JP2003177111A - ガスセンサ素子 - Google Patents

ガスセンサ素子

Info

Publication number
JP2003177111A
JP2003177111A JP2001378974A JP2001378974A JP2003177111A JP 2003177111 A JP2003177111 A JP 2003177111A JP 2001378974 A JP2001378974 A JP 2001378974A JP 2001378974 A JP2001378974 A JP 2001378974A JP 2003177111 A JP2003177111 A JP 2003177111A
Authority
JP
Japan
Prior art keywords
electrode
cell
gas
measured gas
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001378974A
Other languages
English (en)
Other versions
JP3916945B2 (ja
Inventor
Toru Katabuchi
亨 片渕
Keigo Mizutani
圭吾 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2001378974A priority Critical patent/JP3916945B2/ja
Priority to EP02027771.1A priority patent/EP1324027B1/en
Priority to US10/317,162 priority patent/US7351318B2/en
Publication of JP2003177111A publication Critical patent/JP2003177111A/ja
Application granted granted Critical
Publication of JP3916945B2 publication Critical patent/JP3916945B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

(57)【要約】 【課題】 測定精度に耐久劣化が生じ難いガスセンサ素
子を提供すること。 【解決手段】 被測定ガス室122と対面した被測定ガ
ス側電極42と該被測定ガス側電極42と対になる基準
電極41と,両電極41,42を備えた固体電解質板1
1よりなるセンサセル4を少なくとも有し,センサセル
4の被測定ガス側電極42はAu,Ag,Cu,Pbを
少なくとも1種以上含有し,その含有量は,電極全体を
100wt%とした場合,0.01〜2.0wt%(外
wt%)である。

Description

【発明の詳細な説明】
【0001】
【技術分野】本発明は,内燃機関の排気系等に設置し
て,排ガス中のNOx濃度等を測定するガスセンサに関
する。
【0002】
【従来技術】自動車エンジンの排気系に設置し,排ガス
中のNOx濃度,酸素濃度,またエンジン燃焼室の空燃
比を測定するガスセンサに用いるガスセンサ素子とし
て,次に示す構成の素子が知られている。このガスセン
サ素子は,被測定ガス室に対し酸素をポンピングするポ
ンプセルと,被測定ガス室に導入されたNOx濃度を測
定するセンサセルからなる。
【0003】NOx濃度を測定するセンサセルは,固体
電解質板と該固体電解質板に設けた一対の電極からな
り,一方の電極は被測定ガス室に対面し,他方の電極は
基準ガスとなる大気を導入した大気室と対面する。被測
定ガス室と対面する電極にはNOxに活性な電極が用い
られる。また,ポンプセルは,固体電解質板と該固体電
解質板に設けた一対のポンプ電極からなり,一方のポン
プ電極は被測定ガス室に対面する。被測定ガス側の電極
にはNOxに不活性な電極が用いられる。
【0004】センサセルにおけるNOx濃度の測定は,
被測定ガス側電極上でNOxを分解し,発生した酸素イ
オン電流に基づいて行う。従って,被測定ガス室の酸素
濃度は非常に少ないか,または定常状態となっていなけ
ればならない。そのため,ポンプセルを用いて被測定ガ
ス室の酸素濃度を調整するが,ポンプセルの電極は被測
定ガス室に対面する。ポンプセルの電極上でNOxが分
解された場合,センサセルが正確なNOx濃度を検出で
きなくなるおそれがある。そのため,従来,被測定ガス
室と対面するポンプセルのポンプ電極はNOxに対し不
活性なAu等をPtに付与,もしくは合金化することに
よりNOx分解を抑制していた。
【0005】また,被測定ガス室内の酸素濃度を監視す
るモニタセルを被測定ガス室に面して設けることがあ
る。モニタセルを構成する電極上でNOx分解された場
合もポンプセルと同様の問題が生じることがあった。そ
のため,ポンプセルと同様に,被測定ガス室に面する電
極はNOxに対し不活性なAu等をPtに付与,もしく
は合金化することによりNOx分解を抑制していた。
【0006】
【解決しようとする課題】しかしながら,ガスセンサ素
子を高温の排気ガスに曝して用いた場合,ポンプ電極や
モニタセルの電極に含まれるAu等が揮発して,センサ
セルの被測定ガス側電極に付着することがある。この場
合,被測定ガス側電極の性質が変化するため,センサセ
ルにおけるNOx濃度測定精度変動の原因となった。
【0007】本発明は,かかる従来の問題点に鑑みてな
されたもので,測定精度に耐久劣化が生じ難いガスセン
サ素子を提供しようとするものである。
【0008】
【課題の解決手段】本発明は,外部から被測定ガスを導
入する被測定ガス室を備え,該被測定ガス室と対面し,
Au,Ag,Cu,Pbを少なくとも1種以上を含有す
る第1ポンプ電極と該第1ポンプ電極と対になる第2ポ
ンプ電極と,両電極を備えた固体電解質板よりなるポン
プセルと,上記被測定ガス室と対面した被測定ガス側電
極と該被測定ガス側電極と対になる基準電極と,両電極
を備えた固体電解質板よりなるセンサセルとを少なくと
も有し,上記センサセルの被測定ガス側電極はAu,A
g,Cu,Pbを少なくとも1種以上含有し,その含有
量は,電極全体を100wt%とした場合,0.01〜
2.0wt%(外wt%)であることを特徴とするガス
センサ素子にある(請求項1)。
【0009】本発明にかかるガスセンサ素子において,
センサセルの被測定ガス側電極はAu,Ag,Cu,P
bが所定量添加されている。Au,Ag,Cu,Pbを
電極に付与することで,電極がNOx等のセンサセルで
濃度を測定しようとする特定ガスに対して不活性化し,
酸素をイオン化することはできるが,NOx等の特定ガ
スをイオンに分解する等の強い活性が発揮されなくな
る。
【0010】ガスセンサ素子使用時などに第1ポンプ電
極から揮発したAu,Ag,Cu,Pbがセンサセルの
被測定ガス側電極に付着した場合は大きくセンサセルの
特性が変化する。また,後述する請求項4に示すような
モニタセルを持つガスセンサ素子においては,モニタセ
ルの被測定ガス側電極から揮発した上記物質がセンサセ
ルの被測定ガス側電極に付着する。
【0011】よって,予め微量のAu,Ag,Cu,P
bをセンサセルの被測定ガス側電極に対して含有させて
おくことで,センサセルを長時間使用した際の特性の変
化(耐久劣化)を防止することができる。
【0012】以上,本発明によれば,測定精度に耐久劣
化が生じ難いガスセンサ素子を提供することができる。
【0013】
【発明の実施の形態】上記本発明(請求項1)のガスセ
ンサ素子は,固体電解質板や絶縁板を複数枚積層構成し
た板状の積層型の素子である。素子の内部には被測定ガ
スを導入する被測定ガス室や基準ガスとなる大気を導入
する大気室がある。ポンプセルは被測定ガス室に対し酸
素ガスをポンピング(出し入れ)するよう構成した電気
化学的セルである。
【0014】センサセルは被測定ガス室の特定ガス濃度
を測定するよう構成した電気化学的セルである。センサ
セルは被測定ガス側電極が被測定ガス中の特定ガスを分
解することで生成した酸素イオンによる電流に基づいて
特定ガス濃度を測定するよう構成する。そのため被測定
ガス側電極は特定ガスに対して活性であることが必要で
ある。そして,ポンプセルにおける被測定ガス室に面す
るポンプ電極は,被測定ガス中の特定ガスを分解し難く
不活性であることが必要である。
【0015】また,ポンプセルやセンサセルのほかに,
2セルや空燃比セルを設けて,1本で複数種類のガス
濃度等を測定可能とする複合センサ素子として,本発明
のガスセンサ素子を構成することができる。O2セルは
被測定ガス中の酸素濃度を測定する電気化学的セルであ
る。空燃比セルは,本発明にかかるガスセンサ素子を各
種内燃機関の排気系に設置した際に,内燃機関燃焼室の
空燃比を検出するよう構成した電気化学的セルである。
【0016】本発明においてセンサセルの被測定ガス側
電極におけるAu,Ag,Cu,Pbの含有量は,電極
全体を100wt%とした場合,0.01〜2.0wt
%(外wt%)とする。上記含有量が0.01wt%未
満である場合は,ポンプセルのポンプ電極から揮発した
Auが被測定ガス側電極に付着することで,センサセル
の特性が変化し,測定精度が悪化するおそれがある。含
有量が2.0wt%を越えた場合は,被測定ガス側電極
の活性が低下して,正確な特定ガス濃度の測定が難しく
なるおそれがある。
【0017】また,上記センサセルの被測定ガス側電極
の主成分はPt,Rh,Pd,Ir,Ruより選択され
るいずれか一種以上であることが好ましい(請求項
2)。上記物質を含む電極はNOx,CO,HCに対し
て活性であるため,これらの特定ガスを分解して酸素イ
オンを生成し,該酸素イオンから生じる酸素イオン電流
を利用してこれらの特定ガス濃度を効率よく検出するこ
とができる。また,被測定ガス側電極は,上記元素の単
体からなる材料のほか,上記元素を含む混合物,合金な
どから構成することができる。
【0018】また,上記センサセルの被測定ガス側電極
はAu,Ag,Cu,Pbを少なくとも1種以上含有
し,その含有量は,電極全体を100wt%とした場
合,0.1〜1.0wt%(外wt%)であることが好
ましい(請求項3)。この場合,Au,Ag,Cu,P
bがセンサセルの被測定ガス側電極に付着した場合に,
センサセルの特性が殆ど変化しないため,測定精度が劣
化し難い。上記含有量が0.1wt%未満である場合
は,センサセルの特性が変化して測定制度が悪化するお
それがある。含有量が1.0wt%を越えた場合は,被
測定ガス側電極の活性が低下して,正確な特定ガス濃度
の測定が難しくなるおそれがある。
【0019】また,上記被測定ガス室と対面し,Au,
Ag,Cu,Pbを少なくとも1種以上を含有する被測
定ガス側電極と該被測定ガス側電極と対になる基準電極
と,両電極を備えた固体電解質板よりなるモニタセルを
備えることが好ましい(請求項4)。これにより,ポン
プセルの作動を制御するための基準となる酸素濃度を被
測定ガス室において監視することができ,より正確なN
Ox等の特定ガス濃度をセンサセルにおいて検出するこ
とができる(実施例1参照)。
【0020】また,モニタセルもポンプセルと同様に被
測定ガス室と対面する被測定ガス側電極において,NO
x等のセンサセルで測定の対象になる特定ガスに対して
不活性なAu−Pt電極等,Au,Ag,Cu,Pbを
少なくとも1種以上を含有するような電極が用いられ
る。このAu等がセンサセルに付着して,NOx等の特
定ガスに対する活性が低下する。
【0021】
【実施例】以下に,図面を用いて本発明の実施例につい
て説明する。 (実施例1)本例にかかるガスセンサ素子について,図
1,図2を用いて説明する。図1,図2に示すごとく,
本例のガスセンサ素子1は,外部から被測定ガスを導入
する第1被測定ガス室121を備え,該第1被測定ガス
室121と対面し,Auを含有する第1ポンプ電極21
と該第1ポンプ電極21と対になる第2ポンプ電極22
と,両電極21,22を備えた第2固体電解質板13よ
りなるポンプセル2を有する。
【0022】また,本例のガスセンサ素子1は,第2被
測定ガス室122と対面した被測定ガス側電極42と該
被測定ガス側電極42と対になる基準電極41と,両電
極41,42を備えた第1固体電解質板11よりなるセ
ンサセル4とを有する。そして,上記センサセル4の被
測定ガス側電極42はAuを含有し,該Auの含有量
は,電極全体を100wt%とした場合,0.2wt%
(外wt%)である。
【0023】以下,詳細に説明する。図1及び図2に示
すごとく,本例のガスセンサ素子1は,積層された第1
固体電解質板11,被測定ガス室用のスペーサー12,
第2固体電解質板13,大気室用のスペーサ14,セラ
ミックヒータ19よりなる。そして,ガスセンサ素子1
は,第1及び第2被測定ガス室121,122と第1及
び第2の大気室140,160を備え,第1被測定ガス
室121に対して酸素をポンピングするポンプセル2,
第2被測定ガス室122の酸素濃度を監視するモニタセ
ル3,第2被測定ガス室122のNOx濃度を検知する
センサセル4を有する。
【0024】第1及び第2固体電解質板11,13,ス
ペーサー12との間に第1及び第2被測定ガス室12
1,122がある。第1被測定ガス室121は,第1固
体電解質板11に設けた導入穴110で外部に連通し,
第1被測定ガス室121と第2被測定ガス室122との
間を連通する拡散通路120がある。また,本例のガス
センサ素子1は,上記第1固体電解質板11の導入穴1
10を覆う多孔質拡散層17を有し,該多孔質拡散層1
7と隣接して,第2大気室160を形成するスペーサー
16を有する。
【0025】また,第2固体電解質板13,スペーサー
14,セラミックヒータ19との間に基準ガスとなる大
気を導入する第1大気室140がある。上記セラミック
ヒータ19は,ヒータ基板191と該ヒータ基板191
上に設けた発熱体190,該発熱体190を覆う被覆板
192とよりなる。そして,上記第1及び第2の固体電
解質板11,13はジルコニアセラミック,その他は絶
縁性のアルミナセラミックよりなる。
【0026】上記ポンプセル2は第2固体電解質板13
に設けた第1被測定ガス室121と対面する第1ポンプ
電極21,第1大気室140と対面する第2ポンプ電極
22とよりなる。両電極21,22は電源251及び電
流計252を備えたポンプ回路25に接続する。上記モ
ニタセル3は第1固体電解質板11に設けた第2被測定
ガス室122と対面する被測定ガス側電極32,第2大
気室160と対面する基準電極31とよりなる。両電極
31,32は電源351及び電流計352を備えたモニ
タ回路35に接続する。
【0027】上記センサセル4は第1固体電解質板11
に設けた第2被測定ガス室122と対面する被測定ガス
側電極42,第2大気室160と対面する基準電極41
とよりなる。両電極41,42は電源451及び電流計
452を備えたセンサ回路45に接続する。そして,モ
ニタセル3でポンプセル2の動作を制御するため,電流
計352から電源251にむかうフィードバック回路2
55がある。
【0028】そして,第1ポンプ電極21,被測定ガス
側電極32はNOxに対して不活性なPt−Au電極よ
りなる。Auの含有率は3wt%である。被測定ガス側
電極42はNOxに対して活性なPt−Rh電極よりな
る。その他の電極22,31,41はPt−Rh電極で
ある。Rhの含有率は20wt%である。また,被測定
ガス側電極42はAuを0.2wt%添加する。
【0029】本例のガスセンサ素子1では,センサセル
4の被測定ガス側電極42にAuが所定量添加されてい
るため,ガスセンサ素子1使用時にポンプセル2の第1
ポンプ電極21,モニタセル3の被測定ガス側電極32
から揮発したAuがセンサセル4の被測定ガス側電極4
2に付着した場合でも,センサセル4の特性が殆ど変化
しないため,測定精度が劣化し難い。
【0030】以上,本例によれば,測定精度に耐久劣化
が生じ難いガスセンサ素子を提供することができる。
【0031】(実施例2)本例はAuの含有量(付着
量)と電極の活性状態,ガスセンサ素子の電圧−電流特
性について下記に示す試験を行い,その結果について記
載した。実施例1と同じ構造で,センサセルの被測定ガ
ス側電極がAuを含んでいないガスセンサ素子を準備
し,これをガスセンサに組み込んだ後,自動車エンジン
実機の排気系に組み付けた。このエンジンを駆動して,
所定の耐久距離における電極活性を測定した。
【0032】ここで耐久距離とは,上記測定に使用した
エンジン実機を駆動した時間を,実際に上記エンジン実
機を自動車に搭載した際に走行可能な距離に換算した値
である。ところで,センサセルに電圧を印加し,その電
流値をモニタし,横軸を電圧値,縦軸を電流値として線
図を描くと,図6に示すごとく,ある電圧域(0.2〜
0.4V)でリニアな特性が得られる。つまり,図6に
おいて,(a)は電圧と電流との関係で,(b)は電圧
域0.2〜0.4Vの範囲での傾きを示す。
【0033】傾きが大きいと,電気抵抗が小さく,より
低電圧でNOxが分解し,電極活性が高いといえる。よ
って,上述の方法から得た電圧と電流との関係を記載し
た線図を作製することで,電極活性を測定することがで
きる。この測定結果を図3に記載した。同図に示すごと
く,耐久の初期に電極の活性が大きく低下することが分
かった。
【0034】また,上記試験で被測定ガス側電極に付着
したAuの量を測定する。ところで,不純物の量を測定
する場合,XPS,EPMA等の方法があるが,測定深
度はEPMAの方が高いため,本例ではEPMAを利用
してAuの量を測定した。測定結果を図4に記載した。
同図に示すごとく,耐久距離が増えるとともにAuの付
着量が増えていく。以上,図3,図4から,Auの付着
量と電極の活性との関係を導出し,これを図5に記載し
た。図5より,電極の活性はAuの付着量の増大に伴い
低下するが,特に微量のAuの付着によって大きく活性
が低下した後は少しずつ活性が低下していくことが分か
った。
【0035】そして,実施例1に示した構成のガスセン
サ素子であって,被測定ガス側電極にAuが含まれてい
ないものと,Auを0.2wt%付与したものとを準備
して,両者について図3,図4等を得た際と同様の耐久
試験を行って,試験前と試験終了後でのNOx1000
ppmにおける,センサセルの出力電流を求め,{(試
験前の出力)−(試験後の出力)/(試験前の出力)}
×100という出力変化率を測定し,図7に記載した。
同図より知れるごとく,Auの有無で出力変化率が大き
く異なり,Auを0.2wt%付与することで,出力変
化率が小さくなることが分かった。つまりAuの添加で
安定したセンサ出力が得られることが分かった。
【0036】(実施例3)本例のガスセンサ素子1は,
図8に示すごとく,第1と第2の被測定ガス室520,
540が固体電解質板51,55等の積層方向に位置す
るよう構成する。本例のガスセンサ素子1は,固体電解
質板51,スペーサー52,固体電解質板53,スペー
サー54,固体電解質板55,スペーサー56,セラミ
ックヒータ19を積層構成してなる。
【0037】固体電解質板51,スペーサー53とスペ
ーサー52との間に第1被測定ガス室520が,スペー
サー53,固体電解質板55とスペーサー54との間に
第2被測定ガス室540が,固体電解質板55,スペー
サー56とセラミックヒータ19との間に大気室550
がある。
【0038】第1固体電解質板51に設けた導入穴51
0から第1被測定ガス室520に対し被測定ガスを導入
する。多孔質拡散層17は導入穴510を覆うように第
1固体電解質板51に対し積層する。第1と第2の被測
定ガス室520,540との間は拡散通路530により
連通される。
【0039】そして,ポンプセル2の第1ポンプ電極2
1は第1被測定ガス室520と対面し,第2ポンプ電極
22は拡散抵抗層17を通じて素子の外部雰囲気に曝さ
れる。第1及び第2のポンプ電極21,22は固体電解
質板51に設ける。センサセル4の第2被測定ガス室5
40と対面する被測定ガス側電極42と大気室550と
対面する基準電極41とは固体電解質板55に設け,モ
ニタセル3の被測定ガス側電極32と大気室550と対
面する基準電極31とは固体電解質板55に設ける。
【0040】そして,ポンプセル2のポンプ電極21,
22は電源251及び電流計252を備えたポンプ回路
25に接続する。モニタセル3の電極31,32は電圧
計356を備えたモニタ回路35に接続する。センサセ
ル4の電極41,42は電源451及び電流計452を
備えたセンサ回路45に接続する。そして,モニタセル
3でポンプセル2の動作を制御するため,電圧計356
から電源251にむかうフィードバック回路255があ
る。
【0041】そして,第1ポンプ電極21,被測定ガス
側電極32はNOxに対して不活性なPt−Au電極よ
りなる。被測定ガス側電極42はNOxに対して活性な
Pt−Rh電極よりなる。その他の電極22,31,4
1はPt−Rh電極である。また,被測定ガス側電極4
2はAuを0.2wt%添加する。その他,実施例1と
同様の構成を有し,同様の作用効果を有する。
【0042】なお,図9に示すように,モニタセル3を
固体電解質板51に設けることもできる。また,ポンプ
セル2の第2ポンプ電極22とモニタセル3の基準電極
31とは一体化することができる。
【0043】(実施例4)本例のガスセンサ素子は,図
10に示すごとく,センサセル4とモニタセル3を直列
に接続した構成を有する。本例のガスセンサ素子1は,
スペーサー61,固体電解質板62,スペーサー63,
固体電解質板64,スペーサー65,セラミックヒータ
19を積層構成してなる。スペーサー61と固体電解質
板62との間に第1大気室610が,固体電解質板62
とスペーサー63,固体電解質板64との間に第1及び
第2の被測定ガス室631,632が,固体電解質板6
4とスペーサー65,ヒータ19との間に第2大気室6
50がある。
【0044】第1固体電解質板62に設けた導入穴62
0から第1被測定ガス室631に対し被測定ガスを導入
する。多孔質拡散層17は導入穴620を覆うように第
1固体電解質板62に対し積層する。第1と第2の被測
定ガス室631,632との間は拡散通路630により
連通される。
【0045】そして,ポンプセル2の第1ポンプ電極2
1は第1被測定ガス室631と対面し,第2ポンプ電極
22は第2大気室650と対面する。第1及び第2のポ
ンプ電極21,22は固体電解質板64に設ける。セン
サセル4の第2被測定ガス室632と対面する被測定ガ
ス側電極42と第1大気室610と対面する基準電極4
1とは固体電解質板62に設け,モニタセル3の被測定
ガス側電極32と大気室610と対面する基準電極31
とは固体電解質板62に設ける。
【0046】そして,ポンプセル2のポンプ電極21,
22は電源251及び電流計252を備えたポンプ回路
25に接続する。モニタセル3の電極31,32は電圧
計356を備えたモニタ回路35に接続する。センサセ
ル4の電極41,42は電源451及び電流計452を
備えたセンサ回路45に接続する。そして,ポンプセル
2の動作を制御するため,電流計252から電源251
にむかうフィードバック回路255がある。
【0047】そして,第1ポンプ電極21,被測定ガス
側電極32はNOxに対して不活性なPt−Au電極よ
りなる。被測定ガス側電極42はNOxに対して活性な
Pt−Rh電極よりなる。その他の電極22,31,4
1はPt−Rh電極である。また,被測定ガス側電極4
2はAuを0.2wt%添加する。その他,実施例1と
同様の構成を有し,同様の作用効果を有する。
【0048】また,図示した構成のほか,ポンプセル2
を固体電解質板62に設け,センサセル4やモニタセル
3を固体電解質板64に設ける構成でもよい。
【0049】(実施例5)本例は,図11に示すごと
く,実施例1と同じ構成のガスセンサ素子であるが,モ
ニタセルを持たない2セル式の素子である。そして,ポ
ンプセル2はポンプ回路25に設けた電流計252から
電源251に向かうフィードバック回路255がある。
その他,実施例1と同様の構成を有し,同様の作用効果
を有する。
【0050】また,図示した構成のほか,ポンプセル2
を固体電解質板62に設け,センサセル4やモニタセル
3を固体電解質板64に設ける構成でもよい。
【図面の簡単な説明】
【図1】実施例1における,ガスセンサ素子の断面説明
図。
【図2】実施例1における,ガスセンサ素子の横断面説
明図(図1のA−A矢視断面図)。
【図3】実施例2における,耐久距離と電極活性との関
係を示す線図。
【図4】実施例2における,耐久距離とAu付着量との
関係を示す線図。
【図5】実施例2における,Au付着量と電極活性との
関係を示す線図。
【図6】実施例2における,電圧と電流の関係を示す線
図。
【図7】実施例2における,Au付与していない被測定
ガス側電極とAu付与した被測定ガス側電極をそれぞれ
持つガスセンサ素子の出力変化を示す線図。
【図8】実施例3における,積層方向に被測定ガス室が
並んだ構成のガスセンサ素子を示す断面説明図。
【図9】実施例3における,図8とは異なる,積層方向
に被測定ガス室が並んだ構成のガスセンサ素子を示す断
面説明図。
【図10】実施例4における,モニタセルとセンサセル
とが直列に並んだ構成のガスセンサ素子を示す断面説明
図。
【図11】実施例5における,センサセルとポンプセル
のみよりなるガスセンサ素子の断面説明図。
【符号の説明】
1...ガスセンサ素子, 121...第1被測定ガス室, 140...大気室, 2...ポンプセル, 21...第1ポンプ電極, 22...第2ポンプ電極, 4...センサセル, 41...基準電極, 42...被測定ガス室,
フロントページの続き (72)発明者 水谷 圭吾 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 外部から被測定ガスを導入する被測定ガ
    ス室を備え,該被測定ガス室と対面し,Au,Ag,C
    u,Pbを少なくとも1種以上を含有する第1ポンプ電
    極と該第1ポンプ電極と対になる第2ポンプ電極と,両
    電極を備えた固体電解質板よりなるポンプセルと,上記
    被測定ガス室と対面した被測定ガス側電極と該被測定ガ
    ス側電極と対になる基準電極と,両電極を備えた固体電
    解質板よりなるセンサセルとを少なくとも有し,上記セ
    ンサセルの被測定ガス側電極はAu,Ag,Cu,Pb
    を少なくとも1種以上含有し,その含有量は,電極全体
    を100wt%とした場合,0.01〜2.0wt%
    (外wt%)であることを特徴とするガスセンサ素子。
  2. 【請求項2】 請求項1において,上記センサセルの被
    測定ガス側電極の主成分はPt,Rh,Pd,Ir,R
    uより選択されるいずれか一種以上であることを特徴と
    するガスセンサ素子。
  3. 【請求項3】 請求項1または2において,上記センサ
    セルの被測定ガス側電極はAu,Ag,Cu,Pbを少
    なくとも1種以上含有し,その含有量は,電極全体を1
    00wt%とした場合,0.1〜1.0wt%(外wt
    %)であることを特徴とするガスセンサ素子。
  4. 【請求項4】 請求項1〜3において,上記被測定ガス
    室と対面し,Au,Ag,Cu,Pbを少なくとも1種
    以上を含有する被測定ガス側電極と該被測定ガス側電極
    と対になる基準電極と,両電極を備えた固体電解質板よ
    りなるモニタセルを備えることを特徴とするガスセンサ
    素子。
JP2001378974A 2001-12-12 2001-12-12 ガスセンサ素子 Expired - Lifetime JP3916945B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001378974A JP3916945B2 (ja) 2001-12-12 2001-12-12 ガスセンサ素子
EP02027771.1A EP1324027B1 (en) 2001-12-12 2002-12-11 Gas sensing element
US10/317,162 US7351318B2 (en) 2001-12-12 2002-12-12 Gas sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378974A JP3916945B2 (ja) 2001-12-12 2001-12-12 ガスセンサ素子

Publications (2)

Publication Number Publication Date
JP2003177111A true JP2003177111A (ja) 2003-06-27
JP3916945B2 JP3916945B2 (ja) 2007-05-23

Family

ID=19186530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378974A Expired - Lifetime JP3916945B2 (ja) 2001-12-12 2001-12-12 ガスセンサ素子

Country Status (3)

Country Link
US (1) US7351318B2 (ja)
EP (1) EP1324027B1 (ja)
JP (1) JP3916945B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200642A (ja) * 2014-03-31 2015-11-12 日本碍子株式会社 センサ素子及びガスセンサ
WO2020095821A1 (ja) * 2018-11-09 2020-05-14 株式会社デンソー ガスセンサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004047602A1 (de) * 2004-09-30 2006-04-13 Robert Bosch Gmbh Sensoreinheit zur Bestimmung eines Messgasparameters
JP4845111B2 (ja) * 2005-10-17 2011-12-28 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
WO2007121032A2 (en) 2006-03-23 2007-10-25 The Research Foundation Of State University Of New York Optical methods and systems for detecting a constituent in a gas containing oxygen in harsh environments
DE102006061955A1 (de) 2006-12-29 2008-07-03 Robert Bosch Gmbh Sensorelement mit brenngassensitiver Anode
DE102019004236A1 (de) * 2018-07-02 2020-01-02 Ngk Insulators, Ltd. Gassensor und Sensorelement

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885336B2 (ja) 1994-04-21 1999-04-19 日本碍子株式会社 被測定ガス中のNOx濃度の測定方法及び測定装置
US5672811A (en) * 1994-04-21 1997-09-30 Ngk Insulators, Ltd. Method of measuring a gas component and sensing device for measuring the gas component
JP3619344B2 (ja) 1996-02-23 2005-02-09 日本碍子株式会社 窒素酸化物の測定装置
JP3488591B2 (ja) 1996-03-28 2004-01-19 日本碍子株式会社 酸化物センサ
US6071393A (en) * 1996-05-31 2000-06-06 Ngk Spark Plug Co., Ltd. Nitrogen oxide concentration sensor
JP3863974B2 (ja) 1996-10-31 2006-12-27 株式会社日本自動車部品総合研究所 ガス検出装置
JP3623066B2 (ja) 1997-02-12 2005-02-23 日本碍子株式会社 ガスセンサ
JP3876506B2 (ja) 1997-06-20 2007-01-31 株式会社デンソー ガス濃度の測定方法及び複合ガスセンサ
JP3701114B2 (ja) 1997-12-22 2005-09-28 日本碍子株式会社 NOx分解電極の酸化防止方法
US6274016B1 (en) * 1998-06-29 2001-08-14 Kabushiki Kaisha Riken Nitrogen oxide gas sensor
EP0987547A3 (en) * 1998-09-18 2006-04-05 Ngk Spark Plug Co., Ltd Gas sensor
JP3583301B2 (ja) 1998-10-13 2004-11-04 日本特殊陶業株式会社 ガスセンサ
US6205843B1 (en) * 1998-11-16 2001-03-27 Denso Corporation Gas sensing element and a method for measuring a specific gas concentration
JP3540177B2 (ja) * 1998-12-04 2004-07-07 日本特殊陶業株式会社 ガスセンサ及びそれを用いた可燃性ガス成分濃度測定装置
JP3977955B2 (ja) 1999-02-08 2007-09-19 日本特殊陶業株式会社 ガスセンサ
JP4632506B2 (ja) * 2000-02-29 2011-02-16 株式会社豊田中央研究所 NOxガス検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200642A (ja) * 2014-03-31 2015-11-12 日本碍子株式会社 センサ素子及びガスセンサ
WO2020095821A1 (ja) * 2018-11-09 2020-05-14 株式会社デンソー ガスセンサ
JP2020076686A (ja) * 2018-11-09 2020-05-21 株式会社デンソー ガスセンサ
DE112019005597T5 (de) 2018-11-09 2021-07-22 Denso Corporation Gassensor
JP6992729B2 (ja) 2018-11-09 2022-01-13 株式会社デンソー ガスセンサ

Also Published As

Publication number Publication date
US7351318B2 (en) 2008-04-01
EP1324027B1 (en) 2016-05-25
EP1324027A2 (en) 2003-07-02
EP1324027A3 (en) 2004-04-21
US20030106795A1 (en) 2003-06-12
JP3916945B2 (ja) 2007-05-23

Similar Documents

Publication Publication Date Title
EP0851225B1 (en) Exhaust gas sensor system
JP3488591B2 (ja) 酸化物センサ
EP1074834B1 (en) Method and apparatus for measuring NOx gas concentration
US5554269A (en) Nox sensor using electrochemical reactions and differential pulse voltammetry (DPV)
US8409414B2 (en) Gas sensor and nitrogen oxide sensor
JP3876506B2 (ja) ガス濃度の測定方法及び複合ガスセンサ
EP0987546B1 (en) Gas concentration sensing apparatus
US6638416B2 (en) Hydrogen sensing process
US7045047B2 (en) Gas sensor element
EP0517366B1 (en) Method and apparatus for sensing oxides of Nitrogen
JP2002310987A (ja) ガスセンサ素子
EP0816836B1 (en) Gas sensor, method for controlling gas sensor, gas concentration controller and method for controlling gas concentration
JP3587290B2 (ja) NOxガスセンサ
JP3619344B2 (ja) 窒素酸化物の測定装置
JP2004037100A (ja) ガスセンサ素子
JP3916945B2 (ja) ガスセンサ素子
US6346178B1 (en) Simplified wide range air fuel ratio sensor
JP2003083936A (ja) ガスセンサ素子
JP2004132960A (ja) ガスセンサ素子
JP2004239632A (ja) ガスセンサ素子
JP3973851B2 (ja) ガスセンサ素子
JP4625261B2 (ja) ガスセンサのセンサ素子
JPH11237366A (ja) ガスセンサ
JP4563601B2 (ja) 複合積層型センサ素子
JPH11166911A (ja) 空燃比センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent or registration of utility model

Ref document number: 3916945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term