JP2003246624A - パイロクロア型酸化物の製造方法 - Google Patents

パイロクロア型酸化物の製造方法

Info

Publication number
JP2003246624A
JP2003246624A JP2002048353A JP2002048353A JP2003246624A JP 2003246624 A JP2003246624 A JP 2003246624A JP 2002048353 A JP2002048353 A JP 2002048353A JP 2002048353 A JP2002048353 A JP 2002048353A JP 2003246624 A JP2003246624 A JP 2003246624A
Authority
JP
Japan
Prior art keywords
mixed solution
type oxide
pyrochlore type
prepared
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002048353A
Other languages
English (en)
Inventor
Hisashi Kuno
央志 久野
Hiroshi Tamura
央 田村
Shinichi Matsunaga
真一 松永
Toshitaka Tanabe
稔貴 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2002048353A priority Critical patent/JP2003246624A/ja
Publication of JP2003246624A publication Critical patent/JP2003246624A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】 【課題】 安価にかつ高いOSC量を有するパイロクロ
ア型酸化物の製造方法を提供する。 【解決手段】 セリウム化合物、ジルコニウム化合物、
及び貴金属化合物の混合溶液を作成し、前記混合溶液か
らセリウム、ジルコニウム、及び貴金属を含む固体物質
を調製し、次いで、前記固体物質を還元性雰囲気中で焼
成することを特徴とするパイロクロア型酸化物の製造方
法である。別な態様として、前記混合溶液に還元剤を加
えた後、固体物質を調製し、次いで、前記固体物質を非
酸化性雰囲気中で焼成することを特徴とするパイロクロ
ア型酸化物の製造方法である。好ましくは、前記還元剤
が、水素化ホウ素ナトリウム、ヒドラジン、クエン酸、
及びギ酸からなる群より選択される。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、パイロクロア型酸
化物の製造方法に関し、とりわけ、内燃機関の排気ガス
浄化用触媒に助触媒として使用されるのに適するパイロ
クロア型酸化物の製造方法に関する。
【0002】
【従来の技術】自動車用エンジン等の内燃機関から排出
される排気ガスには、窒素酸化物(NOX)、一酸化炭素
(CO)、炭化水素(HC)等が含まれるが、これらの有害
物質は、COとHCを酸化すると同時に、NOXをO2
還元する三元触媒等によって浄化することができる。か
かる三元触媒は、一般に、白金(Pt)、パラジウム(P
d)、ロジウム(Rh)等の貴金属の触媒成分をγ-アルミ
ナ等の酸化物の担体に担持して構成される。
【0003】こうした三元触媒においてCOとHCの酸
化、及びNOXの還元が効率的に進行するためには、内
燃機関の空燃比が適切に制御されて、排気ガス組成が特
定の狭い範囲にあることが必要である。しかし、実際に
は、制御系の時間遅れ等によって排気ガス組成がある程
度変動し、特定の狭い範囲から外れることが起こり得
る。
【0004】ここで、パイロクロア型酸化物Ce2Zr2
7は、含まれるCe原子が3価と4価の価数変化を生
じることができ、O2を比較的多く含む酸化性雰囲気で
は、Ce原子が3価から4価に価数変化を生じて酸素を
吸収し、COとHCを比較的多く含む還元性雰囲気で
は、Ce原子が4価から3価に価数変化を生じて酸素を
放出することができる。
【0005】したがって、パイロクロア型酸化物を触媒
に添加すると、触媒成分の近傍における排気ガス組成の
変動が緩和され、上記の排気ガス浄化をより効率的に進
行させることができる。これに加えて、パイロクロア型
酸化物の酸素吸収に伴って、かなりの発熱が生じるた
め、この発熱をエンジン始動時の触媒の暖機に利用し、
触媒活性の開始時期を早めることができる。このため、
パイロクロア型酸化物は、排気ガス浄化用触媒の助触媒
として有用である。
【0006】
【発明が解決しようとする課題】しかるに、こうしたパ
イロクロア型酸化物は、一般に、酸化セリウムと酸化ジ
ルコニウムの混合物等を焼成することによって複合酸化
物CeZrO4を製造した後、この複合酸化物を還元処
理し、脱酸素させることによって製造される。しかしな
がら、CeZrO4に含まれるO原子の結合力は極めて
強く、還元処理を行うには、例えば、還元性ガスのH2
等を含み、1000℃を超える極めて高い温度の中で焼
成するといった製造条件が必要である。
【0007】このため、パイロクロア型酸化物は、製造
上、設備コストが高く、安全対策を十分に施す必要があ
り、さらに、高価なH2等の還元性ガスを使用すること
により原料コストが高いといった問題もある。一方、排
気ガス浄化用触媒の浄化性能の面からは、酸素吸蔵能
(OSC)をさらに向上させることが要請されている。
【0008】ところで、特開平8−323199号公報
において、パイロクロア構造を有する酸化触媒が、特開
平11−165067号公報において、セリア-ジルコ
ニア複合酸化物の製造方法が記載されている。本発明
は、このような先行技術とは全く異なる方法により、安
価にかつ高いOSC量を有するパイロクロア型酸化物の
製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】上記の目的は、第1の態
様として、セリウム化合物、ジルコニウム化合物、及び
貴金属化合物の混合溶液を作成し、前記混合溶液からセ
リウム、ジルコニウム、及び貴金属を含む固体物質を調
製し、次いで、前記固体物質を還元性雰囲気中で焼成す
ることを特徴とするパイロクロア型酸化物の製造方法に
よって達成される。
【0010】即ち、第1の態様における方法は、とりわ
け、混合溶液からセリウム、ジルコニウム、及び貴金属
を含む固体物質を調製し、この固体物質を前駆体として
パイロクロア型酸化物を製造することを特徴とする。
【0011】かかる方法においては、後述の実施例で例
証するように、従来よりも焼成温度を著しく低下させる
ことができる。この理由は、前駆体の中に含まれる貴金
属の脱酸素の触媒作用によるため、また、この前駆体は
混合溶液から調製されることから、貴金属の前駆体中で
の均一性が高く、この触媒作用が増大されるためと推察
される。
【0012】また、上記の目的は、第2の態様として、
セリウム化合物、ジルコニウム化合物、及び貴金属化合
物の混合溶液を作成し、前記混合溶液に還元剤を加えた
後、前記混合溶液からセリウム、ジルコニウム、及び貴
金属を含む固体物質を調製し、次いで、前記固体物質を
非酸化性雰囲気中で焼成することを特徴とするパイロク
ロア型酸化物の製造方法によって達成される。
【0013】即ち、第2の態様における方法は、とりわ
け、混合溶液に還元剤を加えた後にセリウム、ジルコニ
ウム、及び貴金属を含む固体物質を調製し、この固体物
質を前駆体としてパイロクロア型酸化物を製造すること
を特徴とする方法である。
【0014】かかる方法においては、後述の実施例で例
証するように、従来よりも焼成温度を著しく低下させる
ことができ、かつ焼成時の雰囲気を還元性雰囲気に限ら
ず、非酸化性雰囲気で足りるとすることができる。この
理由は、還元剤を加えることによる固体物質の還元状態
が、前駆体の中に含まれる貴金属の触媒作用によって焼
成時にも維持されるためであり、また、第1の態様と同
様に、貴金属の前駆体中での均一性が高いためと推察さ
れる。
【0015】このような方法によって製造されたパイロ
クロア型酸化物は、貴金属を含むため、例えば、そのま
まハニカム基材等に担持され、あるいは別な触媒成分及
び/又は助触媒と組み合わされてハニカム基材等に担持
されて、高い浄化性能を有する排気ガス浄化用触媒を形
成することができる。
【0016】この高い排気ガス浄化性能を有する理由
は、従来よりも低い焼成温度で製造されるため、得られ
るパイロクロア型酸化物が、焼成時の肥大化が抑制され
た微細な形態を有するため、また、貴金属が、パイロク
ロア型酸化物との微細な混合状態により貴金属の移動が
パイロクロア型酸化物によって抑制され、したがって、
シンタリングが軽減されるためと推察される。
【0017】
【発明の実施の形態】本発明の第1の態様において、セ
リウム化合物、ジルコニウム化合物、及び貴金属化合物
の混合溶液を作成し、前記混合溶液からセリウム、ジル
コニウム、及び貴金属を含む固体物質を調製し、次い
で、前記固体物質を還元性雰囲気中で焼成してパイロク
ロア型酸化物が製造される。セリウム化合物、ジルコニ
ウム化合物、及び貴金属化合物としては、溶媒に溶解し
得る各種の化合物が使用可能であるが、好ましくは、限
定されるものではないが、水を溶媒として用い、水溶性
の化合物が使用される。
【0018】水溶性のセリウム化合物には、硝酸セリウ
ムCe(NO3)3・6H2O、塩化セリウムCeCl3、酢
酸セリウムCe(CH3CO2)3等が例示され、水溶性の
ジルコニウム化合物には、オキシ硝酸ジルコニウムZr
O(NO3)2・2H2O、塩化ジルコニウムZrCl4等が
例示される。
【0019】また、水溶性の貴金属化合物には、ジニト
ロジアンミン白金錯体Pt(NH3)2(NO2)2、塩化白金
酸H2PtCl6・6H2O、硝酸ロジウムRh(N
3)3、塩化ロジウムRhCl3・4H2O、硝酸パラジ
ウムPd(NO3)2、塩化パラジウムPdCl2等が例示
される。
【0020】これら化合物の混合溶液は、好ましくは、
Ce/Zrのモル比が0.9〜1.1の範囲に作製され
る。この範囲では、以降の焼成によりパイロクロア型酸
化物を単相で得ることができるためである。また、好ま
しくは、混合溶液中の貴金属(M)は、M/CeZrOx
の質量比で、0.005〜0.05、より好ましくは、
0.01〜0.02の範囲に調節される。
【0021】次いで、混合溶液から固体物質が調製さ
れ、この調製は、混合溶液の溶媒を蒸発等によって除去
することにより行うことができる。ここで、好ましく
は、混合溶液からセリウム化合物とジルコニウム化合物
を共沈させる工程が、溶媒除去の工程の前に設けられ
る。この共沈は、アンモニア水を添加して混合溶媒のp
Hを調節する等の常套手段により行うことができる。
【0022】次いで、得られた固体物質が、還元性雰囲
気中で焼成される。この還元性雰囲気としては、N2
ス中にH2、NH3のような還元性ガスを含むガス等が例
示され、このようなガス雰囲気中で500〜900℃の
温度で焼成することにより、パイロクロア型酸化物を生
成させることができる。
【0023】本発明の第2の態様においては、セリウム
化合物、ジルコニウム化合物、及び貴金属化合物の混合
溶液を作成し、前記混合溶液に還元剤を加えた後、前記
混合溶液からセリウム、ジルコニウム、及び貴金属を含
む固体物質を調製し、次いで、前記固体物質を非酸化性
雰囲気中で焼成してパイロクロア型酸化物が製造され
る。この第2の態様の方法は、第1の態様と同様に、セ
リウム化合物、ジルコニウム化合物、及び貴金属化合物
を溶解し、好ましくは、溶媒を水とした混合溶液が作成
される。
【0024】次いで、混合溶液に還元剤が添加される。
この還元剤としては、水素化ホウ素ナトリウムNaBH
4、ヒドラジンN24、クエン酸C687、ギ酸CH2
2等が好適に使用される。これら還元剤の添加量は、
還元剤の種類に応じて適宜選択されるが、混合溶液中の
Ceの1モルあたり0.5〜2モルの還元剤が一応の目
安である。
【0025】次いで、第1の態様と同様にして、混合溶
液の溶媒を蒸発等によって除去することにより固体物質
が調製され、得られた固体物質を500〜900℃の温
度で焼成して、パイロクロア型酸化物を生成させること
ができる。第2の態様においては、焼成の雰囲気を、第
1の態様のような還元性雰囲気にする必要はなく、O2
等の酸化性ガスを実質的に含まない非酸化性雰囲気であ
ればよい。以下、実施例によって本発明をより具体的に
説明する。
【0026】
【実施例】実施例1 500gのイオン交換水に75.56gの硝酸セリウム
と45.50gのオキシ硝酸ジルコニウムを加え、攪拌
して溶解させ、水溶液を作成した。この水溶液にジニト
ロジアンミン白金錯体の水溶液(Pt濃度4.4質量%)
を11.36g加え、さらに攪拌を続けた。
【0027】次いで、この混合溶液に濃度1モル/リッ
トルのアンモニア水を加えて、pHを約9.2に調節
し、共沈により沈殿物を生じさせた後、この沈殿物を含
む溶液を120℃で24時間加熱して水を蒸発させ、セ
リウム、ジルコニウム、及び白金を含む固体物質を調製
した。次いで、得られた固体物質を10体積%のH2
90体積%のN2を含むガス流中で600℃×5時間の
還元処理に供し、Ptを1質量%含むパイロクロア型酸
化物を得た。
【0028】実施例2 実施例1と同様にして、500gのイオン交換水に7
5.56gの硝酸セリウム、45.50gのオキシ硝酸ジ
ルコニウム、11.36gのジニトロジアンミン白金錯
体水溶液(Pt濃度4.4質量%)を溶解した混合溶液を
作成した。次いで、この混合溶液を60℃に保持して攪
拌しながら、還元剤の水素化ホウ素ナトリウムを16.
46g加え、この状態で攪拌を24時間継続した。
【0029】次いで、120℃で24時間加熱して混合
溶液から水を蒸発させ、セリウム、ジルコニウム、及び
白金を含む固体物質を調製した後、得られた固体物質を
2ガス流中で600℃×2時間の焼成に供し、Ptを
1質量%含むパイロクロア型酸化物を得た。
【0030】比較例1 500gのイオン交換水に75.56gの硝酸セリウム
と45.50gのオキシ硝酸ジルコニウムを溶解した混
合溶液を作成した。次いで、実施例1と同様にして、
この混合溶液に濃度1モル/リットルのアンモニア水を
加えて、pHを約9.2に調節し、沈殿物を生じさせた
後、この沈殿物を含む溶液を120℃で24時間加熱し
て水を蒸発させ、セリウムとジルコニウムを含む固体物
質を調製した。
【0031】次いで、得られた固体物質を10体積%の
2と90体積%のN2を含むガス流中で1200℃×5
時間の還元処理に供し、パイロクロア型酸化物を得た。
次いで、得られたパイロクロア型酸化物に、ジニトロジ
アンミン白金錯体の水溶液(Pt濃度4.4質量%)を含
浸担持した後、500℃×2時間の焼成に供し、Ptを
1質量%担持した。
【0032】−粉末X線回折法(XRD)による評価− 図1に、実施例1〜2及び比較例1において得られたP
tを含むパイロクロア型酸化物の粉末X線回折法(X線
源:CuKα線、管電圧:30kV、管電流:40m
A)により測定したチャートを示す。図1の結果は、い
ずれの例もパイロクロア型酸化物が得られていることを
示している。
【0033】−OSC量の評価− 実施例1〜2及び比較例1において得られたPtを含む
パイロクロア型酸化物を、それぞれ圧縮・解砕して、直
径約1mmのペレットにした各3.0gを反応管内部に
配置し、OSC量を測定した。
【0034】測定条件は、2体積%のCOと98体積%
のN2を含むガスと、1体積%のO2と98体積%のN2
を含むガスを交互に1分間にわたって30リットル/分
の流量で流通させ、CO流通時に発生するCO2の量を
測定し、COをCO2に酸化させるO2の量を、Ce1モ
ルあたりのO2モル数として、各温度におけるOSC量
求めた。この結果を図2に示す。
【0035】−触媒性能評価− 実施例1〜2及び比較例1において得られたPtを含む
パイロクロア型酸化物を圧縮・解砕して、直径約2mm
のペレットにした各2.0gを、実験室用の排気ガス浄
化性能評価装置の反応管内部に設置し、触媒性能を評価
した。評価用ガスとしては、C36、CO、NO、CO
2、O2、H2O、H2、N2のガスをA/F=14.6のス
トイキオメトリーの排気ガス組成に混合したガスを用
い、触媒床温度を10℃/分の速度で400℃まで昇温
させながらC36(HC)、NO、COの各成分の浄化率
を測定した。触媒性能は、これらの成分が50%浄化さ
れる温度を指標とした。
【0036】上記の浄化率の測定は、耐久後の触媒につ
いて行った。この結果を表1にまとめて示す。耐久条件
は、下記のA/F=20のモデル雰囲気ガスに1000
℃で3時間曝す条件とした。 A/F=20のモデルガス組成: CO2:10.6% + CO:0.16% + C36:290
0ppmC+ O2:6.2% + NO:900ppm + H2O:
10% (残余N2) 表1に示した結果より、実施例1〜2は、比較例1より
もHC、NO、COのいずれについても浄化性能が顕著
に高いことが分かる。
【0037】−比表面積の測定− 実施例1〜2及び比較例1において得られたPtを含む
パイロクロア型酸化物のBET1点法によって測定した
比表面積を、表1に併せて示す。
【0038】−結果より− 上記のように、実施例1〜2では、600℃の焼成温度
においてもパイロクロア型酸化物が得られており、本発
明による焼成温度を低下させ得る効果は顕著である。ま
た、実施例1〜2は、比較例1よりも顕著にOSC量が
高く、さらに、耐久後の排気ガス浄化性能も顕著に高い
ことが分かる。
【0039】このOSCが高い効果は、実施例1〜2で
は、低い温度で焼成されたことから、得られるパイロク
ロア型酸化物が、比表面積の高い微細な形態を有するこ
とに関係するものと考えられる。また、耐久後の排気ガ
ス浄化性能が高い効果は、Ptとパイロクロア型酸化物
の微細な混合状態により、Ptのシンタリングが抑制さ
れたためと考えられる。
【0040】
【発明の効果】安価にかつ高いOSC量を有するパイロ
クロア型酸化物の製造方法を提供することができ、さら
に、排気ガス浄化性能が高い触媒を提供することができ
る。
【0041】
【表1】
【図面の簡単な説明】
【図1】XRDのチャート併記した図である。
【図2】パイロクロア型酸化物のOSC量を比較したグ
ラフである。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/10 B01J 23/56 301A (72)発明者 田村 央 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 松永 真一 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 田辺 稔貴 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 3G091 AB01 AB03 BA02 BA03 GA01 GB10W 4D048 AA06 AA13 AA18 AB05 AB07 BA08X BA19X BA30X BA31Y BA32Y BA33Y BA34Y BA42X 4G048 AA03 AB02 AB03 AC08 AD06 AE05 AE08 4G069 AA02 AA08 BB01C BB06A BB06B BB19C BC02C BC32A BC33A BC43A BC43B BC51A BC51B BC69A BC75B BD01C BD03C BD06C BE08C CA03 CA09 DA06 EA02Y EC22X EC22Y EC25 FA01 FB09 FB30 FB44 FB45 FC04

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 セリウム化合物、ジルコニウム化合物、
    及び貴金属化合物の混合溶液を作成し、前記混合溶液か
    らセリウム、ジルコニウム、及び貴金属を含む固体物質
    を調製し、次いで、前記固体物質を還元性雰囲気中で焼
    成することを特徴とするパイロクロア型酸化物の製造方
    法。
  2. 【請求項2】 セリウム化合物、ジルコニウム化合物、
    及び貴金属化合物の混合溶液を作成し、前記混合溶液に
    還元剤を加えた後、前記混合溶液からセリウム、ジルコ
    ニウム、及び貴金属を含む固体物質を調製し、次いで、
    前記固体物質を非酸化性雰囲気中で焼成することを特徴
    とするパイロクロア型酸化物の製造方法。
  3. 【請求項3】 前記還元剤が、水素化ホウ素ナトリウ
    ム、ヒドラジン、クエン酸、及びギ酸からなる群より選
    択された請求項2に記載のパイロクロア型酸化物の製造
    方法。
  4. 【請求項4】 請求項1〜3のいずれか1項に記載の方
    法によって製造されたパイロクロア型酸化物が担持され
    た排気ガス浄化用触媒。
JP2002048353A 2002-02-25 2002-02-25 パイロクロア型酸化物の製造方法 Pending JP2003246624A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048353A JP2003246624A (ja) 2002-02-25 2002-02-25 パイロクロア型酸化物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048353A JP2003246624A (ja) 2002-02-25 2002-02-25 パイロクロア型酸化物の製造方法

Publications (1)

Publication Number Publication Date
JP2003246624A true JP2003246624A (ja) 2003-09-02

Family

ID=28661174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048353A Pending JP2003246624A (ja) 2002-02-25 2002-02-25 パイロクロア型酸化物の製造方法

Country Status (1)

Country Link
JP (1) JP2003246624A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170774A (ja) * 2003-12-15 2005-06-30 Tosoh Corp 複合酸化物及びその製造方法並びに排ガス浄化用触媒
JP2006035029A (ja) * 2004-07-23 2006-02-09 Mazda Motor Corp 排気ガス浄化用触媒
JP2007144413A (ja) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd 排ガス浄化用触媒
US7344683B2 (en) 2005-04-14 2008-03-18 Mazda Motor Corporation Exhaust gas catalytic converter
JP2012049075A (ja) * 2010-08-30 2012-03-08 Jx Nippon Oil & Energy Corp パイロクロア型酸化物の調製方法および燃料電池用電極触媒の製造方法
WO2012101505A1 (en) 2011-01-27 2012-08-02 Toyota Jidosha Kabushiki Kaisha Double layered exhaust gas purification catalyst
JP2012236117A (ja) * 2011-05-10 2012-12-06 Suzuki Motor Corp 白金水酸化物ポリマーのサイズを安定化させる方法
JP2013113227A (ja) * 2011-11-29 2013-06-10 Toyota Motor Corp 排ガス浄化装置および排ガス浄化方法
WO2014041984A1 (ja) * 2012-09-14 2014-03-20 三井金属鉱業株式会社 排気ガス浄化用触媒担体
JP2014105133A (ja) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center セリア−ジルコニア複合酸化物材料の製造方法及びこの方法によって得られるセリア−ジルコニア複合酸化物材料
JP2014105132A (ja) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center セリア−ジルコニア複合酸化物材料及びその製造方法
US9126189B2 (en) 2013-07-11 2015-09-08 Sabic Global Technologies B.V. Method of making pyrochlores
JP2015182933A (ja) * 2014-03-25 2015-10-22 第一稀元素化学工業株式会社 セリウム−ジルコニウム系複合酸化物及びその製造方法
CN111569891A (zh) * 2020-05-25 2020-08-25 太原理工大学 一种中温甲烷部分氧化催化剂及其制备方法和应用
CN115585039A (zh) * 2022-11-02 2023-01-10 四川大学 含烧绿石结构的铈锆氧化物载体材料在柴油车冷启动阶段氮氧化物净化中的应用

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170774A (ja) * 2003-12-15 2005-06-30 Tosoh Corp 複合酸化物及びその製造方法並びに排ガス浄化用触媒
JP2006035029A (ja) * 2004-07-23 2006-02-09 Mazda Motor Corp 排気ガス浄化用触媒
JP4561217B2 (ja) * 2004-07-23 2010-10-13 マツダ株式会社 排気ガス浄化用触媒
US7344683B2 (en) 2005-04-14 2008-03-18 Mazda Motor Corporation Exhaust gas catalytic converter
JP2007144413A (ja) * 2005-10-26 2007-06-14 Mitsui Mining & Smelting Co Ltd 排ガス浄化用触媒
JP2012049075A (ja) * 2010-08-30 2012-03-08 Jx Nippon Oil & Energy Corp パイロクロア型酸化物の調製方法および燃料電池用電極触媒の製造方法
US8853120B2 (en) 2011-01-27 2014-10-07 Toyota Jidosha Kabushiki Kaisha Double layered exhaust gas purification catalyst
WO2012101505A1 (en) 2011-01-27 2012-08-02 Toyota Jidosha Kabushiki Kaisha Double layered exhaust gas purification catalyst
JP2012152702A (ja) * 2011-01-27 2012-08-16 Toyota Motor Corp 排ガス浄化用触媒
JP2012236117A (ja) * 2011-05-10 2012-12-06 Suzuki Motor Corp 白金水酸化物ポリマーのサイズを安定化させる方法
JP2013113227A (ja) * 2011-11-29 2013-06-10 Toyota Motor Corp 排ガス浄化装置および排ガス浄化方法
WO2014041984A1 (ja) * 2012-09-14 2014-03-20 三井金属鉱業株式会社 排気ガス浄化用触媒担体
JP2014057904A (ja) * 2012-09-14 2014-04-03 Mitsui Mining & Smelting Co Ltd 排気ガス浄化用触媒担体
US9707543B2 (en) 2012-09-14 2017-07-18 Mitsui Mining & Smelting Co., Ltd. Exhaust-gas-purification catalyst carrier
JP2014105133A (ja) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center セリア−ジルコニア複合酸化物材料の製造方法及びこの方法によって得られるセリア−ジルコニア複合酸化物材料
JP2014105132A (ja) * 2012-11-28 2014-06-09 Japan Fine Ceramics Center セリア−ジルコニア複合酸化物材料及びその製造方法
US9126189B2 (en) 2013-07-11 2015-09-08 Sabic Global Technologies B.V. Method of making pyrochlores
JP2015182933A (ja) * 2014-03-25 2015-10-22 第一稀元素化学工業株式会社 セリウム−ジルコニウム系複合酸化物及びその製造方法
CN111569891A (zh) * 2020-05-25 2020-08-25 太原理工大学 一种中温甲烷部分氧化催化剂及其制备方法和应用
CN115585039A (zh) * 2022-11-02 2023-01-10 四川大学 含烧绿石结构的铈锆氧化物载体材料在柴油车冷启动阶段氮氧化物净化中的应用
CN115585039B (zh) * 2022-11-02 2023-12-22 四川大学 含烧绿石结构的铈锆氧化物载体材料在柴油车中的应用

Similar Documents

Publication Publication Date Title
JP5185942B2 (ja) 選択接触還元のためのバナジウム不含の触媒およびその製造方法
EP2039425B1 (en) Process for production of an exhaust gas clean-up catalyst
JP4959129B2 (ja) 排ガス浄化用触媒
JP2018528847A (ja) 排気システム用の亜酸化窒素除去触媒
JP4806613B2 (ja) ガス浄化方法,ガス浄化装置及びガス浄化触媒
JPH10216509A (ja) 酸素吸蔵性セリウム系複合酸化物
EP1859851B1 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
JP2003246624A (ja) パイロクロア型酸化物の製造方法
JP5227363B2 (ja) 排ガス浄化用触媒
JP4352300B2 (ja) 複合酸化物とその製造方法及び排ガス浄化用助触媒
JP2003033669A (ja) 排気ガス浄化用触媒及びその製造方法
EP2939737A1 (en) Catalyst carrier and exhaust gas purifying catalyst
JP5003954B2 (ja) 排ガス浄化用酸化触媒、その製造方法、および排ガス浄化用酸化触媒を用いた排ガスの浄化方法
KR20090031414A (ko) 배기 가스 정화용 촉매
US7056856B2 (en) Tin oxide exhaust catalyst supports and catalysts stable at high temperatures
JP3855262B2 (ja) 排ガス浄化用触媒
JPH0312936B2 (ja)
JPH06378A (ja) 排ガス浄化用触媒
JP2001058130A (ja) 窒素酸化物分解用触媒
JPH1076159A (ja) 排気ガス浄化触媒及びその製造方法
JP5030573B2 (ja) 複合酸化物粉末及びその製造方法
JPH09175822A (ja) 耐熱性酸化物
JPH08323205A (ja) 排気ガス浄化用触媒およびその製造方法
JP2001232199A (ja) 排ガス浄化用触媒
JP3488999B2 (ja) 排気ガス浄化用触媒組成物およびその製造方法、並びに排気ガス浄化用触媒

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211