撥され、反撥が流体流動速度
を遅らせるのを防止するように設計されている。コロナ放電装置は、技術的に知
られている任意の装置であることができるが、イオン密度を増加するために上述
の構成を使用するものであることが好ましい。
【0021】 イオン密度を最大にする別の随意的な技術では、高電圧電源を使用され、こ
の高電圧電源は、コロナ電極から任意の他の電極への総電流として定められたコ
ロナ電流に依存している可変的な最大電圧を有してい。高電圧電源の出力電圧は
、コロナ電流に反比例する。したがって、絶縁破壊電圧が発生しそうであること
がコロナ電流により示された場合には、コロナ電極に印加される電圧は、このよ
うな絶縁破壊が防止されるように十分に減少される。このオプションを使用しな
い場合、所望のイオンの生成を阻害するスパークの生成による絶縁破壊を発生さ
せずに、コロナ電極と別の電極との間でコロナ放電を生成するために十分な電界
強度を有するように、コロナ電極と別の電極(当然ながら、コロナ放電が所望さ
れない反撥電極は除かれる)との間の電圧をコロナ開始電圧と絶縁破壊電圧との
間に手動で維持しなければならない。しかしながら、このような電極間の電圧が
絶縁破壊電圧に、実際には到達せずに、さらに近付いていくならば、生成される
イオンの密度はそれだけ一層大きくなる。
【0022】 さらに、コロナ電極以外の電極に印加される電圧はまた、イオンの移動方向
およびしたがって流体の流動方向を制御するために使用されることができる。所
望された場合には、このためだけに電極が導入されてもよい。
【0023】
【発明の実施の形態】
所望の速度の流体流の生成を成功させるために、高電圧電源は、コロナ開始電
圧より高いが、どのような周囲の環境条件でも絶縁破壊電圧より低い出力電圧を
発生しなければならない。
【0024】 電極間の絶縁破壊を防止するために、高電圧電源は、湿度、温度等の絶縁破
壊電圧に影響を与える条件に対して敏感であると共に、出力電圧を絶縁破壊点よ
り低いレベルに減少させなければならない。
【0025】 この目的を達成するには、電圧および他のセンサならびにフィードバックル
ープ制御装置を備えたかなり高価な高電圧電源が必要である。
【0026】 しかしながら、コロナ電流は絶縁破壊電圧に影響を与える同じ条件に依存し
ていることは本発明者によって実験的に確定されていた。したがって、上述した
ように、コロナ電極と別の電極(コロナ放電が所望されない反撥電極を除く)と
の間の電圧は、コロナ開始電圧と絶縁破壊電圧との間に維持されなければならな
い。どのような周囲の環境条件でも絶縁破壊を生ぜずにイオンの密度を最大化す
る好ましい技術は、コロナ電流に反比例する可変最大電圧を有する高電圧電源を
使用することである。
【0027】 このような高電圧電源は、“フレキシブルトップ”高電圧電源と呼ばれる。
【0028】 “フレキシブルトップ”高電圧電源は、直列に接続された2個の電源装置か
ら構成されることが好ましい。第1の装置は“ベース装置”と呼ばれ、ベース電
圧”と呼ばれる出力電圧を発生し、この出力電圧はコロナ開始電圧に近く(それ
より高くまたは低く)、絶縁破壊電圧より低く、この装置における低い内部イン
ピーダンスのために、出力電流に対してあまり敏感ではない。第2の装置は“フ
レキシブルトップ”と呼ばれ、大きい内部インピーダンスのために、ベース装置
の電圧、すなわちベース電圧よりも出力電流に対してはるかに敏感な出力電圧を
発生する。出力電流が増加した場合、ベース電圧はほとんど一定のままであるが
、フレキシブルトップからの出力電圧は減少する。当業者は、任意の予測可能な
環境条件に対してベース装置とフレキシブルトップから結果的に得られた組合せ
られた出力電圧がコロナ開始電圧より大きく、かつ絶縁破壊電圧より小さくなる
ことを保証する回路素子の値を選択することができる。
【0029】 さらに、フレキシブルトップに対して必要性が認められたときには、当業者
はこのような電源を実現する種々の方法を使用することができる。
【0030】 おそらく、フレキシブルトップ高電圧電源の最も簡単な例は次のようなもの
である:伝統的な高電圧電源がベース装置として使用され、大きい漏洩インダク
タンスを有する逓昇変圧器がフレキシブルトップにおいて使用される。交流電流
は漏洩インダクタンスを通って流れ、それによってこのようなインダクタンスを
横切る電圧降下を生じさせる。流れる電流が多くなると、インダクタンスを横切
る電圧降下はそれだけ一層大きくなり、漏洩インダクタを横切って降下される電
圧が大きくなると、フレキシブルトップの出力電圧は小さくなる。
【0031】 第2の例のフレキシブルトップ高電圧電源は、図6に示されている電圧乗算
器のキャパシタの組合せを使用する。第1の組のキャパシタは、第2の組のもの
よりはるかに大きいキャパシタンスを有し、したがってはるかに低いインピーダ
ンスを有する。それ故、第1の組のキャパシタ(ベース装置)の両端子間の電圧
は電流に対して比較的鈍感であり、第2の組のキャパシタ(フレキシブルトップ
)の両端子間の電圧は電流に反比例する。
【0032】 フレキシブルトップ高電圧電源は、本発明の技術的範囲を逸脱せずに直列に
接続されたベース装置とフレキシブルトップとの任意の組合せによって得られる
ことが理解されるであろう。したがって、フレキシブルトップ高電圧電源は、結
果的に得られる出力電圧が所望の範囲内のものとなるように任意の所望の順序で
直列に接続された任意の数のベース装置およびフレキシブルトップから構成され
ることができる。
【0033】 したがって、本発明の静電的流体加速装置は間隔を有して隣接する多数のコ
ロナ電極を含み、そのコロナ電極間には励起電極が非対称的に配置されている。
フレキシブルトップ高電圧電源は、コロナ電極と励起電極との間の電圧がコロナ
開始電圧と絶縁破壊電圧との間に維持されるように、この電圧を制御することが
好ましい。
【0034】 しかしながら、運動させることが所望された流体の流れを変えるために、コ
ロナ電極と励起電極との間の電圧は上述の範囲を外れる範囲まで随意に変化され
ることができる。
【0035】 また、コロナ電極間において励起電極を非対称的に配置する代りに、静電的
流体加速装置はさらに加速電極を含んでもよい。
【0036】 加速電極は、上述したように、吸引電極、反撥電極、または吸引と反撥の組
合せ電極のいずれであってもよい。
【0037】 吸引電極はコロナ電極の極性と反対の電気的極性を有し、所望の流体の流れ
の方向に関してコロナ電極の下流に配置される。反撥電極はコロナ電極の極性と
同じ電気的極性を有し、所望の流体の流れの方向に関してコロナ電極の上流に配
置される。
【0038】 多くのイオン、およびしたがって多くの流体粒子が下流に向かって流れるこ
とを保証するために、励起電極は、所望の流体の流動方向に関して下流に延在す
るプレートの形態に構成されることができる。
【0039】 最後に、上述のように、流体の最大流動を達成するために、多くの段のコロ
ナ放電装置および好ましくは本発明の静電的流体加速装置が、各段の間に配置さ
れた集収電極を備えて使用される。集収電極はコロナ電極の極性と反対の電気的
極性を有し、実質的に全てのイオンおよびその他の電気的に帯電された粒子が、
それらを反撥して流体の移動を減じる傾向のある次の段に進行するのを妨げるよ
うに設計されている。集収電極は、流体粒子に対して予定された通路を実質的に
横断して延在するワイヤメッシュであることが好ましい。
【0040】 図1は、多数のコロナ電極 1と、多数の励起電極 2と、電源 3とを含む本発
明による静電的流体加速装置の第1の実施形態を概略的に示している。コロナ電
極 1および励起電極 2は、導体 4および 5により電源 3の各端子に接続されてい
る。所望の流体の流動方向は矢印で示されている。コロナ電極 1は、所望の流体
流に関して励起電極 2の間に非対称的に配置されている。示されている実施形態
において、コロナ電極 1はワイヤ状の電極(断面で示されている)であり、励起
電極 2はプレート状の電極(やはり断面で示されている)であり、電源 3は直流
電源であると仮定されている。コロナ電極は、コロナ放電およびそれに続く前記
コロナ電極の1以上の部分からのイオン放出を保証する任意の形状のものであっ
てよいことが理解されるであろう。一般に、コロナ電極は針、バーブドワイヤ、
鋸歯状のプレート、あるいは尖ったまたは薄い部分を有するプレートの形状に形
成されてもよく、それによってコロナ電極のこれらの部分の付近における電界上
昇が容易になる。電源は、コロナ電極 1付近の電界の強度をコロナ開始値より高
く上昇させるために十分に大きい大きさを有する任意の電圧(直流、交流または
パルス)を発生してもよいことが理解されるであろう。本発明によると、図1に
示されている実施形態のコロナ電極 1、励起電極 2および導体 4および 5は、コ
ロナ電極のイオン放出部分と励起電極に所望の電流を導くことのできる導電性材
料から形成されている。コロナ電極 1はフレーム(示されていない)によって支
持されており、このフレームは、コロナ電極 1が励起電極 2に平行であることを
保証する。電源 3は、コロナ電極 1と励起電極 2との間の空間に電界を生成する
電圧を発生する。この電界の大きさはコロナ電極 1の付近で最大である。最大の
大きさの電界がコロナ開始電圧を越えたとき、コロナ電極 1がイオンを放射する
。コロナ電極 1から放出されているイオンは励起電極 2に吸引される。コロナ電
極 1と励起電極 2の非対称的な位置のために、イオンは矢印で示されている所望
の流体の流動方向に向かってさらに加速される。したがって、左へ向かうより右
(図1に示されているように)に向かって流れるイオンが多い。所望の流体の流
動方向にイオンが移動することにより、イオンが流体分子と衝突するために、流
体がこの方向に流動する。
【0041】 図2は多数のコロナ電極6 、多数の励起電極7 、電源8 を具備する本発明に
したがった静電的流体加速装置の第2の実施形態を概略して示している。コロナ
電極6 と励起電極7 は、導体9 、10により電源8 のそれぞれの端子に接続されて
いる。示されている実施形態では、コロナ電極6 は剃刀状の電極(断面で示され
ている)であり、励起電極7 はプレート状の電極(これも断面で示されている)
であり、電源8 はDC電源であると仮定する。図2はニードル型のコロナ電極6
と、コロナのニードル状電極の間に非対称的に位置されている励起電極7 を同様
に表していることが理解されよう。励起電極7 の好ましい形態はハニカム形状で
あるがこれに限定されず、この形状は相互からコロナ電極6 を分離し、前記コロ
ナ電極6 はハニカム状の励起電極7 の中心近くに配置される。電源8 は先の実施
形態のように、コロナ電極6 部分近辺でコロナの開始値を超えるように電界強度
を上昇するのに十分な大きさを有する電圧(直流、交流またはパルス)を発生す
る。本発明にしたがって、図2で示されている実施形態のコロナ電極6 、励起電
極7 、導体9 、10は励起電極7 へイオンを放射するコロナ電極の部分へ所望の電
流を導くことができる導電性材料から作られる。コロナ電極6 はコロナ電極6 が
励起電極7 に平行であることを確実するフレーム(図示せず)によって支持され
る。電源8 はコロナ電極6 と励起電極7 との間の空間に電界を発生する電圧を生
成する。この電界はコロナ電極6 のシャープなエッジ(またはニードル状コロナ
電極の場合にはシャープな点)の近辺に最大の大きさを有する。電界の最大の大
きさがコロナの開始電圧を超えるとき、コロナ電極6 はイオンを放射する。コロ
ナ電極6 のシャープなエッジ(または点)から放射されたイオンは励起電極7 へ
引付けられる。コロナ電極6 と励起電極7 の位置が非対称的であるので、イオン
は矢印により示されている所望の流体の流動方向へさらに加速を受ける。それ故
、さらに多くのイオンが(図2で示されているように)左ではなく右へ流れる。
所望の流体の流動方向へのイオンの運動は、イオンが流体の分子に衝突するので
、この方向の流体流動を発生する。
【0042】 図3は多数のコロナ電極11、多数の励起電極12、多数の吸引電極13、および
電源14を具備する本発明にしたがった静電的流体加速装置の第3の実施形態を概
略的に示している。コロナ電極11は電源14の一方の端子へ、また励起電極12と吸
引電極13とは、電源14の他方の端子へ導体15、16によりそれぞれ接続されている
。所望の流体の流動方向は矢印で示されている。コロナ電極11は励起電極12間に
位置されており、相互に分離されている。1例として、ワイヤ状のコロナ電極11
は断面で示されており、励起電極12はプレート状の電極であり、吸引電極13はワ
イヤ状またはロッド状の電極(これも断面で示されている)であり、電源14はD
C電源である。図3は同様に、コロナ電極11の付近の電界強度がコロナ放電を開
始するのに十分な大きさであることを確実にする任意の他の形状のコロナ電極11
を表していることが理解されよう。電源14は先の実施形態(図1および図2)の
ように、コロナの開始値を超えるコロナ電極11の部分の付近で電界強度を上昇す
るのに十分な大きさを有する任意の電圧(直流、交流またはパルス)を発生する
。本発明にしたがって、図3で示されている実施形態のコロナ電極11、励起電極
12、吸引電極13、導体15、16は、励起電極12および吸引電極13へイオンを放射す
るコロナ電極の部分へ所望の電流を導くことができる導電性材料から作られる。
コロナ電極11はコロナ電極11が励起電極12と吸引電極13に実質上平行であること
を確実にするフレーム(図示せず)によって支持される。電源14はコロナ電極11
と励起電極12と吸引電極13との間の空間に電界を発生する電圧を生成する。この
電界はコロナ電極11(または剃刀状或いはニードル状コロナ電極の場合にはシャ
ープなエッジまたはシャープな点)の近辺で最大の大きさを有する。電界の最大
の大きさがコロナの開始電圧を超えるとき、コロナ電極11はイオンを放射する。
コロナ電極11のシャープなエッジ(または点)から放射されたイオンは励起電極
12と吸引電極13へ引付けられる。静電気力のために、イオンは矢印により示され
ている所望の流体の流動方向へさらに加速を受ける。それ故、さらにイオンが(
図3で示されているように)右へ流れる。所望の流体の流動方向におけるイオン
の運動は、イオンと流体の分子との衝突により、この方向における流体の流動を
発生する。
【0043】 図4は多数のコロナ電極17、多数の励起電極18、多数の反撥電極19および電
源20を具備する本発明にしたがった静電的流体加速装置の第4の実施形態を概略
して示している。反撥電極19と共にコロナ電極17は電源20の一方の端子へ、また
励起電極18は電源20の他方の端子へ導体21、22によりそれぞれ接続されている。
所望の流体の流動方向は矢印で示されている。コロナ電極17は励起電極18の間に
位置されており、相互に分離されている。1例として、ワイヤ状のコロナ電極17
は断面で示されており、励起電極18はプレート状の電極であり、反撥電極19はワ
イヤ状またはロッド状の電極(これも断面で示されている)であり、電源20はD
C電源である。図4は同様に、コロナ電極17の付近の電界強度がコロナ放電を開
始するのに十分な大きさであることを確実にする任意の他の形状のコロナ電極17
を表していることが理解されよう。電源20は先の実施形態のように、コロナの開
始値を超えるコロナ電極17の部分の付近の電界強度を上昇するのに十分な大きさ
を有する任意の電圧(直流、交流またはパルス)を発生する。本発明にしたがっ
て、図4で示されている実施形態のコロナ電極17、励起電極18、反撥電極19、導
体21、22は、励起電極18へイオンを放射するコロナ電極の部分へ所望の電流を導
くことができる導電性材料から作られる。コロナ電極17はコロナ電極17が励起電
極18と反撥電極19に実質上平行であることを確実にするフレーム(図示せず)に
よって支持される。電源20はコロナ電極17と励起電極18との間の空間に電界を発
生する電圧を生成する。この電界はコロナ電極17(または剃刀状或いはニードル
状コロナ電極の場合にはシャープなエッジまたはシャープな点)の近辺で最大の
大きさを有する。電界の最大の大きさがコロナの開始電圧を超えるとき、コロナ
電極17はイオンを放射する。コロナ電極17のシャープなエッジ(または点)から
放射されたイオンは励起電極18により引付けられ、同時に反撥電極19によって反
撥される。静電気力のために、イオンは矢印により示されている所望の流体の流
動方向へさらに加速を受ける。それ故、さらにイオンが(図4で示されているよ
うに)右へ流れる。所望の流体の流動方向におけるイオンの運動は、イオンが流
体の分子との衝突により、この方向における流体の流動を発生する。反撥電極19
は反撥電極19付近の電界がコロナの開始値よりも下であることを確実にする任意
の形状で作られてもよいことが理解されよう。比較的低い値を確実にするため、
反撥電極19はコロナ電極17よりも大きいメインサイズから作られてもよい。別の
選択として、反撥電極19はシャープなエッジをもたず、または鋸歯状の表面をも
たなくてもよい。
【0044】 図5はフレキシブルトップ電源の流動図を概略して示している。本発明にし
たがって、電源は2つの機能部分、即ちベース部23とフレキシブル部分24からな
る。ベース部分23は出力電圧25を発生し、フレキシブルトップ部分24は出力電圧
26を発生する。両電圧25、26は合計に等しい電源の出力電圧、即ち27を与える。
図5の電源の各部分は任意の既知の設計で作られてもよい。これは変圧器−整流
器または電圧乗算器、或いはフライバック構造、またはそれらの組合わせでもよ
い。ベース部分23とフレキシブルトップ部分24は同様に類似の異なる設計であっ
てもよい。本発明の目的に関連するベース部分23とフレキシブルトップ部分24の
唯一の差は出力電圧の出力電流に対する依存性である。ベース部分23は出力電流
に対する依存が少ない出力電圧25を発生する。フレキシブルトップ部分24は出力
電流の増加によって顕著に低下する出力電圧26を発生する。ベース部分23はコロ
ナ電極のコロナ開始電圧に近い出力電圧25を発生する。この電圧25はコロナ開始
電圧に等しいか、コロナ開始電圧より僅かに大きいか、あるいは小さくてもよい
。このコロナ開始電圧は電極の形状と環境にも依存する。コロナ開始電圧が高温
下では小さい値を有することが実験的に決定されている。他方、ベース電圧25は
コロナと他の電極間の絶縁破壊電圧よりも大きくてはならない。この破壊電圧も
また温度その他の要因によって変化する。それ故、特定の応用の環境状態では、
電圧25をコロナ開始電圧に近いレベルに維持するが、破壊電圧を超えないことが
望ましい。フレキシブル部分24は電圧25と組合わせてコロナ開始電圧よりも大き
いが破壊電圧よりも小さい総出力電圧27を与える出力電圧を発生する。コロナ電
流は電極間の電圧に非線形に依存することが実験的に決定されている。コロナ電
流はコロナ開始電圧で開始し、電圧が破壊レベルに接近したとき最大値に到達す
る。電源の総出力電圧が破壊レベルに到達しないことを確実にするために、出力
電圧26はコロナ電流が最大値に接近したとき減少する。同時に、総出力電圧27は
常にコロナ開始レベルよりも上である。これは任意の状態におけるコロナ放電と
流体の流動を確実にする。
【0045】 図6はフレキシブルトップの電源回路図を示している。図6で示されている
電源は10,000V乃至15,000Vのレベルの高電圧を発生する。この電
源のパワー列は電力ートランジスタQ1、高電圧フライバックインダクタT1、
電圧乗算器(キャパシタC1−C8とダイオードD8−D15)からなる。パル
ス幅変調器集積回路UC3843Nはサイレント動作を確実にするために、可聴
周波数を超える周波数で周期的にトランジスタQ1をオンおよびオフに切替える
。ポテンショメータ5kはデューティサイクルを制御し、出力電圧制御に使用さ
れる。Q1のソースと接地間に接続されている1オームのシャント抵抗は出力電
流を感知し、電流が予めセットしたレベルを超えるならばトランジスタQ1をオ
フに切り換える。図6で示されている電源の予めセットしたレベルはほぼ1Aに
等しい。キャパシタC1−C6はキャパシタC6−C7の値を越える値を有する
。キャパシタC1、C4、C6を横切る電圧の合計はベース電圧25を構成する。
キャパシタC8を横切る電圧はフレキシブルトップ電圧26を表す。電圧25、26の
合計はフレキシブルトップ電源の出力電圧27を表す。1以上のベース部分、すな
わち電源と、1以上のフレキシブルトップ部分、すなわち電源からなる電源を組
合わせた電源の任意の構造は本発明の技術的範囲に入ることを理解するであろう
。このようなフレキシブルトップ電源の別の例として簡単な変成器−整流器構造
(ここでは図示しない)が考慮されてもよい。変成器は1つの1次巻線と少なく
とも2つの2次巻線から構成される。各2次巻線は別々の整流器に接続されてい
る、これらの整流器のDC出力は直列に接続されている。1つの2次巻線は1次
巻線に関する漏洩インダクタンスが1次巻線に関する別の2次巻線の漏洩インダ
クタンスよりも大きい。コロナ電流が成長したとき、その大きな漏洩インダクタ
ンスを横切る電圧降下が大きくなり、電源の出力電圧はセーフレベルまで減少す
る。
【0046】 図7は所望の流体の流動に関して直列に位置される静電気流体加速装置の複
数の段28、29、30を示している。本発明にしたがって、各段は集収電極31と32に
より別の段から分離されている。各段28、29、30は電源33により付勢され、コロ
ナ放電でイオンを発生し、その後(矢印により示されている)所望の流体の流動
方向へイオンを加速することによって流体を加速する。イオンと他の帯電粒子は
励起電極により包囲されている領域を通ってコロナ電極付近から次の段へ移動す
る。これらのイオンと粒子の一部は励起電極上に残留する。しかしながら、これ
らの粒子の一部分は特定の段の電極を超えて移動する。これらのイオンと粒子は
次の段まで移動し、次の段のコロナ電極によって反撥される。イオンと粒子は所
望の流体運動方向への動作は遅くなり、反対方向へ戻る。このことは総流体速度
と流体加速装置の効率を減少する。このようなことを防止するため、集収電極31
と32が段の間に設けられる。これらの集収電極は相互に近接して配置され、コロ
ナ電極の極性と反対の極性に接続される。段を超えて移動するイオンおよび帯電
された粒子は集収電極31と32に引付けられ、それらの帯電をこれらの電極へ与え
る。このような手段によって、全てまたはほぼ全ての帯電された粒子は次の段へ
移動しない。図7では、全ての集収電極はその段28、29、30の励起電極と同一の
電源33端子に接続される。これらの集収電極はコロナ電極の電位と反対の極性で
ある任意の電位に接続されるか、その電位より下に置かれることが理解されよう
。幾つかの電極は可変電源等の異なる電源に接続されてもよいことが理解されよ
う。
【0047】 図8は励起電極で電位を変化することによって流体の流動を制御できる静電
気流体加速装置を示している。図8で示されている静電気流体加速装置は多数の
コロナ電極41と多数の励起電極34と多数の吸引電極35とから構成されている。全
ての電極の形状および相互な配置は図3で示されている電極と類似している。図
8で示されている静電気流体発生器は2つの電源により付勢される。吸引電極35
は2つの電源の共通点に接続されている。この共通点は図では接地として示され
ているが、任意の電位であってもよい。電源36は導体40により共通の点に接続さ
れ、また導体38によりコロナ電極41へ接続されている。電源36は安定なDC電圧
を発生する。電源37は導体40により共通の点に接続され、導体39により励起電極
34に接続されている。電源37は可変DC電圧を発生する。
【0048】 コロナ電極41と励起電極34間の領域の電界強度が、コロナ電極41と吸引電極3
5間の領域の電界強度にほぼ等しいならば、コロナ電極41から励起電極34へ流れ
る電流の大きさはコロナ電極41から吸引電極35へ流れる電流の大きさにほぼ等し
い。ほぼ等しい電界強度は説明した電極の形状と相互の位置においてコロナ放電
で最も好ましいことが実験的に決定された。さらに、コロナ電極41と励起電極34
との間の領域の電界強度が、コロナ電極41と吸引電極35間の領域の電界強度より
も小さいならば、コロナ放電は抑制され、コロナ放電からイオンが少なくなる放
射されることが決定された。コロナ電極41と励起電極34との間の領域の電界強度
が、コロナ電極41と吸引電極35との間の領域の電界強度のほぼ半分であるとき、
コロナ放電はほぼ全体的に抑制され、コロナ放電から放射されるイオンはほぼ存
在せず、流体の運動は検出されない。
【0049】 コロナ放電特性により、フレキシブルトップ電源は、コロナ放電の開始とメ
ンテナンスのために電極の任意の組合わせで適切に使用されることができること
が理解されよう。
【0050】 多数の電極の任意のセットが別々のフレームに位置および/または固定され
てもよいことがさらに理解されよう。このフレームは流体が自由に流れる貫通孔
を具備しなければならない。これは長方形のフレームまたはU型のフレームまた
は任意の形態のフレームであってもよい。多数の電極のセットが位置される2以
上のフレームはその後、いわゆるこの表面に沿ったクリーピング放電を防止する
ために表面に沿った十分な距離を確実に得るような方法で固定される。
【0051】 前述の配置は適切に試験された。励起電極間の距離は2乃至5mmであり、
コロナ電極の直径は0.1mmであり、励起電極の幅は約12mmであった。吸
引電極の直径は約0.75mmであった。コロナ電極はタングステンワイヤから
作られ、励起電極はアルミニウムホイルから作られ、励起電極は黄銅およびスチ
ールロッドから作られた。2,000ボルト乃至7,000ボルトの大きさのコ
ロナ電極の電圧(励起および吸引電極は接地されている)では、空気流は1分当
たり950フィートの最大速度で測定された。励起電極の電位が吸引電極の電圧
に近いとき空気流は最大である。励起電極の電位がコロナ電極の電位に接近した
とき、空気流は減少され、徐々に検出できないレベルに低下した。
【0052】 [産業上の応用] 静電気流体加速装置が産業で使用されることができる方法と、静電気流体加速
装置が作られ使用されることができる方法は静電気流体加速装置の説明および特
性から明白である。
【図面の簡単な説明】
【図1】 例示による多数のコロナ電極および励起電極の配置の概略図。
【図2】 例示による多数のコロナ電極および励起電極の配置の別の構造の概略図。
【図3】 多数の吸引電極配置を含んでいる例示による多数のコロナ電極および励起電極
の配置の概略図。
【図4】 多数の反撥電極配置を含んでいる例示による多数のコロナ電極および励起電極
の配置の概略図。
【図5】 例示によるフレキシブルトップ電源の流動の概略図。
【図6】 例示によるフレキシブルトップ電源の概略回路図。
【図7】 所望の流体流に関して直列に配置された静電気流体加速装置の幾つかの段の例
示による概略図。
【図8】 励起電極の電位の変化によって流体流を制御できる静電気流体加速装置の例示
による概略図。
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,MZ,SD,SL,SZ,TZ,UG ,ZW),EA(AM,AZ,BY,KG,KZ,MD, RU,TJ,TM),AE,AG,AL,AM,AT, AU,AZ,BA,BB,BG,BR,BY,BZ,C A,CH,CN,CR,CU,CZ,DE,DK,DM ,DZ,EE,ES,FI,GB,GD,GE,GH, GM,HR,HU,ID,IL,IN,IS,JP,K E,KG,KP,KR,KZ,LC,LK,LR,LS ,LT,LU,LV,MA,MD,MG,MK,MN, MW,MX,MZ,NO,NZ,PL,PT,RO,R U,SD,SE,SG,SI,SK,SL,TJ,TM ,TR,TT,TZ,UA,UG,US,UZ,VN, YU,ZA,ZW (72)発明者 クリクタフォビッチ、イゴール・エー アメリカ合衆国、ワシントン州 98021 ボーゼル、エス・イー、ツーハンドレッド アンドサーティーサード・ストリート 822 (72)発明者 フーリマン、ロバート・エル・ジュニア アメリカ合衆国、ワシントン州 98005 ベルビュー、エス・イー・トウェンティサ ード・ストリート 13910 Fターム(参考) 4D054 AA20 BB02 BB04

Claims (45)

    【特許請求の範囲】
  1. 【請求項1】 多数の近接して間隔を隔てて配置されたコロナ電極と、 前記コロナ電極間に非対称的に位置されている1以上の励起電極とを具備して
    いることを特徴とする静電的流体加速装置。
  2. 【請求項2】 前記コロナ電極と前記励起電極との間の電圧はコロナ開始電
    圧と絶縁破壊電圧との間に維持される請求項1記載の静電的流体加速装置。
  3. 【請求項3】 前記コロナ電極と前記励起電極との間の電圧はフレキシブル
    なトップ高電圧電源によって制御される請求項2記載の静電的流体加速装置。
  4. 【請求項4】 前記励起電極は1または複数のプレートであり、それらのプ
    レートは所望の流体の流れの方向に関して下流方向に延在している請求項3記載
    の静電的流体加速装置。
  5. 【請求項5】 先行する静電的流体加速装置と1以上の付加的な静電的流体
    加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静電
    的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており、
    それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置
    されている請求項4記載の静電的流体加速装置。
  6. 【請求項6】 先行する静電的流体加速装置と1以上の付加的な静電的流体
    加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静電
    的流体加速装置から所望の流体の流れの方向に関して下流方向に延在しており、
    それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置
    されている請求項3記載の静電的流体加速装置。
  7. 【請求項7】 前記励起電極は、所望の流体の流れの方向に関して下流方向
    に延在しているプレートである請求項3記載の静電的流体加速装置。
  8. 【請求項8】 先行する静電的流体加速装置と1以上の付加的な静電的流体
    加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静電
    的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており、
    それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置
    されている請求項7記載の静電的流体加速装置。
  9. 【請求項9】 先行する静電的流体加速装置と1以上の付加的な静電的流体
    加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静電
    的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており、
    それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置
    されている請求項2記載の静電的流体加速装置。
  10. 【請求項10】 前記コロナ電極と前記励起電極との間の電圧は可変であり
    、コロナ開始電圧と絶縁破壊電圧との間の電圧範囲外まで変化可能である請求項
    1記載の静電的流体加速装置。
  11. 【請求項11】 前記励起電極は、所望の流体の流れの方向に関して下流方
    向に延在しているプレートである請求項10記載の静電的流体加速装置。
  12. 【請求項12】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項11記載の静電的流体加速装置。
  13. 【請求項13】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項10記載の静電的流体加速装置。
  14. 【請求項14】 多数の近接して間隔を隔てて配置されたコロナ電極と、 前記コロナ電極間に位置されている1以上の励起電極と、 1以上の加速電極とを具備していることを特徴とする静電的流体加速装置。
  15. 【請求項15】 前記コロナ電極と前記加速電極との間の電圧は、コロナ開
    始電圧と絶縁破壊電圧との間に維持されている請求項14記載の静電的流体加速
    装置。
  16. 【請求項16】 前記コロナ電極と前記励起電極との間の電圧はコロナ開始
    電圧と絶縁破壊電圧との間に維持される請求項14記載の静電的流体加速装置。
  17. 【請求項17】 加速電極が吸引電極であり、この吸引電極は前記コロナ電
    極と反対の電気的極性を有しており、前記吸引電極はコロナ電極から望ましい方
    向の下流に位置している請求項16記載の静電的流体加速装置。
  18. 【請求項18】 前記コロナ電極と前記励起電極との間の電圧はフレキシブ
    ルなトップ高電圧電源によって制御される請求項17記載の静電的流体加速装置
  19. 【請求項19】 前記励起電極は、所望の流体の流れの方向に関して下流方
    向に延在しているプレートである請求項18記載の静電的流体加速装置。
  20. 【請求項20】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項19記載の静電的流体加速装置。
  21. 【請求項21】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項18記載の静電的流体加速装置。
  22. 【請求項22】 前記励起電極は、所望の流体の流れの方向に関して下流方
    向に延在しているプレートである請求項17記載の静電的流体加速装置。
  23. 【請求項23】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項22記載の静電的流体加速装置。
  24. 【請求項24】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項17記載の静電的流体加速装置。
  25. 【請求項25】 加速電極が反撥電極であり、この反撥電極は前記コロナ電
    極と同じ電気的極性を有しており、前記反撥電極はコロナ電極から望ましい方向
    の下流に位置している請求項16記載の静電的流体加速装置。
  26. 【請求項26】 前記コロナ電極と前記励起電極との間の電圧はフレキシブ
    ルなトップ高電圧電源によって制御されている請求項25記載の静電的流体加速
    装置。
  27. 【請求項27】 前記励起電極は、所望の流体の流れの方向に関して下流方
    向に延在しているプレートである請求項26記載の静電的流体加速装置。
  28. 【請求項28】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項27記載の静電的流体加速装置。
  29. 【請求項29】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項26記載の静電的流体加速装置。
  30. 【請求項30】 前記励起電極は、所望の流体の流れの方向に関して下流方
    向に延在しているプレートである請求項25記載の静電的流体加速装置。
  31. 【請求項31】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向で下流方向に位置しており、それ
    ら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置され
    ている請求項30記載の静電的流体加速装置。
  32. 【請求項32】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向で下流方向に位置しており、それ
    ら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置され
    ている請求項25記載の静電的流体加速装置。
  33. 【請求項33】 前記コロナ電極と前記励起電極との間の電圧は可変であり
    、コロナ開始電圧と絶縁破壊電圧との間の電圧範囲外まで変化可能である請求項
    14記載の静電的流体加速装置。
  34. 【請求項34】 加速電極が吸引電極であり、この吸引電極は前記コロナ電
    極と反対の電気的極性を有しており、前記吸引電極はコロナ電極から所望の流体
    の流れの方向で下流に位置している請求項33記載の静電的流体加速装置。
  35. 【請求項35】 前記励起電極は、所望の流体の流れの方向に関して下流方
    向に延在しているプレートである請求項34記載の静電的流体加速装置。
  36. 【請求項36】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向に関して下流方向に位置しており
    、それら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配
    置されている請求項35記載の静電的流体加速装置。
  37. 【請求項37】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向で下流方向に位置しており、それ
    ら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置され
    ている請求項34記載の静電的流体加速装置。
  38. 【請求項38】 加速電極が反撥電極であり、この反撥電極は前記コロナ電
    極と同じ電気的極性を有しており、前記反撥電極はコロナ電極から所望の流体の
    流れの方向で下流に位置している請求項33記載の静電的流体加速装置。
  39. 【請求項39】 前記励起電極は、所望の流体の流れの方向に関して下流方
    向に延在しているプレートである請求項38記載の静電的流体加速装置。
  40. 【請求項40】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向で下流方向に位置しており、それ
    ら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置され
    ている請求項39記載の静電的流体加速装置。
  41. 【請求項41】 先行する静電的流体加速装置と1以上の付加的な静電的流
    体加速装置を具備し、それらの付加的な各静電的流体加速装置は前記先行する静
    電的流体加速装置から所望の流体の流れの方向で下流方向に位置しており、それ
    ら静電的流体加速装置の少なくとも1つの対の間に1以上の集収電極が配置され
    ている請求項38記載の静電的流体加速装置。
  42. 【請求項42】 流体を運動させるための技術的に知られているコロナ放電
    装置と、 流体を運動させるための技術的に知られている1以上の付加的なコロナ放電装
    置とを具備し、 前記付加的な各コロナ放電装置は前記先行する静電的流体加速装置から所望の
    流体の流れの方向に関して下流方向に位置しており、それら静電的流体加速装置
    の少なくとも1つの対の間に1以上の集収電極が配置されていることを特徴とす
    る静電的流体加速装置。
  43. 【請求項43】 電源の出力電流にわずかしか感応しない電圧を生成するベ
    ース装置と、 電源の出力電流の増加と共に減少する出力電圧を生成する第2の装置と、 前記ベース装置および前記第2の装置からの電圧を組合わせる手段とを具備し
    ていることを特徴とするフレキシブルなトップ高電圧電源。
  44. 【請求項44】 コロナ放電を生成することのできる1組の電極と、 前記1組の電極に電気的に接続されたフレキシブルなトップ高電圧電源とを具
    備していることを特徴とする電極を使用する装置。
  45. 【請求項45】 少なくとも1組の電極は自由流体通路に対する開口を備え
    ている分離されたフレーム中に配置されている請求項44記載の静電的流体加速
    装置。
JP2001530889A 1999-10-14 2000-10-13 静電的流体加速装置 Expired - Fee Related JP5050280B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/419,720 US6504308B1 (en) 1998-10-16 1999-10-14 Electrostatic fluid accelerator
US09/419,720 1999-10-14
PCT/US2000/028412 WO2001027965A1 (en) 1999-10-14 2000-10-13 Electrostatic fluid accelerator

Publications (2)

Publication Number Publication Date
JP2003511640A true JP2003511640A (ja) 2003-03-25
JP5050280B2 JP5050280B2 (ja) 2012-10-17

Family

ID=23663466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001530889A Expired - Fee Related JP5050280B2 (ja) 1999-10-14 2000-10-13 静電的流体加速装置

Country Status (10)

Country Link
US (3) US6504308B1 (ja)
EP (1) EP1153407B1 (ja)
JP (1) JP5050280B2 (ja)
AT (1) ATE493748T1 (ja)
AU (2) AU773626B2 (ja)
CA (1) CA2355659C (ja)
DE (1) DE60045440D1 (ja)
HK (1) HK1044070A1 (ja)
MX (1) MXPA01006037A (ja)
WO (1) WO2001027965A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537868A (ja) * 2004-05-18 2007-12-27 クロノス・アドバンスト・テクノロジーズ・インコーポレイテッド 静電流体加速器および流量を制御するための方法
JP2008016222A (ja) * 2006-07-03 2008-01-24 Toshiba Corp 気流発生装置
JP2008207168A (ja) * 2007-01-29 2008-09-11 Matsushita Electric Ind Co Ltd 電気集じん機
JP2009030699A (ja) * 2007-07-26 2009-02-12 Toshiba Corp ディフューザ
JP2009208041A (ja) * 2008-03-06 2009-09-17 Panasonic Corp 電気集じん機
WO2010007789A1 (ja) * 2008-07-17 2010-01-21 株式会社 東芝 気流発生装置およびその製造方法
JP2011511615A (ja) * 2008-01-31 2011-04-07 ザ・ボーイング・カンパニー 誘電体バリア放電ポンプ装置および方法
JP2011512248A (ja) * 2008-02-19 2011-04-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 最適な放出領域を用いた静電フィルタリング装置
JP2011231928A (ja) * 2011-04-27 2011-11-17 Toshiba Corp ディフューザ
JP2014179599A (ja) * 2013-03-13 2014-09-25 Palo Alto Research Center Inc 微細バネを使用するマイクロプラズマ生成

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504308B1 (en) * 1998-10-16 2003-01-07 Kronos Air Technologies, Inc. Electrostatic fluid accelerator
US20020127156A1 (en) * 1998-11-05 2002-09-12 Taylor Charles E. Electro-kinetic air transporter-conditioner devices with enhanced collector electrode
US7695690B2 (en) * 1998-11-05 2010-04-13 Tessera, Inc. Air treatment apparatus having multiple downstream electrodes
US20020122751A1 (en) * 1998-11-05 2002-09-05 Sinaiko Robert J. Electro-kinetic air transporter-conditioner devices with a enhanced collector electrode for collecting more particulate matter
US20030206837A1 (en) * 1998-11-05 2003-11-06 Taylor Charles E. Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability
US20020155041A1 (en) * 1998-11-05 2002-10-24 Mckinney Edward C. Electro-kinetic air transporter-conditioner with non-equidistant collector electrodes
US7318856B2 (en) * 1998-11-05 2008-01-15 Sharper Image Corporation Air treatment apparatus having an electrode extending along an axis which is substantially perpendicular to an air flow path
US7220295B2 (en) * 2003-05-14 2007-05-22 Sharper Image Corporation Electrode self-cleaning mechanisms with anti-arc guard for electro-kinetic air transporter-conditioner devices
US6350417B1 (en) 1998-11-05 2002-02-26 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
US20050199125A1 (en) * 2004-02-18 2005-09-15 Sharper Image Corporation Air transporter and/or conditioner device with features for cleaning emitter electrodes
US6632407B1 (en) * 1998-11-05 2003-10-14 Sharper Image Corporation Personal electro-kinetic air transporter-conditioner
US20020146356A1 (en) * 1998-11-05 2002-10-10 Sinaiko Robert J. Dual input and outlet electrostatic air transporter-conditioner
US20020150520A1 (en) * 1998-11-05 2002-10-17 Taylor Charles E. Electro-kinetic air transporter-conditioner devices with enhanced emitter electrode
US6176977B1 (en) * 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US6974560B2 (en) * 1998-11-05 2005-12-13 Sharper Image Corporation Electro-kinetic air transporter and conditioner device with enhanced anti-microorganism capability
US6544485B1 (en) * 2001-01-29 2003-04-08 Sharper Image Corporation Electro-kinetic device with enhanced anti-microorganism capability
US20050210902A1 (en) 2004-02-18 2005-09-29 Sharper Image Corporation Electro-kinetic air transporter and/or conditioner devices with features for cleaning emitter electrodes
US20050163669A1 (en) * 1998-11-05 2005-07-28 Sharper Image Corporation Air conditioner devices including safety features
US20070148061A1 (en) * 1998-11-05 2007-06-28 The Sharper Image Corporation Electro-kinetic air transporter and/or air conditioner with devices with features for cleaning emitter electrodes
US20070009406A1 (en) * 1998-11-05 2007-01-11 Sharper Image Corporation Electrostatic air conditioner devices with enhanced collector electrode
US6897617B2 (en) * 1999-12-24 2005-05-24 Zenion Industries, Inc. Method and apparatus to reduce ozone production in ion wind device
GB0108738D0 (en) * 2001-04-06 2001-05-30 Bae Systems Plc Turbulent flow drag reduction
GB0108740D0 (en) * 2001-04-06 2001-05-30 Bae Systems Plc Turbulent flow drag reduction
US6749667B2 (en) * 2002-06-20 2004-06-15 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
US7056370B2 (en) * 2002-06-20 2006-06-06 Sharper Image Corporation Electrode self-cleaning mechanism for air conditioner devices
US6919698B2 (en) * 2003-01-28 2005-07-19 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and method of controlling a fluid flow
US6727657B2 (en) * 2002-07-03 2004-04-27 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and a method of controlling fluid flow
US6937455B2 (en) * 2002-07-03 2005-08-30 Kronos Advanced Technologies, Inc. Spark management method and device
US7122070B1 (en) * 2002-06-21 2006-10-17 Kronos Advanced Technologies, Inc. Method of and apparatus for electrostatic fluid acceleration control of a fluid flow
US7157704B2 (en) * 2003-12-02 2007-01-02 Kronos Advanced Technologies, Inc. Corona discharge electrode and method of operating the same
US7150780B2 (en) * 2004-01-08 2006-12-19 Kronos Advanced Technology, Inc. Electrostatic air cleaning device
US7405672B2 (en) * 2003-04-09 2008-07-29 Sharper Image Corp. Air treatment device having a sensor
US6984987B2 (en) * 2003-06-12 2006-01-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features
US7077890B2 (en) * 2003-09-05 2006-07-18 Sharper Image Corporation Electrostatic precipitators with insulated driver electrodes
US20050051420A1 (en) * 2003-09-05 2005-03-10 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with insulated driver electrodes
US7906080B1 (en) 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
US7517503B2 (en) * 2004-03-02 2009-04-14 Sharper Image Acquisition Llc Electro-kinetic air transporter and conditioner devices including pin-ring electrode configurations with driver electrode
US7724492B2 (en) 2003-09-05 2010-05-25 Tessera, Inc. Emitter electrode having a strip shape
US20050095182A1 (en) * 2003-09-19 2005-05-05 Sharper Image Corporation Electro-kinetic air transporter-conditioner devices with electrically conductive foam emitter electrode
US20050082160A1 (en) * 2003-10-15 2005-04-21 Sharper Image Corporation Electro-kinetic air transporter and conditioner devices with a mesh collector electrode
US7767169B2 (en) * 2003-12-11 2010-08-03 Sharper Image Acquisition Llc Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
US20050146712A1 (en) * 2003-12-24 2005-07-07 Lynx Photonics Networks Inc. Circuit, system and method for optical switch status monitoring
WO2005077523A1 (en) * 2004-02-11 2005-08-25 Jean-Pierre Lepage System for treating contaminated gas
US20050279905A1 (en) * 2004-02-18 2005-12-22 Sharper Image Corporation Air movement device with a quick assembly base
US20060018812A1 (en) * 2004-03-02 2006-01-26 Taylor Charles E Air conditioner devices including pin-ring electrode configurations with driver electrode
US7638104B2 (en) * 2004-03-02 2009-12-29 Sharper Image Acquisition Llc Air conditioner device including pin-ring electrode configurations with driver electrode
US20060018810A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with 3/2 configuration and individually removable driver electrodes
US20060018807A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with enhanced germicidal lamp
US7285155B2 (en) * 2004-07-23 2007-10-23 Taylor Charles E Air conditioner device with enhanced ion output production features
US20060016336A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with variable voltage controlled trailing electrodes
US20060016333A1 (en) * 2004-07-23 2006-01-26 Sharper Image Corporation Air conditioner device with removable driver electrodes
US7311762B2 (en) * 2004-07-23 2007-12-25 Sharper Image Corporation Air conditioner device with a removable driver electrode
US7855513B2 (en) * 2004-09-28 2010-12-21 Old Dominion University Research Foundation Device and method for gas treatment using pulsed corona discharges
US7311756B2 (en) * 2004-11-30 2007-12-25 Ranco Incorporated Of Delaware Fanless indoor air quality treatment
US7417553B2 (en) * 2004-11-30 2008-08-26 Young Scott G Surface mount or low profile hazardous condition detector
US20060112955A1 (en) * 2004-11-30 2006-06-01 Ranco Incorporated Of Delaware Corona-discharge air mover and purifier for fireplace and hearth
US7182805B2 (en) * 2004-11-30 2007-02-27 Ranco Incorporated Of Delaware Corona-discharge air mover and purifier for packaged terminal and room air conditioners
US7226496B2 (en) * 2004-11-30 2007-06-05 Ranco Incorporated Of Delaware Spot ventilators and method for spot ventilating bathrooms, kitchens and closets
US20060113398A1 (en) * 2004-11-30 2006-06-01 Ranco Incorporated Of Delaware Temperature control with induced airflow
US7226497B2 (en) * 2004-11-30 2007-06-05 Ranco Incorporated Of Delaware Fanless building ventilator
CN101107444B (zh) * 2005-01-24 2011-06-15 文蒂瓦公司 电流体动力泵和包括电流体动力泵的冷却装置
WO2006107390A2 (en) * 2005-04-04 2006-10-12 Kronos Advanced Technologies, Inc. An electrostatic fluid accelerator for and method of controlling a fluid flow
US20100177519A1 (en) * 2006-01-23 2010-07-15 Schlitz Daniel J Electro-hydrodynamic gas flow led cooling system
FR2897395B1 (fr) * 2006-02-14 2008-04-04 Peugeot Citroen Automobiles Sa Procede et dispositif de suralimentation en air d'un moteur a combustion interne
US7833322B2 (en) * 2006-02-28 2010-11-16 Sharper Image Acquisition Llc Air treatment apparatus having a voltage control device responsive to current sensing
US7637455B2 (en) * 2006-04-12 2009-12-29 The Boeing Company Inlet distortion and recovery control system
US20090022340A1 (en) * 2006-04-25 2009-01-22 Kronos Advanced Technologies, Inc. Method of Acoustic Wave Generation
FR2906847A1 (fr) * 2006-10-05 2008-04-11 Peugeot Citroen Automobiles Sa Conduit de circulation d'air muni d'un dispositif d'ionisation et d'acceleration.
WO2008051535A2 (en) * 2006-10-24 2008-05-02 Krichtafovitch Igor A Fireplace with electrostatically assisted heat transfer and method of assisting heat transfer in combustion powered heating devices
US20100051709A1 (en) * 2006-11-01 2010-03-04 Krichtafovitch Igor A Space heater with electrostatically assisted heat transfer and method of assisting heat transfer in heating devices
EP2084404A4 (en) * 2006-11-07 2017-03-29 WCH Technologies Corporation A surface to move a fluid via fringe electronic fields
US20080138672A1 (en) * 2006-12-08 2008-06-12 General Electric Company Fuel cell and associated method
US7988103B2 (en) * 2007-01-19 2011-08-02 John Hopkins University Solid state supersonic flow actuator and method of use
WO2008091905A1 (en) * 2007-01-23 2008-07-31 Ventiva, Inc. Contoured electrodes for an electrostatic gas pump
US20090095266A1 (en) * 2007-10-10 2009-04-16 Oburtech Motor Corporation Ozonation apparatus
US20090127401A1 (en) * 2007-11-07 2009-05-21 Cousins William T Ion field flow control device
US20090321056A1 (en) * 2008-03-11 2009-12-31 Tessera, Inc. Multi-stage electrohydrodynamic fluid accelerator apparatus
US20100037776A1 (en) * 2008-08-14 2010-02-18 Sik Leung Chan Devices for removing particles from a gas comprising an electrostatic precipitator
US20100051011A1 (en) * 2008-09-03 2010-03-04 Timothy Scott Shaffer Vent hood for a cooking appliance
US8466624B2 (en) * 2008-09-03 2013-06-18 Tessera, Inc. Electrohydrodynamic fluid accelerator device with collector electrode exhibiting curved leading edge profile
US8411435B2 (en) * 2008-11-10 2013-04-02 Tessera, Inc. Electrohydrodynamic fluid accelerator with heat transfer surfaces operable as collector electrode
US20100155025A1 (en) * 2008-12-19 2010-06-24 Tessera, Inc. Collector electrodes and ion collecting surfaces for electrohydrodynamic fluid accelerators
US9217542B2 (en) 2009-10-20 2015-12-22 Cree, Inc. Heat sinks and lamp incorporating same
US9243758B2 (en) * 2009-10-20 2016-01-26 Cree, Inc. Compact heat sinks and solid state lamp incorporating same
US9030120B2 (en) * 2009-10-20 2015-05-12 Cree, Inc. Heat sinks and lamp incorporating same
US8624503B2 (en) 2009-12-10 2014-01-07 Panasonic Precision Devices Co., Ltd. Collector-radiator structure for an electrohydrodynamic cooling system
US20110149252A1 (en) * 2009-12-21 2011-06-23 Matthew Keith Schwiebert Electrohydrodynamic Air Mover Performance
JP2013529347A (ja) 2010-05-26 2013-07-18 テッセラ,インコーポレイテッド 電子機器
US8139354B2 (en) 2010-05-27 2012-03-20 International Business Machines Corporation Independently operable ionic air moving devices for zonal control of air flow through a chassis
US20120000627A1 (en) 2010-06-30 2012-01-05 Tessera, Inc. Electrostatic precipitator pre-filter for electrohydrodynamic fluid mover
WO2012024655A1 (en) 2010-08-20 2012-02-23 Tessera, Inc. Electrohydrodynamic (ehd) air mover for spatially-distributed illumination sources
US8807204B2 (en) * 2010-08-31 2014-08-19 International Business Machines Corporation Electrohydrodynamic airflow across a heat sink using a non-planar ion emitter array
US20120121487A1 (en) 2010-11-11 2012-05-17 Tessera, Inc. Electronic system with ventilation path through inlet-positioned ehd air mover, over ozone reducing surfaces, and out through outlet-positioned heat exchanger
WO2012064614A1 (en) 2010-11-11 2012-05-18 Tessera, Inc. Electronic system changeable to accommodate an ehd air mover or mechanical air mover
US10030863B2 (en) 2011-04-19 2018-07-24 Cree, Inc. Heat sink structures, lighting elements and lamps incorporating same, and methods of making same
US8508908B2 (en) 2011-04-22 2013-08-13 Tessera, Inc. Electrohydrodynamic (EHD) fluid mover with field shaping feature at leading edge of collector electrodes
US20130056241A1 (en) 2011-09-02 2013-03-07 Tessera, Inc. Emitter wire with layered cross-section
US20130284667A1 (en) 2012-01-09 2013-10-31 Thomas J. Pinnavaia Polymer Filtration Membranes Containing Mesoporous Additives and Methods of Making the Same
US10378749B2 (en) 2012-02-10 2019-08-13 Ideal Industries Lighting Llc Lighting device comprising shield element, and shield element
CN103379723A (zh) * 2012-04-25 2013-10-30 联胜(中国)科技有限公司 电子装置
ES2875054T3 (es) 2012-05-15 2021-11-08 Univ Washington Through Its Center For Commercialization Purificadores de aire electrónicos y sistemas y métodos asociados
US20140003964A1 (en) 2012-05-29 2014-01-02 Tessera, Inc. Electrohydrodynamic (ehd) fluid mover with field blunting structures in flow channel for spatially selective suppression of ion generation
US9441845B2 (en) * 2012-06-15 2016-09-13 Global Plasma Solutions, Llc Ion generation device
US9827573B2 (en) 2014-09-11 2017-11-28 University Of Washington Electrostatic precipitator
CN105723820B (zh) * 2014-09-16 2018-05-01 华为技术有限公司 散热方法、设备和系统
AT517650B1 (de) 2015-09-08 2017-06-15 Zkw Group Gmbh Beleuchtungsvorrichtung für einen Kraftfahrzeugscheinwerfer
US20170354978A1 (en) * 2016-06-14 2017-12-14 Pacific Air Filtration Holdings, LLC Electrostatic air filter
US10882053B2 (en) 2016-06-14 2021-01-05 Agentis Air Llc Electrostatic air filter
US20170354980A1 (en) 2016-06-14 2017-12-14 Pacific Air Filtration Holdings, LLC Collecting electrode
US10828646B2 (en) 2016-07-18 2020-11-10 Agentis Air Llc Electrostatic air filter
US10219364B2 (en) 2017-05-04 2019-02-26 Nxp Usa, Inc. Electrostatic microthruster
US10236163B1 (en) 2017-12-04 2019-03-19 Nxp Usa, Inc. Microplasma generator with field emitting electrode
US11103881B2 (en) * 2018-08-02 2021-08-31 Faurecia Interior Systems, Inc. Air vent
US10792673B2 (en) * 2018-12-13 2020-10-06 Agentis Air Llc Electrostatic air cleaner
US10875034B2 (en) 2018-12-13 2020-12-29 Agentis Air Llc Electrostatic precipitator
US11225980B2 (en) 2019-03-22 2022-01-18 WildSpark Technologies, LLC Ionizing fluidic accelerator and methods of use
US11615936B2 (en) * 2020-02-09 2023-03-28 Desaraju Subrahmanyam Controllable electrostatic ion and fluid flow generator
EP3934399A1 (en) 2020-07-03 2022-01-05 GE Aviation Systems Limited Fluid mover and method of operating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582694A (en) * 1969-06-20 1971-06-01 Gourdine Systems Inc Electrogasdynamic systems and methods
US4567541A (en) * 1983-02-07 1986-01-28 Sumitomo Heavy Industries, Ltd. Electric power source for use in electrostatic precipitator
US4600411A (en) * 1984-04-06 1986-07-15 Lucidyne, Inc. Pulsed power supply for an electrostatic precipitator
US5055118A (en) * 1987-05-21 1991-10-08 Matsushita Electric Industrial Co., Ltd. Dust-collecting electrode unit
US5077500A (en) * 1987-02-05 1991-12-31 Astra-Vent Ab Air transporting arrangement
US5661299A (en) * 1996-06-25 1997-08-26 High Voltage Engineering Europa B.V. Miniature AMS detector for ultrasensitive detection of individual carbon-14 and tritium atoms
US5707428A (en) * 1995-08-07 1998-01-13 Environmental Elements Corp. Laminar flow electrostatic precipitation system

Family Cites Families (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1934923A (en) * 1929-08-03 1933-11-14 Int Precipitation Co Method and apparatus for electrical precipitation
US1888606A (en) 1931-04-27 1932-11-22 Arthur F Nesbit Method of and apparatus for cleaning gases
US1959374A (en) * 1932-10-01 1934-05-22 Int Precipitation Co Method and apparatus for electrical precipitation
US2765975A (en) 1952-11-29 1956-10-09 Rca Corp Ionic wind generating duct
US2949550A (en) 1957-07-03 1960-08-16 Whitehall Rand Inc Electrokinetic apparatus
US2950387A (en) * 1957-08-16 1960-08-23 Bell & Howell Co Gas analysis
US3071705A (en) * 1958-10-06 1963-01-01 Grumman Aircraft Engineering C Electrostatic propulsion means
US3026964A (en) * 1959-05-06 1962-03-27 Gaylord W Penney Industrial precipitator with temperature-controlled electrodes
US3108394A (en) 1960-12-27 1963-10-29 Ellman Julius Bubble pipe
US3374941A (en) 1964-06-30 1968-03-26 American Standard Inc Air blower
US3198726A (en) * 1964-08-19 1965-08-03 Trikilis Nicolas Ionizer
US3267860A (en) 1964-12-31 1966-08-23 Martin M Decker Electrohydrodynamic fluid pump
US3443358A (en) * 1965-06-11 1969-05-13 Koppers Co Inc Precipitator voltage control
US3518462A (en) 1967-08-21 1970-06-30 Guidance Technology Inc Fluid flow control system
US3740927A (en) * 1969-10-24 1973-06-26 American Standard Inc Electrostatic precipitator
US3638058A (en) 1970-06-08 1972-01-25 Robert S Fritzius Ion wind generator
US3699387A (en) 1970-06-25 1972-10-17 Harrison F Edwards Ionic wind machine
US3675096A (en) 1971-04-02 1972-07-04 Rca Corp Non air-polluting corona discharge devices
US3907520A (en) 1972-05-01 1975-09-23 A Ben Huang Electrostatic precipitating method
US3751715A (en) 1972-07-24 1973-08-07 H Edwards Ionic wind machine
DE2340716A1 (de) 1972-11-02 1975-02-20 8601 Steinfeld Einrichtung zur elektronischen staubabscheidung
ZA744247B (en) 1973-08-31 1975-06-25 Metallgesellschaft Ag Electrostatic precipitator made of plastics material
GB1454409A (en) 1973-12-21 1976-11-03 Xerox Corp Corona generating devices
US3896347A (en) 1974-05-30 1975-07-22 Envirotech Corp Corona wind generating device
US4008057A (en) 1974-11-25 1977-02-15 Envirotech Corporation Electrostatic precipitator electrode cleaning system
US3984215A (en) 1975-01-08 1976-10-05 Hudson Pulp & Paper Corporation Electrostatic precipitator and method
US3983393A (en) 1975-06-11 1976-09-28 Xerox Corporation Corona device with reduced ozone emission
SE415300B (sv) 1975-07-14 1980-09-22 Xerox Corp Anordning for kronaurladdning
AU508702B2 (en) 1975-10-23 1980-03-27 Tokai Trw & Co., Ltd Ignition method for internal combustion engine
US4011719A (en) 1976-03-08 1977-03-15 The United States Of America As Represented By The United States National Aeronautics And Space Administration Office Of General Counsel-Code Gp Anode for ion thruster
US4246010A (en) 1976-05-03 1981-01-20 Envirotech Corporation Electrode supporting base for electrostatic precipitators
JPS52133894A (en) 1976-05-06 1977-11-09 Fuji Xerox Co Ltd Ozone decomposition catalysts
US4061961A (en) 1976-07-02 1977-12-06 United Air Specialists, Inc. Circuit for controlling the duty cycle of an electrostatic precipitator power supply
SE403726B (sv) 1976-11-05 1978-09-04 Aga Ab Sett och anordning for att reducera bildningen av ozon vid svetsning eller bearbetning medelst elektrisk ljusbage
USRE30480E (en) * 1977-03-28 1981-01-13 Envirotech Corporation Electric field directed control of dust in electrostatic precipitators
US4216000A (en) * 1977-04-18 1980-08-05 Air Pollution Systems, Inc. Resistive anode for corona discharge devices
US4086152A (en) * 1977-04-18 1978-04-25 Rp Industries, Inc. Ozone concentrating
US4162144A (en) 1977-05-23 1979-07-24 United Air Specialists, Inc. Method and apparatus for treating electrically charged airborne particles
US4156885A (en) * 1977-08-11 1979-05-29 United Air Specialists Inc. Automatic current overload protection circuit for electrostatic precipitator power supplies
US4313741A (en) 1978-05-23 1982-02-02 Senichi Masuda Electric dust collector
US4231766A (en) 1978-12-11 1980-11-04 United Air Specialists, Inc. Two stage electrostatic precipitator with electric field induced airflow
US4210847A (en) * 1978-12-28 1980-07-01 The United States Of America As Represented By The Secretary Of The Navy Electric wind generator
US4240809A (en) 1979-04-11 1980-12-23 United Air Specialists, Inc. Electrostatic precipitator having traversing collector washing mechanism
US4267502A (en) 1979-05-23 1981-05-12 Envirotech Corporation Precipitator voltage control system
JPS5614248A (en) * 1979-07-16 1981-02-12 Canon Inc Image forming apparatus
US4390831A (en) 1979-09-17 1983-06-28 Research-Cottrell, Inc. Electrostatic precipitator control
US4351648A (en) 1979-09-24 1982-09-28 United Air Specialists, Inc. Electrostatic precipitator having dual polarity ionizing cell
US4380720A (en) * 1979-11-20 1983-04-19 Fleck Carl M Apparatus for producing a directed flow of a gaseous medium utilizing the electric wind principle
US4266948A (en) 1980-01-04 1981-05-12 Envirotech Corporation Fiber-rejecting corona discharge electrode and a filtering system employing the discharge electrode
US4315837A (en) * 1980-04-16 1982-02-16 Xerox Corporation Composite material for ozone removal
US4388274A (en) 1980-06-02 1983-06-14 Xerox Corporation Ozone collection and filtration system
US4376637A (en) * 1980-10-14 1983-03-15 California Institute Of Technology Apparatus and method for destructive removal of particles contained in flowing fluid
US4335414A (en) 1980-10-30 1982-06-15 United Air Specialists, Inc. Automatic reset current cut-off for an electrostatic precipitator power supply
US4516991A (en) * 1982-12-30 1985-05-14 Nihon Electric Co. Ltd. Air cleaning apparatus
US4481017A (en) 1983-01-14 1984-11-06 Ets, Inc. Electrical precipitation apparatus and method
US4689056A (en) 1983-11-23 1987-08-25 Nippon Soken, Inc. Air cleaner using ionic wind
JPS60122062A (ja) 1983-12-05 1985-06-29 Nippon Soken Inc 空気清浄器
JPS60132661A (ja) 1983-12-20 1985-07-15 Nippon Soken Inc 空気清浄器
DE3424196A1 (de) * 1984-02-11 1985-08-22 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur entfernung von festkoerperteilen aus abgasen von brennkraftmaschinen
US4604112A (en) * 1984-10-05 1986-08-05 Westinghouse Electric Corp. Electrostatic precipitator with readily cleanable collecting electrode
US4783595A (en) 1985-03-28 1988-11-08 The Trustees Of The Stevens Institute Of Technology Solid-state source of ions and atoms
CN85102037B (zh) 1985-04-01 1988-02-03 苏州医学院 空气离子化除臭氧电极
AU595179B2 (en) 1985-06-06 1990-03-29 Astra-Vent A.B. Ion-wind air transporting arrangement
US4646196A (en) * 1985-07-01 1987-02-24 Xerox Corporation Corona generating device
US4741746A (en) * 1985-07-05 1988-05-03 University Of Illinois Electrostatic precipitator
US4740826A (en) * 1985-09-25 1988-04-26 Texas Instruments Incorporated Vertical inverter
DE3603947A1 (de) 1986-02-06 1987-08-13 Stiehl Hans Henrich Dr System zur dosierung von luftgetragenen ionen mit hoher genauigkeit und verbessertem wirkungsgrad zur eliminierung elektrostatischer flaechenladungen
US4789801A (en) 1986-03-06 1988-12-06 Zenion Industries, Inc. Electrokinetic transducing methods and apparatus and systems comprising or utilizing the same
DE3717919C2 (de) * 1986-05-30 1997-09-04 Murata Manufacturing Co Hochspannungsversorgungseinrichtung
US4790861A (en) 1986-06-20 1988-12-13 Nec Automation, Ltd. Ashtray
US4996473A (en) 1986-08-18 1991-02-26 Airborne Research Associates, Inc. Microburst/windshear warning system
DK552186A (da) * 1986-11-19 1988-05-20 Smidth & Co As F L Fremgangsmaade og apparat til detektering af tilbagestraaling i et elektrofilter med almindelig eller intermitterende jaevnspaendingsforsyning
DE3640092A1 (de) * 1986-11-24 1988-06-01 Metallgesellschaft Ag Verfahren und einrichtung zur energieversorgung eines elektroabscheiders
JPS63143954A (ja) 1986-12-03 1988-06-16 ボイエイジヤ−.テクノロジ−ズ 空気イオン化方法及び装置
US4938786A (en) * 1986-12-16 1990-07-03 Fujitsu Limited Filter for removing smoke and toner dust in electrophotographic/electrostatic recording apparatus
BR8707919A (pt) 1986-12-19 1989-10-31 Astra Vent Ab Sistema de tratamento de ar
JPS63205123A (ja) 1987-02-21 1988-08-24 Ricoh Co Ltd オゾン除去装置
US4772998A (en) * 1987-02-26 1988-09-20 Nwl Transformers Electrostatic precipitator voltage controller having improved electrical characteristics
SE458077B (sv) 1987-07-03 1989-02-20 Astra Vent Ab Anordning foer transport och ev samtidig rening av luft
US4775915A (en) 1987-10-05 1988-10-04 Eastman Kodak Company Focussed corona charger
US4838021A (en) * 1987-12-11 1989-06-13 Hughes Aircraft Company Electrostatic ion thruster with improved thrust modulation
US4941353A (en) 1988-03-01 1990-07-17 Nippondenso Co., Ltd. Gas rate gyro
US4980611A (en) 1988-04-05 1990-12-25 Neon Dynamics Corporation Overvoltage shutdown circuit for excitation supply for gas discharge tubes
CH677400A5 (ja) * 1988-06-07 1991-05-15 Max Zellweger
US4853719A (en) 1988-12-14 1989-08-01 Xerox Corporation Coated ion projection printing head
US4837658A (en) 1988-12-14 1989-06-06 Xerox Corporation Long life corona charging device
US4924937A (en) 1989-02-06 1990-05-15 Martin Marietta Corporation Enhanced electrostatic cooling apparatus
US5199257A (en) * 1989-02-10 1993-04-06 Centro Sviluppo Materiali S.P.A. Device for removal of particulates from exhaust and flue gases
JPH0648272Y2 (ja) 1989-09-14 1994-12-12 株式会社スイデン 温風ヒーター
US5155531A (en) 1989-09-29 1992-10-13 Ricoh Company, Ltd. Apparatus for decomposing ozone by using a solvent mist
US5163983A (en) 1990-07-31 1992-11-17 Samsung Electronics Co., Ltd. Electronic air cleaner
US5059219A (en) 1990-09-26 1991-10-22 The United States Goverment As Represented By The Administrator Of The Environmental Protection Agency Electroprecipitator with alternating charging and short collector sections
US5087943A (en) * 1990-12-10 1992-02-11 Eastman Kodak Company Ozone removal system
US5138513A (en) * 1991-01-23 1992-08-11 Ransburg Corporation Arc preventing electrostatic power supply
SE9200515L (sv) 1992-02-20 1993-07-12 Tl Vent Ab Tvaastegs elektrofilter
US5257073A (en) 1992-07-01 1993-10-26 Xerox Corporation Corona generating device
US5330559A (en) 1992-08-11 1994-07-19 United Air Specialists, Inc. Method and apparatus for electrostatically cleaning particulates from air
US5474599A (en) 1992-08-11 1995-12-12 United Air Specialists, Inc. Apparatus for electrostatically cleaning particulates from air
US5269131A (en) 1992-08-25 1993-12-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Segmented ion thruster
JPH06118774A (ja) 1992-09-28 1994-04-28 Xerox Corp 加熱シールドを備えたコロナ発生装置
SE501119C2 (sv) * 1993-03-01 1994-11-21 Flaekt Ab Sätt att styra tillförsel av konditioneringsmedel till en elektrostatisk stoftavskiljare
DE4314734A1 (de) * 1993-05-04 1994-11-10 Hoechst Ag Filtermaterial und Verfahren zur Entfernung von Ozon aus Gasen und Flüssigkeiten
US5369953A (en) 1993-05-21 1994-12-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Three-grid accelerator system for an ion propulsion engine
US5542967A (en) * 1994-10-06 1996-08-06 Ponizovsky; Lazar Z. High voltage electrical apparatus for removing ecologically noxious substances from gases
AUPM893094A0 (en) 1994-10-20 1994-11-10 Shaw, Joshua Improvements in or in relating to negative air ion generators
US5556448A (en) 1995-01-10 1996-09-17 United Air Specialists, Inc. Electrostatic precipitator that operates in conductive grease atmosphere
US5508880A (en) * 1995-01-31 1996-04-16 Richmond Technology, Inc. Air ionizing ring
US5920474A (en) * 1995-02-14 1999-07-06 Zero Emissions Technology Inc. Power supply for electrostatic devices
SE505053C2 (sv) 1995-04-18 1997-06-16 Strainer Lpb Ab Anordning för lufttransport och/eller luftrening med hjälp av så kallad jonvind
US5578112A (en) 1995-06-01 1996-11-26 999520 Ontario Limited Modular and low power ionizer
US5642254A (en) * 1996-03-11 1997-06-24 Eastman Kodak Company High duty cycle AC corona charger
SE517541C2 (sv) 1996-06-04 2002-06-18 Eurus Airtech Ab Anordning för rening av luft
US5769155A (en) 1996-06-28 1998-06-23 University Of Maryland Electrohydrodynamic enhancement of heat transfer
US5667564A (en) 1996-08-14 1997-09-16 Wein Products, Inc. Portable personal corona discharge device for destruction of airborne microbes and chemical toxins
US5827407A (en) 1996-08-19 1998-10-27 Raytheon Company Indoor air pollutant destruction apparatus and method using corona discharge
US5845488A (en) * 1996-08-19 1998-12-08 Raytheon Company Power processor circuit and method for corona discharge pollutant destruction apparatus
US6597983B2 (en) * 1996-08-22 2003-07-22 Wgrs Licensing Company, Llc Geographic location multiple listing service identifier and method of assigning and using the same
KR100216478B1 (ko) 1996-08-27 1999-08-16 정명세 이온드래그 진공펌프
US5892363A (en) 1996-09-18 1999-04-06 Roman; Francisco Jose Electrostatic field measuring device based on properties of floating electrodes for detecting whether lightning is imminent
US5951957A (en) 1996-12-10 1999-09-14 Competitive Technologies Of Pa, Inc. Method for the continuous destruction of ozone
US6167196A (en) 1997-01-10 2000-12-26 The W. B. Marvin Manufacturing Company Radiant electric heating appliance
JPH118042A (ja) 1997-02-28 1999-01-12 Toshiba Lighting & Technol Corp イオン発生基板および電子写真記録装置
US6145298A (en) 1997-05-06 2000-11-14 Sky Station International, Inc. Atmospheric fueled ion engine
US5942026A (en) * 1997-10-20 1999-08-24 Erlichman; Alexander Ozone generators useful in automobiles
AU3180099A (en) 1998-01-08 1999-07-26 Government of the United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA), The Paraelectric gas flow accelerator
GB2334461B (en) * 1998-02-20 2002-01-23 Bespak Plc Inhalation apparatus
FR2780417B1 (fr) 1998-06-26 2004-04-09 Kobe Steel Ltd Alliage presentant un effet antibacterien et un effet sterilisant
KR20000009579A (ko) 1998-07-27 2000-02-15 박진규 기체 레이저와 전자빔을 이용한 유해 가스 정화방법 및 장치
USD420438S (en) * 1998-09-25 2000-02-08 Sharper Image Corp. Air purifier
US5975090A (en) 1998-09-29 1999-11-02 Sharper Image Corporation Ion emitting grooming brush
USD438513S1 (en) * 1998-09-30 2001-03-06 Sharper Image Corporation Controller unit
USD411001S (en) * 1998-10-02 1999-06-15 The Sharper Image Plug-in air purifier and/or light
US6504308B1 (en) * 1998-10-16 2003-01-07 Kronos Air Technologies, Inc. Electrostatic fluid accelerator
US6350417B1 (en) * 1998-11-05 2002-02-26 Sharper Image Corporation Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices
US6632407B1 (en) * 1998-11-05 2003-10-14 Sharper Image Corporation Personal electro-kinetic air transporter-conditioner
US6176977B1 (en) 1998-11-05 2001-01-23 Sharper Image Corporation Electro-kinetic air transporter-conditioner
US6224653B1 (en) * 1998-12-29 2001-05-01 Pulsatron Technology Corporation Electrostatic method and means for removing contaminants from gases
SE513755C2 (sv) * 1999-02-04 2000-10-30 Ericsson Telefon Ab L M Elektrostatisk tryckluftpump
US6245126B1 (en) 1999-03-22 2001-06-12 Enviromental Elements Corp. Method for enhancing collection efficiency and providing surface sterilization of an air filter
US6228330B1 (en) * 1999-06-08 2001-05-08 The Regents Of The University Of California Atmospheric-pressure plasma decontamination/sterilization chamber
USD440290S1 (en) * 1999-11-04 2001-04-10 Sharper Image Corporation Automobile air ionizer
USD427300S (en) * 1999-11-04 2000-06-27 The Sharper Image Personal air cleaner
AUPR160500A0 (en) * 2000-11-21 2000-12-14 Indigo Technologies Group Pty Ltd Electrostatic filter
RU2182850C1 (ru) * 2001-03-27 2002-05-27 Ооо "Обновление" Устройство для очистки воздуха от пыли и аэрозолей
US6574123B2 (en) * 2001-07-12 2003-06-03 Engineering Dynamics Ltd Power supply for electrostatic air filtration
US6727657B2 (en) * 2002-07-03 2004-04-27 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and a method of controlling fluid flow
US6919698B2 (en) * 2003-01-28 2005-07-19 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and method of controlling a fluid flow
US7053565B2 (en) * 2002-07-03 2006-05-30 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and a method of controlling fluid flow

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582694A (en) * 1969-06-20 1971-06-01 Gourdine Systems Inc Electrogasdynamic systems and methods
US4567541A (en) * 1983-02-07 1986-01-28 Sumitomo Heavy Industries, Ltd. Electric power source for use in electrostatic precipitator
US4600411A (en) * 1984-04-06 1986-07-15 Lucidyne, Inc. Pulsed power supply for an electrostatic precipitator
US5077500A (en) * 1987-02-05 1991-12-31 Astra-Vent Ab Air transporting arrangement
US5055118A (en) * 1987-05-21 1991-10-08 Matsushita Electric Industrial Co., Ltd. Dust-collecting electrode unit
US5707428A (en) * 1995-08-07 1998-01-13 Environmental Elements Corp. Laminar flow electrostatic precipitation system
US5661299A (en) * 1996-06-25 1997-08-26 High Voltage Engineering Europa B.V. Miniature AMS detector for ultrasensitive detection of individual carbon-14 and tritium atoms

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537868A (ja) * 2004-05-18 2007-12-27 クロノス・アドバンスト・テクノロジーズ・インコーポレイテッド 静電流体加速器および流量を制御するための方法
JP2008016222A (ja) * 2006-07-03 2008-01-24 Toshiba Corp 気流発生装置
JP2008207168A (ja) * 2007-01-29 2008-09-11 Matsushita Electric Ind Co Ltd 電気集じん機
JP2009030699A (ja) * 2007-07-26 2009-02-12 Toshiba Corp ディフューザ
JP2011511615A (ja) * 2008-01-31 2011-04-07 ザ・ボーイング・カンパニー 誘電体バリア放電ポンプ装置および方法
JP2011512248A (ja) * 2008-02-19 2011-04-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 最適な放出領域を用いた静電フィルタリング装置
JP2009208041A (ja) * 2008-03-06 2009-09-17 Panasonic Corp 電気集じん機
WO2010007789A1 (ja) * 2008-07-17 2010-01-21 株式会社 東芝 気流発生装置およびその製造方法
JPWO2010007789A1 (ja) * 2008-07-17 2012-01-05 株式会社東芝 気流発生装置およびその製造方法
US8400751B2 (en) 2008-07-17 2013-03-19 Kabushiki Kaisha Toshiba Air current generating apparatus and method for manufacturing same
US8559158B2 (en) 2008-07-17 2013-10-15 Kabushiki Kaisha Toshiba Air current generating apparatus and method for manufacturing same
JP5498384B2 (ja) * 2008-07-17 2014-05-21 株式会社東芝 気流発生装置およびその製造方法
JP2011231928A (ja) * 2011-04-27 2011-11-17 Toshiba Corp ディフューザ
JP2014179599A (ja) * 2013-03-13 2014-09-25 Palo Alto Research Center Inc 微細バネを使用するマイクロプラズマ生成

Also Published As

Publication number Publication date
AU2004205310A1 (en) 2004-09-23
CA2355659C (en) 2008-01-15
AU773626B2 (en) 2004-05-27
US7652431B2 (en) 2010-01-26
JP5050280B2 (ja) 2012-10-17
US20030090209A1 (en) 2003-05-15
MXPA01006037A (es) 2005-04-11
AU2004205310A8 (en) 2004-09-23
HK1044070A1 (zh) 2002-10-04
US6888314B2 (en) 2005-05-03
AU2004205310B2 (en) 2007-11-15
EP1153407B1 (en) 2010-12-29
EP1153407A4 (en) 2006-06-21
US6504308B1 (en) 2003-01-07
CA2355659A1 (en) 2001-04-19
AU1084701A (en) 2001-04-23
US20050200289A1 (en) 2005-09-15
EP1153407A1 (en) 2001-11-14
ATE493748T1 (de) 2011-01-15
DE60045440D1 (de) 2011-02-10
WO2001027965A1 (en) 2001-04-19

Similar Documents

Publication Publication Date Title
JP5050280B2 (ja) 静電的流体加速装置
US8773837B2 (en) Multi pulse linear ionizer
KR101951682B1 (ko) 마이크로펄스 바이폴라 코로나 이온화기 및 방법
US7214949B2 (en) Ion generation by the temporal control of gaseous dielectric breakdown
US7813102B2 (en) Prevention of emitter contamination with electronic waveforms
US4210949A (en) Device for electrically charging particles
US20050051420A1 (en) Electro-kinetic air transporter and conditioner devices with insulated driver electrodes
CN102078842B (zh) 控制流体流动的静电流体加速器和方法
EP2812964B1 (en) Multi pulse linear ionizer
NL2008208C2 (en) Spark ablation device.
US20090155090A1 (en) Auxiliary electrodes for enhanced electrostatic discharge
RU70800U1 (ru) Сотовый ионизатор воздуха
JPS594184B2 (ja) 静電沈殿方法及び装置
RU2187762C1 (ru) Устройство для ионизации воздуха
JP4873461B2 (ja) 管型イオン供給機構
JP2017224589A (ja) イオン発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110916

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees