JP2003511066A - ファミリーG/11キシラナーゼの安定性を向上させ、pH領域を広域化する方法 - Google Patents

ファミリーG/11キシラナーゼの安定性を向上させ、pH領域を広域化する方法

Info

Publication number
JP2003511066A
JP2003511066A JP2001530457A JP2001530457A JP2003511066A JP 2003511066 A JP2003511066 A JP 2003511066A JP 2001530457 A JP2001530457 A JP 2001530457A JP 2001530457 A JP2001530457 A JP 2001530457A JP 2003511066 A JP2003511066 A JP 2003511066A
Authority
JP
Japan
Prior art keywords
xylanase
enzyme
amino acid
family
xynii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001530457A
Other languages
English (en)
Other versions
JP4647169B2 (ja
Inventor
フレッド・フェネル
オッシ・トゥルネン
マッティ・レイソラ
Original Assignee
カーボザイム・オサケユキテュア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カーボザイム・オサケユキテュア filed Critical カーボザイム・オサケユキテュア
Publication of JP2003511066A publication Critical patent/JP2003511066A/ja
Application granted granted Critical
Publication of JP4647169B2 publication Critical patent/JP4647169B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • C12N9/2482Endo-1,4-beta-xylanase (3.2.1.8)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

(57)【要約】 本発明はタンパク質工学に関し、特にファミリーG/11キシラナーゼおよび該酵素をコードする遺伝子に関する。具体的には、本発明はエンド−1,4−β−キシラナーゼ(EC 3.2.18)をコードするTrichoderma reesei XYNII遺伝子に関する。本発明は部位特異的突然変異誘発を用い、酵素の特性を改変し、それを用いる工業条件に適合させ得る方法を記載する。キシラナーゼの熱活性および熱安定性を向上させ、またそのpH領域を広域化するのに、タンパク質工学を用いることができる。

Description

【発明の詳細な説明】
【0001】
【発明の技術分野】
本発明はタンパク質工学に関し、特にファミリーG/11キシラナーゼおよび
該酵素をコードする遺伝子に関する。具体的には、本発明はエンド−1,4−β
−キシラナーゼ(EC 3.2.1.8)をコードするTrichoderma reesei XYNII遺伝子
に関する。本発明は部位特異的突然変異誘発を用い、酵素の特性を向上させ、そ
れを用いる工業条件に適合させ得る方法を記載する。キシラナーゼの熱活性およ
び熱安定性を向上させ、またそのpH領域を広域化するのに、タンパク質工学を
用いることができる。
【0002】
【発明の技術背景】
キシラナーゼはβ−1,4−連結キシロピラノシド鎖を加水分解する糖加水分
解酵素である。キシラナーゼは少なくとも百種の異なる生物に見出されている。
これらは、他の糖加水分解酵素と共に、40以上の異なる酵素ファミリーを含む
スーパーファミリーを形成する(HenrissatおよびBairoch、1993)。ファミリー1
1(以前は、G)キシラナーゼは、それらの遺伝子配列、タンパク質の立体構造お
よび触媒作用の類似性により規定される。このファミリーのメンバーに共通の特
徴は、高い遺伝子相同性、約20kDaの大きさ、および二重置換触媒機構であ
る(Tenkanen等、1992 ; Wakarchuk等、1994)。
【0003】 ファミリー11キシラナーゼは、2つの大きいβ−シートを形成するβ−スト
ランド、および1つのα−ヘリックスから主に形成される。これらは、部分的に
閉じた(partly-closed)右手に似る構造を形成し、そのβ−シートはA−および
B−シートと呼ばる(ToerroenenおよびRouvinen、1997)。このファミリー11キ
シラナーゼは、構造が安定で、タンパク質分解酵素活性に対して感受性ではない
ために、特に産業上の応用に関心がある。更に、キシラナーゼは工業規模におい
て経済的に製造できる。Trichoderma reeseiは、キシラナーゼIおよびII(Xyn
IおよびXynII)が最も特徴的な3つの異なるキシラナーゼを産生すると知られ
ている(Tenkanen等、1992)。XynIは19kDaの大きさであり、XynIIと
比較して等電点および最適pHが低い(pI5.5、pH3〜4)。XynIIは2
0kDaの大きさであり、pIは9.0、および最適pHは5.0〜5.5である(
ToerroenenおよびRouvinen、1995)。
【0004】 キシラナーゼの最も重要な産業上の応用は、パルプ漂白、織物繊維改変、およ
び動物給餌におけるその消化を改良するバイオマス改変である(Prade、1996)。
これら全ての応用に共通する事項(nominator)は、この酵素が直面する過酷な条
件である。高温および多くのキシラナーゼの最適pHと実質的に異なるpHによ
り産業上の応用に現在使用できるキシラナーゼの効果的な利用性が減じられてい
る。
【0005】 給餌応用において、この酵素は給餌調製の間、高温状態に短時間(例えば、9
0℃にて2〜5分)直面する。しかし、この酵素の事実上の触媒活性には、低温(
例えば、〜37℃)を要する。それ故、この酵素は高温において不可逆的に不活
性化されるべきではない上に、比較的低温において活性でなければならない。
【0006】 パルプ漂白において、アルカリ洗浄由来の物質は高温(>80℃)および高pH
(>10)である。商業的に利用できるキシラナーゼで、これらの条件において残
存するものはない。現在利用できるキシラナーゼを用いてパルプを処理するには
、パルプを冷却し、アルカリ性pHを中性化しなければならない。これはコスト
高になることを意味する。キシラナーゼを安定にし、高温および高pHの変性効
果に対して耐性にするために、タンパク質工学が用いられている(これは時折、
成功している)。
【0007】 幾らかの熱安定、好アルカリ性および好酸性キシラナーゼが、好熱性生物から
発見され、クローニングされた(Bodie等、1995; Fukunaga等、1998)。しかし、
これらの酵素を経済的な量で生産することは、多くの場合困難であることが明ら
かにされている。従って、それ自体は熱安定でないT. reeseiキシラナーゼIIが
低コストで大量に生産できるため、工業的に使用される。新規キシラナーゼを単
離する、または生産過程を開発する代わりに、現在用いられているキシラナーゼ
を巧みに処理することにより、過酷な条件に対してより安定化させることができ
る。
【0008】 Bacillus circulansキシラナーゼの安定性が、該タンパク質のN末端をC末端
に結合させること、およびα−ヘリックスのN末端部分を隣接するβ−ストラン
ドに結合させることによって、ジスルフィド架橋により向上された(Wakarchuk等
、1994)。また、Campbell等(1995)は、熱安定性を増大させるために分子間およ
び分子内ジスルフィド結合により、Bacillus circulansキシラナーゼを改変した
。他方、T. reeseiキシラナーゼIIの安定性はN末端領域を好熱性キシラナーゼ
の対応部分に変更することにより向上された(Sung等、1998)。この酵素の活性領
域は、熱安定性の向上に加え、アルカリ性pH側に広がった。また、Bacillus p
umilusキシラナーゼの安定性を増大させるため、単一点突然変異誘発も用いられ
ている(Arase等、1993)。安定性に対する突然変異誘発の影響が、他の多くの酵
素について研究されている。好熱性および中温性酵素の構造を比較することで、
情報が豊富に得られた(Vogt等、1997)。また、好熱性キシラナーゼの構造情報に
よって、キシラナーゼの熱安定性に影響を及ぼす因子に関する情報が得られてい
る(Gruber等、1998;Harris等、1997)。
【0009】
【発明の概要】
本発明はファミリー11(以前は、G)糖加水分解酵素に属するキシラナーゼに
関する。本発明はキシラナーゼの熱安定性、熱活性を変更するように改変したキ
シラナーゼ、および/またはそれらのpH領域を広域化したキシラナーゼを提供
する。
【0010】 Trichoderma reeseiキシラナーゼ構造における種々の改変は、本発明に記載の
以下の変更: (1)N末端領域をジスルフィド架橋(例えば、T2CとT28C;P5CとN
19C;T7CとS16C;N10CとN29Cの突然変異の組みにより形成さ
れる架橋)によって、該タンパク質本体に結合させることによって、当該酵素の
安定性を増大させ、 (2)アルギニン58(野生型酵素中のリシン58をアルギニンに変更した(K
58R))と塩橋を形成する付加したアスパラギン酸(+191D)により伸張する
ことによって、C末端を安定化し、 (3)α−へリックスをジスルフィド架橋により該酵素本体(例えば、L105
CおよびQ162C)に結合させることによって、当該酵素の安定性を増大させ
、 (4)種々の位置(N11D、T26R、G30H、N67R、N97R、A1
32R、N157R、A160R、T165N、M169H、S186R)に点
突然変異を誘発し、キシラナーゼの安定性を向上させること を単独または組み合わせることのいずれかによって行なう。
【0011】 具体的には、本発明はアミノ酸T2およびT28をシステインに変更し、K5
8をアルギニンに変更し、そしてアスパラギン酸を該酵素のC末端に付加(+1
91D)することで、アミノ酸T2CとT28Cとの間にジスルフィド架橋、お
よびアミノ酸K58Rと+191Dとの間に塩橋を形成させた改変Trichoderma r
eeseiキシラナーゼを提供する。
【0012】
【本発明の詳しい説明】
細菌、酵母および菌類由来のファミリーG/11キシラナーゼは、共通の分子
構造を有する。そのようなキシラナーゼの例としては、以下: Aspergillus niger XynA Aspergillus kawachii XynC Aspergillus tubigensis XynA Bacillus circulans XynA Bacillus pumilus XynA Bacillus subtilis XynA Neocallimastix patriciarum XynA Streptomyces lividans XynB Streptomyces lividans XynC Streptomyces thermoviolaceus XynII Thermomonospora fusca XynA Trichoderma harzianum Xyn Trichoderma reesei XynI、Trichoderma reesei XynII Trichoderma viride Xyn がある。
【0013】 本発明は、以下の共通する特徴を有するファミリーG/11のキシラナーゼを
扱う。
【0014】 (i)N末端配列が二重の層になったβ−シート(ファミリー11キシラナー
ゼにおける、A−およびB−シート、(Gruber等、1998))の一部であり、第一の
β−ストランド(T. reesei XynIIにおける、アミノ酸5〜10)、またはその
N末端がジスルフィド架橋により隣接するβ−ストランド(T. reesei XynII
における、アミノ酸13〜19)、若しくは他の隣接する領域と結合できる酵素
【0015】 (ii)C末端ペプチド鎖が大きいβ−シートの一部であるβ−ストランド(T.
reesei XynIIにおけるアミノ酸183〜190)を形成し、そのC末端領域が
ジスルフィド架橋により隣接するβ−ストランドに、または塩橋により該酵素本
体に結合できる酵素。
【0016】 (iii)触媒性キャニオン(canyon)に関して、酵素構造の反対側にα−へリッ
クスを有し、該α−へリックスまたは隣接する領域がジスルフィド架橋によって
、該タンパク質本体により密接に結合できる酵素。
【0017】 T. reeseiキシラナーゼIIが上記特性を有し、該酵素において、熱安定性、p
H安定性および熱活性は、これらの特性に基づいて改変できる。以下の変更を、
T. reeseiのキシラナーゼ遺伝子(XYNII)に対して行なった。
【0018】 1.部位特異的突然変異誘発により、ジスルフィド架橋をN末端領域に形成さ
せる:* スレオニン2および28をシステインに変更することにより、それら(T2Cと
T28C)の間にジスルフィド架橋を形成させる。* プロリン5およびアスパラギン19をシステインに変更することにより、それ
ら(P5CとN19C)の間にジスルフィド架橋を形成させる。* スレオニン7およびセリン16をシステインに変更することにより、それら(T
7CとS16C)の間にジスルフィド架橋を形成させる。* アスパラギン10およびアスパラギン29をシステインに変更することにより
、それら(N10CとN29C)の間にジスルフィド架橋を形成させる。
【0019】 2.部位特異的突然変異により、組換え的変更として、キシラナーゼのC末端
に対し、1つのアミノ酸(例えば、アスパラギン酸またはグルタミン酸)を加える
ことで、C末端から該酵素本体に対する塩橋を形成させ、C末端を該酵素本体に
更に密接に結合させる。適切な場合、塩橋が形成するように、該タンパク質本体
に適当なアミノ酸置換を行なうことができる。 *アスパラギン酸(+191D)をC末端セリン(S190)に付加する。これに
より、野生型リシンをアルギニンに置換(K58R)したアルギニン58と塩橋を
形成させる。
【0020】 3.部位特異的突然変異により、α−へリックスを介する該C末端部分または
α−ヘリックスに近接する領域に、少なくとも1つのジスルフィド架橋を形成さ
せ、当該酵素を安定にする。 *ロイシン105およびグルタミン162をシステインに変更し、それら(L1
05CとQ162C)の間にジスルフィド架橋を形成させる。
【0021】 4.部位特異的突然変異誘発による点突然変異: N11D、T26R、G30
H、N67R、N97R、A132R、N157R、A160R、T165N、
M169H、S186Rが、T. reeseiキシラナーゼIIの安定性を増大させる。
【0022】
【本発明の方法】
突然変異および組換えXYNII遺伝子の産生は、以下の基本手順により行なっ
た。
【0023】 1.発現ベクターおよび酵素産生 ベクターpKKtac(VTT、フィンランド、エスポー)またはベクターpA
LK143(ROAL、フィンランド、ラジャメキ(Rajamaeki))を用い、大腸菌
株XLI-BlueまたはRv308において、T. reeseiキシラナーゼIIを産生
した。T. reesei XYNII遺伝子は、T. resseiのcDNAからPCRによりベ
クターpKKtac(IPTGによる発現誘導)に、直接クローニングした。その
代わりとして、T. reesei XYNII遺伝子を含有するプラスミドpALK143
を用いた。ベクターpKKtacのペクチン酸リアーゼ(pelB)シグナル配列
およびベクターpALK143のアミラーゼシグナル配列により、両ベクターは
培地中にキシラナーゼを分泌する。
【0024】 2.部位特異的突然変異誘発および組換えXYNII遺伝子の生産 本発明の実施例において用いた突然変異T. ressei XYNII遺伝子の産生は、
以下のように行なった:変更コドンに対する配列を含むオリゴヌクレオチドプラ
イマーを用いたポリメラーゼ連鎖反応(PCR)により、突然変異を誘発した。用
いたオリゴヌクレオチドの例としては、図1並びに配列1〜12として添付する
配列表がある。プライマー(所望の突然変異を含む)を用いるPCRは、クイック
チェンジ法(Quick Change method)(ストラタジーン(Stratagene)、オランダ、レ
ウゼン(Leusden)、ウェストバーグ(Westburg))および遺伝的に既知の方法によっ
て行った。Pfu Turbo(ストラタジーン、米国、カルフォルニア、ラ・ホーヤ)を
DANポリメラーゼとして用いた。クローニングした大腸菌株を、レマゾ−ルブ
リリアントブルー(Rhemazol Brilliant Blue)にカップリングされたキシラン(ビ
ーチウッド(birchwood)キシラン:シグマ(Sigma)、ドイツ、シュタインハイム)
を含むプレート上にて培養した。キシラナーゼ活性はコロニー周辺のハローとし
て見ることができた(Biely等、1985)。
【0025】 3.キシラナーゼ活性の決定 酵素試料のキシラナーゼ活性は、加水分解したキシラン繊維から分離された還
元糖の量を測定することで決定した。還元糖は50mMクエン酸−リン酸緩衝液
中にてDNS法(Bailey等、1992)により測定した。標準的な活性決定はpH5お
よび50℃にて行なった。
【0026】 4.酵素の安定性の決定 キシラナーゼの安定性は、種々の温度にて改変した酵素の半減期を測定するこ
とにより試験した。酵素を55℃または65℃にて様々な時間インキュベートし
、残基活性を上述のように測定した。様々な温度にて、酵素を10分間インキュ
ベートし、次いでDNS法により残基活性を測定することによって、高温におけ
る安定性もまた測定した。pH依存性のキシラナーゼ活性は、様々なpH値にお
いて酵素活性を決定することによって測定した。酵素の最適温度は、様々な温度
(10分、pH5)にて活性を測定することにより決定した。突然変異型酵素の特
性を野生型 T. reesei XYNII酵素と比較した。
【0027】
【突然変異の実施例】
実施例1 三重突然変異(T2C、T28CとK58R)および組換え的変更(+191D)
を、上述の方法を用いてT. reesei XynII中に生成させた。突然変異型酵素を
Y5と称する。該突然変異型酵素を大腸菌中において発現させ、培養培地として
ルリアブロース(Luria Broth)を用いて振とうフラスコ中37℃にて、この大腸
菌を培養した。培養後、この細胞を遠心分離により除去し、培地中に分泌された
キシラナーゼを、上述のように様々な条件において特徴づけした。図2には、突
然変異型Y5(T2C、T28C、K58R、+191D)および野生型酵素(T.
reesei XynII)を様々な温度においてビーチウッドキシランと共に10分間イ
ンキュベートし、遊離した還元糖の相対量を、DNS法を用いて測定した場合の
酵素活性に対する温度効果を示す。該突然変異体はキシラナーゼの最適温度が約
15℃高まった。
【0028】 実施例2 実施例1に記載の三重突然変異キシラナーゼ(T2C、T28C、K58R、
+191D)を、クエン酸−リン酸緩衝液中50℃にて、1%ビーチウッドキシ
ラン中、様々なpH値において10分間インキュベートした。図3は突然変異型
および野生型キシラナーゼについて放出された還元糖の相対量を示す。この突然
変異は酵素のpH依存性活性を、わずかにアルカリ性側へ広げた。この突然変異
型酵素は、pH7〜8において野生型酵素よりも、より活性(突然変異型酵素の
活性はpH8(50℃)において約20%高かった)であった。
【0029】 実施例3 上記三重突然変異(T2C、T28C、K58R、+191D)および野生型酵
素を様々な温度にて10分間インキュベートした。インキュベート後、この試料
を冷却し、残基活性を標準的な条件にて決定した。野生型酵素を、予め55〜6
0℃にて完全にインキュベートした。この突然変異型酵素は、65℃においてさ
え、その活性の約50%が残存していた(図4)。以下に示す表1において、55
℃および65℃における突然変異型(Y5)および野生型キシラナーゼの半減期(
T1/2)を示す。
【表1】
【0030】 実施例4 上述の方法を用いて、ジスルフィド架橋(L105CおよびQ162C)を形成
させ、α−ヘリックスのC末端を隣接するβ−ストランドに結合させた。この酵
素を大腸菌中に産生させ、その特性を決定した。図5では、種々の温度にて、野
生型酵素と比較した突然変異型酵素の不活性化を示す。55℃における突然変異
型酵素の安定性は、野生型酵素に対して約20倍に増大し、それにより半減期は
5分(野生型酵素)から約1.5時間(突然変異型酵素)に増大した。
【0031】
【文献】
Arase, A., Yomo, T., Urabe, I., Hata, Y., Katsube, Y. & Okada, H. (1993)
。ランダム突然変異誘発によるキシラナーゼの安定化。FEBS Letters 316,123-7
。 Bailey, J. M., Biely, P. & Poutanen, K. (1992)。キシラナーゼ活性の検定法
の研究室内試験。J. Biotech. 23,257-270。 Biely, P., Mislovicova, D. & Toman, R. (1985)。エンド-1,4-β-キシラナー
ゼおよびエンド-1,4-β-グルカナーゼ検定についての可溶性色素基質。Analytic
al Biochemistry 144,142-6。 Bodie, E., Cuevas, W. A. & Koljonen, M. (1995)。米国特許第5,437,992号。 Campbell, R.L., Rose, D.R., Sung, W.L., Yaguchi, M. & Wakarchuck, W. (19
95)。米国特許第5,405,769号。 Fukunaga, N., Iwasaki, Y., Kono. S., Kita, Y. & Izumi, Y. (1998)。米国特
許第5,736,384号。 Gruber, K., Klintschar, G., Hayn, M., Schlacher, A., Steiner. W. & Kratk
y, C. (1998)。Thermomyces lanuginosus由来の好熱性キシラナーゼ:高分解X
線構造およびモデリング研究。Biochemistry 37,13475-13485。 Harris, G. W., Pickersgill, R. W., Connerton, I., Debeire, P., Touzel, J
. P, Breton, C. & Perez, S. (1997)。産業的に関連のある好熱性キシラナーゼ
の特性についての構造的基礎。Proteins 29,77-86。 Henrissat, B. & Bairoch, A. (1993)。アミノ酸配列の類似性に基づく糖加水分
解酵素分類における新規ファミリー。Biochemical Journal 293,781-8。 Prade, R. A. (1996)。キシラナーゼ:生物学から生物工学へ。Biotechnology &
Genetic Engineering Reviews 13,101-31。 Sung, W. L., Yaguchi, M., Ishikawa, K., Huang, F., Wood, M. & Zahab, D.
M. (1998)。米国特許第5,759,840号。 Tenkanen, M, Puls, J. & Poutanen, K. (1992)。Trichoderma reeseiの2つの
主要キシラナーゼ。Enzyme Microb. Technol. 14,566-574。 Toerroenen, A. & Rouvinen, J. (1995)。Trichoderma reesei由来の2つの主要
なエンド-1,4-キシラナーゼの構造比較。Biochemistry 34,847-56。 Toerroenen, A. & Rouvinen, J. (1997)。低分子量エンド-1,4-β-キシラナーゼ
の構造および機能特性。Journal of Biotechnology 57,137-49。 Wakarchuk, W. W., Sung, W. L., Campbell, R. L., Cunningham, A., Watson,
D. C. & Yaguchi, M. (1994)。ジスルフィド結合の導入によるバシラスシークラ
ンス(Bacillus circulans)キシラナーゼの熱安定性。Protein Engineering 7,13
79-86。 Vogt, G, Woell, S. & Argos, P. (1997)。タンパク質の熱安定性、水素結合お
よびイオン対。Journal of Molecular Biology 269,631-43。
【配列表】
【図面の簡単な説明】
【図1】 キシラナーゼの突然変異誘発(下線のコドン変更)に用いたオリゴ
ヌクレオチドの組みである。また、この配列は添付する配列表中、配列1〜12
としても提供する。
【図2】 T. reesei XynIIの最適温度における突然変異T2C、T28
C、K58Rおよび+191Dの効果を示すグラフである(WTは野生型酵素で
あり、Y5は突然変異型T. reesei XynIIである)。
【図3】 T. reesei XynIIのpH依存性活性における突然変異T2C、
T28C、K58Rおよび+191Dの効果を示すグラフである(WTおよびY
5は図2と同様である)。
【図4】 種々の温度についてのT. reesei XynIIの不活性化における突
然変異T2C、T28C、K58Rおよび+191Dの効果を示すグラフである
(WTおよびY5は図2と同様である)。
【図5】 種々の温度についてのT. reesei XynIIの不活性化における突
然変異Q162CおよびL105Cの効果を示すグラフである(W.t.は野生型酵
素である)。
【手続補正書】特許協力条約第34条補正の翻訳文提出書
【提出日】平成13年12月7日(2001.12.7)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】特許請求の範囲
【補正方法】変更
【補正の内容】
【特許請求の範囲】
───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 20001586 (32)優先日 平成12年7月3日(2000.7.3) (33)優先権主張国 フィンランド(FI) (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,MZ,SD,SL,SZ,TZ,UG ,ZW),EA(AM,AZ,BY,KG,KZ,MD, RU,TJ,TM),AE,AG,AL,AM,AT, AU,AZ,BA,BB,BG,BR,BY,BZ,C A,CH,CN,CR,CU,CZ,DE,DK,DM ,DZ,EE,ES,FI,GB,GD,GE,GH, GM,HR,HU,ID,IL,IN,IS,JP,K E,KG,KP,KR,KZ,LC,LK,LR,LS ,LT,LU,LV,MA,MD,MG,MK,MN, MW,MX,MZ,NO,NZ,PL,PT,RO,R U,SD,SE,SG,SI,SK,SL,TJ,TM ,TR,TT,TZ,UA,UG,US,UZ,VN, YU,ZA,ZW (72)発明者 マッティ・レイソラ フィンランド、エフイーエン−02300エス ポー、レトキクヤ2番 Fターム(参考) 4B024 AA03 AA05 BA12 CA04 DA06 EA04 GA11 HA01 4B050 CC03 DD03 LL05

Claims (13)

    【特許請求の範囲】
  1. 【請求項1】 ファミリーG/11の野生型キシラナーゼ酵素に相当する野
    生型キシラナーゼに対して熱安定性またはpH安定性が増大されたファミリーG
    /11の改変キシラナーゼ酵素であって、当該野生型酵素のN末端領域をジスル
    フィド架橋により該タンパク質本体に結合させること、および/または、当該野
    生型酵素のC末端領域を塩橋により該タンパク質本体に結合させること、または
    、当該野生型酵素のα−へリックスをジスルフィド架橋により該タンパク質本体
    に結合させること、または、該タンパク質に単一アミノ酸突然変異を誘発するこ
    とにより、当該野生型キシラナーゼ酵素が改変されている、ファミリーG/11
    の改変キシラナーゼ酵素。
  2. 【請求項2】 該キシラナーゼがTrichoderma reeseiキシラナーゼである、
    請求項1に記載の改変キシラナーゼ。
  3. 【請求項3】 該キシラナーゼがTrichoderma reeseiキシラナーゼII(Xy
    nII)である、請求項2に記載の改変キシラナーゼ。
  4. 【請求項4】 当該酵素のC末端領域にアスパラギン酸またはグルタミン酸
    を付加した結果、付加したアミノ酸と該タンパク質本体中の適当なアミノ酸との
    間に塩橋が形成されることによって、当該酵素のC末端領域が該タンパク質本体
    と結合している、請求項1〜3のいずれかに記載の改変キシラナーゼ。
  5. 【請求項5】 Trichoderma reeseiキシラナーゼII(XynII)のアミノ酸T
    2CとT28Cとの間に、またはファミリーG/11の他のキシラナーゼの相当
    するアミノ酸間にジスルフィド架橋が形成されることによって、当該酵素のN末
    端領域が該タンパク質本体に結合している、請求項1〜4のいずれかに記載の改
    変キシラナーゼ。
  6. 【請求項6】 T. reeseiキシラナーゼII(XynII)のアミノ酸T2および
    T28をシステインに変更し、K58をアルギニンに変更し、そしてアスパラギ
    ン酸を当該酵素のC末端に付加(+191D)することによって、アミノ酸T2C
    とT28Cとの間にジスルフィド架橋が、およびアミノ酸K58Rと+191D
    との間に塩橋が形成されている、請求項1に記載の改変キシラナーゼ。
  7. 【請求項7】 Trichoderma reeseiキシラナーゼII(XynII)のアミノ酸L
    105CとQ162Cとの間、またはファミリーG/11の他のキシラナーゼの
    相当するアミノ酸間のジスルフィド架橋により、α−へリックスのC末端部分を
    隣接するβ−ストランドに結合させることによって、当該酵素のC末端領域がジ
    スルフィド架橋により該タンパク質本体に結合している、請求項1〜3のいずれ
    かに記載の改変キシラナーゼ。
  8. 【請求項8】 ファミリーG/11キシラナーゼの熱安定性を向上させ、お
    よび/またはpH領域を広域化する方法であって、当該酵素のN末端領域をジス
    ルフィド架橋により該タンパク質本体に結合させること、および/または、当該
    酵素のC末端領域を塩橋により該タンパク質本体に結合させること、または、当
    該酵素のα−へリックスをジスルフィド架橋により該タンパク質本体に結合させ
    ること、または、該タンパク質中に単一アミノ酸突然変異を誘発する過程を含む
    方法。
  9. 【請求項9】 アスパラギン酸またはグルタミン酸を当該C末端領域に付加
    することにより、付加したアミノ酸と該タンパク質本体中の適当なアミノ酸との
    間に塩橋を形成させる、請求項8に記載の方法。
  10. 【請求項10】 T. reeseiキシラナーゼ(XynII)において、付加したア
    スパラギン酸またはグルタミン酸が、リシンまたはアルギニンに変更したアミノ
    酸58間で塩橋を形成する、請求項9に記載の方法。
  11. 【請求項11】 T. reeseiキシラナーゼ(XynII)において、アミノ酸T
    2およびT28をシステインに変更し、K58をアルギニンに変更し、そしてア
    スパラギン酸を当該酵素のC末端に付加(+191D)することで、アミノ酸T2
    CとT28Cとの間にジスルフィド架橋、およびアミノ酸K58Rと+191D
    との間に塩橋を形成させる、請求項8に記載の方法。
  12. 【請求項12】 単一アミノ酸突然変異を誘発する、請求項8に記載の方法
  13. 【請求項13】 T. reesei XynIIにおいてN11D改変を行なう、請求
    項12に記載の方法。
JP2001530457A 1999-10-12 2000-10-12 ファミリーG/11キシラナーゼの安定性を向上させ、pH領域を広域化する方法 Expired - Lifetime JP4647169B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
FI992186 1999-10-12
FI19992186 1999-10-12
US16328399P 1999-11-03 1999-11-03
US60/163,283 1999-11-03
FI20001586 2000-07-03
FI20001586A FI108728B (fi) 1999-10-12 2000-07-03 Menetelmä perheen G/11 ksylanaasien stabiilisuuden parantamiseksi ja optimaalisen pH-alueen muuttamiseksi
PCT/FI2000/000877 WO2001027252A1 (en) 1999-10-12 2000-10-12 Method to improve the stability and broaden the ph range of family g/11 xylanases

Publications (2)

Publication Number Publication Date
JP2003511066A true JP2003511066A (ja) 2003-03-25
JP4647169B2 JP4647169B2 (ja) 2011-03-09

Family

ID=39618081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001530457A Expired - Lifetime JP4647169B2 (ja) 1999-10-12 2000-10-12 ファミリーG/11キシラナーゼの安定性を向上させ、pH領域を広域化する方法

Country Status (16)

Country Link
US (3) US8426181B2 (ja)
EP (1) EP1222256B1 (ja)
JP (1) JP4647169B2 (ja)
CN (2) CN101173262A (ja)
AT (1) ATE295879T1 (ja)
AU (1) AU781296B2 (ja)
BR (1) BR0014833A (ja)
CA (1) CA2385937C (ja)
DE (1) DE60020255T2 (ja)
DK (1) DK1222256T3 (ja)
ES (1) ES2239046T3 (ja)
FI (1) FI108728B (ja)
IL (1) IL149061A0 (ja)
NO (1) NO20021723D0 (ja)
WO (1) WO2001027252A1 (ja)
ZA (1) ZA200202894B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072448A1 (ja) * 2014-11-05 2016-05-12 東レ株式会社 エンドキシラナーゼ変異体、バイオマス分解用酵素組成物及び糖液の製造方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI108728B (fi) * 1999-10-12 2002-03-15 Carbozyme Oy Menetelmä perheen G/11 ksylanaasien stabiilisuuden parantamiseksi ja optimaalisen pH-alueen muuttamiseksi
US20070243595A1 (en) * 2006-04-14 2007-10-18 Clarkson Kathleen A Modified enzymes, methods to produce modified enzymes and uses thereof
BRPI0414370A (pt) * 2003-09-15 2006-11-14 Genencor Int enzimas modificadas, processos para produzir enzimas modificadas e usos das mesmas
EP2497377A3 (en) 2005-10-12 2013-09-04 Danisco US Inc. Stable, durable granules with active agents
WO2007115391A1 (en) * 2006-04-12 2007-10-18 National Research Council Of Cananda Modification of xylanases to increase thermophilicity, thermostability and alkalophilicity
RU2464313C2 (ru) * 2006-04-12 2012-10-20 Нэйшенл Рисерч Каунсил Оф Кэнэда Модифицированная ксиланаза
CN101289668B (zh) * 2007-04-16 2010-09-08 屏东科技大学 高酸碱反应范围的聚木醣酶的突变基因及其点突变方法
WO2008150376A1 (en) 2007-05-21 2008-12-11 Danisco Us, Inc., Genencor Division Use of an aspartic protease (nsp24) signal sequence for heterologous protein expression
WO2012019169A1 (en) 2010-08-06 2012-02-09 Danisco Us Inc. Production of isoprene under neutral ph conditions
AR082578A1 (es) 2010-08-06 2012-12-19 Danisco Us Inc SACARIFICACION Y FERMENTACION A pH NEUTRO
EP2739742A1 (en) 2011-08-05 2014-06-11 Danisco US Inc. PRODUCTION OF ISOPRENOIDS UNDER NEUTRAL pH CONDITIONS
EP3342867B1 (en) 2011-11-25 2020-07-29 Mitsui Chemicals, Inc. Mutant xylanase, manufacturing method and use therefor, and method for manufacturing saccharified lignocellulose
US20140329309A1 (en) 2011-12-09 2014-11-06 Danisco Us Inc. Ribosomal Promoters for Production in Microorganisms
WO2013192043A1 (en) 2012-06-20 2013-12-27 Danisco Us Inc. Sandwich granule
CN104470371A (zh) 2012-07-18 2015-03-25 丹尼斯科美国公司 熔化延迟的颗粒
EP3058055A1 (en) 2013-10-15 2016-08-24 Danisco US Inc. Clay granule
BR112016009416A2 (pt) 2013-10-28 2017-10-03 Danisco Us Inc Levedura seca ativa geneticamente modificada de grande escala
CN103627686B (zh) * 2013-11-14 2015-03-18 青岛蔚蓝生物集团有限公司 一种木聚糖酶突变体及其应用
EP3068879B1 (en) 2013-11-14 2019-12-25 Danisco US Inc. Stable enzymes by glycation reduction
CN103642777A (zh) * 2013-12-10 2014-03-19 江南大学 一种提高米曲霉木聚糖酶热稳定性的方法
GB201401648D0 (en) * 2014-01-31 2014-03-19 Dupont Nutrition Biosci Aps Protein
US9681386B2 (en) * 2014-03-06 2017-06-13 Apple Inc. Wi-Fi low energy preamble
CN104560920B (zh) * 2015-01-26 2017-07-18 青岛蔚蓝生物集团有限公司 一种酸性木聚糖酶突变体及其应用
CN107250365A (zh) 2015-02-19 2017-10-13 丹尼斯科美国公司 增强的蛋白质表达
EP3270893B1 (en) 2015-03-19 2021-07-28 Danisco US Inc. Stable granules with low internal water activity
EP3192866A1 (en) 2016-01-15 2017-07-19 CIC nanoGUNE - Asociación Centro de Investigación Cooperativa en Nanociencias Endocellulases and uses thereof
CN105524904B (zh) * 2016-02-29 2019-03-08 四川农业大学 一种耐热的重组木聚糖酶及其制备方法和用途
DK3419991T3 (da) 2016-03-04 2023-01-16 Danisco Us Inc Modificerede ribosomale genpromotorer til proteinproduktion i mikroorganismer
CN109402091B (zh) * 2017-08-18 2022-02-11 潍坊康地恩生物科技有限公司 木聚糖酶突变体
WO2019089898A1 (en) 2017-11-02 2019-05-09 Danisco Us Inc Freezing point depressed solid matrix compositions for melt granulation of enzymes
EP3502126A1 (en) 2017-12-19 2019-06-26 CIC nanoGUNE - Asociación Centro de Investigación Cooperativa en Nanociencias Ancestral cellulases and uses thereof
CN109320593A (zh) * 2018-11-05 2019-02-12 中国人民解放军军事科学院军事医学研究院 抑制hiv感染的螺旋多肽及其用途
EP3872173A1 (en) 2020-02-28 2021-09-01 CIC nanoGUNE - Asociación Centro de Investigación Cooperativa en Nanociencias Method for producing crystalline nanocellulose
EP3872172A1 (en) 2020-02-28 2021-09-01 CIC nanoGUNE - Asociación Centro de Investigación Cooperativa en Nanociencias Conductive cellulose composite materials and uses thereof
KR20230021903A (ko) * 2021-08-06 2023-02-14 씨제이제일제당 (주) 자일라나제 활성을 갖는 변이형 폴리펩티드

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405769A (en) * 1993-04-08 1995-04-11 National Research Council Of Canada Construction of thermostable mutants of a low molecular mass xylanase
JPH10179155A (ja) * 1996-09-09 1998-07-07 Nat Res Council Of Canada 好熱性、好アルカリ性及び熱安定性を改善するためのキシラナーゼの修飾

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437992A (en) 1994-04-28 1995-08-01 Genencor International, Inc. Five thermostable xylanases from microtetraspora flexuosa for use in delignification and/or bleaching of pulp
DE69527924T2 (de) 1994-06-14 2003-01-09 Genencor Int Hitzebeständige xylanasen
JP3435946B2 (ja) 1994-12-21 2003-08-11 王子製紙株式会社 耐熱性キシラナーゼ
WO1997027292A1 (en) 1996-01-22 1997-07-31 Novo Nordisk A/S An enzyme with xylanase activity
AU2523597A (en) 1996-03-29 1997-10-22 Pacific Enzymes Limited A xylanase
CA2385245C (en) 1998-11-16 2011-04-12 Iogen Bio-Products Corporation Thermostable xylanases
US7718411B1 (en) * 2004-08-05 2010-05-18 Danisco Us Inc. Trichoderma reesei G/11 xylanases with improved stability
FI108728B (fi) * 1999-10-12 2002-03-15 Carbozyme Oy Menetelmä perheen G/11 ksylanaasien stabiilisuuden parantamiseksi ja optimaalisen pH-alueen muuttamiseksi
CN102676675B (zh) 1999-12-30 2015-11-18 金克克国际有限公司 Trichoderma reesei木聚糖酶

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405769A (en) * 1993-04-08 1995-04-11 National Research Council Of Canada Construction of thermostable mutants of a low molecular mass xylanase
JPH10179155A (ja) * 1996-09-09 1998-07-07 Nat Res Council Of Canada 好熱性、好アルカリ性及び熱安定性を改善するためのキシラナーゼの修飾

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072448A1 (ja) * 2014-11-05 2016-05-12 東レ株式会社 エンドキシラナーゼ変異体、バイオマス分解用酵素組成物及び糖液の製造方法
US10435728B2 (en) 2014-11-05 2019-10-08 Toray Industries, Inc. Endoxylanase mutant, enzyme composition for biomass decomposition, and method of producing sugar solution
AU2015344324B2 (en) * 2014-11-05 2021-09-30 Toray Industries, Inc. Endoxylanase mutant, enzyme composition for biomass decomposition, and method for producing sugar solution

Also Published As

Publication number Publication date
ES2239046T3 (es) 2005-09-16
CN101173262A (zh) 2008-05-07
BR0014833A (pt) 2002-06-18
US20130288335A1 (en) 2013-10-31
EP1222256B1 (en) 2005-05-18
WO2001027252A1 (en) 2001-04-19
CN100378217C (zh) 2008-04-02
AU7925000A (en) 2001-04-23
NO20021723L (no) 2002-04-11
ZA200202894B (en) 2003-04-14
US8426181B2 (en) 2013-04-23
US20080171374A1 (en) 2008-07-17
US9481874B2 (en) 2016-11-01
DE60020255D1 (de) 2005-06-23
NO20021723D0 (no) 2002-04-11
DK1222256T3 (da) 2005-09-05
FI108728B (fi) 2002-03-15
CA2385937C (en) 2010-07-27
JP4647169B2 (ja) 2011-03-09
ATE295879T1 (de) 2005-06-15
US8846364B2 (en) 2014-09-30
CN1379813A (zh) 2002-11-13
CA2385937A1 (en) 2001-04-19
FI20001586A0 (fi) 2000-07-03
EP1222256A1 (en) 2002-07-17
IL149061A0 (en) 2002-11-10
AU781296B2 (en) 2005-05-12
US20150011743A1 (en) 2015-01-08
DE60020255T2 (de) 2006-01-19

Similar Documents

Publication Publication Date Title
JP2003511066A (ja) ファミリーG/11キシラナーゼの安定性を向上させ、pH領域を広域化する方法
US8415130B2 (en) Polypeptides of Alicyclobacillus sp. having acid endoglucanase or acid cellulase activity
He et al. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme
Paës et al. Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus
Kosugi et al. Characterization of two noncellulosomal subunits, ArfA and BgaA, from Clostridium cellulovorans that cooperate with the cellulosome in plant cell wall degradation
CA2576110C (en) Polypeptides of botryosphaeria rhodina
EP1709165A2 (en) Polypeptides of alicyclibacillus
De Ioannes et al. An α-L-arabinofuranosidase from Penicillium purpurogenum: production, purification and properties
Ayadi et al. Improvement of Trichoderma reesei xylanase II thermal stability by serine to threonine surface mutations
US7314743B2 (en) Modified enzymes, methods to produce modified enzymes and use thereof
Gallardo et al. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases
Degrassi et al. A thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterisation
US7718411B1 (en) Trichoderma reesei G/11 xylanases with improved stability
Lee et al. Cloning and characterization of the xyn11A gene from Lentinula edodes
BR112016027884B1 (pt) Variante de uma xilanase da família 11 de gh genitora, polinucleotídeo, construção de ácido nucleico, vetor de expressão, célula hospedeira, e, métodos de produção de uma variante de xilanase da família 11 de gh e de degradação de um material contendo xilana
US20100062511A1 (en) Modified enzymes, methods to produce modified enzymes and uses thereof
Nevalainen et al. Making a bacterial thermophilic enzyme in a fungal expression system
Weng et al. Construction, expression, and characterization of a thermostable xylanase
Class et al. Patent application title: METHOD TO IMPROVE THE STABILITY AND BROADEN THE PH RANGE OF FAMILY G/11 XYLANASES
KR20020044161A (ko) 계통 G/11 크실라나아제의 안정성을 향상시키고 pH범위를 확장시키기 위한 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250