JP2002192370A - Laser beam machining method - Google Patents

Laser beam machining method

Info

Publication number
JP2002192370A
JP2002192370A JP2001278768A JP2001278768A JP2002192370A JP 2002192370 A JP2002192370 A JP 2002192370A JP 2001278768 A JP2001278768 A JP 2001278768A JP 2001278768 A JP2001278768 A JP 2001278768A JP 2002192370 A JP2002192370 A JP 2002192370A
Authority
JP
Japan
Prior art keywords
laser
cut
laser light
processing method
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001278768A
Other languages
Japanese (ja)
Other versions
JP3408805B2 (en
Inventor
Fumitsugu Fukuyo
文嗣 福世
Kenji Fukumitsu
憲志 福満
Naoki Uchiyama
直己 内山
Toshimitsu Wakuta
敏光 和久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26599878&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2002192370(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2001278768A priority Critical patent/JP3408805B2/en
Publication of JP2002192370A publication Critical patent/JP2002192370A/en
Application granted granted Critical
Publication of JP3408805B2 publication Critical patent/JP3408805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

PROBLEM TO BE SOLVED: To provide a laser beam machining method capable of cutting a machining object without developing a crack, deviating from the predetermined line for welding or cutting on the surface of the machining object. SOLUTION: A pulse laser beam is radiated on a predetermined line 5 for cutting on the surface 3 of the machining object 1 under the condition of causing multiple photon absorbtion, and making a condensing point P agree with the inside of the machining object 1. By moving the condensing point P along the predetermined line 5 for cutting, a reforming area is formed inside the machining object 1 so as to be along the predetermined line for cutting 5. By splitting the machining object 1 along the predetermined line for cutting 5 making the reforming area a starting point, the machining object 1 can be cut with a comparatively small force. Since in the irradiation of the laser beam, the pulse laser beam is scarcely absorbed on the surface 3 of the machining object 1, the surface 3 is not melted, caused by the formation of the reforming area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0002】本発明は、半導体材料基板、圧電材料基板
やガラス基板等の加工対象物の切断に使用されるレーザ
加工方法に関する。
[0002] The present invention relates to a laser processing method used for cutting an object to be processed such as a semiconductor material substrate, a piezoelectric material substrate, and a glass substrate.

【0003】[0003]

【従来の技術】レーザ応用の一つに切断があり、レーザ
による一般的な切断は次の通りである。例えば半導体ウ
ェハやガラス基板のような加工対象物の切断する箇所
に、加工対象物が吸収する波長のレーザ光を照射し、レ
ーザ光の吸収により切断する箇所において加工対象物の
表面から裏面に向けて加熱溶融を進行させて加工対象物
を切断する。しかし、この方法では加工対象物の表面の
うち切断する箇所となる領域周辺も溶融される。よっ
て、加工対象物が半導体ウェハの場合、半導体ウェハの
表面に形成された半導体素子のうち、上記領域付近に位
置する半導体素子が溶融する恐れがある。
2. Description of the Related Art One of laser applications is cutting. A general cutting by a laser is as follows. For example, a portion to be cut of a processing object such as a semiconductor wafer or a glass substrate is irradiated with laser light having a wavelength that is absorbed by the processing object, and is directed from the front surface to the back surface of the processing object at a position where the cutting is performed by absorbing the laser light. The workpiece is cut by heating and melting. However, in this method, the periphery of a region to be cut on the surface of the workpiece is also melted. Therefore, when the object to be processed is a semiconductor wafer, of the semiconductor elements formed on the surface of the semiconductor wafer, there is a possibility that a semiconductor element located near the above-described region may be melted.

【0004】[0004]

【発明が解決しようとする課題】加工対象物の表面の溶
融を防止する方法として、例えば、特開2000−21
9528号公報や特開2000−15467号公報に開
示されたレーザによる切断方法がある。これらの公報の
切断方法では、加工対象物の切断する箇所をレーザ光に
より加熱し、そして加工対象物を冷却することにより、
加工対象物の切断する箇所に熱衝撃を生じさせて加工対
象物を切断する。
As a method for preventing the surface of a workpiece from melting, for example, Japanese Patent Application Laid-Open No. 2000-21 is disclosed.
There is a cutting method using a laser disclosed in JP-A-9528 and JP-A-2000-15467. In the cutting methods disclosed in these publications, a portion to be cut of a processing object is heated by a laser beam, and the processing object is cooled,
The object to be processed is cut by generating a thermal shock at a position where the object to be processed is cut.

【0005】しかし、これらの公報の切断方法では、加
工対象物に生じる熱衝撃が大きいと、加工対象物の表面
に、切断予定ラインから外れた割れやレーザ照射してい
ない先の箇所までの割れ等の不必要な割れが発生するこ
とがある。よって、これらの切断方法では精密切断をす
ることができない。特に、加工対象物が半導体ウェハ、
液晶表示装置が形成されたガラス基板や電極パターンが
形成されたガラス基板の場合、この不必要な割れにより
半導体チップ、液晶表示装置や電極パターンが損傷する
ことがある。また、これらの切断方法では平均入力エネ
ルギーが大きいので、半導体チップ等に与える熱的ダメ
ージも大きい。
However, in the cutting methods disclosed in these publications, if the thermal shock generated on the object to be processed is large, the surface of the object to be processed may be cracked off the line to be cut or cracked up to a point not irradiated with laser. Unnecessary cracks such as may occur. Therefore, precision cutting cannot be performed by these cutting methods. In particular, the processing object is a semiconductor wafer,
In the case of a glass substrate on which a liquid crystal display device is formed or a glass substrate on which an electrode pattern is formed, the unnecessary chip may damage the semiconductor chip, the liquid crystal display device, or the electrode pattern. In addition, since these cutting methods have a large average input energy, thermal damage to semiconductor chips and the like is also large.

【0006】本発明の目的は、加工対象物の表面に不必
要な割れを発生させることなくかつその表面が溶融しな
いレーザ加工方法を提供することである。
An object of the present invention is to provide a laser processing method that does not cause unnecessary cracks on the surface of a workpiece and does not melt the surface.

【0007】[0007]

【課題を解決するための手段】本発明に係るレーザ加工
方法は、加工対象物の内部に集光点を合わせてレーザ光
を照射し、加工対象物の切断予定ラインに沿って加工対
象物の内部に多光子吸収による改質領域を形成する工程
を備えることを特徴とする。
A laser processing method according to the present invention irradiates a laser beam with a focusing point inside a processing object, and cuts the processing object along a line to cut the processing object. A step of forming a modified region by multiphoton absorption therein is provided.

【0008】本発明に係るレーザ加工方法によれば、加
工対象物の内部に集光点を合わせてレーザ光を照射しか
つ多光子吸収という現象を利用することにより、加工対
象物の内部に改質領域を形成している。加工対象物の切
断する箇所に何らかの起点があると、加工対象物を比較
的小さな力で割って切断することができる。本発明に係
るレーザ加工方法によれば、改質領域を起点として切断
予定ラインに沿って加工対象物が割れることにより、加
工対象物を切断することができる。よって、比較的小さ
な力で加工対象物を切断することができるので、加工対
象物の表面に切断予定ラインから外れた不必要な割れを
発生させることなく加工対象物の切断が可能となる。
[0008] According to the laser processing method of the present invention, a laser beam is radiated while focusing on the inside of the object to be processed, and a phenomenon called multiphoton absorption is used to improve the inside of the object to be processed. Quality region. If there is any starting point at the cutting position of the object, the object can be cut by relatively small force. ADVANTAGE OF THE INVENTION According to the laser processing method which concerns on this invention, a to-be-processed object can be cut | disconnected by breaking a to-be-processed object along a line to cut from a modified area as a starting point. Therefore, since the object to be processed can be cut with a relatively small force, it is possible to cut the object to be processed without generating unnecessary cracks off the cutting line on the surface of the object to be processed.

【0009】また、本発明に係るレーザ加工方法によれ
ば、加工対象物の内部に局所的に多光子吸収を発生させ
て改質領域を形成している。よって、加工対象物の表面
ではレーザ光がほとんど吸収されないので、加工対象物
の表面が溶融することはない。なお、集光点とはレーザ
光が集光した箇所のことである。切断予定ラインは加工
対象物の表面や内部に実際に引かれた線でもよいし、仮
想の線でもよい。
Further, according to the laser processing method of the present invention, the modified region is formed by locally generating multiphoton absorption inside the object to be processed. Therefore, since the laser light is hardly absorbed on the surface of the processing object, the surface of the processing object does not melt. Note that the focal point is a point where the laser light is focused. The line to be cut may be a line actually drawn on the surface or inside of the object to be processed, or a virtual line.

【0010】本発明に係るレーザ加工方法は、加工対象
物の内部に集光点を合わせて、集光点におけるピークパ
ワー密度が1×108(W/cm2)以上でかつパルス幅
が1μs以下の条件でレーザ光を照射し、加工対象物の
切断予定ラインに沿って加工対象物の内部にクラック領
域を含む改質領域を形成する工程を備えることを特徴と
する。
In the laser processing method according to the present invention, the focal point at the focal point is 1 × 10 8 (W / cm 2 ) or more and the pulse width is 1 μs when the focal point is set inside the object to be processed. The method is characterized by comprising a step of irradiating a laser beam under the following conditions to form a modified region including a crack region inside the processing object along a line to cut the processing object.

【0011】本発明に係るレーザ加工方法によれば、加
工対象物の内部に集光点を合わせて、集光点におけるピ
ークパワー密度が1×108(W/cm2)以上でかつパ
ルス幅が1μs以下の条件でレーザ光を照射している。
このため、加工対象物の内部では多光子吸収による光学
的損傷という現象が発生する。この光学的損傷により加
工対象物の内部に熱ひずみが誘起され、これにより加工
対象物の内部にクラック領域が形成される。このクラッ
ク領域は上記改質領域の一例であるので、本発明に係る
レーザ加工方法によれば、加工対象物の表面に溶融や切
断予定ラインから外れた不必要な割れを発生させること
なく、レーザ加工が可能となる。このレーザ加工方法の
加工対象物としては、例えば、ガラスを含む部材があ
る。なお、ピークパワー密度とは、パルスレーザ光の集
光点の電界強度を意味する。
According to the laser processing method of the present invention, the focal point at the focal point is 1 × 10 8 (W / cm 2 ) or more and the pulse width at the focal point is adjusted to the inside of the object to be processed. Are irradiated with laser light under the condition of 1 μs or less.
Therefore, a phenomenon called optical damage occurs due to multiphoton absorption inside the object to be processed. This optical damage induces thermal strain inside the object, thereby forming a crack region inside the object. Since the crack region is an example of the modified region, the laser processing method according to the present invention does not cause unnecessary cracks on the surface of the object to be melted or deviate from the line to be cut, and the laser processing method Processing becomes possible. As an object to be processed by this laser processing method, for example, there is a member containing glass. Note that the peak power density means the electric field intensity at the focal point of the pulsed laser light.

【0012】本発明に係るレーザ加工方法は、加工対象
物の内部に集光点を合わせて、集光点におけるピークパ
ワー密度が1×108(W/cm2)以上でかつパルス幅
が1μs以下の条件でレーザ光を照射し、加工対象物の
切断予定ラインに沿って加工対象物の内部に溶融処理領
域を含む改質領域を形成する工程を備えることを特徴と
する。
In the laser processing method according to the present invention, the focal point at the focal point is 1 × 10 8 (W / cm 2 ) or more and the pulse width is 1 μs when the focal point is set inside the object to be processed. The method includes a step of irradiating a laser beam under the following conditions to form a modified region including a melt processing region inside the processing object along a line to cut the processing object.

【0013】本発明に係るレーザ加工方法によれば、加
工対象物の内部に集光点を合わせて、集光点におけるピ
ークパワー密度が1×108(W/cm2)以上でかつパ
ルス幅が1μs以下の条件でレーザ光を照射している。
よって、加工対象物の内部は多光子吸収によって局所的
に加熱される。この加熱により加工対象物の内部に溶融
処理領域が形成される。この溶融処理領域は上記改質領
域の一例であるので、本発明に係るレーザ加工方法によ
れば、加工対象物の表面に溶融や切断予定ラインから外
れた不必要な割れを発生させることなく、レーザ加工が
可能となる。このレーザ加工方法の加工対象物として
は、例えば、半導体材料を含む部材がある。
According to the laser processing method of the present invention, the focal point at the focal point is 1 × 10 8 (W / cm 2 ) or more and the pulse width is adjusted by focusing the focal point inside the object. Are irradiated with laser light under the condition of 1 μs or less.
Therefore, the inside of the object to be processed is locally heated by multiphoton absorption. By this heating, a melt processing area is formed inside the object to be processed. Since the melt processing region is an example of the modified region, according to the laser processing method of the present invention, without generating unnecessary cracks deviating from the line to be melted or cut on the surface of the processing target, Laser processing becomes possible. An object to be processed by this laser processing method includes, for example, a member containing a semiconductor material.

【0014】本発明に係るレーザ加工方法は、加工対象
物の内部に集光点を合わせて、集光点におけるピークパ
ワー密度が1×108(W/cm2)以上でかつパルス幅
が1ns以下の条件でレーザ光を照射し、加工対象物の
切断予定ラインに沿って加工対象物の内部に屈折率が変
化した領域である屈折率変化領域を含む改質領域を形成
する工程を備えることを特徴とする。
In the laser processing method according to the present invention, the focal point at the focal point is 1 × 10 8 (W / cm 2 ) or more and the pulse width is 1 ns by focusing the focal point inside the object to be processed. A step of irradiating a laser beam under the following conditions to form a modified region including a refractive index change region, which is a region in which the refractive index has changed, inside the processing object along a line to cut the processing object. It is characterized by.

【0015】本発明に係るレーザ加工方法によれば、加
工対象物の内部に集光点を合わせて、集光点におけるピ
ークパワー密度が1×108(W/cm2)以上でかつパ
ルス幅が1ns以下の条件でレーザ光を照射している。
本発明のようにパルス幅を極めて短くして、多光子吸収
を加工対象物の内部に起こさせると、多光子吸収による
エネルギーが熱エネルギーに転化せずに、加工対象物の
内部にはイオン価数変化、結晶化又は分極配向等の永続
的な構造変化が誘起されて屈折率変化領域が形成され
る。この屈折率変化領域は上記改質領域の一例であるの
で、本発明に係るレーザ加工方法によれば、加工対象物
の表面に溶融や切断予定ラインから外れた不必要な割れ
を発生させることなく、レーザ加工が可能となる。この
レーザ加工方法の加工対象物としては、例えば、ガラス
を含む部材である。
According to the laser processing method of the present invention, the focal point at the focal point is 1 × 10 8 (W / cm 2 ) or more and the pulse width is adjusted when the focal point is set inside the object to be processed. Are irradiated with laser light under the condition of 1 ns or less.
When the pulse width is extremely short as in the present invention and multiphoton absorption is caused inside the object to be processed, the energy due to the multiphoton absorption is not converted into heat energy, and the ion valence is stored inside the object to be processed. A permanent structural change such as a number change, crystallization or polarization orientation is induced to form a refractive index change region. Since this refractive index change region is an example of the modified region, according to the laser processing method according to the present invention, without generating unnecessary cracks deviating from the line to be melted or cut on the surface of the object to be processed And laser processing becomes possible. An object to be processed by this laser processing method is, for example, a member containing glass.

【0016】上記本発明に係るレーザ加工方法に適用で
きる態様は以下の通りである。レーザ光源から出射され
るレーザ光は、パルスレーザ光を含むようにすることが
できる。パルスレーザ光によればレーザのエネルギーを
空間的かつ時間的に集中させることができるので、レー
ザ光源が一つであっても、レーザ光の集光点の電界強度
(ピークパワー密度)を多光子吸収の発生が可能な大き
さにすることができる。
The modes applicable to the laser processing method according to the present invention are as follows. Laser light emitted from the laser light source may include pulsed laser light. With pulsed laser light, the energy of the laser can be concentrated spatially and temporally, so even if there is only one laser light source, the electric field strength (peak power density) at the focal point of the laser light is multiphoton. The size can be such that absorption can occur.

【0017】加工対象物の内部に集光点を合わせてレー
ザ光を照射するとは、一つのレーザ光源から出射された
レーザ光を集光して加工対象物の内部に集光点を合わせ
てレーザ光を照射する、を例示できる。これによればレ
ーザ光を集光しているので、レーザ光源が一つであって
もレーザ光の集光点の電界強度を多光子吸収の発生が可
能な大きさにすることができる。
[0017] To irradiate a laser beam with a converging point inside the object to be processed means that the laser beam emitted from one laser light source is condensed and the laser beam is focused on the inside of the object to be processed. Irradiation with light can be exemplified. According to this, since the laser light is condensed, the electric field intensity at the condensing point of the laser light can be made large enough to generate multiphoton absorption even with one laser light source.

【0018】加工対象物の内部に集光点を合わせてレー
ザ光を照射するとは、複数のレーザ光源から出射された
各レーザ光を加工対象物の内部に集光点を合わせて異な
る方向から照射する、を例示できる。これによれば、複
数のレーザ光源を用いているので、レーザ光の集光点の
電界強度を多光子吸収の発生が可能な大きさにすること
ができる。よって、パルスレーザ光に比べて瞬間的なパ
ワーが小さい連続波レーザ光であっても改質領域の形成
が可能となる。複数のレーザ光源から出射された各レー
ザ光は、加工対象物の表面から入射してもよい。また、
複数のレーザ光源は、加工対象物の表面から入射するレ
ーザ光を出射するレーザ光源と、加工対象物の裏面から
入射するレーザ光を出射するレーザ光源と、を含むよう
にしてもよい。複数のレーザ光源は、切断予定ラインに
沿ってレーザ光源がアレイ状に配置された光源部を含む
ようにしてもよい。これによれば、切断予定ラインに沿
って複数の集光点を同時に形成することができるので、
加工速度を向上させることができる。
To irradiate a laser beam with a focused point inside the object to be processed is to irradiate each laser beam emitted from a plurality of laser light sources from different directions with a focused point inside the object to be processed. Can be exemplified. According to this, since a plurality of laser light sources are used, the electric field intensity at the converging point of the laser light can be made large enough to generate multiphoton absorption. Therefore, it is possible to form a modified region even with continuous wave laser light having a smaller instantaneous power than pulsed laser light. Each laser beam emitted from a plurality of laser light sources may enter from the surface of the object to be processed. Also,
The plurality of laser light sources may include a laser light source that emits laser light incident from the front surface of the processing object and a laser light source that emits laser light incident from the back surface of the processing object. The plurality of laser light sources may include a light source unit in which the laser light sources are arranged in an array along the line to be cut. According to this, it is possible to simultaneously form a plurality of focal points along the line to be cut,
Processing speed can be improved.

【0019】改質領域は、加工対象物の内部に合わされ
たレーザ光の集光点に対して、加工対象物を相対的に移
動させることにより形成される。これによれば、上記相
対的移動により、加工対象物の表面上の切断予定ライン
に沿って加工対象物の内部に改質領域を形成している。
The modified region is formed by moving the object relatively to the focal point of the laser light adjusted inside the object. According to this, the modified region is formed inside the object along the line to be cut on the surface of the object by the relative movement.

【0020】改質領域を形成する工程後、切断予定ライ
ンに沿って加工対象物を切断する切断工程を備えるよう
にしてもよい。改質領域形成工程において加工対象物を
切断できない場合、この切断工程により加工対象物を切
断する。切断工程は、改質領域を起点として加工対象物
を割るので、比較的小さな力で加工対象物を切断するこ
とができる。これにより、加工対象物の表面に切断予定
ラインから外れた不必要な割れを発生させることなく加
工対象物の切断が可能となる。
After the step of forming the modified region, a cutting step of cutting the object to be processed along the line to be cut may be provided. If the object cannot be cut in the modified region forming step, the object is cut in this cutting step. In the cutting step, since the object to be processed is split starting from the modified region, the object to be processed can be cut with a relatively small force. Thus, the object can be cut without generating unnecessary cracks off the line to be cut on the surface of the object.

【0021】加工対象物として、ガラス、圧電材料及び
半導体材料を含む部材が例示される。また、加工対象物
としては、照射されたレーザ光の透過性を有する部材が
ある。また、このレーザ加工方法は、表面に電子デバイ
ス又は電極パターンが形成されている加工対象物に適用
することができる。電子デバイスとは、半導体素子、液
晶等の表示装置、圧電素子等を意味する。
As the object to be processed, a member including glass, a piezoelectric material, and a semiconductor material is exemplified. Further, as the object to be processed, there is a member having a property of transmitting the irradiated laser light. Further, this laser processing method can be applied to a processing target having an electronic device or an electrode pattern formed on a surface. The electronic device means a semiconductor device, a display device such as a liquid crystal device, a piezoelectric device, or the like.

【0022】本発明に係るレーザ加工方法は、半導体材
料の内部に集光点を合わせて、集光点におけるピークパ
ワー密度が1×108(W/cm2)以上でかつパルス幅
が1μs以下の条件でレーザ光を照射し、半導体材料の
切断予定ラインに沿って半導体材料の内部に改質領域を
形成する工程を備えることを特徴とする。また、本発明
に係るレーザ加工方法は、圧電材料の内部に集光点を合
わせて、集光点におけるピークパワー密度が1×108
(W/cm2)以上でかつパルス幅が1μs以下の条件
でレーザ光を照射し、圧電材料の切断予定ラインに沿っ
て圧電材料の内部に改質領域を形成する工程を備えるこ
とを特徴とする。これらのレーザ加工方法によれば、上
記本発明に係るレーザ加工方法と同様の理由により、加
工対象物の表面に溶融や切断予定ラインから外れた不必
要な割れを発生させることなく、レーザ切断加工が可能
となる。本発明に係るレーザ加工方法において、加工対
象物は、その表面に複数の回路部が形成されており、複
数の回路部のうち隣接する回路部の間に形成された間隙
に臨む加工対象物の内部にレーザ光の集光点を合わせ
る、ようにすることができる。これによれば、隣接する
回路部の間に形成された間隙の位置において、加工対象
物を確実に切断することができる。
In the laser processing method according to the present invention, the converging point is adjusted inside the semiconductor material so that the peak power density at the converging point is 1 × 10 8 (W / cm 2 ) or more and the pulse width is 1 μs or less. A step of irradiating a laser beam under the conditions described above to form a modified region inside the semiconductor material along a line to cut the semiconductor material. Further, in the laser processing method according to the present invention, the peak power density at the focal point is set to 1 × 10 8 by focusing the focal point inside the piezoelectric material.
(W / cm 2 ) or more and a step of irradiating a laser beam under a condition of a pulse width of 1 μs or less to form a modified region inside the piezoelectric material along a line to cut the piezoelectric material. I do. According to these laser processing methods, for the same reason as the laser processing method according to the present invention described above, laser cutting is performed without causing unnecessary cracks on the surface of the object to be melted or deviating from the line to be cut. Becomes possible. In the laser processing method according to the present invention, the object to be processed has a plurality of circuit portions formed on a surface thereof, and the object to be processed facing a gap formed between adjacent circuit portions among the plurality of circuit portions. The focal point of the laser beam can be adjusted inside. According to this, at the position of the gap formed between the adjacent circuit portions, the processing target can be reliably cut.

【0023】本発明に係るレーザ加工方法において、複
数の回路部にレーザ光が照射されない角度でレーザ光が
集光される、ようにすることができる。これによれば、
レーザ光が回路部に入射するのを防ぐことができ、回路
部をレーザ光から保護することができる。
In the laser processing method according to the present invention, the laser light may be condensed at an angle at which the plurality of circuit portions are not irradiated with the laser light. According to this,
The laser light can be prevented from entering the circuit portion, and the circuit portion can be protected from the laser light.

【0024】本発明に係るレーザ加工方法は、半導体材
料の内部に集光点を合わせてレーザ光を照射し、半導体
材料の切断予定ラインに沿って半導体材料の内部にのみ
溶融処理領域を形成する工程を備える、ことを特徴とす
る。本発明に係るレーザ加工方法によれば、上記と同様
の理由により加工対象物の表面に不必要な割れを発生さ
せることなくかつその表面が溶融しないレーザ加工が可
能となる。なお、溶融処理領域の形成は多光子吸収が原
因の場合もあるし、他の原因の場合もある。
In the laser processing method according to the present invention, a laser beam is applied to the inside of a semiconductor material while focusing on a converging point, and a melt processing region is formed only inside the semiconductor material along a line to cut the semiconductor material. The method is characterized by comprising a step. According to the laser processing method of the present invention, it is possible to perform laser processing without causing unnecessary cracks on the surface of the object to be processed and without melting the surface for the same reason as described above. The formation of the melt processing region may be caused by multiphoton absorption or by other causes.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0026】以下、本発明の好適な実施形態について図
面を用いて説明する。本実施形態に係るレーザ加工方法
は、多光子吸収により改質領域を形成している。多光子
吸収はレーザ光の強度を非常に大きくした場合に発生す
る現象である。まず、多光子吸収について簡単に説明す
る。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the laser processing method according to the present embodiment, the modified region is formed by multiphoton absorption. Multiphoton absorption is a phenomenon that occurs when the intensity of laser light is extremely increased. First, multiphoton absorption will be briefly described.

【0027】材料の吸収のバンドギャップEGよりも光
子のエネルギーhνが小さいと光学的に透明となる。よ
って、材料に吸収が生じる条件はhν>EGである。し
かし、光学的に透明でも、レーザ光の強度を非常に大き
くするとnhν>EGの条件(n=2,3,4,・・・
である)で材料に吸収が生じる。この現象を多光子吸収
という。パルス波の場合、レーザ光の強度はレーザ光の
集光点のピークパワー密度(W/cm2)で決まり、例
えばピークパワー密度が1×108(W/cm2)以上の
条件で多光子吸収が生じる。ピークパワー密度は、(集
光点におけるレーザ光の1パルス当たりのエネルギー)
÷(レーザ光のビームスポット断面積×パルス幅)によ
り求められる。また、連続波の場合、レーザ光の強度は
レーザ光の集光点の電界強度(W/cm2)で決まる。
[0027] a band gap E photon energy hν than G of absorption of the material is less optically clear. Therefore, a condition under which absorption occurs in the material is hv> E G. However, even when optically transparent, the intensity of laser light is very large Nhnyu> of E G condition (n = 2,3,4, ···
) Causes absorption in the material. This phenomenon is called multiphoton absorption. In the case of a pulse wave, the intensity of the laser beam is determined by the peak power density (W / cm 2 ) of the laser beam converging point, and for example, the multiphoton is at a peak power density of 1 × 10 8 (W / cm 2 ) or more. Absorption occurs. The peak power density is (energy per pulse of laser light at the focal point)
÷ (beam spot cross-sectional area of laser light × pulse width). In the case of a continuous wave, the intensity of the laser light is determined by the electric field intensity (W / cm 2 ) at the focal point of the laser light.

【0028】このような多光子吸収を利用する本実施形
態に係るレーザ加工の原理について図1〜図6を用いて
説明する。図1はレーザ加工中の加工対象物1の平面図
であり、図2は図1に示す加工対象物1のII−II線
に沿った断面図であり、図3はレーザ加工後の加工対象
物1の平面図であり、図4は図3に示す加工対象物1の
IV−IV線に沿った断面図であり、図5は図3に示す
加工対象物1のV−V線に沿った断面図であり、図6は
切断された加工対象物1の平面図である。
The principle of laser processing according to the present embodiment utilizing such multiphoton absorption will be described with reference to FIGS. 1 is a plan view of the processing target 1 during laser processing, FIG. 2 is a cross-sectional view of the processing target 1 shown in FIG. 1 along line II-II, and FIG. 3 is a processing target after laser processing. 4 is a cross-sectional view of the processing target 1 shown in FIG. 3 along the line IV-IV, and FIG. 5 is a sectional view of the processing target 1 shown in FIG. 3 along the line V-V. FIG. 6 is a plan view of the processing object 1 that has been cut.

【0029】図1及び図2に示すように、加工対象物1
の表面3には切断予定ライン5がある。切断予定ライン
5は直線状に延びた仮想線である。本実施形態に係るレ
ーザ加工は、多光子吸収が生じる条件で加工対象物1の
内部に集光点Pを合わせてレーザ光Lを加工対象物1に
照射して改質領域7を形成する。なお、集光点とはレー
ザ光Lが集光した箇所のことである。
As shown in FIG. 1 and FIG.
The surface 3 has a line 5 to be cut. The scheduled cutting line 5 is a virtual line extending linearly. In the laser processing according to the present embodiment, the laser light L is irradiated on the processing target 1 with the focusing point P being adjusted inside the processing target 1 under the condition where multiphoton absorption occurs, thereby forming the modified region 7. Note that the converging point is a point where the laser light L is converged.

【0030】レーザ光Lを切断予定ライン5に沿って
(すなわち矢印A方向に沿って)相対的に移動させるこ
とにより、集光点Pを切断予定ライン5に沿って移動さ
せる。これにより、図3〜図5に示すように改質領域7
が切断予定ライン5に沿って加工対象物1の内部にのみ
形成される。本実施形態に係るレーザ加工方法は、加工
対象物1がレーザ光Lを吸収することにより加工対象物
1を発熱させて改質領域7を形成するのではない。加工
対象物1にレーザ光Lを透過させ加工対象物1の内部に
多光子吸収を発生させて改質領域7を形成している。よ
って、加工対象物1の表面3ではレーザ光Lがほとんど
吸収されないので、加工対象物1の表面3が溶融するこ
とはない。
The laser beam L is relatively moved along the line 5 to be cut (that is, along the direction of arrow A), so that the focal point P is moved along the line 5 to be cut. As a result, as shown in FIGS.
Are formed only inside the object 1 along the line 5 to be cut. The laser processing method according to the present embodiment does not form the modified region 7 by causing the processing target 1 to generate heat by absorbing the laser light L by the processing target 1. The modified region 7 is formed by transmitting the laser beam L through the processing target 1 and generating multiphoton absorption inside the processing target 1. Therefore, the laser light L is hardly absorbed by the surface 3 of the processing target 1, and therefore, the surface 3 of the processing target 1 is not melted.

【0031】加工対象物1の切断において、切断する箇
所に起点があると加工対象物1はその起点から割れるの
で、図6に示すように比較的小さな力で加工対象物1を
切断することができる。よって、加工対象物1の表面3
に不必要な割れを発生させることなく加工対象物1の切
断が可能となる。
In the cutting of the object 1, if the starting point is at a location to be cut, the object 1 is broken from the starting point. Therefore, as shown in FIG. 6, the object 1 can be cut with a relatively small force. it can. Therefore, the surface 3 of the workpiece 1
The workpiece 1 can be cut without causing unnecessary cracks.

【0032】なお、改質領域を起点とした加工対象物の
切断は、次の二通りが考えられる。一つは、改質領域形
成後、加工対象物に人為的な力が印加されることによ
り、改質領域を起点として加工対象物が割れ、加工対象
物が切断される場合である。これは、例えば加工対象物
の厚みが大きい場合の切断である。人為的な力が印加さ
れるとは、例えば、加工対象物の切断予定ラインに沿っ
て加工対象物に曲げ応力やせん断応力を加えたり、加工
対象物に温度差を与えることにより熱応力を発生させた
りすることである。他の一つは、改質領域を形成するこ
とにより、改質領域を起点として加工対象物の断面方向
(厚さ方向)に向かって自然に割れ、結果的に加工対象
物が切断される場合である。これは、例えば加工対象物
の厚みが小さい場合、改質領域が1つでも可能であり、
加工対象物の厚みが大きい場合、厚さ方向に複数の改質
領域を形成することで可能となる。なお、この自然に割
れる場合も、切断する箇所の表面上において、改質領域
が形成されていない部分まで割れが先走ることがなく、
改質部を形成した部分のみを割断することができるの
で、割断を制御よくすることができる。近年、シリコン
ウェハ等の半導体ウェハの厚さは薄くなる傾向にあるの
で、このような制御性のよい割断方法は大変有効であ
る。
It should be noted that the following two types of cutting of the object to be processed starting from the modified region can be considered. One is a case where an artificial force is applied to the object to be processed after the modified area is formed, whereby the object to be processed is cracked starting from the modified area and the object to be processed is cut. This is, for example, cutting when the thickness of the processing target is large. An artificial force is applied when, for example, a bending stress or a shear stress is applied to a workpiece along a line to cut the workpiece, or a thermal stress is generated by giving a temperature difference to the workpiece. Or let them do that. The other is that, by forming the modified region, the fracture is naturally caused in the cross-sectional direction (thickness direction) of the object to be processed from the modified region as a starting point, resulting in the cutting of the object to be processed. It is. This is possible, for example, when the thickness of the object to be processed is small, even one modified area is provided,
When the thickness of the object to be processed is large, it becomes possible by forming a plurality of modified regions in the thickness direction. In addition, even if this cracks naturally, on the surface of the cut portion, the crack does not advance to the portion where the modified region is not formed,
Since only the portion where the reformed portion is formed can be cut, the cut can be controlled well. In recent years, the thickness of a semiconductor wafer such as a silicon wafer tends to be reduced, and thus such a controllable cutting method is very effective.

【0033】さて、本実施形態において多光子吸収によ
り形成される改質領域として、次の(1)〜(3)があ
る。 (1)改質領域が一つ又は複数のクラックを含むクラッ
ク領域の場合レーザ光を加工対象物(例えばガラスやL
iTaO3からなる圧電材料)の内部に集光点を合わせ
て、集光点における電界強度が1×108(W/cm2
以上でかつパルス幅が1μs以下の条件で照射する。こ
のパルス幅の大きさは、多光子吸収を生じさせつつ加工
対象物表面に余計なダメージを与えずに、加工対象物の
内部にのみクラック領域を形成できる条件である。これ
により、加工対象物の内部には多光子吸収による光学的
損傷という現象が発生する。この光学的損傷により加工
対象物の内部に熱ひずみが誘起され、これにより加工対
象物の内部にクラック領域が形成される。電界強度の上
限値としては、例えば1×1012(W/cm2)であ
る。パルス幅は例えば1ns〜200nsが好ましい。
なお、多光子吸収によるクラック領域の形成は、例え
ば、第45回レーザ熱加工研究会論文集(1998年.
12月)の第23頁〜第28頁の「固体レーザー高調波
によるガラス基板の内部マーキング」に記載されてい
る。
The modified regions formed by multiphoton absorption in this embodiment include the following (1) to (3). (1) In the case where the modified region is a crack region including one or a plurality of cracks, a laser beam is irradiated on a processing target (for example, glass or L
The focusing point is set inside the piezoelectric material (iTaO 3 ), and the electric field intensity at the focusing point is 1 × 10 8 (W / cm 2 ).
Irradiation is performed under the conditions described above and a pulse width of 1 μs or less. The magnitude of the pulse width is a condition under which a crack region can be formed only inside the object to be processed without causing unnecessary damage to the surface of the object to be processed while causing multiphoton absorption. As a result, a phenomenon called optical damage occurs due to multiphoton absorption inside the object to be processed. This optical damage induces thermal strain inside the object, thereby forming a crack region inside the object. The upper limit of the electric field strength is, for example, 1 × 10 12 (W / cm 2 ). The pulse width is preferably, for example, 1 ns to 200 ns.
The formation of a crack region by multiphoton absorption is described in, for example, the 45th Laser Thermal Processing Research Group Transactions (1998.
(December), page 23 to page 28, "Internal Marking of Glass Substrate by Solid-State Laser Harmonics".

【0034】本発明者は、電界強度とクラックの大きさ
との関係を実験により求めた。実験条件は次ぎの通りで
ある。 (A)加工対象物:パイレックス(登録商標)ガラス
(厚さ700μm) (B)レーザ 光源:半導体レーザ励起Nd:YAGレーザ 波長:1064nm レーザ光スポット断面積:3.14×10-8cm2 発振形態:Qスイッチパルス 繰り返し周波数:100kHz パルス幅:30ns 出力:出力<1mJ/パルス レーザ光品質:TEM00 偏光特性:直線偏光 (C)集光用レンズ レーザ光波長に対する透過率:60パーセント (D)加工対象物が載置される載置台の移動速度:10
0mm/秒 なお、レーザ光品質がTEM00とは、集光性が高くレー
ザ光の波長程度まで集光可能を意味する。
The present inventor has experimentally determined the relationship between the electric field strength and the crack size. The experimental conditions are as follows. (A) Object to be processed: Pyrex (registered trademark) glass (thickness: 700 μm) (B) Laser light source: semiconductor laser pumped Nd: YAG laser Wavelength: 1064 nm Laser light spot cross-sectional area: 3.14 × 10 −8 cm 2 oscillation Form: Q switch pulse Repetition frequency: 100 kHz Pulse width: 30 ns Output: output <1 mJ / pulse Laser beam quality: TEM 00 Polarization characteristics: linearly polarized light (C) Condensing lens Transmittance for laser beam wavelength: 60% (D) Moving speed of the mounting table on which the workpiece is mounted: 10
0 mm / sec When the laser light quality is TEM 00, it means that the light collecting property is high and the light can be collected up to the wavelength of the laser light.

【0035】図7は上記実験の結果を示すグラフであ
る。横軸はピークパワー密度であり、レーザ光がパルス
レーザ光なので電界強度はピークパワー密度で表され
る。縦軸は1パルスのレーザ光により加工対象物の内部
に形成されたクラック部分(クラックスポット)の大き
さを示している。クラックスポットが集まりクラック領
域となる。クラックスポットの大きさは、クラックスポ
ットの形状のうち最大の長さとなる部分の大きさであ
る。グラフ中の黒丸で示すデータは集光用レンズ(C)
の倍率が100倍、開口数(NA)が0.80の場合で
ある。一方、グラフ中の白丸で示すデータは集光用レン
ズ(C)の倍率が50倍、開口数(NA)が0.55の
場合である。ピークパワー密度が1011(W/cm2
程度から加工対象物の内部にクラックスポットが発生
し、ピークパワー密度が大きくなるに従いクラックスポ
ットも大きくなることが分かる。
FIG. 7 is a graph showing the results of the above experiment. The horizontal axis represents the peak power density. Since the laser light is a pulsed laser light, the electric field intensity is represented by the peak power density. The vertical axis indicates the size of a crack portion (crack spot) formed inside the object by one pulse of laser light. Crack spots gather to form a crack area. The size of the crack spot is the size of the portion having the maximum length in the shape of the crack spot. The data indicated by the black circles in the graph is the condenser lens (C)
Is 100 times and the numerical aperture (NA) is 0.80. On the other hand, data indicated by white circles in the graph are obtained when the magnification of the condensing lens (C) is 50 times and the numerical aperture (NA) is 0.55. Peak power density of 10 11 (W / cm 2 )
From the degree, it can be seen that a crack spot is generated inside the object to be processed, and the crack spot increases as the peak power density increases.

【0036】次に、本実施形態に係るレーザ加工におい
て、クラック領域形成による加工対象物の切断のメカニ
ズムについて図8〜図11を用いて説明する。図8に示
すように、多光子吸収が生じる条件で加工対象物1の内
部に集光点Pを合わせてレーザ光Lを加工対象物1に照
射して切断予定ラインに沿って内部にクラック領域9を
形成する。クラック領域9は一つ又は複数のクラックを
含む領域である。図9に示すようにクラック領域9を起
点としてクラックがさらに成長し、図10に示すように
クラックが加工対象物1の表面3と裏面21に到達し、
図11に示すように加工対象物1が割れることにより加
工対象物1が切断される。加工対象物の表面と裏面に到
達するクラックは自然に成長する場合もあるし、加工対
象物に力が印加されることにより成長する場合もある。
Next, in the laser processing according to the present embodiment, a mechanism of cutting a processing object by forming a crack region will be described with reference to FIGS. As shown in FIG. 8, the laser light L is irradiated on the processing target 1 by aligning the focal point P inside the processing target 1 under the condition where multiphoton absorption occurs, and a crack region is formed inside along the line to be cut. 9 is formed. The crack region 9 is a region including one or a plurality of cracks. As shown in FIG. 9, cracks further grow from the crack region 9 as a starting point, and as shown in FIG. 10, the cracks reach the front surface 3 and the back surface 21 of the object 1,
As shown in FIG. 11, the processing object 1 is cut by breaking the processing object 1. Cracks that reach the front and back surfaces of the processing object may grow naturally, or may grow when a force is applied to the processing object.

【0037】(2)改質領域が溶融処理領域の場合 レーザ光を加工対象物(例えばシリコンのような半導体
材料)の内部に集光点を合わせて、集光点における電界
強度が1×108(W/cm2)以上でかつパルス幅が1
μs以下の条件で照射する。これにより加工対象物の内
部は多光子吸収によって局所的に加熱される。この加熱
により加工対象物の内部に溶融処理領域が形成される。
溶融処理領域とは一旦溶融後再固化した領域、溶融状態
中の領域及び溶融から再固化する状態中の領域のうち少
なくともいずれか一つを意味する。また、溶融処理領域
は相変化した領域や結晶構造が変化した領域ということ
もできる。また、溶融処理領域とは単結晶構造、非晶質
構造、多結晶構造において、ある構造が別の構造に変化
した領域ということもできる。つまり、例えば、単結晶
構造から非晶質構造に変化した領域、単結晶構造から多
結晶構造に変化した領域、単結晶構造から非晶質構造及
び多結晶構造を含む構造に変化した領域を意味する。加
工対象物がシリコン単結晶構造の場合、溶融処理領域は
例えば非晶質シリコン構造である。なお、電界強度の上
限値としては、例えば1×1012(W/cm2)であ
る。パルス幅は例えば1ns〜200nsが好ましい。
(2) In the case where the modified region is a fusion-processed region The laser beam is focused on the inside of the object to be processed (for example, a semiconductor material such as silicon), and the electric field intensity at the focused point is 1 × 10 8 (W / cm 2 ) or more and pulse width is 1
Irradiation is performed under the condition of μs or less. Thereby, the inside of the object to be processed is locally heated by multiphoton absorption. By this heating, a melt processing area is formed inside the object to be processed.
The melt-processed region means at least one of a region that has once been melted and re-solidified, a region in a molten state, and a region in a state of being re-solidified from melting. Further, the melt-processed region can also be referred to as a region where the phase has changed or a region where the crystal structure has changed. In addition, a melt-processed region can also be referred to as a region in which one structure is changed to another in a single crystal structure, an amorphous structure, or a polycrystalline structure. In other words, for example, a region changed from a single crystal structure to an amorphous structure, a region changed from a single crystal structure to a polycrystalline structure, and a region changed from a single crystal structure to a structure including an amorphous structure and a polycrystalline structure are meant. I do. When the object to be processed has a silicon single crystal structure, the melt processing region has, for example, an amorphous silicon structure. The upper limit of the electric field strength is, for example, 1 × 10 12 (W / cm 2 ). The pulse width is preferably, for example, 1 ns to 200 ns.

【0038】本発明者は、シリコンウェハの内部で溶融
処理領域が形成されることを実験により確認した。実験
条件は次ぎの通りである。 (A)加工対象物:シリコンウェハ(厚さ350μm、
外径4インチ) (B)レーザ 光源:半導体レーザ励起Nd:YAGレーザ 波長:1064nm レーザ光スポット断面積:3.14×10-8cm2 発振形態:Qスイッチパルス 繰り返し周波数:100kHz パルス幅:30ns 出力:20μJ/パルス レーザ光品質:TEM00 偏光特性:直線偏光 (C)集光用レンズ 倍率:50倍 NA:0.55 レーザ光波長に対する透過率:60パーセント (D)加工対象物が載置される載置台の移動速度:10
0mm/秒
The present inventor has confirmed through experiments that a melt processing region is formed inside a silicon wafer. The experimental conditions are as follows. (A) Object to be processed: silicon wafer (thickness: 350 μm,
(Bore diameter: 4 inches) (B) Laser Light source: Semiconductor laser pumped Nd: YAG laser Wavelength: 1064 nm Laser beam spot cross section: 3.14 × 10 -8 cm 2 Oscillation form: Q switch pulse Repetition frequency: 100 kHz Pulse width: 30 ns Output: 20 μJ / pulse Laser light quality: TEM 00 Polarization characteristics: linearly polarized light (C) Condensing lens Magnification: 50 times NA: 0.55 Transmittance for laser light wavelength: 60% (D) Workpiece is placed Moving speed of mounting table: 10
0mm / sec

【0039】図12は上記条件でのレーザ加工により切
断されたシリコンウェハの一部における断面の写真を表
した図である。シリコンウェハ11の内部に溶融処理領
域13が形成されている。なお、上記条件により形成さ
れた溶融処理領域の厚さ方向の大きさは100μm程度
である。
FIG. 12 is a view showing a photograph of a cross section of a part of the silicon wafer cut by the laser processing under the above conditions. A melt processing area 13 is formed inside the silicon wafer 11. The size in the thickness direction of the melt processing region formed under the above conditions is about 100 μm.

【0040】溶融処理領域13が多光子吸収により形成
されたことを説明する。図13は、レーザ光の波長とシ
リコン基板の内部の透過率との関係を示すグラフであ
る。ただし、シリコン基板の表面側と裏面側それぞれの
反射成分を除去し、内部のみの透過率を示している。シ
リコン基板の厚みtが50μm、100μm、200μ
m、500μm、1000μmの各々について上記関係
を示した。
The fact that the melt processing region 13 is formed by multiphoton absorption will be described. FIG. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate. Here, the reflection components on the front side and the back side of the silicon substrate are removed, and the transmittance is shown only inside. The thickness t of the silicon substrate is 50 μm, 100 μm, 200 μm
The above relationship was shown for each of m, 500 μm, and 1000 μm.

【0041】例えば、Nd:YAGレーザの波長である
1064nmにおいて、シリコン基板の厚みが500μ
m以下の場合、シリコン基板の内部ではレーザ光が80
%以上透過することが分かる。図12に示すシリコンウ
ェハ11の厚さは350μmであるので、多光子吸収に
よる溶融処理領域はシリコンウェハの中心付近、つまり
表面から175μmの部分に形成される。この場合の透
過率は、厚さ200μmのシリコンウェハを参考にする
と、90%以上なので、レーザ光がシリコンウェハ11
の内部で吸収されるのは僅かであり、ほとんどが透過す
る。このことは、シリコンウェハ11の内部でレーザ光
が吸収されて、溶融処理領域がシリコンウェハ11の内
部に形成(つまりレーザ光による通常の加熱で溶融処理
領域が形成)されたものではなく、溶融処理領域が多光
子吸収により形成されたことを意味する。多光子吸収に
よる溶融処理領域の形成は、例えば、溶接学会全国大会
講演概要第66集(2000年4月)の第72頁〜第7
3頁の「ピコ秒パルスレーザによるシリコンの加工特性
評価」に記載されている。
For example, at 1064 nm which is the wavelength of the Nd: YAG laser, the thickness of the silicon substrate is 500 μm.
m or less, the laser light is 80
% Or more. Since the thickness of the silicon wafer 11 shown in FIG. 12 is 350 μm, the melt processing region by multiphoton absorption is formed near the center of the silicon wafer, that is, at a portion 175 μm from the surface. The transmittance in this case is 90% or more with reference to a silicon wafer having a thickness of 200 μm.
Only a small amount is absorbed inside, and most of the light is transmitted. This means that the laser beam is absorbed inside the silicon wafer 11 and the melting region is not formed inside the silicon wafer 11 (that is, the melting region is formed by normal heating by the laser beam). It means that the processing region was formed by multiphoton absorption. The formation of the melt processing region by multiphoton absorption is described in, for example, pages 72 to 7 of the 66th Annual Meeting of the Japan Welding Society, April 2000.
It is described in “Evaluation of processing characteristics of silicon by picosecond pulse laser” on page 3.

【0042】なお、シリコンウェハは、溶融処理領域を
起点として断面方向に向かって割れを発生させ、その割
れがシリコンウェハの表面と裏面に到達することによ
り、結果的に切断される。シリコンウェハの表面と裏面
に到達するこの割れは自然に成長する場合もあるし、加
工対象物に力が印加されることにより成長する場合もあ
る。なお、溶融処理領域からシリコンウェハの表面と裏
面に割れが自然に成長するのは、一旦溶融後再固化した
状態となった領域から割れが成長する場合、溶融状態の
領域から割れが成長する場合及び溶融から再固化する状
態の領域から割れが成長する場合のうち少なくともいず
れか一つである。いずれの場合も切断後の切断面は図1
2に示すように内部にのみ溶融処理領域が形成される。
加工対象物の内部に溶融処理領域を形成する場合、割断
時、切断予定ラインから外れた不必要な割れが生じにく
いので、割断制御が容易となる。
Note that the silicon wafer is cracked in the cross-section direction starting from the melt processing region, and the crack reaches the front and back surfaces of the silicon wafer, resulting in cutting. The cracks reaching the front and back surfaces of the silicon wafer may grow spontaneously or may grow when a force is applied to the workpiece. The cracks naturally grow on the front and back surfaces of the silicon wafer from the melt processing area when the cracks grow from the area once re-solidified after melting, or when the cracks grow from the melted area. And at least one of the cases where cracks grow from a region in a state of being re-solidified from melting. In each case, the cut surface after cutting is shown in FIG.
As shown in FIG. 2, a melt processing region is formed only inside.
In the case of forming a melt-processed area inside the object to be processed, at the time of cutting, unnecessary cracks deviating from the line to be cut hardly occur, so that the cutting control is facilitated.

【0043】(3)改質領域が屈折率変化領域の場合 レーザ光を加工対象物(例えばガラス)の内部に集光点
を合わせて、集光点における電界強度が1×108(W
/cm2)以上でかつパルス幅が1ns以下の条件で照
射する。パルス幅を極めて短くして、多光子吸収を加工
対象物の内部に起こさせると、多光子吸収によるエネル
ギーが熱エネルギーに転化せずに、加工対象物の内部に
はイオン価数変化、結晶化又は分極配向等の永続的な構
造変化が誘起されて屈折率変化領域が形成される。電界
強度の上限値としては、例えば1×1012(W/c
2)である。パルス幅は例えば1ns以下が好まし
く、1ps以下がさらに好ましい。多光子吸収による屈
折率変化領域の形成は、例えば、第42回レーザ熱加工
研究会論文集(1997年.11月)の第105頁〜第
111頁の「フェムト秒レーザー照射によるガラス内部
への光誘起構造形成」に記載されている。
(3) When the Modified Region is a Refractive Index Change Region The laser beam is focused on the inside of the object to be processed (eg, glass), and the electric field intensity at the focused point is 1 × 10 8 (W
/ Cm 2 ) or more and a pulse width of 1 ns or less. When the pulse width is extremely short and multi-photon absorption occurs inside the object, the energy due to multi-photon absorption does not convert to heat energy. Alternatively, a permanent structural change such as polarization orientation is induced to form a refractive index change region. The upper limit of the electric field strength is, for example, 1 × 10 12 (W / c
m 2 ). The pulse width is, for example, preferably 1 ns or less, and more preferably 1 ps or less. The formation of the refractive index change region by multiphoton absorption is described in, for example, “The Femtosecond Laser Irradiation into Glass Inside” on page 105 to page 111 of the 42nd Meeting of Laser Thermal Processing Society (November 1997). Photo-induced structure formation ".

【0044】次に、本実施形態の具体例を説明する。 [第1例]本実施形態の第1例に係るレーザ加工方法に
ついて説明する。図14はこの方法に使用できるレーザ
加工装置100の概略構成図である。レーザ加工装置1
00は、レーザ光Lを発生するレーザ光源101と、レ
ーザ光Lの出力やパルス幅等を調節するためにレーザ光
源101を制御するレーザ光源制御部102と、レーザ
光Lの反射機能を有しかつレーザ光Lの光軸の向きを9
0°変えるように配置されたダイクロイックミラー10
3と、ダイクロイックミラー103で反射されたレーザ
光Lを集光する集光用レンズ105と、集光用レンズ1
05で集光されたレーザ光Lが照射される加工対象物1
が載置される載置台107と、載置台107をX軸方向
に移動させるためのX軸ステージ109と、載置台10
7をX軸方向に直交するY軸方向に移動させるためのY
軸ステージ111と、載置台107をX軸及びY軸方向
に直交するZ軸方向に移動させるためのZ軸ステージ1
13と、これら三つのステージ109,111,113
の移動を制御するステージ制御部115と、を備える。
Next, a specific example of this embodiment will be described. [First Example] A laser processing method according to a first example of the present embodiment will be described. FIG. 14 is a schematic configuration diagram of a laser processing apparatus 100 that can be used in this method. Laser processing equipment 1
Reference numeral 00 denotes a laser light source that generates the laser light L, a laser light source control unit 102 that controls the laser light source 101 to adjust the output of the laser light L, the pulse width, and the like, and a function of reflecting the laser light L. And the direction of the optical axis of the laser light L is 9
Dichroic mirror 10 arranged to change 0 °
3, a condensing lens 105 for condensing the laser beam L reflected by the dichroic mirror 103, and a condensing lens 1
Object 1 to be irradiated with laser light L condensed in 05
A table 107 on which is mounted, an X-axis stage 109 for moving the table 107 in the X-axis direction, and a table 10
7 for moving 7 in the Y-axis direction orthogonal to the X-axis direction.
Axis stage 111 and Z-axis stage 1 for moving mounting table 107 in the Z-axis direction orthogonal to the X-axis and Y-axis directions
13 and these three stages 109, 111, 113
And a stage control unit 115 for controlling movement of the stage.

【0045】Z軸方向は加工対象物1の表面3と直交す
る方向なので、加工対象物1に入射するレーザ光Lの焦
点深度の方向となる。よって、Z軸ステージ113をZ
軸方向に移動させることにより、加工対象物1の内部に
レーザ光Lの集光点Pを合わせることができる。また、
この集光点PのX(Y)軸方向の移動は、加工対象物1
をX(Y)軸ステージ109(111)によりX(Y)
軸方向に移動させることにより行う。X(Y)軸ステー
ジ109(111)が移動手段の一例となる。
Since the Z-axis direction is a direction orthogonal to the surface 3 of the object 1, it is the direction of the depth of focus of the laser light L incident on the object 1. Therefore, the Z-axis stage 113
By moving in the axial direction, the focal point P of the laser beam L can be adjusted to the inside of the processing target 1. Also,
The movement of the focal point P in the X (Y) axis direction is
Is converted to X (Y) by the X (Y) axis stage 109 (111).
This is done by moving it in the axial direction. The X (Y) axis stage 109 (111) is an example of a moving unit.

【0046】レーザ光源101はパルスレーザ光を発生
するNd:YAGレーザである。レーザ光源101に用
いることができるレーザとして、この他、Nd:YVO
4レーザ、Nd:YLFレーザやチタンサファイアレー
ザがある。クラック領域や溶融処理領域を形成する場
合、Nd:YAGレーザ、Nd:YVO4レーザ、N
d:YLFレーザを用いるのが好適である。屈折率変化
領域を形成する場合、チタンサファイアレーザを用いる
のが好適である。
The laser light source 101 is an Nd: YAG laser that generates a pulse laser beam. As a laser that can be used for the laser light source 101, Nd: YVO
There are 4 lasers, Nd: YLF laser and titanium sapphire laser. When forming a crack region or a melt processing region, a Nd: YAG laser, a Nd: YVO 4 laser,
d: It is preferable to use a YLF laser. When forming the refractive index change region, it is preferable to use a titanium sapphire laser.

【0047】第1例では加工対象物1の加工にパルスレ
ーザ光を用いているが、多光子吸収を起こさせることが
できるなら連続波レーザ光でもよい。なお、本発明にお
いてレーザ光はレーザビームを含む意味である。集光用
レンズ105は集光手段の一例である。Z軸ステージ1
13はレーザ光の集光点を加工対象物の内部に合わせる
手段の一例である。集光用レンズ105をZ軸方向に移
動させることによっても、レーザ光の集光点を加工対象
物の内部に合わせることができる。
In the first example, a pulse laser beam is used for processing the object 1. However, a continuous wave laser beam may be used if multiphoton absorption can be caused. In the present invention, a laser beam includes a laser beam. The condenser lens 105 is an example of a condenser. Z axis stage 1
Reference numeral 13 denotes an example of a means for adjusting the focal point of the laser beam to the inside of the object to be processed. By moving the condenser lens 105 in the Z-axis direction, the focal point of the laser beam can be adjusted to the inside of the object to be processed.

【0048】レーザ加工装置100はさらに、載置台1
07に載置された加工対象物1を可視光線により照明す
るために可視光線を発生する観察用光源117と、ダイ
クロイックミラー103及び集光用レンズ105と同じ
光軸上に配置された可視光用のビームスプリッタ119
と、を備える。ビームスプリッタ119と集光用レンズ
105との間にダイクロイックミラー103が配置され
ている。ビームスプリッタ119は、可視光線の約半分
を反射し残りの半分を透過する機能を有しかつ可視光線
の光軸の向きを90°変えるように配置されている。観
察用光源117から発生した可視光線はビームスプリッ
タ119で約半分が反射され、この反射された可視光線
がダイクロイックミラー103及び集光用レンズ105
を透過し、加工対象物1の切断予定ライン5等を含む表
面3を照明する。
The laser processing apparatus 100 further includes a mounting table 1
07, an observation light source 117 that generates visible light to illuminate the processing target 1 with visible light, and a visible light arranged on the same optical axis as the dichroic mirror 103 and the condenser lens 105. Beam splitter 119
And. The dichroic mirror 103 is arranged between the beam splitter 119 and the condenser lens 105. The beam splitter 119 has a function of reflecting about half of visible light and transmitting the other half, and is arranged so as to change the direction of the optical axis of visible light by 90 °. About half of the visible light generated from the observation light source 117 is reflected by the beam splitter 119, and the reflected visible light is converted to the dichroic mirror 103 and the condenser lens 105.
To illuminate the surface 3 of the object 1 including the line 5 to be cut.

【0049】レーザ加工装置100はさらに、ビームス
プリッタ119、ダイクロイックミラー103及び集光
用レンズ105と同じ光軸上に配置された撮像素子12
1及び結像レンズ123を備える。撮像素子121とし
ては例えばCCD(charge−coupled d
evice)カメラがある。切断予定ライン5等を含む
表面3を照明した可視光線の反射光は、集光用レンズ1
05、ダイクロイックミラー103、ビームスプリッタ
119を透過し、結像レンズ123で結像されて撮像素
子121で撮像され、撮像データとなる。
The laser processing apparatus 100 further includes an image pickup device 12 arranged on the same optical axis as the beam splitter 119, the dichroic mirror 103, and the condensing lens 105.
1 and an imaging lens 123. As the imaging device 121, for example, a CCD (charge-coupled d)
device) camera. The reflected light of visible light illuminating the surface 3 including the line 5 to be cut is
05, the light passes through the dichroic mirror 103 and the beam splitter 119, is imaged by the imaging lens 123, is imaged by the image sensor 121, and becomes image data.

【0050】レーザ加工装置100はさらに、撮像素子
121から出力された撮像データが入力される撮像デー
タ処理部125と、レーザ加工装置100全体を制御す
る全体制御部127と、モニタ129と、を備える。撮
像データ処理部125は、撮像データを基にして観察用
光源117で発生した可視光の焦点が表面3上に合わせ
るための焦点データを演算する。この焦点データを基に
してステージ制御部115がZ軸ステージ113を移動
制御することにより、可視光の焦点が表面3に合うよう
にする。よって、撮像データ処理部125はオートフォ
ーカスユニットとして機能する。また、撮像データ処理
部125は、撮像データを基にして表面3の拡大画像等
の画像データを演算する。この画像データは全体制御部
127に送られ、全体制御部で各種処理がなされ、モニ
タ129に送られる。これにより、モニタ129に拡大
画像等が表示される。
The laser processing apparatus 100 further includes an imaging data processing unit 125 to which the imaging data output from the imaging element 121 is input, an overall control unit 127 for controlling the entire laser processing apparatus 100, and a monitor 129. . The imaging data processing unit 125 calculates focus data for adjusting the focus of the visible light generated by the observation light source 117 on the surface 3 based on the imaging data. The stage controller 115 controls the movement of the Z-axis stage 113 based on the focus data, so that the visible light is focused on the surface 3. Therefore, the imaging data processing unit 125 functions as an autofocus unit. The imaging data processing unit 125 calculates image data such as an enlarged image of the front surface 3 based on the imaging data. The image data is sent to the overall control unit 127, where various processes are performed, and the image data is sent to the monitor 129. As a result, an enlarged image or the like is displayed on the monitor 129.

【0051】全体制御部127には、ステージ制御部1
15からのデータ、撮像データ処理部125からの画像
データ等が入力し、これらのデータも基にしてレーザ光
源制御部102、観察用光源117及びステージ制御部
115を制御することにより、レーザ加工装置100全
体を制御する。よって、全体制御部127はコンピュー
タユニットとして機能する。
The overall control unit 127 includes the stage control unit 1
15 and the image data from the imaging data processing unit 125, and the laser processing apparatus controls the laser light source control unit 102, the observation light source 117, and the stage control unit 115 based on these data. 100 overall control. Therefore, the overall control unit 127 functions as a computer unit.

【0052】次に、図14及び図15を用いて、本実施
形態の第1例に係るレーザ加工方法を説明する。図15
は、このレーザ加工方法を説明するためのフローチャー
トである。加工対象物1はシリコンウェハである。
Next, a laser processing method according to a first example of the present embodiment will be described with reference to FIGS. FIG.
Is a flowchart for explaining this laser processing method. The processing object 1 is a silicon wafer.

【0053】まず、加工対象物1の光吸収特性を図示し
ない分光光度計等により測定する。この測定結果に基づ
いて、加工対象物1に対して透明な波長又は吸収の少な
い波長のレーザ光Lを発生するレーザ光源101を選定
する(S101)。次に、加工対象物1の厚さを測定す
る。厚さの測定結果及び加工対象物1の屈折率を基にし
て、加工対象物1のZ軸方向の移動量を決定する(S1
03)。これは、レーザ光Lの集光点Pが加工対象物1
の内部に位置させるために、加工対象物1の表面3に位
置するレーザ光Lの集光点を基準とした加工対象物1の
Z軸方向の移動量である。この移動量を全体制御部12
7に入力される。
First, the light absorption characteristics of the object 1 are measured by a spectrophotometer (not shown) or the like. Based on the measurement result, a laser light source 101 that generates a laser beam L having a wavelength that is transparent or has a small absorption for the processing target 1 is selected (S101). Next, the thickness of the workpiece 1 is measured. Based on the thickness measurement result and the refractive index of the processing target 1, the amount of movement of the processing target 1 in the Z-axis direction is determined (S1).
03). This is because the focal point P of the laser beam L is
Is the amount of movement of the object 1 in the Z-axis direction with respect to the focal point of the laser beam L located on the surface 3 of the object 1 to be positioned inside the object 1. This movement amount is used as the overall control unit 12
7 is input.

【0054】加工対象物1をレーザ加工装置100の載
置台107に載置する。そして、観察用光源117から
可視光を発生させて加工対象物1を照明する(S10
5)。照明された切断予定ライン5を含む加工対象物1
の表面3を撮像素子121により撮像する。この撮像デ
ータは撮像データ処理部125に送られる。この撮像デ
ータに基づいて撮像データ処理部125は観察用光源1
17の可視光の焦点が表面3に位置するような焦点デー
タを演算する(S107)。
The workpiece 1 is mounted on the mounting table 107 of the laser processing apparatus 100. Then, the processing target 1 is illuminated by generating visible light from the observation light source 117 (S10).
5). Workpiece 1 including illuminated scheduled cutting line 5
Is imaged by the image sensor 121. This imaging data is sent to the imaging data processing unit 125. On the basis of the image data, the image data processor 125 sets the observation light source 1
The focus data is calculated such that the focus of visible light 17 is located on the surface 3 (S107).

【0055】この焦点データはステージ制御部115に
送られる。ステージ制御部115は、この焦点データを
基にしてZ軸ステージ113をZ軸方向の移動させる
(S109)。これにより、観察用光源117の可視光
の焦点が表面3に位置する。なお、撮像データ処理部1
25は撮像データに基づいて、切断予定ライン5を含む
加工対象物1の表面3の拡大画像データを演算する。こ
の拡大画像データは全体制御部127を介してモニタ1
29に送られ、これによりモニタ129に切断予定ライ
ン5付近の拡大画像が表示される。
The focus data is sent to the stage control unit 115. The stage control unit 115 moves the Z-axis stage 113 in the Z-axis direction based on the focus data (S109). Thereby, the focus of the visible light of the observation light source 117 is located on the surface 3. Note that the imaging data processing unit 1
Numeral 25 calculates enlarged image data of the front surface 3 of the processing target 1 including the planned cutting line 5 based on the imaging data. This enlarged image data is sent to the monitor 1 via the overall control unit 127.
29, whereby an enlarged image near the line 5 to be cut is displayed on the monitor 129.

【0056】全体制御部127には予めステップS10
3で決定された移動量データが入力されており、この移
動量データがステージ制御部115に送られる。ステー
ジ制御部115はこの移動量データに基づいて、レーザ
光Lの集光点Pが加工対象物1の内部となる位置に、Z
軸ステージ113により加工対象物1をZ軸方向に移動
させる(S111)。
The overall control unit 127 stores in step S10
The movement amount data determined in step 3 is input, and the movement amount data is sent to the stage control unit 115. Based on the movement amount data, the stage control unit 115 moves the focal point P of the laser beam L to a position where
The workpiece 1 is moved in the Z-axis direction by the axis stage 113 (S111).

【0057】次に、レーザ光源101からレーザ光Lを
発生させて、レーザ光Lを加工対象物1の表面3の切断
予定ライン5に照射する。レーザ光Lの集光点Pは加工
対象物1の内部に位置しているので、溶融処理領域は加
工対象物1の内部にのみ形成される。そして、切断予定
ライン5に沿うようにX軸ステージ109やY軸ステー
ジ111を移動させて、溶融処理領域を切断予定ライン
5に沿うように加工対象物1の内部に形成する(S11
3)。そして、加工対象物1を切断予定ライン5に沿っ
て曲げることにより、加工対象物1を切断する(S11
5)。これにより、加工対象物1をシリコンチップに分
割する。
Next, a laser light L is generated from the laser light source 101, and the laser light L is applied to the line 5 to be cut on the surface 3 of the object 1. Since the focal point P of the laser beam L is located inside the processing target 1, the melt processing region is formed only inside the processing target 1. Then, the X-axis stage 109 and the Y-axis stage 111 are moved along the planned cutting line 5 to form a melt processing region inside the workpiece 1 along the planned cutting line 5 (S11).
3). Then, the object 1 is cut by bending the object 1 along the line 5 to be cut (S11).
5). As a result, the workpiece 1 is divided into silicon chips.

【0058】第1例の効果を説明する。これによれば、
多光子吸収を起こさせる条件でかつ加工対象物1の内部
に集光点Pを合わせて、パルスレーザ光Lを切断予定ラ
イン5に照射している。そして、X軸ステージ109や
Y軸ステージ111を移動させることにより、集光点P
を切断予定ライン5に沿って移動させている。これによ
り、改質領域(例えばクラック領域、溶融処理領域、屈
折率変化領域)を切断予定ライン5に沿うように加工対
象物1の内部に形成している。加工対象物の切断する箇
所に何らかの起点があると、加工対象物を比較的小さな
力で割って切断することができる。よって、改質領域を
起点として切断予定ライン5に沿って加工対象物1を割
ることにより、比較的小さな力で加工対象物1を切断す
ることができる。これにより、加工対象物1の表面3に
切断予定ライン5から外れた不必要な割れを発生させる
ことなく加工対象物1を切断することができる。
The effect of the first example will be described. According to this,
The pulse laser beam L is applied to the line 5 to be cut under conditions that cause multiphoton absorption and that the focal point P is set inside the object 1 to be processed. Then, by moving the X-axis stage 109 and the Y-axis stage 111, the focal point P
Is moved along the line 5 to be cut. As a result, a modified region (for example, a crack region, a melt processing region, a refractive index change region) is formed inside the processing target object 1 along the line 5 to be cut. If there is any starting point at the cutting position of the object, the object can be cut by relatively small force. Therefore, the work 1 can be cut with a relatively small force by breaking the work 1 along the scheduled cutting line 5 with the modified region as a starting point. Thereby, the object 1 can be cut without generating unnecessary cracks off the cutting line 5 on the surface 3 of the object 1.

【0059】また、第1例によれば、加工対象物1に多
光子吸収を起こさせる条件でかつ加工対象物1の内部に
集光点Pを合わせて、パルスレーザ光Lを切断予定ライ
ン5に照射している。よって、パルスレーザ光Lは加工
対象物1を透過し、加工対象物1の表面3ではパルスレ
ーザ光Lがほとんど吸収されないので、改質領域形成が
原因で表面3が溶融等のダメージを受けることはない。
Further, according to the first example, the pulse laser beam L is cut into the cutting line 5 under the condition that multi-photon absorption occurs in the processing target 1 and the focusing point P is set inside the processing target 1. Irradiation. Therefore, the pulse laser beam L is transmitted through the processing target 1 and the pulse laser beam L is hardly absorbed on the surface 3 of the processing target 1, so that the surface 3 is damaged by melting or the like due to the formation of the modified region. There is no.

【0060】以上説明したように第1例によれば、加工
対象物1の表面3に切断予定ライン5から外れた不必要
な割れや溶融が生じることなく、加工対象物1を切断す
ることができる。よって、加工対象物1が例えば半導体
ウェハの場合、半導体チップに切断予定ラインから外れ
た不必要な割れや溶融が生じることなく、半導体チップ
を半導体ウェハから切り出すことができる。表面に電極
パターンが形成されている加工対象物や、圧電素子ウェ
ハや液晶等の表示装置が形成されたガラス基板のように
表面に電子デバイスが形成されている加工対象物につい
ても同様である。よって、第1例によれば、加工対象物
を切断することにより作製される製品(例えば半導体チ
ップ、圧電デバイスチップ、液晶等の表示装置)の歩留
まりを向上させることができる。
As described above, according to the first example, it is possible to cut the work 1 without causing unnecessary cracks or melting off the cutting line 5 on the surface 3 of the work 1. it can. Therefore, when the processing target 1 is, for example, a semiconductor wafer, the semiconductor chip can be cut out of the semiconductor wafer without causing unnecessary cracks or melting of the semiconductor chip off the line to be cut. The same applies to a processing object having an electrode pattern formed on the surface, or a processing object having an electronic device formed on the surface, such as a glass substrate on which a display device such as a piezoelectric element wafer or a liquid crystal is formed. Therefore, according to the first example, it is possible to improve the yield of products (for example, display devices such as semiconductor chips, piezoelectric device chips, and liquid crystals) manufactured by cutting an object to be processed.

【0061】また、第1例によれば、加工対象物1の表
面3の切断予定ライン5は溶融しないので、切断予定ラ
イン5の幅(この幅は、例えば半導体ウェハの場合、半
導体チップとなる領域同士の間隔である。)を小さくで
きる。これにより、一枚の加工対象物1から作製される
製品の数が増え、製品の生産性を向上させることができ
る。
According to the first example, the line 5 to be cut on the surface 3 of the object 1 is not melted, so that the width of the line 5 to be cut (this width is, for example, a semiconductor chip in the case of a semiconductor wafer). This is the distance between the regions.). Thereby, the number of products manufactured from one processing target object 1 increases, and the productivity of the products can be improved.

【0062】また、第1例によれば、加工対象物1の切
断加工にレーザ光を用いるので、ダイヤモンドカッタを
用いたダイシングよりも複雑な加工が可能となる。例え
ば、図16に示すように切断予定ライン5が複雑な形状
であっても、第1例によれば切断加工が可能となる。こ
れらの効果は後に説明する例でも同様である。
Further, according to the first example, since the laser beam is used for the cutting of the processing object 1, the processing can be more complicated than the dicing using the diamond cutter. For example, as shown in FIG. 16, even if the scheduled cutting line 5 has a complicated shape, the cutting can be performed according to the first example. These effects are the same in the example described later.

【0063】なお、レーザ光源は一つに限らず複数でも
よい。例えば、図17はレーザ光源が複数における本実
施形態の第1例に係るレーザ加工方法を説明する模式図
である。これは、三つのレーザ光源15,17,19か
ら出射された三つのレーザ光を加工対象物1の内部に集
光点Pを合わせて異なる方向から照射している。レーザ
光源15,17からの各レーザ光は加工対象物1の表面
3から入射する。レーザ光源19からのレーザ光は加工
対象物1の裏面3から入射する。これよれば、複数のレ
ーザ光源を用いるので、レーザ光がパルスレーザ光に比
べてパワーが小さい連続波レーザ光であっても、集光点
の電界強度を多光子吸収が発生する大きさにすることが
可能となる。同様の理由により集光用レンズがなくても
多光子吸収が発生させることが可能となる。なお、この
例では三つのレーザ光源15,17,19により集光点
Pを形成しているが、本発明はこれに限定されずレーザ
光源が複数であればよい。
The number of laser light sources is not limited to one but may be plural. For example, FIG. 17 is a schematic diagram illustrating a laser processing method according to a first example of the present embodiment in which there are a plurality of laser light sources. In this method, three laser beams emitted from the three laser light sources 15, 17, and 19 are radiated from different directions to the inside of the processing target 1 by adjusting the focal point P. Each laser beam from the laser light sources 15 and 17 enters from the surface 3 of the object 1 to be processed. Laser light from the laser light source 19 enters from the back surface 3 of the processing target 1. According to this, since a plurality of laser light sources are used, even if the laser light is a continuous wave laser light having a smaller power than the pulsed laser light, the electric field intensity at the focal point is set to a size at which multiphoton absorption occurs. It becomes possible. For the same reason, multiphoton absorption can be generated even without a focusing lens. In this example, the converging point P is formed by three laser light sources 15, 17, and 19, but the present invention is not limited to this, and a plurality of laser light sources may be used.

【0064】図18はレーザ光源が複数における本実施
形態の第1例に係る他のレーザ加工方法を説明する模式
図である。この例は、複数のレーザ光源23が切断予定
ライン5に沿って一列に配置された三つのアレイ光源部
25,27,29を備えている。アレイ光源部25,2
7,29の各々において同じ列に配置されたレーザ光源
23から出射されたレーザ光が一つの集光点(例えば集
光点P1)を形成する。この例によれば切断予定ライン
5に沿って複数の集光点P1,P2,・・・を同時に形成
することができるので、加工速度を向上させることがで
きる。また、この例では、表面3上であって切断予定ラ
イン5と直交する方向にレーザスキャンすることで改質
領域を複数列同時に形成することも可能である。
FIG. 18 is a schematic diagram for explaining another laser processing method according to the first example of the present embodiment in which there are a plurality of laser light sources. This example includes three array light source units 25, 27, and 29 in which a plurality of laser light sources 23 are arranged in a line along the line 5 to be cut. Array light source unit 25, 2
In each of 7 and 29, the laser light emitted from the laser light sources 23 arranged in the same row forms one focal point (for example, focal point P 1 ). According to this example, a plurality of light-condensing points P 1 , P 2 ,... Can be formed simultaneously along the line 5 to be cut, so that the processing speed can be improved. Further, in this example, it is also possible to simultaneously form a plurality of modified regions by laser scanning on the surface 3 in a direction orthogonal to the line 5 to be cut.

【0065】[第2例]次に、本実施形態の第2例につ
いて説明する。この例は光透過性材料の切断方法及び切
断装置である。光透過性材料は加工対象物の一例であ
る。この例では、光透過性材料としてLiTaO3から
なる厚さが400μm程度の圧電素子ウェハ(基板)を
用いている。
[Second Example] Next, a second example of the present embodiment will be described. This example is a method and an apparatus for cutting a light transmitting material. The light transmissive material is an example of a processing object. In this example, a piezoelectric element wafer (substrate) made of LiTaO 3 and having a thickness of about 400 μm is used as the light transmitting material.

【0066】第2例に係る切断装置は、図14に示すレ
ーザ加工装置100及び図19、図20に示す装置から
構成される。図19及び図20に示す装置について説明
する。圧電素子ウェハ31は、保持手段としてのウェハ
シート(フィルム)33に保持されている。このウェハ
シート33は、圧電素子ウェハ31を保持する側の面が
粘着性を有する樹脂製テープ等からなり、弾性を有して
いる。ウェハシート33は、サンプルホルダ35に挟持
されて、載置台107上にセットされる。なお、圧電素
子ウェハ31は、図19に示されるように、後に切断分
離される多数個の圧電デバイスチップ37を含んでい
る。各圧電デバイスチップ37は回路部39を有してい
る。この回路部39は、圧電素子ウェハ31の表面に各
圧電デバイスチップ37毎に形成されており、隣接する
回路部39の間には所定の間隙α(80μm程度)が形
成されている。なお、図20は、圧電素子ウェハ31の
内部のみに改質部としての微小なクラック領域9が形成
された状態を示している。
The cutting device according to the second example includes a laser processing device 100 shown in FIG. 14 and devices shown in FIGS. The device shown in FIGS. 19 and 20 will be described. The piezoelectric element wafer 31 is held on a wafer sheet (film) 33 as holding means. The surface of the wafer sheet 33 holding the piezoelectric element wafer 31 is made of an adhesive resin tape or the like, and has elasticity. The wafer sheet 33 is set on the mounting table 107 while being sandwiched by the sample holder 35. As shown in FIG. 19, the piezoelectric element wafer 31 includes a large number of piezoelectric device chips 37 which are cut and separated later. Each piezoelectric device chip 37 has a circuit section 39. The circuit section 39 is formed on the surface of the piezoelectric element wafer 31 for each piezoelectric device chip 37, and a predetermined gap α (about 80 μm) is formed between adjacent circuit sections 39. FIG. 20 shows a state in which minute crack regions 9 as modified portions are formed only inside the piezoelectric element wafer 31.

【0067】次に、図21に基づいて、第2例に係る光
透過性材料の切断方法について説明する。まず、切断対
象材料となる光透過性材料(第2例においては、LiT
aO 3からなる圧電素子ウェハ31)の光吸収特性を測
定する(S201)。光吸収特性は、分光光度計等を用
いることにより測定可能である。光吸収特性が測定され
ると、その測定結果に基づいて、切断対象材料に対して
透明若しくは吸収の少ない波長のレーザ光Lを出射する
レーザ光源101を選定する(S203)。第2例にお
いては、基本波波長が1064nmであるパルス波(P
W)型のYAGレーザが選定されている。このYAGレ
ーザは、パルスの繰り返し周波数が20Hzであり、パ
ルス幅が6nsであり、パルスエネルギは300μJで
ある。また、YAGレーザから出射されるレーザ光Lの
スポット径は、20μm程度である。
Next, based on FIG. 21, the light according to the second example will be described.
A method for cutting the permeable material will be described. First, cutting vs
A light-transmitting material serving as an elephant material (in the second example, LiT
aO ThreeThe light absorption characteristics of the piezoelectric element wafer 31) made of
(S201). For light absorption characteristics, use a spectrophotometer
Can be measured. Light absorption characteristics are measured
Then, based on the measurement results,
Emit a laser beam L with a transparent or low absorption wavelength
The laser light source 101 is selected (S203). In the second example
In other words, a pulse wave (P) having a fundamental wavelength of 1064 nm
A W) type YAG laser is selected. This YAG
The user has a pulse repetition frequency of 20 Hz,
The pulse width is 6 ns and the pulse energy is 300 μJ.
is there. Further, the laser light L emitted from the YAG laser
The spot diameter is about 20 μm.

【0068】次に、切断対象材料の厚さを測定する(S
205)。切断対象材料の厚さが測定されると、その測
定結果に基づいて、レーザ光Lの集光点が切断対象材料
の内部に位置するように、レーザ光Lの光軸方向におけ
る切断対象材料の表面(レーザ光Lの入射面)からのレ
ーザ光Lの集光点の変位量(移動量)を決定する(S2
07)。レーザ光Lの集光点の変位量(移動量)は、切
断対象材料の厚さ及び屈折率に対応して、たとえば切断
対象材料の厚さの1/2の量に設定される。
Next, the thickness of the material to be cut is measured (S
205). When the thickness of the material to be cut is measured, the thickness of the material to be cut in the optical axis direction of the laser light L is determined based on the measurement result such that the focal point of the laser light L is located inside the material to be cut. The amount of displacement (movement) of the focal point of the laser light L from the surface (incident surface of the laser light L) is determined (S2).
07). The displacement amount (movement amount) of the focal point of the laser beam L is set to, for example, 1 / the thickness of the material to be cut, corresponding to the thickness and the refractive index of the material to be cut.

【0069】図22に示されるように、実際のレーザ光
Lの集光点Pの位置は、切断対象材料雰囲気(たとえ
ば、空気)中の屈折率と切断対象材料の屈折率との違い
により、集光用レンズ105で集光されたレーザ光Lの
集光点Qの位置よりも切断対象材料(圧電素子ウェハ3
1)の表面から深いところに位置するようになる。すな
わち、空気中の場合、「レーザ光Lの光軸方向でのZ軸
ステージ113の移動量×切断対象材料の屈折率=実際
のレーザ光Lの集光点移動量」という関係が成り立つこ
とになる。レーザ光Lの集光点の変位量(移動量)は、
上述した関係(切断対象材料の厚さ及び屈折率)を考慮
して設定される。その後、X−Y−Z軸ステージ(本実
施形態においては、X軸ステージ109、Y軸ステージ
111及びZ軸ステージ113により構成される)上に
配置された載置台107に対してウェハシート33に保
持された切断対象材料を載置する(S209)。切断対
象材料の載置を終えると、観察用光源117から光を出
射して、出射した光を切断対象材料に照射する。そし
て、撮像素子121での撮像結果に基づいて、レーザ光
Lの集光点が切断対象材料の表面上に位置するようにZ
軸ステージ113を移動させてフォーカス調整を行う
(S211)。ここでは、観察用光源117によって得
られる圧電素子ウェハ31の表面観察像を撮像素子12
1により撮像し、撮像データ処理部125が、撮像結果
に基づいて、観察用光源117から出射された光が切断
対象材料の表面上で焦点を結ぶようにZ軸ステージ11
3の移動位置を決定し、ステージ制御部115に出力す
る。ステージ制御部115は、撮像データ処理部125
からの出力信号に基づいて、Z軸ステージ113の移動
位置が、観察用光源117から出射された光が切断対象
材料の表面上に焦点を結ぶ、すなわちレーザ光Lの集光
点を切断対象材料の表面上に位置させるための位置とな
るようにZ軸ステージ113を制御する。
As shown in FIG. 22, the actual position of the focal point P of the laser beam L is determined by the difference between the refractive index in the atmosphere of the material to be cut (for example, air) and the refractive index of the material to be cut. The material to be cut (piezoelectric element wafer 3) is located at a position higher than the position of the focal point Q of the laser beam L focused by the focusing lens 105.
It will be located deep from the surface of 1). In other words, in the case of in the air, the following relationship is established: “the amount of movement of the Z-axis stage 113 in the optical axis direction of the laser beam L × the refractive index of the material to be cut = the actual amount of movement of the converging point of the laser beam L”. Become. The amount of displacement (movement) of the focal point of the laser light L is
It is set in consideration of the above-described relationship (the thickness and the refractive index of the material to be cut). Thereafter, the wafer sheet 33 is placed on the mounting table 107 disposed on the XYZ axis stage (in the present embodiment, constituted by the X axis stage 109, the Y axis stage 111, and the Z axis stage 113). The held material to be cut is placed (S209). When the placement of the cutting target material is completed, light is emitted from the observation light source 117, and the emitted light is applied to the cutting target material. Then, based on the image pickup result by the image pickup device 121, Z is set so that the focal point of the laser beam L is located on the surface of the material to be cut.
The focus adjustment is performed by moving the axis stage 113 (S211). Here, the surface observation image of the piezoelectric element wafer 31 obtained by the observation light source 117 is
1, the imaging data processing unit 125 sets the Z-axis stage 11 so that the light emitted from the observation light source 117 is focused on the surface of the material to be cut based on the imaging result.
3 is determined and output to the stage control unit 115. The stage control unit 115 includes an imaging data processing unit 125
Position of the Z-axis stage 113 based on the output signal from the light source, the light emitted from the observation light source 117 is focused on the surface of the material to be cut, that is, the focal point of the laser light L is shifted to the material to be cut. The Z-axis stage 113 is controlled so that the Z-axis stage 113 is positioned to be positioned on the surface.

【0070】観察用光源117から出射された光のフォ
ーカス調整が終わると、レーザ光Lの集光点を切断対象
材料の厚さ及び屈折率に対応した集光点に移動させる
(S213)。ここでは、切断対象材料の厚さ及び屈折
率に対応して決定されたレーザ光Lの集光点の変位量分
だけZ軸ステージ113をレーザ光Lの光軸方向に移動
させるように、全体制御部127がステージ制御部11
5に出力信号を送り、出力信号を受けたステージ制御部
115がZ軸ステージ113の移動位置を制御する。上
述したように、切断対象材料の厚さ及び屈折率に対応し
て決定されたレーザ光Lの集光点の変位量分だけZ軸ス
テージ113をレーザ光Lの光軸方向に移動させること
により、レーザ光Lの集光点の切断対象材料の内部への
配置が完了する(S215)。
When the focus adjustment of the light emitted from the observation light source 117 is completed, the focal point of the laser beam L is moved to a focal point corresponding to the thickness and the refractive index of the material to be cut (S213). Here, the entire Z-axis stage 113 is moved in the optical axis direction of the laser light L by the displacement of the focal point of the laser light L determined according to the thickness and the refractive index of the material to be cut. The control unit 127 is the stage control unit 11
The stage controller 115 receives the output signal and controls the moving position of the Z-axis stage 113. As described above, by moving the Z-axis stage 113 in the optical axis direction of the laser light L by the displacement of the focal point of the laser light L determined according to the thickness and the refractive index of the material to be cut. Then, the arrangement of the focal point of the laser beam L inside the material to be cut is completed (S215).

【0071】レーザ光Lの集光点の切断対象材料の内部
への配置が完了すると、レーザ光Lを切断対象材料に照
射すると共に、所望の切断パターンにしたがってX軸ス
テージ109及びY軸ステージ111を移動させる(S
217)。レーザ光源101から出射されたレーザ光L
は、図22に示されるように、集光用レンズ105によ
り、隣接する回路部39の間に形成された所定の間隙α
(上述したように、80μm)に臨む圧電素子ウェハ3
1の内部に集光点Pが位置するように集光される。上述
した所望の切断パターンは、圧電素子ウェハ31から複
数の圧電デバイスチップ37を分離するために、隣接す
る回路部39の間に形成された間隙にレーザ光Lが照射
されるように設定されており、レーザ光Lの照射状態を
モニタ129で確認しながらレーザ光Lが照射されるこ
とになる。
When the arrangement of the focal point of the laser light L inside the material to be cut is completed, the material to be cut is irradiated with the laser light L, and the X-axis stage 109 and the Y-axis stage 111 according to a desired cutting pattern. Is moved (S
217). Laser light L emitted from laser light source 101
Is a predetermined gap α formed between adjacent circuit portions 39 by the condenser lens 105 as shown in FIG.
(As described above, the piezoelectric element wafer 3 facing 80 μm)
The light is condensed so that the light converging point P is located inside the light-emitting element 1. The above-described desired cutting pattern is set so that the laser beam L is applied to the gap formed between the adjacent circuit portions 39 in order to separate the plurality of piezoelectric device chips 37 from the piezoelectric element wafer 31. Thus, the laser light L is irradiated while the irradiation state of the laser light L is checked on the monitor 129.

【0072】ここで、切断対象材料に照射されるレーザ
光Lは、集光用レンズ105により、図22に示される
ように、圧電素子ウェハ31の表面(レーザ光Lが入射
する面)に形成された回路部39にレーザ光Lが照射さ
れない角度で集光される。このように、回路部39にレ
ーザ光Lが照射されない角度でレーザ光Lを集光するこ
とにより、レーザ光Lが回路部39に入射するのを防ぐ
ことができ、回路部39をレーザ光Lから保護すること
ができる。
Here, the laser beam L applied to the material to be cut is formed on the surface of the piezoelectric element wafer 31 (the surface on which the laser beam L is incident) by the condenser lens 105 as shown in FIG. The laser beam L is condensed at an angle at which the laser beam L is not irradiated on the circuit portion 39 thus formed. As described above, by condensing the laser light L at an angle at which the laser light L is not irradiated to the circuit portion 39, the laser light L can be prevented from being incident on the circuit portion 39, and the circuit portion 39 is irradiated with the laser light L. Can be protected from

【0073】レーザ光源101から出射されたレーザ光
Lを、圧電素子ウェハ31の内部に集光点Pが位置する
ように集光させ、この集光点Pにおけるレーザ光Lのエ
ネルギー密度が切断対象材料の光学的損傷若しくは光学
的絶縁破壊のしきい値を越えると、切断対象材料として
の圧電素子ウェハ31の内部における集光点P及びその
近傍のみに微小なクラック領域9が形成される。このと
き、切断対象材料(圧電素子ウェハ31)の表面及び裏
面に損傷を及ぼすことはない。
The laser light L emitted from the laser light source 101 is condensed so that the converging point P is located inside the piezoelectric element wafer 31, and the energy density of the laser light L at the converging point P is reduced If the threshold value of the optical damage or the dielectric breakdown of the material is exceeded, a minute crack region 9 is formed only at the light converging point P inside the piezoelectric element wafer 31 as a material to be cut and in the vicinity thereof. At this time, the front and back surfaces of the material to be cut (piezoelectric element wafer 31) are not damaged.

【0074】次に、図23〜図27に基づいて、レーザ
光Lの集光点を移動させてクラックを形成する点につい
て説明する。図23に示される略直方体形状の切断対象
材料32(光透過性材料)に対して、切断対象材料32
の内部にレーザ光Lの集光点が位置するようにレーザ光
Lを照射することにより、図24及び図25に示される
ように、切断対象材料32の内部における集光点及びそ
の近傍のみに微小なクラック領域9が形成される。ま
た、レーザ光Lの集光点がレーザ光Lの光軸に交差する
切断対象材料32の長手方向Dに移動するように、レー
ザ光Lの走査あるいは切断対象材料32の移動が制御さ
れている。
Next, with reference to FIGS. 23 to 27, a description will be given of a point where the focal point of the laser beam L is moved to form a crack. In contrast to the substantially rectangular parallelepiped cutting target material 32 (light transmitting material) shown in FIG.
By irradiating the laser light L such that the focal point of the laser light L is located inside the laser beam L, as shown in FIGS. A minute crack region 9 is formed. The scanning of the laser light L or the movement of the cutting target material 32 is controlled such that the focal point of the laser light L moves in the longitudinal direction D of the cutting target material 32 intersecting the optical axis of the laser light L. .

【0075】レーザ光源101からはレーザ光Lがパル
ス状に出射されることから、レーザ光Lの走査あるいは
切断対象材料32の移動を行った場合、クラック領域9
は、図25に示されるように、切断対象材料32の長手
方向Dに沿ってレーザ光Lの走査速度あるいは切断対象
材料32の移動速度に対応した間隔を有して複数のクラ
ック領域9が形成されていくことになる。レーザ光Lの
走査速度あるいは切断対象材料32の移動速度を遅くす
ることにより、図26に示されるように、クラック領域
9間の間隔を短くして、形成されるクラック領域9の数
を増やすことも可能である。また、レーザ光Lの走査速
度あるいは切断対象材料の移動速度を更に遅くすること
により、図27に示されるように、クラック領域9が、
レーザ光Lの走査方向あるいは切断対象材料32の移動
方向、すなわちレーザ光Lの集光点の移動方向に沿って
連続的に形成されることになる。クラック領域9間の間
隔(形成されるクラック領域9の数)の調整は、レーザ
光Lの繰り返し周波数及び切断対象材料32(X軸ステ
ージあるいはY軸ステージ)の移動速度の関係を変化さ
せることでも実現可能である。また、レーザ光Lの繰り
返し周波数及び切断対象材料32の移動速度を高くする
ことでスループットの向上も可能である。
Since the laser light L is emitted from the laser light source 101 in a pulse shape, when the scanning of the laser light L or the movement of the material 32 to be cut is performed, the crack region 9 is generated.
As shown in FIG. 25, a plurality of crack regions 9 are formed at intervals corresponding to the scanning speed of the laser beam L or the moving speed of the cutting target material 32 along the longitudinal direction D of the cutting target material 32. Will be done. By reducing the scanning speed of the laser beam L or the moving speed of the material 32 to be cut, as shown in FIG. 26, the interval between the crack regions 9 is shortened to increase the number of crack regions 9 to be formed. Is also possible. Further, by further lowering the scanning speed of the laser beam L or the moving speed of the material to be cut, as shown in FIG.
It is formed continuously along the scanning direction of the laser light L or the moving direction of the cutting target material 32, that is, the moving direction of the focal point of the laser light L. Adjustment of the interval between the crack regions 9 (the number of formed crack regions 9) can also be achieved by changing the relationship between the repetition frequency of the laser beam L and the moving speed of the material 32 to be cut (X-axis stage or Y-axis stage). It is feasible. Further, the throughput can be improved by increasing the repetition frequency of the laser light L and the moving speed of the material 32 to be cut.

【0076】上述した所望の切断パターンに沿ってクラ
ック領域9が形成されると(S219)、物理的外力印
加又は環境変化等により切断対象材料内、特にクラック
領域9が形成された部分に応力を生じさせて、切断対象
材料の内部(集光点及びその近傍)のみに形成されたク
ラック領域9を成長させて、切断対象材料をクラック領
域9が形成された位置で切断する(S221)。
When the crack region 9 is formed along the above-described desired cutting pattern (S219), stress is applied to the material to be cut, particularly the portion where the crack region 9 is formed, by applying a physical external force or changing the environment. Then, the crack region 9 formed only inside the material to be cut (at and near the light-collecting point) is grown, and the material to be cut is cut at the position where the crack region 9 is formed (S221).

【0077】次に、図28〜図32を参照して、物理的
外力印加による切断対象材料の切断について説明する。
まず、所望の切断パターンに沿ってクラック領域9が形
成された切断対象材料(圧電素子ウェハ31)は、サン
プルホルダ35に挟持されたウェハシート33に保持さ
れた状態で切断装置に配置される。切断装置は、後述す
るような吸引チャック34、この吸引チャック34が接
続される吸引ポンプ(図示せず)、加圧ニードル36
(押圧部材)、加圧ニードル36を移動させるための加
圧ニードル駆動手段(図示せず)等を有している。加圧
ニードル駆動手段としては、電動又は油圧等のアクチュ
エータを用いることができる。なお、図28〜図32に
おいては、回路部39の図示を省略している。
Next, cutting of the material to be cut by application of a physical external force will be described with reference to FIGS.
First, the cutting target material (piezoelectric element wafer 31) in which the crack region 9 is formed along the desired cutting pattern is placed in the cutting device while being held by the wafer sheet 33 sandwiched between the sample holders 35. The cutting device includes a suction chuck 34 described later, a suction pump (not shown) to which the suction chuck 34 is connected, a pressure needle 36
(Pressing member), a pressing needle driving means (not shown) for moving the pressing needle 36, and the like. As the pressurizing needle driving means, an electric or hydraulic actuator can be used. 28 to 32, illustration of the circuit section 39 is omitted.

【0078】圧電素子ウェハ31が切断装置に配置され
ると、図28に示されるように、分離する圧電デバイス
チップ37に対応する位置に吸引チャック34を近づけ
ていく。吸引チャック34を分離する圧電デバイスチッ
プ37に近接もしくは当接させた状態で吸引ポンプ装置
を作動させることにより、図29に示されるように、吸
引チャック34に分離する圧電デバイスチップ37(圧
電素子ウェハ31)を吸着させる。吸引チャック34に
分離する圧電デバイスチップ37(圧電素子ウェハ3
1)を吸着させると、図30に示されるように、ウェハ
シート33の裏面(圧電素子ウェハ31が保持された面
の裏面)側から分離する圧電デバイスチップ37に対応
する位置に加圧ニードル36を移動させる。
When the piezoelectric element wafer 31 is placed in the cutting device, as shown in FIG. 28, the suction chuck 34 is moved closer to the position corresponding to the piezoelectric device chip 37 to be separated. By operating the suction pump device in a state in which the suction chuck 34 is close to or in contact with the piezoelectric device chip 37 for separating the suction chuck 34, as shown in FIG. 31) is adsorbed. Piezoelectric device chip 37 (piezoelectric element wafer 3) separated into suction chuck 34
When 1) is adsorbed, as shown in FIG. 30, the pressure needle 36 is placed at a position corresponding to the piezoelectric device chip 37 separated from the back surface of the wafer sheet 33 (the back surface of the surface holding the piezoelectric element wafer 31). To move.

【0079】加圧ニードル36がウェハシート33の裏
面に当接してから更に加圧ニードル36を移動させる
と、ウェハシート33が変形すると共に加圧ニードル3
6により圧電素子ウェハ31に外部から応力を印加され
て、クラック領域9が形成されているウェハ部分に応力
が生じてクラック領域9が成長する。クラック領域9が
圧電素子ウェハ31の表面及び裏面まで成長することに
より、圧電素子ウェハ31は、図31に示されるよう
に、分離する圧電デバイスチップ37の端部において切
断されて、圧電デバイスチップ37が圧電素子ウェハ3
1から分離されることになる。なお、ウェハシート33
は、上述したように粘着性を有しているので、切断分離
された圧電デバイスチップ37が飛散するのを防ぐこと
ができる。
When the pressure needle 36 is further moved after the pressure needle 36 contacts the back surface of the wafer sheet 33, the wafer sheet 33 is deformed and the pressure needle 3
6, a stress is applied to the piezoelectric element wafer 31 from the outside, and a stress is generated in a portion of the wafer where the crack region 9 is formed, and the crack region 9 grows. As the crack region 9 grows to the front surface and the back surface of the piezoelectric element wafer 31, the piezoelectric element wafer 31 is cut at the end of the separated piezoelectric device chip 37 as shown in FIG. Is the piezoelectric element wafer 3
1 will be separated. Note that the wafer sheet 33
Since has the adhesive property as described above, the piezoelectric device chip 37 cut and separated can be prevented from scattering.

【0080】圧電デバイスチップ37が圧電素子ウェハ
31から分離されると吸引チャック34及び加圧ニード
ル36をウェハシート33から離れる方向に移動させ
る。吸引チャック34及び加圧ニードル36が移動する
と、分離された圧電デバイスチップ37は吸引チャック
34に吸着しているので、図32に示されるように、ウ
ェハシート33から離されることになる。このとき、図
示しないイオンエアーブロー装置を用いて、イオンエア
ーを図32中矢印B方向に送り、分離されて吸引チャッ
ク34に吸着している圧電デバイスチップ37と、ウェ
ハシート33に保持されている圧電素子ウェハ31(表
面)とをイオンエアー洗浄している。なお、イオンエア
ー洗浄の代わりに、吸引装置を設けて、塵等を吸引する
ことで切断分離された圧電デバイスチップ37及び圧電
素子ウェハ31の洗浄を行うようにしてもよい。環境変
化により切断対象材料を切断する方法としては、内部の
みにクラック領域9が形成された切断対象材料に対して
温度変化を与える方法が存在する。このように、切断対
象材料に対して温度変化を与えることにより、クラック
領域9が形成されている材料部分に熱応力を生じさせ
て、クラック領域9を成長させて切断対象材料を切断す
ることができる。
When the piezoelectric device chip 37 is separated from the piezoelectric element wafer 31, the suction chuck 34 and the pressure needle 36 are moved away from the wafer sheet 33. When the suction chuck 34 and the pressure needle 36 move, the separated piezoelectric device chip 37 is attracted to the suction chuck 34 and is separated from the wafer sheet 33 as shown in FIG. At this time, ion air is sent in the direction of arrow B in FIG. 32 by using an ion air blow device (not shown), and the piezoelectric device chips 37 separated and adsorbed on the suction chuck 34 are held by the wafer sheet 33. The piezoelectric element wafer 31 (surface) is cleaned with ion air. Instead of the ion air cleaning, a suction device may be provided to clean the piezoelectric device chip 37 and the piezoelectric element wafer 31 cut and separated by suctioning dust or the like. As a method of cutting the material to be cut by an environmental change, there is a method of giving a temperature change to the material to be cut in which the crack region 9 is formed only inside. Thus, by giving a temperature change to the material to be cut, a thermal stress is generated in the material portion where the crack region 9 is formed, and the crack region 9 is grown to cut the material to be cut. it can.

【0081】このように、第2例においては、集光用レ
ンズ105により、レーザ光源101から出射されたレ
ーザ光Lを、その集光点が光透過性材料(圧電素子ウェ
ハ31)の内部に位置するように集光することで、集光
点におけるレーザ光Lのエネルギー密度が光透過性材料
の光学的損傷若しくは光学的絶縁破壊のしきい値を越
え、光透過性材料の内部における集光点及びその近傍の
みに微小なクラック領域9が形成される。そして、形成
されたクラック領域9の位置にて光透過性材料が切断さ
れるので、発塵量が極めて低く、ダイシング傷、チッピ
ングあるいは材料表面でのクラック等が発生する可能性
も極めて低くなる。また、光透過性材料は、光透過性材
料の光学的損傷若しくは光学的絶縁破壊により形成され
たクラック領域9に沿って切断されるので、切断の方向
安定性が向上し、切断方向の制御を容易に行うことがで
きる。また、ダイヤモンドカッタによるダイシングに比
して、ダイシング幅を小さくすることができ、1つの光
透過性材料から切断された光透過性材料の数を増やすこ
とが可能となる。これらの結果、第2例によれば、極め
て容易且つ適切に光透過性材料を切断することができ
る。
As described above, in the second example, the laser light L emitted from the laser light source 101 is focused by the focusing lens 105 onto the inside of the light transmitting material (piezoelectric element wafer 31). By condensing light so as to be positioned, the energy density of the laser beam L at the light condensing point exceeds the threshold value of optical damage or optical breakdown of the light transmitting material, and the light is condensed inside the light transmitting material. A minute crack region 9 is formed only at the point and its vicinity. Then, since the light transmitting material is cut at the position of the formed crack region 9, the amount of generated dust is extremely low, and the possibility of dicing scratches, chipping, cracks on the material surface, and the like is extremely low. Further, since the light transmitting material is cut along the crack region 9 formed by optical damage or optical breakdown of the light transmitting material, the cutting direction stability is improved and the cutting direction can be controlled. It can be done easily. Further, the dicing width can be reduced as compared with dicing by a diamond cutter, and the number of light-transmitting materials cut from one light-transmitting material can be increased. As a result, according to the second example, it is possible to extremely easily and appropriately cut the light transmitting material.

【0082】また、物理的外力印加又は環境変化等によ
り切断対象材料内に応力を生じさせることにより、形成
されたクラック領域9を成長させて光透過性材料(圧電
素子ウェハ31)を切断するので、形成されたクラック
領域9の位置にて光透過性材料を確実に切断することが
できる。
Also, by generating a stress in the material to be cut by applying a physical external force or an environmental change, the formed crack region 9 is grown to cut the light transmitting material (piezoelectric element wafer 31). Thus, the light transmitting material can be reliably cut at the position of the formed crack region 9.

【0083】また、加圧ニードル36を用いて光透過性
材料(圧電素子ウェハ31)に応力を加えることによ
り、クラック領域9を成長させて光透過性材料を切断し
ているので、形成されたクラック領域9の位置にて光透
過性材料をより一層確実に切断することができる。
Further, the stress is applied to the light transmitting material (piezoelectric element wafer 31) by using the pressure needle 36 to grow the crack region 9 and cut the light transmitting material. The light transmitting material can be more reliably cut at the position of the crack region 9.

【0084】また、複数の回路部39が形成された圧電
素子ウェハ31(光透過性材料)を各圧電デバイスチッ
プ37毎に切断分離する場合、集光用レンズ105によ
り、隣接する回路部39の間に形成された間隙に臨むウ
ェハ部分の内部に集光点が位置するようにレーザ光Lを
集光し、クラック領域9を形成させるので、隣接する回
路部39の間に形成された間隙の位置において、圧電素
子ウェハ31を確実に切断することができる。
When the piezoelectric element wafer 31 (light-transmitting material) on which a plurality of circuit sections 39 are formed is cut and separated for each piezoelectric device chip 37, the condensing lens 105 is used to separate the adjacent circuit sections 39. The laser beam L is condensed so that the converging point is located inside the wafer portion facing the gap formed therebetween, and the crack region 9 is formed. At the position, the piezoelectric element wafer 31 can be reliably cut.

【0085】また、光透過性材料(圧電素子ウェハ3
1)の移動あるいはレーザ光Lを走査して集光点をレー
ザ光Lの光軸に交差する方向、たとえば直交する方向に
移動させることにより、クラック領域9が集光点の移動
方向に沿って連続的に形成されることになり、切断の方
向安定性がより一層向上して、切断の方向制御をより一
層容易に行うことができる。
Further, a light transmitting material (piezoelectric element wafer 3
By moving 1) or scanning the laser light L to move the focal point in a direction intersecting the optical axis of the laser light L, for example, in a direction perpendicular to the optical axis, the crack region 9 moves along the moving direction of the focal point. Since they are formed continuously, the cutting direction stability is further improved, and the cutting direction control can be performed more easily.

【0086】また、第2例においては、発塵粉体がほと
んどないため発塵粉体の飛散防止のための潤滑洗浄水が
不要となり、切断工程でのドライプロセス化を実現する
ことができる。
In the second example, since there is almost no dust powder, lubricating washing water for preventing scattering of dust powder is not required, and a dry process in the cutting step can be realized.

【0087】また、第2例においては、改質部(クラッ
ク領域9)の形成がレーザ光Lによる非接触加工にて実
現されるため、ダイヤモンドカッタによるダイシングに
おけるブレードの耐久性、交換頻度等の問題が生じるこ
とはない。また、第2例においては、上述したように、
改質部(クラック領域9)の形成がレーザ光Lによる非
接触加工にて実現されるため、光透過性材料を完全に切
断しない、光透過性材料を切り抜くような切断パターン
に沿って、光透過性材料を切断することが可能である。
本発明は、前述した第2例に限定されるものではなく、
たとえば、光透過性材料は圧電素子ウェハ31に限られ
ることなく、半導体ウェハ、ガラス基板等であってもよ
い。レーザ光源101も、切断する光透過性材料の光吸
収特性に対応して適宜選択可能である。また、第2例に
おいては、改質部として、レーザ光Lを照射することに
より微小なクラック領域9を形成するようにしている
が、これに限られるものではない。たとえば、レーザ光
源101として超短パルスレーザ光源(たとえば、フェ
ムト秒(fs)レーザ)を用いることで、屈折率変化
(高屈折率)による改質部を形成することができ、この
ような機械的特性の変化を利用してクラック領域9を発
生させることなく光透過性材料を切断することができ
る。
In the second example, since the formation of the modified portion (the crack region 9) is realized by non-contact processing using the laser beam L, the durability and replacement frequency of the blade in dicing with a diamond cutter are reduced. There is no problem. In the second example, as described above,
Since the formation of the modified portion (the crack region 9) is realized by the non-contact processing using the laser beam L, the light is not cut completely, but is cut along a cutting pattern that cuts out the light transmitting material. It is possible to cut the permeable material.
The present invention is not limited to the second example described above,
For example, the light transmitting material is not limited to the piezoelectric element wafer 31, but may be a semiconductor wafer, a glass substrate, or the like. The laser light source 101 can also be appropriately selected according to the light absorption characteristics of the light-transmitting material to be cut. In the second example, the minute crack region 9 is formed as the modified portion by irradiating the laser beam L. However, the present invention is not limited to this. For example, by using an ultrashort pulse laser light source (for example, a femtosecond (fs) laser) as the laser light source 101, a modified portion due to a change in refractive index (high refractive index) can be formed, and such a mechanical portion can be formed. The light transmitting material can be cut without generating the crack region 9 by utilizing the change in the characteristics.

【0088】また、レーザ加工装置100において、Z
軸ステージ113を移動させることによりレーザ光Lの
フォーカス調整を行うようにしているが、これに限られ
ることなく、集光用レンズ105をレーザ光Lの光軸方
向に移動させることによりフォーカス調整を行うように
してもよい。
In the laser processing apparatus 100, Z
The focus adjustment of the laser light L is performed by moving the axis stage 113. However, the present invention is not limited to this, and the focus adjustment is performed by moving the focusing lens 105 in the optical axis direction of the laser light L. It may be performed.

【0089】また、レーザ加工装置100において、所
望の切断パターンにしたがってX軸ステージ109及び
Y軸ステージ111を移動するようにしているが、これ
に限られることなく、レーザ光Lを所望の切断パターン
にしたがって走査するようにしてもよい。
In the laser processing apparatus 100, the X-axis stage 109 and the Y-axis stage 111 are moved in accordance with a desired cutting pattern. However, the present invention is not limited to this. May be scanned according to the following.

【0090】また、吸引チャック34に圧電素子ウェハ
31を吸着させた後に、加圧ニードル36により圧電素
子ウェハ31を切断するようにしているが、これに限ら
れることなく、加圧ニードル36により圧電素子ウェハ
31を切断した後に、切断分離された圧電デバイスチッ
プ37を吸引チャック34に吸着させるようにしてもよ
い。なお、吸引チャック34に圧電素子ウェハ31を吸
着させた後に、加圧ニードル36により圧電素子ウェハ
31を切断することにより、切断分離された圧電デバイ
スチップ37の表面が吸引チャック34にて覆われるこ
とになり、圧電デバイスチップ37の表面に塵等が付着
するのを防ぐことができる。
After the piezoelectric element wafer 31 is attracted to the suction chuck 34, the piezoelectric element wafer 31 is cut by the pressing needle 36. However, the present invention is not limited to this. After the element wafer 31 is cut, the cut and separated piezoelectric device chips 37 may be sucked to the suction chuck 34. After the piezoelectric element wafer 31 is attracted to the suction chuck 34, the piezoelectric element wafer 31 is cut by the pressure needle 36, so that the surface of the cut and separated piezoelectric device chip 37 is covered with the suction chuck 34. Accordingly, it is possible to prevent dust and the like from adhering to the surface of the piezoelectric device chip 37.

【0091】また、撮像素子121として赤外線用のも
のを用いることにより、レーザ光Lの反射光を利用して
フォーカス調整を行うことができる。この場合には、ダ
イクロイックミラー103を用いる代わりにハーフミラ
ーを用い、このハーフミラーとレーザ光源101との間
にレーザ光源101への戻り光を抑制するような光学素
子を配設する必要がある。なお、このとき、フォーカス
調整を行うためのレーザ光Lにより切断対象材料にダメ
ージが生じないように、フォーカス調整時にレーザ光源
101から照射されるレーザ光Lの出力は、クラック形
成のための出力よりも低いエネルギー値に設定ことが好
ましい。
Further, by using an infrared sensor as the image pickup device 121, it is possible to perform focus adjustment using the reflected light of the laser beam L. In this case, it is necessary to use a half mirror instead of using the dichroic mirror 103, and to provide an optical element between the half mirror and the laser light source 101 so as to suppress return light to the laser light source 101. At this time, the output of the laser light L emitted from the laser light source 101 at the time of the focus adjustment is smaller than the output for forming the crack so that the material to be cut is not damaged by the laser light L for performing the focus adjustment. It is also preferable to set a low energy value.

【0092】第2例の観点から本発明の特徴を以下に説
明する。
The features of the present invention will be described below from the viewpoint of the second example.

【0093】本発明に係る光透過性材料の切断方法は、
レーザ光源から出射したレーザ光を、その集光点が光透
過性材料の内部に位置するように集光し、光透過性材料
の内部における集光点及びその近傍のみに改質部を形成
させる改質部形成工程と、形成された改質部の位置にて
光透過性材料を切断する切断工程と、を備えていること
を特徴としている。本発明に係る光透過性材料の切断方
法では、改質部形成工程において、レーザ光の集光点が
光透過性材料の内部に位置するようにレーザ光を集光す
ることで、光透過性材料の内部における集光点及びその
近傍のみに改質部が形成される。切断工程では、形成さ
れた改質部の位置にて光透過性材料が切断されることに
なり、発塵量が極めて低く、ダイシング傷、チッピング
あるいは材料表面でのクラック等が発生する可能性も極
めて低くなる。また、光透過性材料は、形成された改質
部の位置で切断されるので、切断の方向安定性が向上
し、切断方向の制御を容易に行うことができる。また、
ダイヤモンドカッタによるダイシングに比して、ダイシ
ング幅を小さくすることができ、1つの光透過性材料か
ら切断された光透過性材料の数を増やすことが可能とな
る。これらの結果、本発明によれば、極めて容易且つ適
切に光透過性材料を切断することができる。
The method for cutting a light-transmitting material according to the present invention comprises:
The laser light emitted from the laser light source is condensed so that the converging point is located inside the light transmitting material, and the modified portion is formed only at the converging point inside the light transmitting material and in the vicinity thereof. It is characterized by comprising a modified part forming step and a cutting step of cutting the light transmitting material at the position of the formed modified part. In the method for cutting a light-transmitting material according to the present invention, in the modified portion forming step, the light-transmitting material is condensed so that the laser light condensing point is located inside the light-transmitting material. The modified portion is formed only at the light-collecting point inside the material and in the vicinity thereof. In the cutting step, the light transmitting material is cut at the position of the formed modified portion, the amount of dust is extremely low, and there is a possibility that dicing scratches, chipping, cracks on the material surface, etc. may occur. Extremely low. In addition, since the light transmitting material is cut at the position of the formed modified portion, the cutting direction stability is improved, and the cutting direction can be easily controlled. Also,
The dicing width can be reduced as compared with dicing with a diamond cutter, and the number of light-transmitting materials cut from one light-transmitting material can be increased. As a result, according to the present invention, the light transmitting material can be cut very easily and appropriately.

【0094】また、本発明に係る光透過性材料の切断方
法においては、発塵粉体がほとんどないため、発塵粉体
の飛散防止のための潤滑洗浄水が不要となり、切断工程
でのドライプロセス化を実現することができる。
Further, in the method for cutting a light-transmitting material according to the present invention, since there is almost no dusting powder, lubricating washing water for preventing scattering of the dusting powder is not required, and dry cutting in the cutting step is not required. Process can be realized.

【0095】また、本発明に係る光透過性材料の切断方
法においては、改質部の形成がレーザ光による非接触加
工にて実現されるため、従来の技術のようにダイヤモン
ドカッタによるダイシングにおけるブレードの耐久性、
交換頻度等の問題が生じることはない。また、本発明に
係る光透過性材料の切断方法においては、上述したよう
に改質部の形成がレーザ光による非接触加工にて実現さ
れるため、光透過性材料を完全に切断しない、光透過性
材料を切り抜くような切断パターンに沿って、光透過性
材料を切断することが可能である。
In the method for cutting a light-transmitting material according to the present invention, since the formation of the modified portion is realized by non-contact processing using laser light, the blade in dicing with a diamond cutter as in the prior art is used. Durability,
There is no problem such as replacement frequency. In the method for cutting a light-transmitting material according to the present invention, since the formation of the modified portion is realized by non-contact processing using laser light as described above, the light-transmitting material is not completely cut. The light transmitting material can be cut along a cutting pattern that cuts out the transmitting material.

【0096】また、光透過性材料には、複数の回路部が
形成されており、改質部形成工程において、隣接する回
路部の間に形成された間隙に臨む光透過性材料部分の内
部に集光点が位置するようにレーザ光を集光し、改質部
を形成させることが好ましい。このように構成した場合
には、隣接する回路部の間に形成された間隙の位置にお
いて、光透過性材料を確実に切断することができる。
Further, a plurality of circuit portions are formed in the light transmitting material. In the modified portion forming step, the inside of the light transmitting material portion facing the gap formed between the adjacent circuit portions is formed. It is preferable that the laser beam is condensed so that the converging point is located to form the modified portion. With this configuration, the light transmitting material can be reliably cut at the position of the gap formed between the adjacent circuit portions.

【0097】また、改質部形成工程において、光透過性
材料にレーザ光を照射する場合に、回路部にレーザ光が
照射されない角度でレーザ光を集光することが好まし
い。このように、改質部形成工程において、光透過性材
料にレーザ光を照射する場合に、回路部にレーザ光が照
射されない角度でレーザ光を集光することにより、レー
ザ光が回路部に入射するのを防ぐことができ、回路部を
レーザ光から保護することができる。
In the modified portion forming step, when irradiating the light transmitting material with laser light, it is preferable to condense the laser light at an angle at which the laser light is not irradiated to the circuit portion. As described above, in the modified portion forming step, when irradiating the light transmitting material with laser light, the laser light is incident on the circuit portion by condensing the laser light at an angle at which the laser light is not irradiated on the circuit portion. Can be prevented, and the circuit portion can be protected from laser light.

【0098】また、改質部形成工程において、集光点を
レーザ光の光軸と交差する方向に移動させることによ
り、改質部を集光点の移動方向に沿って連続的に形成す
ることが好ましい。このように、改質部形成工程におい
て、集光点をレーザ光の光軸と交差する方向に移動させ
ることにより、改質部を集光点の移動方向に沿って連続
的に形成することで、切断の方向安定性がより一層向上
して、切断の方向制御をより一層容易に行うことができ
る。
In the modified portion forming step, the focal point is moved in a direction intersecting the optical axis of the laser beam, so that the modified portion is continuously formed along the moving direction of the focal point. Is preferred. As described above, in the modified portion forming step, by moving the focal point in a direction intersecting with the optical axis of the laser beam, the modified portion is continuously formed along the moving direction of the focal point. In addition, the cutting direction stability is further improved, and the cutting direction control can be performed more easily.

【0099】本発明に係る光透過性材料の切断方法は、
レーザ光源から出射したレーザ光を、その集光点が光透
過性材料の内部に位置するように集光し、光透過性材料
の内部における集光点及びその近傍のみにクラックを形
成させるクラック形成工程と、形成されたクラックの位
置にて光透過性材料を切断する切断工程と、を備えてい
ることを特徴としている。
The method for cutting a light-transmitting material according to the present invention comprises:
Crack formation that focuses laser light emitted from a laser light source such that its focal point is located inside the light transmissive material, and forms cracks only at and near the focal point inside the light transmissive material. And a cutting step of cutting the light transmissive material at the positions of the formed cracks.

【0100】本発明に係る光透過性材料の切断方法で
は、クラック形成工程において、レーザ光の集光点が光
透過性材料の内部に位置するようにレーザ光を集光する
ことで、集光点におけるレーザ光のエネルギー密度が光
透過性材料の光学的損傷若しくは光学的絶縁破壊のしき
い値を越え、光透過性材料の内部における集光点及びそ
の近傍のみにクラックが形成される。切断工程では、形
成されたクラックの位置にて光透過性材料が切断される
ことになり、発塵量が極めて低く、ダイシング傷、チッ
ピングあるいは材料表面でのクラック等が発生する可能
性も極めて低くなる。また、光透過性材料は、光透過性
材料の光学的損傷若しくは光学的絶縁破壊により形成さ
れたクラックに沿って切断されるので、切断の方向安定
性が向上し、切断方向の制御を容易に行うことができ
る。また、ダイヤモンドカッタによるダイシングに比し
て、ダイシング幅を小さくすることができ、1つの光透
過性材料から切断された光透過性材料の数を増やすこと
が可能となる。これらの結果、本発明によれば、極めて
容易且つ適切に光透過性材料を切断することができる。
In the method for cutting a light-transmitting material according to the present invention, in the crack forming step, the laser light is condensed so that the converging point of the laser light is located inside the light-transmitting material. The energy density of the laser beam at the point exceeds the threshold value for optical damage or optical breakdown of the light transmitting material, and cracks are formed only at the condensing point inside the light transmitting material and in the vicinity thereof. In the cutting step, the light-transmitting material is cut at the position of the formed crack, the amount of dust generation is extremely low, and the possibility of dicing scratches, chipping, cracks on the material surface, etc. is extremely low. Become. Further, since the light-transmitting material is cut along cracks formed by optical damage or optical breakdown of the light-transmitting material, directional stability of cutting is improved, and control of the cutting direction is facilitated. It can be carried out. Further, the dicing width can be reduced as compared with dicing by a diamond cutter, and the number of light-transmitting materials cut from one light-transmitting material can be increased. As a result, according to the present invention, the light transmitting material can be cut very easily and appropriately.

【0101】また、本発明に係る光透過性材料の切断方
法においては、発塵粉体がほとんどないため、発塵粉体
の飛散防止のための潤滑洗浄水が不要となり、切断工程
でのドライプロセス化を実現することができる。
Further, in the method for cutting a light-transmitting material according to the present invention, since there is almost no dusting powder, lubricating washing water for preventing scattering of the dusting powder is not required, and the dry process in the cutting step is not required. Process can be realized.

【0102】また、本発明に係る光透過性材料の切断方
法においては、クラックの形成がレーザ光による非接触
加工にて実現されるため、従来の技術のようにダイヤモ
ンドカッタによるダイシングにおけるブレードの耐久
性、交換頻度等の問題が生じることはない。また、本発
明に係る光透過性材料の切断方法においては、上述した
ようにクラックの形成がレーザ光による非接触加工にて
実現されるため、光透過性材料を完全に切断しない、光
透過性材料を切り抜くような切断パターンに沿って、光
透過性材料を切断することが可能である。
In the method for cutting a light-transmitting material according to the present invention, since the formation of cracks is realized by non-contact processing using a laser beam, the durability of the blade in dicing with a diamond cutter as in the prior art is reduced. There are no problems such as sex, replacement frequency, etc. In the method for cutting a light-transmitting material according to the present invention, as described above, since the formation of cracks is realized by non-contact processing using laser light, the light-transmitting material is not completely cut. It is possible to cut the light transmissive material along a cutting pattern that cuts out the material.

【0103】また、切断工程において、形成されたクラ
ックを成長させることにより光透過性材料を切断するこ
とが好ましい。このように、切断工程において、形成さ
れたクラックを成長させることにより光透過性材料を切
断することにより、形成されたクラックの位置にて光透
過性材料を確実に切断することができる。
In the cutting step, it is preferable to cut the light transmitting material by growing formed cracks. As described above, in the cutting step, by cutting the light transmitting material by growing the formed crack, the light transmitting material can be reliably cut at the position of the formed crack.

【0104】また、切断工程において、押圧部材を用
い、光透過性材料に応力を加えることにより、クラック
を成長させて光透過性材料を切断することが好ましい。
このように、切断工程において、押圧部材を用い、光透
過性材料に応力を加えることにより、クラックを成長さ
せて光透過性材料を切断することにより、クラックの位
置にて光透過性材料をより一層確実に切断することがで
きる。
In the cutting step, it is preferable to cut the light transmitting material by applying cracks to the light transmitting material by applying stress to the light transmitting material using a pressing member.
As described above, in the cutting step, the pressing member is used to apply stress to the light transmitting material, thereby growing the crack and cutting the light transmitting material. Cutting can be performed more reliably.

【0105】本発明に係る光透過性材料の切断装置は、
レーザ光源と、光透過性材料を保持する保持手段と、レ
ーザ光源から出射されたレーザ光を、その集光点が光透
過性材料の内部に位置するように集光させる光学素子
と、光透過性材料の内部におけるレーザ光の集光点及び
その近傍のみに形成された改質部の位置にて光透過性材
料を切断する切断手段と、を備えたことを特徴としてい
る。
The light-transmitting material cutting device according to the present invention comprises:
A laser light source, holding means for holding the light transmissive material, an optical element for condensing the laser light emitted from the laser light source such that the light condensing point is located inside the light transmissive material, Cutting means for cutting the light transmissive material at the position of the modified portion formed only at the focal point of the laser light inside the conductive material and in the vicinity thereof.

【0106】本発明に係る光透過性材料の切断装置で
は、光学素子により、レーザ光の集光点が光透過性材料
の内部に位置するようにレーザ光が集光されることで、
光透過性材料の内部における集光点及びその近傍のみに
改質部が形成される。そして、切断手段が、光透過性材
料の内部におけるレーザ光の集光点及びその近傍のみに
形成される改質部の位置で光透過性材料を切断するの
で、光透過性材料は、形成された改質部に沿って確実に
切断されることになり、発塵量が極めて低く、ダイシン
グ傷、チッピングあるいは材料表面でのクラック等が発
生する可能性も極めて低くなる。また、光透過性材料
は、改質部に沿って切断されるので、切断の方向安定性
が向上し、切断方向の制御を容易に行うことができる。
また、ダイヤモンドカッタによるダイシングに比して、
ダイシング幅を小さくすることができ、1つの光透過性
材料から切断された光透過性材料の数を増やすことが可
能となる。これらの結果、本発明によれば、極めて容易
且つ適切に光透過性材料を切断することができる。
In the light-transmitting material cutting apparatus according to the present invention, the laser light is condensed by the optical element so that the laser light condensing point is located inside the light-transmitting material.
The modified portion is formed only at the light-collecting point inside the light transmissive material and in the vicinity thereof. Then, since the cutting means cuts the light transmitting material at the position of the modified portion formed only at the focal point of the laser light inside the light transmitting material and in the vicinity thereof, the light transmitting material is formed. As a result, the particles are extremely cut along the modified portion, and the amount of generated dust is extremely low, and the possibility of occurrence of dicing scratches, chipping, cracks on the material surface, and the like is extremely low. In addition, since the light transmitting material is cut along the modified portion, the cutting direction stability is improved, and the cutting direction can be easily controlled.
Also, compared to dicing with a diamond cutter,
The dicing width can be reduced, and the number of light-transmitting materials cut from one light-transmitting material can be increased. As a result, according to the present invention, the light transmitting material can be cut very easily and appropriately.

【0107】また、本発明に係る光透過性材料の切断装
置においては、発塵粉体がほとんどないため、発塵粉体
の飛散防止のための潤滑洗浄水が不要となり、切断工程
でのドライプロセス化を実現することができる。
Further, in the apparatus for cutting a light-transmitting material according to the present invention, since there is almost no dust powder, lubricating washing water for preventing scattering of the dust powder is not required, and the dry process in the cutting step is not required. Process can be realized.

【0108】また、本発明に係る光透過性材料の切断装
置においては、改質部がレーザ光による非接触加工にて
形成されるため、従来の技術のようにダイヤモンドカッ
タによるダイシングにおけるブレードの耐久性、交換頻
度等の問題が生じることはない。また、本発明に係る光
透過性材料の切断装置においては、上述したように改質
部がレーザ光による非接触加工にて形成されるため、光
透過性材料を完全に切断しない、光透過性材料を切り抜
くような切断パターンに沿って、光透過性材料を切断す
ることが可能である。
Further, in the light transmitting material cutting apparatus according to the present invention, since the modified portion is formed by non-contact processing using a laser beam, the durability of the blade in dicing with a diamond cutter as in the prior art is reduced. There are no problems such as sex, replacement frequency, etc. Further, in the light-transmitting material cutting device according to the present invention, since the modified portion is formed by non-contact processing using laser light as described above, the light-transmitting material is not completely cut. It is possible to cut the light transmissive material along a cutting pattern that cuts out the material.

【0109】本発明に係る光透過性材料の切断装置は、
レーザ光源と、光透過性材料を保持する保持手段と、レ
ーザ光源から出射されたレーザ光を、その集光点が光透
過性材料の内部に位置するように集光させる光学素子
と、光透過性材料の内部におけるレーザ光の集光点及び
その近傍のみに形成されるクラックを成長させて光透過
性材料を切断する切断手段と、を備えたことを特徴とし
ている。
The light-transmitting material cutting apparatus according to the present invention comprises:
A laser light source, holding means for holding the light transmissive material, an optical element for condensing the laser light emitted from the laser light source such that the light condensing point is located inside the light transmissive material, Cutting means for growing a crack formed only at the laser light condensing point and its vicinity inside the conductive material and cutting the light transmitting material.

【0110】本発明に係る光透過性材料の切断装置で
は、光学素子により、レーザ光の集光点が光透過性材料
の内部に位置するようにレーザ光が集光されることで、
集光点におけるレーザ光のエネルギー密度が光透過性材
料の光学的損傷若しくは光学的絶縁破壊のしきい値を越
え、光透過性材料の内部における集光点及びその近傍の
みにクラックが形成される。そして、切断手段が、光透
過性材料の内部におけるレーザ光の集光点及びその近傍
のみに形成されるクラックを成長させて光透過性材料を
切断するので、光透過性材料は、光透過性材料の光学的
損傷若しくは光学的絶縁破壊により形成されたクラック
に沿って確実に切断されることになり、発塵量が極めて
低く、ダイシング傷、チッピングあるいは材料表面での
クラック等が発生する可能性も極めて低くなる。また、
光透過性材料は、クラックに沿って切断されるので、切
断の方向安定性が向上し、切断方向の制御を容易に行う
ことができる。また、ダイヤモンドカッタによるダイシ
ングに比して、ダイシング幅を小さくすることができ、
1つの光透過性材料から切断された光透過性材料の数を
増やすことが可能となる。これらの結果、本発明によれ
ば、極めて容易且つ適切に光透過性材料を切断すること
ができる。
In the light-transmitting material cutting apparatus according to the present invention, the laser light is condensed by the optical element so that the laser light condensing point is located inside the light-transmitting material.
The energy density of the laser beam at the focal point exceeds the threshold of optical damage or optical breakdown of the light transmissive material, and cracks are formed only at and near the focal point inside the light transmissive material . The cutting means cuts the light-transmitting material by growing cracks formed only at and near the laser light condensing point inside the light-transmitting material. The material is reliably cut along the cracks formed by optical damage or optical breakdown of the material, resulting in extremely low dust generation and the possibility of dicing scratches, chipping, cracks on the material surface, etc. Is also very low. Also,
Since the light transmitting material is cut along the cracks, the cutting direction stability is improved, and the cutting direction can be easily controlled. Also, the dicing width can be reduced as compared with dicing with a diamond cutter,
It is possible to increase the number of light transmitting materials cut from one light transmitting material. As a result, according to the present invention, the light transmitting material can be cut very easily and appropriately.

【0111】また、本発明に係る光透過性材料の切断装
置においては、発塵粉体がほとんどないため、発塵粉体
の飛散防止のための潤滑洗浄水が不要となり、切断工程
でのドライプロセス化を実現することができる。
Further, in the apparatus for cutting a light-transmitting material according to the present invention, since there is almost no dust powder, lubricating washing water for preventing scattering of the dust powder is not required, and the dry process in the cutting step is not required. Process can be realized.

【0112】また、本発明に係る光透過性材料の切断装
置においては、クラックがレーザ光による非接触加工に
て形成されるため、従来の技術のようにダイヤモンドカ
ッタによるダイシングにおけるブレードの耐久性、交換
頻度等の問題が生じることはない。また、本発明に係る
光透過性材料の切断装置においては、上述したようにク
ラックがレーザ光による非接触加工にて形成されるた
め、光透過性材料を完全に切断しない、光透過性材料を
切り抜くような切断パターンに沿って、光透過性材料を
切断することが可能である。
In the apparatus for cutting a light-transmitting material according to the present invention, since the crack is formed by non-contact processing using a laser beam, the durability of the blade in dicing with a diamond cutter as in the prior art is improved. There is no problem such as replacement frequency. Further, in the light-transmitting material cutting device according to the present invention, since the crack is formed by non-contact processing using laser light as described above, the light-transmitting material is not completely cut. It is possible to cut the light transmitting material along a cutting pattern such as cutting out.

【0113】また、切断手段は、光透過性材料に応力を
印加するための押圧部材を有していることが好ましい。
このように、切断手段が光透過性材料に応力を印加する
ための押圧部材を有することにより、この押圧部材によ
り光透過性材料に応力を印加してクラックを成長させる
ことが可能となり、形成されたクラックの位置において
光透過性材料をより一層確実に切断することができる。
The cutting means preferably has a pressing member for applying a stress to the light transmitting material.
As described above, since the cutting means has the pressing member for applying the stress to the light-transmitting material, it is possible to apply the stress to the light-transmitting material by the pressing member and to grow the crack, thereby forming the crack. The light transmissive material can be more reliably cut at the position of the crack.

【0114】また、光透過性材料は、その表面に複数の
回路部が形成された光透過性材料であって、光学素子
は、隣接する回路部の間に形成された間隙に臨む光透過
性材料部分の内部に集光点が位置するようにレーザ光を
集光することが好ましい。このように構成した場合、隣
接する回路部の間に形成された間隙の位置において、光
透過性材料を確実に切断することができる。
The light-transmitting material is a light-transmitting material having a plurality of circuit portions formed on a surface thereof, and the optical element is provided with a light-transmitting material facing a gap formed between adjacent circuit portions. It is preferable that the laser beam is focused so that the focusing point is located inside the material portion. With this configuration, the light transmitting material can be reliably cut at the position of the gap formed between the adjacent circuit portions.

【0115】また、光学素子は、回路部にレーザ光が照
射されない角度でレーザ光を集光することが好ましい。
このように、光学素子が回路部にレーザ光が照射されな
い角度でレーザ光を集光することにより、レーザ光が回
路部に入射するのを防ぐことができ、回路部をレーザ光
から保護することができる。
It is preferable that the optical element converges the laser light at an angle at which the circuit portion is not irradiated with the laser light.
In this way, the optical element condenses the laser light at an angle at which the circuit portion is not irradiated with the laser light, thereby preventing the laser light from being incident on the circuit portion and protecting the circuit portion from the laser light. Can be.

【0116】また、集光点をレーザ光の光軸と交差する
方向に移動させるための集光点移動手段を更に備えてい
ることが好ましい。このように、集光点をレーザ光の光
軸と交差する方向に移動させるための集光点移動手段を
更に備えることにより、クラックを集光点の移動方向に
沿って連続的に形成することが可能となり、切断の方向
安定性がより一層向上して、切断の方向制御をより一層
容易に行うことができる。
It is preferable that the apparatus further comprises a converging point moving means for moving the converging point in a direction intersecting the optical axis of the laser beam. As described above, by further providing the focal point moving means for moving the focal point in a direction intersecting the optical axis of the laser beam, cracks can be formed continuously along the moving direction of the focal point. And the cutting direction stability is further improved, and the cutting direction control can be more easily performed.

【0117】[0117]

【発明の効果】【The invention's effect】

【0118】本発明に係るレーザ加工方法によれば、加
工対象物の表面に溶融や切断予定ラインから外れた割れ
が生じることなく、加工対象物を切断することができ
る。よって、加工対象物を切断することにより作製され
る製品(例えば、半導体チップ、圧電デバイスチップ、
液晶等の表示装置)の歩留まりや生産性を向上させるこ
とができる。
According to the laser processing method of the present invention, the object to be processed can be cut without causing melting or cracks on the surface of the object to be cut off from the line to be cut. Therefore, products (eg, semiconductor chips, piezoelectric device chips,
The yield and productivity of display devices such as liquid crystal) can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態に係るレーザ加工方法によってレー
ザ加工中の加工対象物の平面図である。
FIG. 1 is a plan view of an object to be processed during laser processing by a laser processing method according to an embodiment.

【図2】図1に示す加工対象物のII−II線に沿った
断面図である。
FIG. 2 is a cross-sectional view of the object illustrated in FIG. 1 taken along line II-II.

【図3】本実施形態に係るレーザ加工方法によるレーザ
加工後の加工対象物の平面図である。
FIG. 3 is a plan view of a processing target after laser processing by the laser processing method according to the embodiment.

【図4】図3に示す加工対象物のIV−IV線に沿った
断面図である。
4 is a cross-sectional view of the processing target object shown in FIG. 3 along the line IV-IV.

【図5】図3に示す加工対象物のV−V線に沿った断面
図である。
FIG. 5 is a cross-sectional view of the processing target object shown in FIG. 3 taken along line VV.

【図6】本実施形態に係るレーザ加工方法によって切断
された加工対象物の平面図である。
FIG. 6 is a plan view of a processing object cut by the laser processing method according to the embodiment.

【図7】本実施形態に係るレーザ加工方法における電界
強度とクラックの大きさとの関係を示すグラフである。
FIG. 7 is a graph showing a relationship between electric field intensity and crack size in the laser processing method according to the embodiment.

【図8】本実施形態に係るレーザ加工方法の第1工程に
おける加工対象物の断面図である。
FIG. 8 is a sectional view of an object to be processed in a first step of the laser processing method according to the embodiment.

【図9】本実施形態に係るレーザ加工方法の第2工程に
おける加工対象物の断面図である。
FIG. 9 is a cross-sectional view of a processing target in a second step of the laser processing method according to the embodiment.

【図10】本実施形態に係るレーザ加工方法の第3工程
における加工対象物の断面図である。
FIG. 10 is a sectional view of an object to be processed in a third step of the laser processing method according to the embodiment.

【図11】本実施形態に係るレーザ加工方法の第4工程
における加工対象物の断面図である。
FIG. 11 is a sectional view of an object to be processed in a fourth step of the laser processing method according to the embodiment.

【図12】本実施形態に係るレーザ加工方法により切断
されたシリコンウェハの一部における断面の写真を表し
た図である。
FIG. 12 is a diagram showing a photograph of a cross section of a part of the silicon wafer cut by the laser processing method according to the embodiment.

【図13】本実施形態に係るレーザ加工方法におけるレ
ーザ光の波長とシリコン基板の内部の透過率との関係を
示すグラフである。
FIG. 13 is a graph showing the relationship between the wavelength of laser light and the transmittance inside a silicon substrate in the laser processing method according to the present embodiment.

【図14】本実施形態の第1例に係るレーザ加工方法に
使用できるレーザ加工装置の概略構成図である。
FIG. 14 is a schematic configuration diagram of a laser processing apparatus that can be used in a laser processing method according to a first example of the present embodiment.

【図15】本実施形態の第1例に係るレーザ加工方法を
説明するためのフローチャートである。
FIG. 15 is a flowchart illustrating a laser processing method according to a first example of the embodiment.

【図16】本実施形態の第1例に係るレーザ加工方法に
より切断可能なパターンを説明するための加工対象物の
平面図である。
FIG. 16 is a plan view of a processing target for explaining a pattern that can be cut by the laser processing method according to the first example of the embodiment.

【図17】レーザ光源が複数に関する本実施形態の第1
例に係るレーザ加工方法を説明する模式図である。
FIG. 17 shows a first embodiment of the present invention relating to a plurality of laser light sources.
It is a schematic diagram explaining the laser processing method concerning an example.

【図18】レーザ光源が複数に関する本実施形態の第1
例に係る他のレーザ加工方法を説明する模式図である。
FIG. 18 shows a first embodiment of the present invention relating to a plurality of laser light sources.
FIG. 9 is a schematic diagram illustrating another laser processing method according to an example.

【図19】本実施形態の第2例において、ウェハシート
に保持された状態の圧電素子ウェハを示す概略平面図で
ある。
FIG. 19 is a schematic plan view showing a piezoelectric element wafer held by a wafer sheet in a second example of the embodiment.

【図20】本実施形態の第2例において、ウェハシート
に保持された状態の圧電素子ウェハを示す概略断面図で
ある。
FIG. 20 is a schematic sectional view showing a piezoelectric element wafer held on a wafer sheet in a second example of the embodiment.

【図21】本実施形態の第2例に係る切断方法を説明す
るためのフローチャートである。
FIG. 21 is a flowchart illustrating a cutting method according to a second example of the embodiment.

【図22】本実施形態の第2例に係る切断方法によりレ
ーザ光が照射されている光透過性材料の断面図である。
FIG. 22 is a cross-sectional view of a light-transmitting material irradiated with laser light by a cutting method according to a second example of the embodiment.

【図23】本実施形態の第2例に係る切断方法によりレ
ーザ光が照射された光透過性材料の平面図である。
FIG. 23 is a plan view of a light transmitting material irradiated with laser light by a cutting method according to a second example of the embodiment.

【図24】図23に示す光透過性材料のXXIV−XX
IV線に沿った断面図である。
24. XXIV-XX of the light transmitting material shown in FIG.
It is sectional drawing which followed the IV line.

【図25】図23に示す光透過性材料のXXV−XXV
線に沿った断面図である。
25. XXV-XXV of the light transmitting material shown in FIG.
It is sectional drawing along the line.

【図26】集光点の移動速度を遅くした場合における図
23に示す光透過性材料のXXV−XXV線に沿った断
面図である。
26 is a cross-sectional view of the light-transmitting material shown in FIG. 23 taken along line XXV-XXV when the moving speed of the focal point is reduced.

【図27】集光点の移動速度をさらに遅くした場合にお
ける図23に示す光透過性材料のXXV−XXV線に沿
った断面図である。
FIG. 27 is a cross-sectional view of the light transmissive material shown in FIG. 23 along line XXV-XXV when the moving speed of the focal point is further reduced.

【図28】本実施形態の第2例に係る切断方法の第1工
程を示す圧電素子ウェハ等の断面図である。
FIG. 28 is a sectional view of a piezoelectric element wafer or the like showing a first step of a cutting method according to a second example of the embodiment.

【図29】本実施形態の第2例に係る切断方法の第2工
程を示す圧電素子ウェハ等の断面図である。
FIG. 29 is a sectional view of a piezoelectric element wafer or the like showing a second step of the cutting method according to the second example of the embodiment.

【図30】本実施形態の第2例に係る切断方法の第3工
程を示す圧電素子ウェハ等の断面図である。
FIG. 30 is a sectional view of a piezoelectric element wafer or the like showing a third step of the cutting method according to the second example of the embodiment.

【図31】本実施形態の第2例に係る切断方法の第4工
程を示す圧電素子ウェハ等の断面図である。
FIG. 31 is a sectional view of a piezoelectric element wafer or the like showing a fourth step of the cutting method according to the second example of the embodiment.

【図32】本実施形態の第2例に係る切断方法の第5工
程を示す圧電素子ウェハ等の断面図である。
FIG. 32 is a cross-sectional view of a piezoelectric element wafer or the like showing a fifth step of the cutting method according to the second example of the embodiment.

【符号の説明】[Explanation of symbols]

1・・・加工対象物、3・・・表面、5・・・切断予定
ライン、7・・・改質領域、9・・・クラック領域、1
1・・・シリコンウェハ、13・・・溶融処理領域、1
5,17,19,23・・・レーザ光源、25,27,
29・・・アレイ光源部、31・・・圧電素子ウェハ、
37・・・圧電デバイスチップ、100・・・レーザ加
工装置、101・・・レーザ光源、105・・・集光用
レンズ、109・・・X軸ステージ、111・・・Y軸
ステージ、113・・・Z軸ステージ、P・・・集光点
DESCRIPTION OF SYMBOLS 1 ... Processing object, 3 ... Surface, 5 ... Cut line, 7 ... Modification area, 9 ... Crack area, 1
1 ... silicon wafer, 13 ... melt processing area, 1
5, 17, 19, 23 ... laser light source, 25, 27,
29: array light source unit, 31: piezoelectric element wafer,
37: piezoelectric device chip, 100: laser processing device, 101: laser light source, 105: focusing lens, 109: X-axis stage, 111: Y-axis stage, 113 ..Z-axis stage, P ... Focus point

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/301 B23K 101:40 // B23K 101:40 H01L 21/78 B (72)発明者 内山 直己 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 和久田 敏光 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 Fターム(参考) 3C069 AA01 BA08 BC01 CA05 CA06 CA11 EA01 EA02 4E068 AE00 CA02 CA03 CA09 CA11 CB10 CD08 CE01 DA11 DB13 4G015 FA06 FB01 FB03 FC14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/301 B23K 101: 40 // B23K 101: 40 H01L 21/78 B (72) Inventor Naoki Uchiyama Shizuoka (1) Hamamatsu Photonics Co., Ltd. (72) Inventor Toshimitsu Wakuda 1126 No. 1, Ichinocho, Hamamatsu City, Shizuoka Pref. EA01 EA02 4E068 AE00 CA02 CA03 CA09 CA11 CB10 CD08 CE01 DA11 DB13 4G015 FA06 FB01 FB03 FC14

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 加工対象物の内部に集光点を合わせてレ
ーザ光を照射し、前記加工対象物の切断予定ラインに沿
って前記加工対象物の内部に多光子吸収による改質領域
を形成する工程を備える、レーザ加工方法。
1. A laser beam is radiated at a focusing point inside a processing object to form a modified region by multiphoton absorption inside the processing object along a line to cut the processing object. A laser processing method, comprising the step of:
【請求項2】 加工対象物の内部に集光点を合わせて、
集光点におけるピークパワー密度が1×108(W/c
2)以上でかつパルス幅が1μs以下の条件でレーザ
光を照射し、前記加工対象物の切断予定ラインに沿って
前記加工対象物の内部にクラック領域を含む改質領域を
形成する工程を備える、レーザ加工方法。
2. A focusing point is set inside the object to be processed,
The peak power density at the focal point is 1 × 10 8 (W / c
m 2 ) a step of irradiating a laser beam under a condition of not less than 1 μs and a pulse width of not more than 1 μs to form a modified region including a crack region inside the processing object along a line to cut the processing object. Laser processing method provided.
【請求項3】 加工対象物の内部に集光点を合わせて、
集光点におけるピークパワー密度が1×108(W/c
2)以上でかつパルス幅が1μs以下の条件でレーザ
光を照射し、前記加工対象物の切断予定ラインに沿って
前記加工対象物の内部に溶融処理領域を含む改質領域を
形成する工程を備える、レーザ加工方法。
3. A focusing point is set inside the object to be processed,
The peak power density at the focal point is 1 × 10 8 (W / c
m 2 ) a step of irradiating a laser beam under a condition of not less than 1 μs and a pulse width of not more than 1 μs to form a modified region including a melt-processed region inside the object along the line to cut the object. A laser processing method comprising:
【請求項4】 加工対象物の内部に集光点を合わせて、
集光点におけるピークパワー密度が1×108(W/c
2)以上でかつパルス幅が1ns以下の条件でレーザ
光を照射し、前記加工対象物の切断予定ラインに沿って
前記加工対象物の内部に屈折率が変化した領域である屈
折率変化領域を含む改質領域を形成する工程を備える、
レーザ加工方法。
4. A focusing point is set inside the object to be processed,
The peak power density at the focal point is 1 × 10 8 (W / c
m 2 ) or more, and a laser beam is radiated under a condition that the pulse width is 1 ns or less, and the refractive index change region is a region in which the refractive index changes inside the processing object along the line to cut the processing object. Comprising the step of forming a modified region including
Laser processing method.
【請求項5】 前記レーザ光源から出射されるレーザ光
はパルスレーザ光を含む、請求項1〜4のいずれかに記
載のレーザ加工方法。
5. The laser processing method according to claim 1, wherein the laser light emitted from the laser light source includes a pulsed laser light.
【請求項6】 前記加工対象物の内部に集光点を合わせ
てレーザ光を照射するとは、一つのレーザ光源から出射
されたレーザ光を集光して前記加工対象物の内部に集光
点を合わせてレーザ光を照射する、請求項1〜5のいず
れかに記載のレーザ加工方法。
6. The method of irradiating a laser beam while aligning a converging point inside the object to be processed includes condensing laser light emitted from one laser light source to form a converging point inside the object. The laser processing method according to claim 1, wherein a laser beam is irradiated together with the laser beam.
【請求項7】 前記加工対象物の内部に集光点を合わせ
てレーザ光を照射するとは、複数のレーザ光源から出射
された各レーザ光を前記加工対象物の内部に集光点を合
わせて異なる方向から照射する、請求項1〜5のいずれ
かに記載のレーザ加工方法。
7. The method of irradiating a laser beam with a converging point inside the object to be processed means that each laser beam emitted from a plurality of laser light sources is focused on the inside of the object to be processed. The laser processing method according to claim 1, wherein irradiation is performed from different directions.
【請求項8】 前記複数のレーザ光源から出射された各
レーザ光は、前記加工対象物の前記表面から入射する、
請求項7記載のレーザ加工方法。
8. Each laser light emitted from the plurality of laser light sources enters from the surface of the object to be processed.
The laser processing method according to claim 7.
【請求項9】 前記複数のレーザ光源は、前記加工対象
物の前記表面から入射するレーザ光を出射するレーザ光
源と、前記加工対象物の裏面から入射するレーザ光を出
射するレーザ光源と、を含む請求項7記載のレーザ加工
方法。
9. The laser light source that emits laser light incident from the front surface of the object to be processed and a laser light source that emits laser light incident from the back surface of the object to be processed. The laser processing method according to claim 7, comprising:
【請求項10】 前記複数のレーザ光源は前記切断予定
ラインに沿ってレーザ光源がアレイ状に配置された光源
部を含む、請求項7〜9のいずれかに記載のレーザ加工
方法。
10. The laser processing method according to claim 7, wherein the plurality of laser light sources include a light source unit in which the laser light sources are arranged in an array along the line to be cut.
【請求項11】 前記改質領域は、前記加工対象物の内
部に合わされたレーザ光の集光点に対して、前記加工対
象物を相対的に移動させることにより形成される、請求
項1〜10のいずれかに記載のレーザ加工方法。
11. The processing device according to claim 1, wherein the modified region is formed by relatively moving the processing object with respect to a focal point of a laser beam aligned inside the processing object. The laser processing method according to any one of claims 10 to 13.
【請求項12】 前記改質領域を形成する工程後、前記
切断予定ラインに沿って前記加工対象物を切断する切断
工程を備える、請求項1〜11のいずれかに記載のレー
ザ加工方法。
12. The laser processing method according to claim 1, further comprising, after the step of forming the modified region, a cutting step of cutting the workpiece along the line to be cut.
【請求項13】 前記加工対象物はガラスを含む、請求
項1〜12のいずれかに記載のレーザ加工方法。
13. The laser processing method according to claim 1, wherein the object to be processed includes glass.
【請求項14】 前記加工対象物は圧電材料を含む、請
求項1〜12のいずれかに記載のレーザ加工方法。
14. The laser processing method according to claim 1, wherein the object to be processed includes a piezoelectric material.
【請求項15】 前記加工対象物は半導体材料を含む、
請求項1〜12のいずれかに記載のレーザ加工方法。
15. The object to be processed includes a semiconductor material.
A laser processing method according to claim 1.
【請求項16】 前記加工対象物は照射されたレーザ光
の透過性を有する、請求項1〜15のいずれかに記載の
レーザ加工方法。
16. The laser processing method according to claim 1, wherein the object to be processed has transparency of the irradiated laser light.
【請求項17】 前記加工対象物の前記表面に電子デバ
イス又は電極パターンが形成されている、請求項1〜1
6のいずれかに記載のレーザ加工方法。
17. An electronic device or an electrode pattern is formed on the surface of the object to be processed.
7. The laser processing method according to any one of 6.
【請求項18】 半導体材料の内部に集光点を合わせ
て、集光点におけるピークパワー密度が1×108(W
/cm2)以上でかつパルス幅が1μs以下の条件でレ
ーザ光を照射し、前記半導体材料の切断予定ラインに沿
って前記半導体材料の内部に改質領域を形成する工程を
備える、レーザ加工方法。
18. A converging point is set inside a semiconductor material, and a peak power density at the converging point is 1 × 10 8 (W
/ Cm 2 ) or more and a pulse width of 1 μs or less, a laser processing method comprising a step of forming a modified region inside the semiconductor material along a line to cut the semiconductor material along a line to cut the semiconductor material. .
【請求項19】 圧電材料の内部に集光点を合わせて、
集光点におけるピークパワー密度が1×108(W/c
2)以上でかつパルス幅が1μs以下の条件でレーザ
光を照射し、前記圧電材料の切断予定ラインに沿って前
記圧電材料の内部に改質領域を形成する工程を備える、
レーザ加工方法。
19. A focusing point is set inside the piezoelectric material,
The peak power density at the focal point is 1 × 10 8 (W / c
m 2 ) or more, and a step of irradiating a laser beam under a condition of a pulse width of 1 μs or less to form a modified region inside the piezoelectric material along a cutting line of the piezoelectric material.
Laser processing method.
【請求項20】 前記加工対象物は、その表面に複数
の回路部が形成されており、 前記複数の回路部のうち隣接する回路部の間に形成され
た間隙に臨む前記加工対象物の内部にレーザ光の集光点
を合わせる、請求項1〜19のいずれかに記載のレーザ
加工方法。
20. The workpiece has a plurality of circuit portions formed on a surface thereof, and an inside of the workpiece facing a gap formed between adjacent circuit portions of the plurality of circuit portions. The laser processing method according to any one of claims 1 to 19, wherein a focusing point of the laser light is adjusted to the point.
【請求項21】 前記複数の回路部にレーザ光が照射さ
れない角度でレーザ光が集光される、請求項20記載の
レーザ加工方法。
21. The laser processing method according to claim 20, wherein the laser light is focused at an angle at which the plurality of circuit units are not irradiated with the laser light.
【請求項22】 半導体材料の内部に集光点を合わせて
レーザ光を照射し、前記半導体材料の切断予定ラインに
沿って前記半導体材料の内部にのみ溶融処理領域を形成
する工程を備える、レーザ加工方法。
22. A laser comprising a step of irradiating a laser beam with a focusing point inside a semiconductor material and forming a melt processing region only inside the semiconductor material along a line to cut the semiconductor material. Processing method.
JP2001278768A 2000-09-13 2001-09-13 Cutting origin region forming method and workpiece cutting method Expired - Lifetime JP3408805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001278768A JP3408805B2 (en) 2000-09-13 2001-09-13 Cutting origin region forming method and workpiece cutting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-278306 2000-09-13
JP2000278306 2000-09-13
JP2001278768A JP3408805B2 (en) 2000-09-13 2001-09-13 Cutting origin region forming method and workpiece cutting method

Related Child Applications (11)

Application Number Title Priority Date Filing Date
JP2002093124A Division JP2003033889A (en) 2000-09-13 2002-03-28 Laser beam machining method
JP2002093213A Division JP2003039186A (en) 2000-09-13 2002-03-28 Laser beam machining method
JP2002093239A Division JP2003019582A (en) 2000-09-13 2002-03-28 Method for laser beam machining
JP2002093172A Division JP4663952B2 (en) 2000-09-13 2002-03-28 Laser processing apparatus and laser processing method
JP2002093204A Division JP2003001458A (en) 2000-09-13 2002-03-28 Laser beam machining method
JP2002093060A Division JP2003033887A (en) 2000-09-13 2002-03-28 Laser beam machining method
JP2002093174A Division JP2003039184A (en) 2000-09-13 2002-03-28 Laser beam machining method
JP2002093197A Division JP5025876B2 (en) 2000-09-13 2002-03-28 Laser processing equipment
JP2002099302A Division JP2003019583A (en) 2000-09-13 2002-04-01 Method for laser beam machining
JP2002099281A Division JP2003010992A (en) 2000-09-13 2002-04-01 Laser beam machining method
JP2002099258A Division JP2003010986A (en) 2000-09-13 2002-04-01 Laser beam machining method

Publications (2)

Publication Number Publication Date
JP2002192370A true JP2002192370A (en) 2002-07-10
JP3408805B2 JP3408805B2 (en) 2003-05-19

Family

ID=26599878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001278768A Expired - Lifetime JP3408805B2 (en) 2000-09-13 2001-09-13 Cutting origin region forming method and workpiece cutting method

Country Status (1)

Country Link
JP (1) JP3408805B2 (en)

Cited By (245)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051721A1 (en) * 2002-12-03 2004-06-17 Hamamatsu Photonics K.K. Method for cutting semiconductor substrate
WO2004082006A1 (en) * 2003-03-12 2004-09-23 Hamamatsu Photonics K.K. Laser beam machining method
WO2004100240A1 (en) * 2003-05-12 2004-11-18 Tokyo Seimitsu Co., Ltd. Method and device for dividing plate-like member
JP2005001001A (en) * 2002-03-12 2005-01-06 Hamamatsu Photonics Kk Laser beam machining method
JP2005096459A (en) * 2002-03-12 2005-04-14 Hamamatsu Photonics Kk Laser machining method
JPWO2003076119A1 (en) * 2002-03-12 2005-07-07 浜松ホトニクス株式会社 Processing object cutting method
JP2006080142A (en) * 2004-09-07 2006-03-23 Hitachi Chem Co Ltd Adhesion sheet, manufacturing method of semiconductor device therewith and adhesion sheet integral with dicing tape
US7211526B2 (en) 2004-02-19 2007-05-01 Canon Kabushiki Kaisha Laser based splitting method, object to be split, and semiconductor element chip
JP2007167875A (en) * 2005-12-20 2007-07-05 Seiko Epson Corp Method for inner scribing using laser beam
JP2007331983A (en) * 2006-06-15 2007-12-27 Sony Corp Scribing method for glass
JP2008000756A (en) * 2006-06-20 2008-01-10 Seiko Epson Corp Substrate, method for parting the same, electrooptical device, method for producing the same and electronic equipment
US7348199B2 (en) 2004-07-07 2008-03-25 Disco Corporation Wafer dividing method
JP2008071932A (en) * 2006-09-14 2008-03-27 Disco Abrasive Syst Ltd Wafer dividing apparatus and method
US7350446B2 (en) 2004-10-26 2008-04-01 Disco Corporation Wafer dividing apparatus
US7387950B1 (en) 2006-12-17 2008-06-17 United Microelectronics Corp. Method for forming a metal structure
WO2008126718A1 (en) 2007-04-05 2008-10-23 Hitachi Chemical Company, Ltd. Method for manufacturing semiconductor chip, adhesive film for semiconductor, and composite sheet using the film
WO2008126717A1 (en) 2007-04-06 2008-10-23 Hitachi Chemical Company, Ltd. Adhesive film for semiconductor, composite sheet, and method for producing semiconductor chip using them
US7443517B2 (en) 2006-12-20 2008-10-28 Disco Corporation Measuring instrument and laser beam machine for wafer
US7446020B2 (en) 2004-10-04 2008-11-04 Disco Corporation Wafer dividing method and dividing apparatus
CN100452299C (en) * 2004-10-07 2009-01-14 株式会社迪斯科 Silicon wafer laser processing method and laser beam processing machine
DE112007000524T5 (en) 2006-03-03 2009-01-15 Tokyo Seimitsu Co., Ltd. Wafer processing method
DE112007000520T5 (en) 2006-03-03 2009-01-15 Tokyo Seimitsu Co. Ltd., Mitaka Wafer processing method
US7482553B2 (en) 2004-09-28 2009-01-27 Disco Corporation Laser beam processing machine
US7497213B2 (en) 2004-10-20 2009-03-03 Disco Corporation Wafer dividing apparatus
WO2009048060A1 (en) 2007-10-09 2009-04-16 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
US7538048B2 (en) 2004-10-07 2009-05-26 Disco Corporation Laser beam processing machine
US7549560B2 (en) 2004-05-18 2009-06-23 Disco Corporation Wafer dividing method
US7566638B2 (en) 2003-07-10 2009-07-28 Oki Semiconductor Co., Ltd. Method of dicing a semiconductor device into plural chips
JP2009188433A (en) * 2009-05-28 2009-08-20 Mitsubishi Chemicals Corp Manufacturing method of nitride semiconductor element
US7605344B2 (en) 2003-07-18 2009-10-20 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
JP2009290791A (en) * 2008-05-30 2009-12-10 Kyocera Kinseki Corp Forming method of crystal piece
US7642113B2 (en) 2005-11-09 2010-01-05 Kabushiki Kaisha Toshiba Semiconductor wafer dividing method
US7682858B2 (en) 2004-06-22 2010-03-23 Disco Corporation Wafer processing method including formation of a deteriorated layer
US7696010B2 (en) * 2005-12-19 2010-04-13 Disco Corporation Wafer dividing method
US7728257B2 (en) 2006-07-25 2010-06-01 Disco Corporation Method of forming embrittled areas inside wafer for division
US7732730B2 (en) 2000-09-13 2010-06-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7791001B2 (en) 2004-11-19 2010-09-07 Canon Kabushiki Kaisha Automatic focusing apparatus, laser processing apparatus, and laser cutting apparatus
US7807940B2 (en) 2004-11-19 2010-10-05 Canon Kabushiki Kaisha Laser processing apparatus and laser processing method
US7829446B2 (en) 2006-11-09 2010-11-09 Seiko Epson Corporation Method for dividing wafer, method for manufacturing silicon devices, and method for manufacturing liquid ejecting heads
KR20100126185A (en) * 2009-05-21 2010-12-01 가부시기가이샤 디스코 Laser processing method of semiconductor wafer
KR20100126187A (en) * 2009-05-21 2010-12-01 가부시기가이샤 디스코 Laser processing method of semiconductor wafer
JP2010272698A (en) * 2009-05-21 2010-12-02 Disco Abrasive Syst Ltd Device processing method
US7859084B2 (en) 2008-02-28 2010-12-28 Panasonic Corporation Semiconductor substrate
US7875500B2 (en) 2003-06-06 2011-01-25 Hitachi Chemical Company, Ltd. Bonding semiconductor wafer stuck on dicing tape laminated adhesive sheet onto mounting support
JP2011077219A (en) * 2009-09-30 2011-04-14 Disco Abrasive Syst Ltd Method for processing wafer
US7960202B2 (en) 2006-01-18 2011-06-14 Hamamatsu Photonics K.K. Photodiode array having semiconductor substrate and crystal fused regions and method for making thereof
US8058103B2 (en) 2003-09-10 2011-11-15 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
US8071464B2 (en) 2009-12-25 2011-12-06 Disco Corporation Manufacturing method for light emitting device
JP2011248241A (en) * 2010-05-28 2011-12-08 Disco Abrasive Syst Ltd Plate-like material processing method and laser processing apparatus
US8093530B2 (en) 2004-11-19 2012-01-10 Canon Kabushiki Kaisha Laser cutting apparatus and laser cutting method
US8108998B2 (en) 2004-11-26 2012-02-07 Canon Kabushiki Kaisha Laser cutting method
KR101109860B1 (en) * 2004-08-06 2012-02-21 하마마츠 포토닉스 가부시키가이샤 Laser processing method, cutting method for work and semiconductor device
WO2012108503A1 (en) 2011-02-09 2012-08-16 住友電気工業株式会社 Laser processing method
US8247734B2 (en) 2003-03-11 2012-08-21 Hamamatsu Photonics K.K. Laser beam machining method
US8258046B2 (en) 2009-09-10 2012-09-04 Disco Corporation Laser processing method for workpiece
US8268656B2 (en) 2009-04-20 2012-09-18 Disco Corporation Optical device wafer processing method
US8268704B2 (en) 2002-03-12 2012-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
US8299580B2 (en) 2008-10-31 2012-10-30 Panasonic Corporation Semiconductor wafer and a method of separating the same
US8319143B2 (en) 2008-08-25 2012-11-27 Disco Corporation Laser processing apparatus
US8318518B2 (en) 2009-12-09 2012-11-27 Disco Corporation Light emitting device and manufacturing method thereof
WO2013027645A1 (en) * 2011-08-19 2013-02-28 旭硝子株式会社 Glass substrate cutting method and optical glass for solid-state image capturing device
US8415232B2 (en) 2010-10-21 2013-04-09 Disco Corporation Dividing method for wafer having die bonding film attached to the back side thereof
TWI393180B (en) * 2005-06-10 2013-04-11 Canon Machinery Inc Wafer cutting method and wafer cutting apparatus
US8461020B2 (en) 2011-05-12 2013-06-11 Disco Corporation Device processing method
US8476553B2 (en) 2010-09-10 2013-07-02 Disco Corporation Method of dividing workpiece
KR101280744B1 (en) * 2007-02-27 2013-07-05 가부시기가이샤 디스코 Measuring device for workpiece supported by chuck table and laser beam machining apparatus
US8492676B2 (en) 2003-05-22 2013-07-23 Tokyo Seimitsu Co., Ltd. Laser dicing device
US8497189B1 (en) 2012-01-24 2013-07-30 Disco Corporation Processing method for wafer
JP2013146747A (en) * 2012-01-17 2013-08-01 Aisin Seiki Co Ltd Cleaving method by laser and laser cleaving device
US8524576B2 (en) 2011-05-12 2013-09-03 Disco Corporation Wafer processing method
US8536486B2 (en) 2010-06-01 2013-09-17 Disco Corporation Method of dividing workpiece using laser beam
US8541287B2 (en) 2011-12-26 2013-09-24 Disco Corporation Laser processing method for wafer
KR101320821B1 (en) * 2005-03-22 2013-10-21 하마마츠 포토닉스 가부시키가이샤 Laser machining method
US8581144B2 (en) 2008-08-25 2013-11-12 Disco Corporation Laser processing apparatus and laser processing method
US8592717B2 (en) 2010-03-16 2013-11-26 Disco Corporation Method of dividing a workpiece having an uneven surface
US20130344685A1 (en) * 2012-06-25 2013-12-26 Disco Corporation Processing method and processing apparatus
US8673743B2 (en) 2011-09-01 2014-03-18 Disco Corporation Wafer dividing method
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
US8685839B2 (en) 2010-10-07 2014-04-01 Disco Corporation Workpiece dividing method
JP2014072475A (en) * 2012-10-01 2014-04-21 Disco Abrasive Syst Ltd Wafer processing method
US8753923B2 (en) 2011-09-30 2014-06-17 Disco Corporation Wafer processing method
US8871540B2 (en) 2011-07-27 2014-10-28 Toshiba Kikai Kabushiki Kaisha Laser dicing method
US20140334511A1 (en) * 2013-05-13 2014-11-13 Disco Corporation Laser processing method
US8895345B2 (en) 2010-06-24 2014-11-25 Toshiba Kikai Kabushiki Kaisha Dicing methods
US8927395B2 (en) 2013-03-27 2015-01-06 Disco Corporation Wafer processing method
US9018080B2 (en) 2012-10-01 2015-04-28 Disco Corporation Wafer processing method
TWI484543B (en) * 2008-05-27 2015-05-11 Disco Corp Segmentation of wafers (1)
US9034735B2 (en) 2012-10-16 2015-05-19 Disco Corporation Laser processing method for workpiece
US9050683B2 (en) 2012-06-29 2015-06-09 Toshiba Kikai Kabushiki Kaisha Laser dicing method
JP2015115483A (en) * 2013-12-12 2015-06-22 豊田合成株式会社 Method of manufacturing light-emitting element
US9093519B2 (en) 2013-10-07 2015-07-28 Disco Corporation Wafer processing method
US9099546B2 (en) 2010-10-20 2015-08-04 Disco Corporation Workpiece dividing method including two laser beam application steps
US9105708B2 (en) 2012-09-10 2015-08-11 Disco Corporation Wafer processing method
US9117895B2 (en) 2013-01-25 2015-08-25 Disco Corporation Laser processing method
US9130031B2 (en) 2013-04-24 2015-09-08 Disco Corporation Wafer processing method
JP2015165619A (en) * 2014-03-03 2015-09-17 京セラクリスタルデバイス株式会社 Intermediate product of crystal vibration element and manufacturing method of the same
US9142457B2 (en) 2010-10-01 2015-09-22 Nitto Denko Corporation Dicing die bond film and method of manufacturing semiconductor device
US9149886B2 (en) 2012-05-17 2015-10-06 Disco Corporation Modified layer forming method
KR20150113862A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Die bond film, die bond film having dicing sheet, semiconductor device and method for manufacturing semiconductor device
KR20150113878A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Dicing film, dicing·die bond film and manufacturing method for semiconductor device
KR20150113877A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Thermosetting die bond film, dicing·die bond film and manufacturing method for semiconductor device
US9174306B2 (en) 2011-03-17 2015-11-03 Disco Corporation Laser processing method for nonlinear crystal substrate
US9269624B2 (en) 2014-06-12 2016-02-23 Disco Corporation Wafer processing method
US9285211B2 (en) 2014-04-09 2016-03-15 Disco Corporation Height detecting apparatus
US9305793B2 (en) 2013-03-05 2016-04-05 Disco Corporation Wafer processing method
JP2016086079A (en) * 2014-10-27 2016-05-19 株式会社ディスコ Laser processing device
US9349646B2 (en) 2013-03-01 2016-05-24 Disco Corporation Wafer processing method including a filament forming step and an etching step
US9358637B2 (en) 2011-07-25 2016-06-07 Disco Corporation Laser beam spot shape detecting method
US9379016B2 (en) 2013-04-22 2016-06-28 Disco Corporation Wafer processing method
JP2016119426A (en) * 2014-12-23 2016-06-30 学校法人 名古屋電気学園 Surface processing method and manufacturing method of structure
JP2016133370A (en) * 2015-01-19 2016-07-25 株式会社ディスコ Laser beam inspection method
US9434023B2 (en) 2013-04-05 2016-09-06 Disco Corporation Laser machining apparatus
JP2016166120A (en) * 2015-03-06 2016-09-15 三星ダイヤモンド工業株式会社 Processing method of laminated substrate, and processing device of laminated substrate by laser beam
US9475152B2 (en) 2013-11-01 2016-10-25 Disco Corporation Laser processing method and laser processing apparatus
US9478465B2 (en) 2014-10-09 2016-10-25 Disco Corporation Wafer processing method
US9536786B2 (en) 2014-11-05 2017-01-03 Disco Corporation Wafer processing method using pulsed laser beam to form shield tunnels along division lines of a semiconductor wafer
US9543466B2 (en) 2015-02-02 2017-01-10 Disco Corporation Method for forming shield tunnels in single-crystal substrates
KR20170016285A (en) 2015-08-03 2017-02-13 가부시기가이샤 디스코 Workpiece processing method
US9634060B2 (en) 2012-07-04 2017-04-25 Makoto Shizukuishi Stacked solid-state image sensor and imaging apparatus including the same
US9640420B2 (en) 2015-06-12 2017-05-02 Disco Corporation Wafer processing method
JP2017098453A (en) * 2015-11-26 2017-06-01 株式会社ディスコ Division method of wafer and laser processing device
US9685377B2 (en) 2014-12-15 2017-06-20 Disco Corporation Wafer processing method
US20170221780A1 (en) * 2016-01-28 2017-08-03 Disco Corporation Packaged wafer processing method
TWI594832B (en) * 2011-09-16 2017-08-11 Hamamatsu Photonics Kk Laser processing method
US9735040B2 (en) 2015-03-12 2017-08-15 Disco Corporation Method of processing single-crystal substrate
KR20170095947A (en) 2014-12-12 2017-08-23 닛토덴코 가부시키가이샤 Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device
US9748182B2 (en) 2015-12-07 2017-08-29 Disco Corporation Wafer processing method
US9761492B2 (en) 2015-10-13 2017-09-12 Disco Corporation Processing method of optical device wafer
US9768127B2 (en) 2016-01-19 2017-09-19 Disco Corporation Wafer processing method
US9786561B2 (en) 2014-12-08 2017-10-10 Disco Corporation Wafer processing method
KR20170117318A (en) * 2016-04-13 2017-10-23 가부시기가이샤 디스코 Processing method of a wafer
KR20170122666A (en) * 2016-04-27 2017-11-06 가부시기가이샤 디스코 Wafer processing method
KR20170129059A (en) 2016-05-16 2017-11-24 가부시기가이샤 디스코 Expand sheet
DE102017209185A1 (en) 2016-06-01 2017-12-07 Disco Corporation An expansion film, an expansion film manufacturing method, and a stretch film expansion method
US9929105B2 (en) 2016-06-02 2018-03-27 Disco Corporation Leakage laser beam detecting method
US9929052B2 (en) 2016-04-27 2018-03-27 Disco Corporation Wafer processing method
JP2018052814A (en) * 2016-09-28 2018-04-05 三星ダイヤモンド工業株式会社 Modified layer forming method and modified layer forming device for brittle material substrate
KR20180061019A (en) 2016-11-29 2018-06-07 가부시기가이샤 디스코 Processing method of a wafer
US9997392B2 (en) 2016-02-25 2018-06-12 Disco Corporation Wafer processing method
KR20180071968A (en) 2016-12-20 2018-06-28 가부시기가이샤 디스코 Method for processing a workpiece
US10071442B2 (en) 2015-04-09 2018-09-11 Disco Corporation Laser processing apparatus
US10090186B2 (en) 2015-09-03 2018-10-02 Disco Corporation Chuck table
US10103061B2 (en) 2015-03-06 2018-10-16 Disco Corporation Processing method of single-crystal substrate
US10109527B2 (en) 2015-10-06 2018-10-23 Disco Corporation Optical device wafer processing method
US10132619B2 (en) 2017-01-24 2018-11-20 Disco Corporation Spot shape detection apparatus
KR20180133215A (en) 2017-06-05 2018-12-13 가부시기가이샤 디스코 Method for manufacturing chip
KR20180133214A (en) 2017-06-05 2018-12-13 가부시기가이샤 디스코 Method for manufacturing chip
US10157793B2 (en) 2015-03-10 2018-12-18 Disco Corporation Method of processing single-crystal substrate
US10183359B2 (en) 2017-04-13 2019-01-22 Disco Corporation Condensing point position detecting method
KR20190011197A (en) 2017-07-24 2019-02-01 가부시기가이샤 디스코 Method of manufacturing chip
US20190043743A1 (en) * 2017-08-01 2019-02-07 Disco Corporation Laser processing apparatus
KR20190020616A (en) 2017-08-21 2019-03-04 가부시기가이샤 디스코 Dividing method and dividing apparatus
DE102018216234A1 (en) 2017-09-22 2019-03-28 Disco Corporation Wafer processing method
KR20190034085A (en) 2017-09-22 2019-04-01 가부시기가이샤 디스코 Method of manufacturing chip
US10249547B2 (en) 2015-08-07 2019-04-02 Disco Corportation Method for using a test wafer by forming modified layer using a laser beam and observing damage after forming modified layer
JP2019061983A (en) * 2017-09-22 2019-04-18 株式会社ディスコ Chip manufacturing method
US10265805B2 (en) 2017-01-18 2019-04-23 Disco Corporation Method of processing workpiece
JP2019067979A (en) * 2017-10-03 2019-04-25 株式会社ディスコ Laser irradiation mechanism
KR20190045840A (en) 2017-10-24 2019-05-03 가부시기가이샤 디스코 Method of manufacturing chip
US10297710B2 (en) 2017-04-25 2019-05-21 Disco Corporation Method of processing wafer
DE102018220450A1 (en) 2017-11-28 2019-05-29 Disco Corporation Wafer processing method
KR20190085059A (en) 2017-03-10 2019-07-17 후루카와 덴키 고교 가부시키가이샤 Adhesive tape for semiconductor processing
US10366925B2 (en) 2017-07-24 2019-07-30 Disco Corporation Wafer processing method
KR20190092926A (en) 2018-01-31 2019-08-08 가부시기가이샤 디스코 Wafer processing method
US10388508B2 (en) 2016-05-09 2019-08-20 Disco Corporation Wafer processing apparatus
US10410901B2 (en) 2017-02-27 2019-09-10 Disco Corporation Electrostatic chuck table using method
JP2019161232A (en) * 2019-04-22 2019-09-19 株式会社東京精密 Laser processing system
WO2019208071A1 (en) 2018-04-27 2019-10-31 日東電工株式会社 Manufacturing method for semiconductor device
US10471536B2 (en) 2017-05-23 2019-11-12 Disco Corporation Reflective detection method and reflectance detection apparatus
US10475676B2 (en) 2017-05-23 2019-11-12 Disco Corporation Workpiece processing method
US10483149B2 (en) 2017-08-17 2019-11-19 Disco Corporation Wafer processing method for dividing a wafer, including a shield tunnel forming step
KR20190129736A (en) 2018-05-10 2019-11-20 가부시기가이샤 디스코 Method for manufacturing chip
KR20190129737A (en) 2018-05-11 2019-11-20 가부시기가이샤 디스코 Method for manufacturing chip
US10490450B2 (en) 2016-07-12 2019-11-26 Disco Corporation Electrostatic chuck table
US10504783B2 (en) 2017-11-02 2019-12-10 Disco Corporation Laser processing apparatus
US10532411B2 (en) 2016-09-06 2020-01-14 Disco Corporation Chuck table and method of manufacturing suction plate of porous ceramics
US10557704B2 (en) 2018-02-07 2020-02-11 Disco Corporation Non-destructive detection method
US10610974B2 (en) 2017-07-06 2020-04-07 Disco Corporation Laser processing apparatus and laser processing method
US10622230B2 (en) 2017-05-31 2020-04-14 Disco Corporation Protective tape attaching method
JP2020092212A (en) * 2018-12-06 2020-06-11 株式会社ディスコ Dope amount detection method and processing method of plate
US10692740B2 (en) 2016-05-12 2020-06-23 Disco Corporation Laser processing apparatus
US10695870B2 (en) 2017-03-14 2020-06-30 Disco Corporation Laser processing apparatus
US10758998B2 (en) 2016-12-08 2020-09-01 Disco Corporation Dividing method of workpiece and laser processing apparatus
US10780524B2 (en) 2017-03-13 2020-09-22 Disco Corporation Laser processing method and laser processing apparatus
US10804154B2 (en) 2018-03-06 2020-10-13 Disco Corporation Wafer processing method
US10847420B2 (en) 2018-05-14 2020-11-24 Disco Corporation Wafer processing method
US10847404B2 (en) 2017-05-11 2020-11-24 Disco Corporation Sheet sticking method
US10843381B2 (en) 2018-07-13 2020-11-24 Disco Corporation LED wafer processing method
US10923398B2 (en) 2018-06-27 2021-02-16 Disco Corporation Wafer processing method
US10937658B2 (en) 2018-07-20 2021-03-02 Disco Corporation LED wafer processing method
US10940560B2 (en) 2017-10-31 2021-03-09 Disco Corporation Laser processing apparatus
KR20210025479A (en) 2019-08-27 2021-03-09 가부시기가이샤 디스코 Laser machining apparatus
US10946482B2 (en) 2017-08-30 2021-03-16 Disco Corporation Laser processing apparatus
KR20210031605A (en) 2019-09-12 2021-03-22 가부시기가이샤 디스코 Position adjusting method and apparatus thereof
US10978318B2 (en) 2017-10-19 2021-04-13 Disco Corporation Laser processing apparatus
US10985067B2 (en) 2019-04-10 2021-04-20 Disco Corporation Wafer processing method using a laser beam dividing step
US10994368B2 (en) 2017-08-22 2021-05-04 Disco Corporation Wafer for examination and examination method of energy distribution
US10998232B2 (en) 2019-03-05 2021-05-04 Disco Corporation Wafer processing method of uniting a wafer and a ring frame using a polyolefin sheet
US11007605B2 (en) 2017-10-24 2021-05-18 Disco Corporation Laser processing apparatus
US11024543B2 (en) 2019-04-10 2021-06-01 Disco Corporation Wafer processing method including applying a polyester sheet to a wafer
US11049772B2 (en) 2019-03-05 2021-06-29 Disco Corporation Wafer processing method including applying a polyester sheet to a wafer
US11065717B2 (en) 2017-10-17 2021-07-20 Disco Corporation Laser processing apparatus
US11090762B2 (en) 2017-10-11 2021-08-17 Disco Corporation Laser processing apparatus
KR20210107032A (en) 2018-12-28 2021-08-31 쇼와덴코머티리얼즈가부시끼가이샤 Evaluation method of photocurable adhesive, dicing and die-bonding integrated film and manufacturing method thereof, and manufacturing method of semiconductor device
WO2021205963A1 (en) * 2020-04-06 2021-10-14 浜松ホトニクス株式会社 Inspection device and inspection method
WO2021210394A1 (en) 2020-04-14 2021-10-21 学校法人関西学院 Silicon carbide substrate manufacturing method, silicon carbide substrate, and method of removing strain layer introduced into silicon carbide substrate by laser processing
WO2021210395A1 (en) 2020-04-14 2021-10-21 学校法人関西学院 Aluminum nitride substrate manufacturing method, aluminum nitride substrate, and method of removing strain layer introduced into aluminum nitride substrate by laser processing
US11154952B2 (en) 2018-06-19 2021-10-26 Disco Corporation Laser processing apparatus
US11189530B2 (en) 2019-04-19 2021-11-30 Disco Corporation Manufacturing method of chips
KR20220003962A (en) 2020-07-02 2022-01-11 가부시기가이샤 디스코 Wafer inspection method
US11224941B2 (en) 2017-10-25 2022-01-18 Disco Corporation Laser processing apparatus
US11251082B2 (en) 2019-05-10 2022-02-15 Disco Corporation Wafer processing method
US11254029B2 (en) 2018-12-04 2022-02-22 Disco Corporation Wafer dividing apparatus
US11270916B2 (en) 2019-07-10 2022-03-08 Disco Corporation Wafer processing method
US11302578B2 (en) 2019-05-10 2022-04-12 Disco Corporation Wafer processing method
US11315833B2 (en) * 2018-06-22 2022-04-26 Disco Corporation Wafer processing method including a test element group (TEG) cutting step
US11322406B2 (en) 2019-07-10 2022-05-03 Disco Corporation Wafer processing method
US11322403B2 (en) 2018-07-31 2022-05-03 Disco Corporation Wafer processing method
US11328956B2 (en) 2019-10-28 2022-05-10 Disco Corporation Wafer processing method
US11361996B2 (en) 2017-09-06 2022-06-14 Disco Corporation Height detecting apparatus and laser processing apparatus
US11361997B2 (en) 2019-06-07 2022-06-14 Disco Corporation Wafer processing method including uniting a wafer, ring frame and a polyolefin sheet without using an adhesive layer
US11364573B2 (en) 2019-07-31 2022-06-21 Disco Corporation Laser processing apparatus including imager of mark of processed workpiece
KR20220088866A (en) 2019-10-28 2022-06-28 쇼와덴코머티리얼즈가부시끼가이샤 Film adhesive and its parting property evaluation method, dicing and die-bonding integrated film and manufacturing method thereof, and semiconductor device
US11380587B2 (en) 2019-06-07 2022-07-05 Disco Corporation Wafer processing method including uniting a wafer, a ring frame and a polyester sheet without using an adhesive layer
KR20220102116A (en) 2021-01-12 2022-07-19 가부시기가이샤 디스코 Inspection apparatus and tape expansion apparatus
US11420294B2 (en) 2017-11-30 2022-08-23 Disco Corporation Wafer processing method
US11519865B2 (en) 2020-02-28 2022-12-06 Disco Corporation Crack detection method
US11548096B2 (en) 2018-06-20 2023-01-10 Disco Corporation Laser processing apparatus
US11565347B2 (en) 2019-10-30 2023-01-31 Disco Corporation Laser processing machine
US11597040B2 (en) 2017-03-13 2023-03-07 Disco Corporation Laser processing apparatus
US11597036B2 (en) 2018-12-27 2023-03-07 Fujitsu Optical Components Limited Optical module and manufacturing method thereof
KR20230034885A (en) 2021-09-03 2023-03-10 가부시기가이샤 디스코 Diamond wafer dividing method and chip manufacturing method
US11621201B2 (en) 2019-12-11 2023-04-04 Disco Corporation Laser beam spot shape correcting method
US11633804B2 (en) 2017-06-30 2023-04-25 Disco Corporation Laser processing apparatus and laser processing method
US11637032B2 (en) 2018-06-19 2023-04-25 Disco Corporation Tape expanding apparatus
KR20230062565A (en) 2020-09-08 2023-05-09 가부시끼가이샤 레조낙 Film-like adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof
US11651989B2 (en) 2021-09-06 2023-05-16 Disco Corporation Wafer transferring method
JP7285637B2 (en) 2018-12-06 2023-06-02 株式会社ディスコ Plate-like material processing method
US11752574B2 (en) 2020-03-09 2023-09-12 Disco Corporation Laser processing apparatus and adjustment method for laser processing apparatus
KR20230157294A (en) 2021-03-05 2023-11-16 가부시끼가이샤 레조낙 Film-like adhesive, integrated dicing/die bonding film, and semiconductor device and method of manufacturing the same
DE102023205160A1 (en) 2022-06-13 2023-12-14 Disco Corporation RESISTANCE DETECTION METHOD AND MACHINING METHOD FOR A PLATE-SHAPED WORKPIECE
KR20240002690A (en) 2022-06-29 2024-01-05 가부시기가이샤 디스코 Laser machining apparatus
KR20240016939A (en) 2021-06-02 2024-02-06 가부시끼가이샤 레조낙 Semiconductor device manufacturing method and dicing/die bonding integrated film
US11933667B2 (en) 2020-03-18 2024-03-19 Disco Corporation Inspection apparatus and inspection method
US11938570B2 (en) 2019-09-27 2024-03-26 Disco Corporation Laser processing apparatus

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004827B4 (en) 2004-02-03 2011-03-31 Disco Corp. Wafer dividing method
JP2005222989A (en) 2004-02-03 2005-08-18 Disco Abrasive Syst Ltd Method for dividing wafer
JP4768963B2 (en) * 2004-03-01 2011-09-07 リンテック株式会社 Wafer transfer method
JP4342992B2 (en) * 2004-03-17 2009-10-14 株式会社ディスコ Laser processing machine chuck table
JP4299185B2 (en) * 2004-04-27 2009-07-22 株式会社ディスコ Laser processing equipment
JP4447392B2 (en) 2004-07-23 2010-04-07 株式会社ディスコ Wafer dividing method and dividing apparatus
JP2006049591A (en) 2004-08-05 2006-02-16 Disco Abrasive Syst Ltd Fracture method and fracture equipment of adhesive film stuck on wafer
JP2006054246A (en) 2004-08-10 2006-02-23 Disco Abrasive Syst Ltd Wafer separation method
JP2006123228A (en) 2004-10-27 2006-05-18 Disco Abrasive Syst Ltd Laser processing method and laser processing apparatus
JP2006186263A (en) 2004-12-28 2006-07-13 Disco Abrasive Syst Ltd Workpiece holding device
JP4630689B2 (en) 2005-03-01 2011-02-09 株式会社ディスコ Wafer division method
JP4694880B2 (en) * 2005-04-26 2011-06-08 株式会社ディスコ Laser processing equipment
JP4640945B2 (en) * 2005-04-27 2011-03-02 株式会社ディスコ Laser processing method
US7402773B2 (en) 2005-05-24 2008-07-22 Disco Corporation Laser beam processing machine
JP2006344795A (en) 2005-06-09 2006-12-21 Disco Abrasive Syst Ltd Dividing method of wafer
JP2007012878A (en) 2005-06-30 2007-01-18 Disco Abrasive Syst Ltd Method of dividing wafer
JP4938261B2 (en) 2005-08-11 2012-05-23 株式会社ディスコ Laser processing method for liquid crystal device wafer
JP4872503B2 (en) * 2005-11-16 2012-02-08 株式会社デンソー Wafer and wafer processing method
JP2007149860A (en) * 2005-11-25 2007-06-14 Disco Abrasive Syst Ltd Method for splitting substrate and splitting apparatus
JP4734101B2 (en) 2005-11-30 2011-07-27 株式会社ディスコ Laser processing equipment
JP4769560B2 (en) 2005-12-06 2011-09-07 株式会社ディスコ Wafer division method
JP4851795B2 (en) 2006-01-13 2012-01-11 株式会社ディスコ Wafer divider
JP4767711B2 (en) 2006-02-16 2011-09-07 株式会社ディスコ Wafer division method
JP4372115B2 (en) 2006-05-12 2009-11-25 パナソニック株式会社 Semiconductor device manufacturing method and semiconductor module manufacturing method
JP4480728B2 (en) 2006-06-09 2010-06-16 パナソニック株式会社 Method for manufacturing MEMS microphone
JP4813993B2 (en) 2006-07-05 2011-11-09 株式会社ディスコ Wafer laser processing method
JP2008060164A (en) 2006-08-29 2008-03-13 Disco Abrasive Syst Ltd Laser processing method for wafer
JP2008126237A (en) * 2006-11-16 2008-06-05 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP4851918B2 (en) 2006-11-24 2012-01-11 株式会社ディスコ Wafer laser processing method and laser processing apparatus
JP2008170366A (en) 2007-01-15 2008-07-24 Disco Abrasive Syst Ltd Device of measuring workpiece held by chuck table, and laser beam processing machine
JP5166899B2 (en) 2007-02-13 2013-03-21 株式会社ディスコ Wafer division method
JP2008227276A (en) 2007-03-14 2008-09-25 Disco Abrasive Syst Ltd Method of dividing wafer
JP2008283025A (en) 2007-05-11 2008-11-20 Disco Abrasive Syst Ltd Method of dividing wafer
JP2008294191A (en) 2007-05-24 2008-12-04 Disco Abrasive Syst Ltd Wafer dividing method
JP5336054B2 (en) 2007-07-18 2013-11-06 浜松ホトニクス株式会社 Processing information supply system provided with processing information supply device
JP5248825B2 (en) * 2007-09-06 2013-07-31 株式会社ディスコ Device for detecting the height position of the workpiece held on the chuck table
JP4814187B2 (en) 2007-09-11 2011-11-16 株式会社ディスコ Device for detecting the height position of the workpiece held on the chuck table
JP5192213B2 (en) 2007-11-02 2013-05-08 株式会社ディスコ Laser processing equipment
JP5307384B2 (en) 2007-12-03 2013-10-02 株式会社ディスコ Wafer division method
JP2009200140A (en) 2008-02-20 2009-09-03 Disco Abrasive Syst Ltd Method of manufacturing semiconductor chip
JP5203744B2 (en) 2008-02-21 2013-06-05 株式会社ディスコ Breaking method of adhesive film mounted on backside of wafer
JP2009206162A (en) 2008-02-26 2009-09-10 Disco Abrasive Syst Ltd Method of dividing wafer
JP5243098B2 (en) 2008-05-09 2013-07-24 株式会社ディスコ Laser processing equipment
JP2009283566A (en) 2008-05-20 2009-12-03 Disco Abrasive Syst Ltd Laser processing method and laser processing device for wafer
JP2009290148A (en) 2008-06-02 2009-12-10 Disco Abrasive Syst Ltd Method of dividing wafer
JP5118580B2 (en) 2008-08-22 2013-01-16 株式会社ディスコ Height position detection device and height position detection method
JP5323441B2 (en) * 2008-10-16 2013-10-23 株式会社ディスコ Split method
JP5395411B2 (en) * 2008-11-20 2014-01-22 株式会社ディスコ Wafer laser processing method
JP2010134328A (en) 2008-12-08 2010-06-17 Disco Abrasive Syst Ltd Polarization element and laser unit
JP5460196B2 (en) * 2009-09-10 2014-04-02 株式会社ディスコ Luminance inspection method
JP5547212B2 (en) 2009-12-11 2014-07-09 シャープ株式会社 Manufacturing method of semiconductor device
JP2011129740A (en) 2009-12-18 2011-06-30 Disco Abrasive Syst Ltd Wafer dividing device and laser beam machine
JP5558128B2 (en) 2010-02-05 2014-07-23 株式会社ディスコ Processing method of optical device wafer
JP5770446B2 (en) 2010-09-30 2015-08-26 株式会社ディスコ Split method
US8703517B2 (en) 2010-10-29 2014-04-22 Denso Corporation Method of Manufacturing a Semiconductor Device Including Removing a Reformed Layer
JP5758116B2 (en) 2010-12-16 2015-08-05 株式会社ディスコ Split method
JP5804716B2 (en) 2011-02-03 2015-11-04 株式会社ディスコ Laser processing equipment
JP5886603B2 (en) 2011-11-11 2016-03-16 株式会社ディスコ Processing method of optical device wafer
JP2013128950A (en) * 2011-12-21 2013-07-04 Disco Corp Laser beam machining apparatus
JP5902490B2 (en) 2012-01-25 2016-04-13 株式会社ディスコ Laser beam spot shape detection method and spot shape detection device
JP5902529B2 (en) 2012-03-28 2016-04-13 株式会社ディスコ Laser processing method
JP6425368B2 (en) 2012-04-27 2018-11-21 株式会社ディスコ Laser processing apparatus and laser processing method
JP5940896B2 (en) 2012-06-05 2016-06-29 株式会社ディスコ Laser processing equipment
JP5980600B2 (en) 2012-07-12 2016-08-31 株式会社ディスコ Tape expansion unit
JP6034097B2 (en) 2012-08-28 2016-11-30 株式会社ディスコ Laser processing equipment
JP6068882B2 (en) 2012-09-05 2017-01-25 株式会社ディスコ Laser processing equipment
JP6009885B2 (en) 2012-09-24 2016-10-19 株式会社ディスコ Tape expansion unit
JP6026222B2 (en) 2012-10-23 2016-11-16 株式会社ディスコ Wafer processing method
JP6215558B2 (en) 2013-04-03 2017-10-18 株式会社ディスコ Processing equipment
JP6148075B2 (en) 2013-05-31 2017-06-14 株式会社ディスコ Laser processing equipment
JP6215666B2 (en) * 2013-11-19 2017-10-18 株式会社ディスコ Processing equipment
JP6324796B2 (en) 2014-04-21 2018-05-16 株式会社ディスコ Single crystal substrate processing method
JP6305853B2 (en) 2014-07-08 2018-04-04 株式会社ディスコ Wafer processing method
JP2016147342A (en) 2015-02-12 2016-08-18 株式会社ディスコ Chuck table for processing device
JP6456766B2 (en) 2015-05-08 2019-01-23 株式会社ディスコ Wafer processing method
DE102016215473B4 (en) 2015-09-10 2023-10-26 Disco Corporation Method for processing a substrate
JP6521837B2 (en) 2015-11-05 2019-05-29 株式会社ディスコ Wafer processing method
JP6576212B2 (en) 2015-11-05 2019-09-18 株式会社ディスコ Wafer processing method
JP6576211B2 (en) 2015-11-05 2019-09-18 株式会社ディスコ Wafer processing method
JP6665020B2 (en) 2016-05-10 2020-03-13 株式会社ディスコ Split tools and how to use them
JP6757185B2 (en) 2016-06-08 2020-09-16 株式会社ディスコ Laser beam inspection method
JP6775822B2 (en) 2016-09-28 2020-10-28 三星ダイヤモンド工業株式会社 Brittle material substrate fragmentation method and fragmentation device
JP6749727B2 (en) 2016-10-14 2020-09-02 株式会社ディスコ Inspection wafer and method of using inspection wafer
DE102016224978B4 (en) 2016-12-14 2022-12-29 Disco Corporation substrate processing method
JP6932437B2 (en) 2017-06-02 2021-09-08 株式会社ディスコ How to check the optical axis of the laser processing equipment
JP6953210B2 (en) 2017-07-14 2021-10-27 株式会社ディスコ Wafer processing method
JP6935257B2 (en) 2017-07-25 2021-09-15 株式会社ディスコ Wafer processing method and auxiliary tools used for wafer processing
DE102017212858A1 (en) 2017-07-26 2019-01-31 Disco Corporation Method for processing a substrate
JP6998149B2 (en) 2017-08-08 2022-01-18 株式会社ディスコ Laser processing method
JP6970554B2 (en) 2017-08-21 2021-11-24 株式会社ディスコ Processing method
JP7030469B2 (en) 2017-10-02 2022-03-07 株式会社ディスコ Tape expansion device and tape expansion method
JP6998178B2 (en) 2017-11-07 2022-01-18 株式会社ディスコ Laser processing equipment
JP7027137B2 (en) 2017-11-30 2022-03-01 株式会社ディスコ Wafer division method and wafer division device
JP6935314B2 (en) * 2017-12-01 2021-09-15 株式会社ディスコ Laser processing method
JP7256604B2 (en) 2018-03-16 2023-04-12 株式会社ディスコ Nondestructive detection method
JP7154809B2 (en) 2018-04-20 2022-10-18 株式会社ディスコ Wafer processing method
JP2019192717A (en) 2018-04-20 2019-10-31 株式会社ディスコ Method of processing wafer
JP7123643B2 (en) 2018-06-11 2022-08-23 株式会社ディスコ Laser processing equipment
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
JP7246260B2 (en) 2019-06-18 2023-03-27 株式会社ディスコ Reflectance measuring device and laser processing device
JP7286464B2 (en) 2019-08-02 2023-06-05 株式会社ディスコ Laser processing equipment
JP7420508B2 (en) 2019-08-21 2024-01-23 株式会社ディスコ Laser processing method
JP7386672B2 (en) 2019-11-15 2023-11-27 株式会社ディスコ Laser processing equipment and phase pattern adjustment method
JP7401372B2 (en) 2020-03-26 2023-12-19 株式会社ディスコ Wafer processing method
JP7450447B2 (en) 2020-04-14 2024-03-15 株式会社ディスコ laser processing equipment
US20210402514A1 (en) 2020-06-26 2021-12-30 Disco Corporation Workpiece processing method
JP2022029227A (en) 2020-08-04 2022-02-17 株式会社ディスコ Laser processing device
JP2022041266A (en) 2020-08-31 2022-03-11 株式会社ディスコ Laser processing device, and focus point position correction method
JP2022054232A (en) 2020-09-25 2022-04-06 株式会社ディスコ Device chip manufacturing method
DE102021100753B3 (en) 2021-01-15 2022-02-17 elobau GmbH & Co.KG Joystick with wear-compensating sliding element
JP2022120345A (en) 2021-02-05 2022-08-18 株式会社ディスコ Laser processing device
JP2022163321A (en) 2021-04-14 2022-10-26 株式会社ディスコ Wafer processing method and wafer processing apparatus
JP2023001571A (en) 2021-06-21 2023-01-06 株式会社ディスコ Processing method
JP2023023236A (en) 2021-08-04 2023-02-16 株式会社ディスコ Chip manufacturing method
JP2023023328A (en) 2021-08-05 2023-02-16 株式会社ディスコ Inspection device
JP2023025742A (en) 2021-08-11 2023-02-24 株式会社ディスコ Light irradiation device
JP2023038724A (en) 2021-09-07 2023-03-17 株式会社ディスコ Wafer transfer method
JP2023069380A (en) 2021-11-05 2023-05-18 株式会社ディスコ Processing method
JP2023069381A (en) 2021-11-05 2023-05-18 株式会社ディスコ Wafer processing method
JP2024005902A (en) 2022-06-30 2024-01-17 株式会社ディスコ Chip manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111800A (en) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk Cutting work process of transparent material
JPH10163780A (en) * 1996-12-04 1998-06-19 Ngk Insulators Ltd Production of oscillator composed of piezoelectric single crystal
JPH10305420A (en) * 1997-03-04 1998-11-17 Ngk Insulators Ltd Method for fabricating matrix made up of oxide single crystal and method for manufacturing functional device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111800A (en) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk Cutting work process of transparent material
JPH10163780A (en) * 1996-12-04 1998-06-19 Ngk Insulators Ltd Production of oscillator composed of piezoelectric single crystal
JPH10305420A (en) * 1997-03-04 1998-11-17 Ngk Insulators Ltd Method for fabricating matrix made up of oxide single crystal and method for manufacturing functional device

Cited By (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732730B2 (en) 2000-09-13 2010-06-08 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8969761B2 (en) 2000-09-13 2015-03-03 Hamamatsu Photonics K.K. Method of cutting a wafer-like object and semiconductor chip
US8946592B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8946589B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of cutting a substrate, method of cutting a wafer-like object, and method of manufacturing a semiconductor device
US8946591B2 (en) 2000-09-13 2015-02-03 Hamamatsu Photonics K.K. Method of manufacturing a semiconductor device formed using a substrate cutting method
US8937264B2 (en) 2000-09-13 2015-01-20 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8933369B2 (en) 2000-09-13 2015-01-13 Hamamatsu Photonics K.K. Method of cutting a substrate and method of manufacturing a semiconductor device
US8927900B2 (en) 2000-09-13 2015-01-06 Hamamatsu Photonics K.K. Method of cutting a substrate, method of processing a wafer-like object, and method of manufacturing a semiconductor device
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8716110B2 (en) 2000-09-13 2014-05-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8283595B2 (en) 2000-09-13 2012-10-09 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8227724B2 (en) 2000-09-13 2012-07-24 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US7825350B2 (en) 2000-09-13 2010-11-02 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US8314013B2 (en) 2002-03-12 2012-11-20 Hamamatsu Photonics K.K. Semiconductor chip manufacturing method
US7749867B2 (en) 2002-03-12 2010-07-06 Hamamatsu Photonics K.K. Method of cutting processed object
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US9142458B2 (en) 2002-03-12 2015-09-22 Hamamatsu Photonics K.K. Substrate dividing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
JP2005001001A (en) * 2002-03-12 2005-01-06 Hamamatsu Photonics Kk Laser beam machining method
JP2005096459A (en) * 2002-03-12 2005-04-14 Hamamatsu Photonics Kk Laser machining method
JPWO2003076119A1 (en) * 2002-03-12 2005-07-07 浜松ホトニクス株式会社 Processing object cutting method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US8889525B2 (en) 2002-03-12 2014-11-18 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
US8802543B2 (en) 2002-03-12 2014-08-12 Hamamatsu Photonics K.K. Laser processing method
US8673745B2 (en) 2002-03-12 2014-03-18 Hamamatsu Photonics K.K. Method of cutting object to be processed
US8598015B2 (en) 2002-03-12 2013-12-03 Hamamatsu Photonics K.K. Laser processing method
US8551865B2 (en) 2002-03-12 2013-10-08 Hamamatsu Photonics K.K. Method of cutting an object to be processed
US8518800B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8518801B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8519511B2 (en) 2002-03-12 2013-08-27 Hamamatsu Photonics K.K. Substrate dividing method
US8183131B2 (en) 2002-03-12 2012-05-22 Hamamatsu Photonics K. K. Method of cutting an object to be processed
US8361883B2 (en) 2002-03-12 2013-01-29 Hamamatsu Photonics K.K. Laser processing method
US8304325B2 (en) 2002-03-12 2012-11-06 Hamamatsu-Photonics K.K. Substrate dividing method
US8268704B2 (en) 2002-03-12 2012-09-18 Hamamatsu Photonics K.K. Method for dicing substrate
JP4606741B2 (en) * 2002-03-12 2011-01-05 浜松ホトニクス株式会社 Processing object cutting method
JP4509719B2 (en) * 2002-03-12 2010-07-21 浜松ホトニクス株式会社 Laser processing method
JP4509720B2 (en) * 2002-03-12 2010-07-21 浜松ホトニクス株式会社 Laser processing method
KR100855136B1 (en) * 2002-12-03 2008-08-28 하마마츠 포토닉스 가부시키가이샤 Method for cutting semiconductor substrate
WO2004051721A1 (en) * 2002-12-03 2004-06-17 Hamamatsu Photonics K.K. Method for cutting semiconductor substrate
US8450187B2 (en) 2002-12-03 2013-05-28 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8865566B2 (en) 2002-12-03 2014-10-21 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate
US8263479B2 (en) 2002-12-03 2012-09-11 Hamamatsu Photonics K.K. Method for cutting semiconductor substrate
CN100440443C (en) * 2002-12-03 2008-12-03 浜松光子学株式会社 Method for cutting semiconductor substrate
US8409968B2 (en) 2002-12-03 2013-04-02 Hamamatsu Photonics K.K. Method of cutting semiconductor substrate via modified region formation and subsequent sheet expansion
US8247734B2 (en) 2003-03-11 2012-08-21 Hamamatsu Photonics K.K. Laser beam machining method
CN100383926C (en) * 2003-03-12 2008-04-23 浜松光子学株式会社 Laser beam machining method
US8685838B2 (en) 2003-03-12 2014-04-01 Hamamatsu Photonics K.K. Laser beam machining method
KR100853057B1 (en) * 2003-03-12 2008-08-19 하마마츠 포토닉스 가부시키가이샤 Laser beam machining method
EP1610364A4 (en) * 2003-03-12 2008-08-27 Hamamatsu Photonics Kk Laser beam machining method
EP1610364A1 (en) * 2003-03-12 2005-12-28 Hamamatsu Photonics K.K. Laser beam machining method
US8969752B2 (en) 2003-03-12 2015-03-03 Hamamatsu Photonics K.K. Laser processing method
WO2004082006A1 (en) * 2003-03-12 2004-09-23 Hamamatsu Photonics K.K. Laser beam machining method
US7410831B2 (en) 2003-05-12 2008-08-12 Tokyo Seimitsu Co., Ltd. Method and device for dividing plate-like member
JP4599631B2 (en) * 2003-05-12 2010-12-15 株式会社東京精密 Method and apparatus for dividing plate-like member
WO2004100240A1 (en) * 2003-05-12 2004-11-18 Tokyo Seimitsu Co., Ltd. Method and device for dividing plate-like member
JPWO2004100240A1 (en) * 2003-05-12 2006-07-13 株式会社東京精密 Method and apparatus for dividing plate-like member
US8492676B2 (en) 2003-05-22 2013-07-23 Tokyo Seimitsu Co., Ltd. Laser dicing device
DE112004000769B4 (en) * 2003-05-22 2015-06-25 Tokyo Seimitsu Co., Ltd. Laser dicing device
US7968194B2 (en) 2003-06-06 2011-06-28 Hitachi Chemical Co., Ltd. Dicing tape laminated with adhesive sheet of polymer, thermosetting resin and filler
US20130045585A1 (en) * 2003-06-06 2013-02-21 Teiichi Inada Adhesive sheet, dicing tape integrated type adhesive sheet, and method of producing semiconductor device
JP5017861B2 (en) * 2003-06-06 2012-09-05 日立化成工業株式会社 Adhesive sheet and dicing tape integrated adhesive sheet
US7968195B2 (en) 2003-06-06 2011-06-28 Hitachi Chemical Co., Ltd. Dicing tape laminated with adhesive sheet of polymer, epoxy resin and filler
US8617930B2 (en) 2003-06-06 2013-12-31 Hitachi Chemical Co., Ltd. Adhesive sheet, dicing tape integrated type adhesive sheet, and method of producing semiconductor device
US7875500B2 (en) 2003-06-06 2011-01-25 Hitachi Chemical Company, Ltd. Bonding semiconductor wafer stuck on dicing tape laminated adhesive sheet onto mounting support
US7566638B2 (en) 2003-07-10 2009-07-28 Oki Semiconductor Co., Ltd. Method of dicing a semiconductor device into plural chips
US8852698B2 (en) 2003-07-18 2014-10-07 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US7605344B2 (en) 2003-07-18 2009-10-20 Hamamatsu Photonics K.K. Laser beam machining method, laser beam machining apparatus, and laser beam machining product
US8551817B2 (en) 2003-09-10 2013-10-08 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
US8058103B2 (en) 2003-09-10 2011-11-15 Hamamatsu Photonics K.K. Semiconductor substrate cutting method
US7211526B2 (en) 2004-02-19 2007-05-01 Canon Kabushiki Kaisha Laser based splitting method, object to be split, and semiconductor element chip
US7549560B2 (en) 2004-05-18 2009-06-23 Disco Corporation Wafer dividing method
US7682858B2 (en) 2004-06-22 2010-03-23 Disco Corporation Wafer processing method including formation of a deteriorated layer
US7348199B2 (en) 2004-07-07 2008-03-25 Disco Corporation Wafer dividing method
KR101190454B1 (en) * 2004-08-06 2012-10-11 하마마츠 포토닉스 가부시키가이샤 Laser processing apparatus
KR101109860B1 (en) * 2004-08-06 2012-02-21 하마마츠 포토닉스 가부시키가이샤 Laser processing method, cutting method for work and semiconductor device
US8604383B2 (en) 2004-08-06 2013-12-10 Hamamatsu Photonics K.K. Laser processing method
JP2006080142A (en) * 2004-09-07 2006-03-23 Hitachi Chem Co Ltd Adhesion sheet, manufacturing method of semiconductor device therewith and adhesion sheet integral with dicing tape
US7482553B2 (en) 2004-09-28 2009-01-27 Disco Corporation Laser beam processing machine
US7446020B2 (en) 2004-10-04 2008-11-04 Disco Corporation Wafer dividing method and dividing apparatus
CN100452299C (en) * 2004-10-07 2009-01-14 株式会社迪斯科 Silicon wafer laser processing method and laser beam processing machine
US7553777B2 (en) 2004-10-07 2009-06-30 Disco Corporation Silicon wafer laser processing method and laser beam processing machine
US7538048B2 (en) 2004-10-07 2009-05-26 Disco Corporation Laser beam processing machine
US7497213B2 (en) 2004-10-20 2009-03-03 Disco Corporation Wafer dividing apparatus
US7350446B2 (en) 2004-10-26 2008-04-01 Disco Corporation Wafer dividing apparatus
US8093530B2 (en) 2004-11-19 2012-01-10 Canon Kabushiki Kaisha Laser cutting apparatus and laser cutting method
US7807940B2 (en) 2004-11-19 2010-10-05 Canon Kabushiki Kaisha Laser processing apparatus and laser processing method
US7791001B2 (en) 2004-11-19 2010-09-07 Canon Kabushiki Kaisha Automatic focusing apparatus, laser processing apparatus, and laser cutting apparatus
US8108998B2 (en) 2004-11-26 2012-02-07 Canon Kabushiki Kaisha Laser cutting method
US8735771B2 (en) 2005-03-22 2014-05-27 Hamamatsu Photonicks K.K. Laser machining method
KR101320821B1 (en) * 2005-03-22 2013-10-21 하마마츠 포토닉스 가부시키가이샤 Laser machining method
TWI393180B (en) * 2005-06-10 2013-04-11 Canon Machinery Inc Wafer cutting method and wafer cutting apparatus
US7642113B2 (en) 2005-11-09 2010-01-05 Kabushiki Kaisha Toshiba Semiconductor wafer dividing method
US7696010B2 (en) * 2005-12-19 2010-04-13 Disco Corporation Wafer dividing method
JP2007167875A (en) * 2005-12-20 2007-07-05 Seiko Epson Corp Method for inner scribing using laser beam
US7960202B2 (en) 2006-01-18 2011-06-14 Hamamatsu Photonics K.K. Photodiode array having semiconductor substrate and crystal fused regions and method for making thereof
US7981770B2 (en) 2006-03-03 2011-07-19 Tokyo Seimitsu Co., Ltd. Wafer machining method for preparing a wafer for dicing
DE112007000520T5 (en) 2006-03-03 2009-01-15 Tokyo Seimitsu Co. Ltd., Mitaka Wafer processing method
DE112007000524T5 (en) 2006-03-03 2009-01-15 Tokyo Seimitsu Co., Ltd. Wafer processing method
JP2007331983A (en) * 2006-06-15 2007-12-27 Sony Corp Scribing method for glass
JP2008000756A (en) * 2006-06-20 2008-01-10 Seiko Epson Corp Substrate, method for parting the same, electrooptical device, method for producing the same and electronic equipment
JP4706570B2 (en) * 2006-06-20 2011-06-22 セイコーエプソン株式会社 Substrate and method for dividing the same, electro-optical device and method for manufacturing the same, and electronic apparatus
US7728257B2 (en) 2006-07-25 2010-06-01 Disco Corporation Method of forming embrittled areas inside wafer for division
JP2008071932A (en) * 2006-09-14 2008-03-27 Disco Abrasive Syst Ltd Wafer dividing apparatus and method
JP4721997B2 (en) * 2006-09-14 2011-07-13 株式会社ディスコ Wafer dividing apparatus and wafer dividing method
US7829446B2 (en) 2006-11-09 2010-11-09 Seiko Epson Corporation Method for dividing wafer, method for manufacturing silicon devices, and method for manufacturing liquid ejecting heads
US7387950B1 (en) 2006-12-17 2008-06-17 United Microelectronics Corp. Method for forming a metal structure
US7443517B2 (en) 2006-12-20 2008-10-28 Disco Corporation Measuring instrument and laser beam machine for wafer
KR101280744B1 (en) * 2007-02-27 2013-07-05 가부시기가이샤 디스코 Measuring device for workpiece supported by chuck table and laser beam machining apparatus
US8232185B2 (en) 2007-04-05 2012-07-31 Hitachi Chemical Company, Ltd. Method for manufacturing semiconductor chip, adhesive film for semiconductor, and composite sheet using the film
WO2008126718A1 (en) 2007-04-05 2008-10-23 Hitachi Chemical Company, Ltd. Method for manufacturing semiconductor chip, adhesive film for semiconductor, and composite sheet using the film
US8404564B2 (en) 2007-04-06 2013-03-26 Hitachi Chemical Company, Ltd. Adhesive film for semiconductor, composite sheet, and method for producing semiconductor chip using them
WO2008126717A1 (en) 2007-04-06 2008-10-23 Hitachi Chemical Company, Ltd. Adhesive film for semiconductor, composite sheet, and method for producing semiconductor chip using them
US8071465B2 (en) 2007-10-09 2011-12-06 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
WO2009048060A1 (en) 2007-10-09 2009-04-16 Hitachi Chemical Company, Ltd. Method for producing semiconductor chip with adhesive film, adhesive film for semiconductor used in the method, and method for producing semiconductor device
US7859084B2 (en) 2008-02-28 2010-12-28 Panasonic Corporation Semiconductor substrate
TWI484543B (en) * 2008-05-27 2015-05-11 Disco Corp Segmentation of wafers (1)
JP2009290791A (en) * 2008-05-30 2009-12-10 Kyocera Kinseki Corp Forming method of crystal piece
US8581144B2 (en) 2008-08-25 2013-11-12 Disco Corporation Laser processing apparatus and laser processing method
US8319143B2 (en) 2008-08-25 2012-11-27 Disco Corporation Laser processing apparatus
US8299580B2 (en) 2008-10-31 2012-10-30 Panasonic Corporation Semiconductor wafer and a method of separating the same
US8268656B2 (en) 2009-04-20 2012-09-18 Disco Corporation Optical device wafer processing method
KR101597369B1 (en) * 2009-05-21 2016-02-24 가부시기가이샤 디스코 Laser processing method of semiconductor wafer
JP2010272698A (en) * 2009-05-21 2010-12-02 Disco Abrasive Syst Ltd Device processing method
KR20100126185A (en) * 2009-05-21 2010-12-01 가부시기가이샤 디스코 Laser processing method of semiconductor wafer
KR101581049B1 (en) 2009-05-21 2015-12-30 가부시기가이샤 디스코 Laser processing method of semiconductor wafer
KR20100126187A (en) * 2009-05-21 2010-12-01 가부시기가이샤 디스코 Laser processing method of semiconductor wafer
JP2010272699A (en) * 2009-05-21 2010-12-02 Disco Abrasive Syst Ltd Laser processing method of semiconductor wafer
KR101584819B1 (en) * 2009-05-21 2016-01-13 가부시기가이샤 디스코 Processing method of semiconductor wafer
JP2010272697A (en) * 2009-05-21 2010-12-02 Disco Abrasive Syst Ltd Laser processing method of semiconductor wafer
JP2009188433A (en) * 2009-05-28 2009-08-20 Mitsubishi Chemicals Corp Manufacturing method of nitride semiconductor element
US8258046B2 (en) 2009-09-10 2012-09-04 Disco Corporation Laser processing method for workpiece
JP2011077219A (en) * 2009-09-30 2011-04-14 Disco Abrasive Syst Ltd Method for processing wafer
US8318518B2 (en) 2009-12-09 2012-11-27 Disco Corporation Light emitting device and manufacturing method thereof
US8071464B2 (en) 2009-12-25 2011-12-06 Disco Corporation Manufacturing method for light emitting device
US8592717B2 (en) 2010-03-16 2013-11-26 Disco Corporation Method of dividing a workpiece having an uneven surface
JP2011248241A (en) * 2010-05-28 2011-12-08 Disco Abrasive Syst Ltd Plate-like material processing method and laser processing apparatus
US8536486B2 (en) 2010-06-01 2013-09-17 Disco Corporation Method of dividing workpiece using laser beam
US8895345B2 (en) 2010-06-24 2014-11-25 Toshiba Kikai Kabushiki Kaisha Dicing methods
US8476553B2 (en) 2010-09-10 2013-07-02 Disco Corporation Method of dividing workpiece
US9142457B2 (en) 2010-10-01 2015-09-22 Nitto Denko Corporation Dicing die bond film and method of manufacturing semiconductor device
US8685839B2 (en) 2010-10-07 2014-04-01 Disco Corporation Workpiece dividing method
US9099546B2 (en) 2010-10-20 2015-08-04 Disco Corporation Workpiece dividing method including two laser beam application steps
US8415232B2 (en) 2010-10-21 2013-04-09 Disco Corporation Dividing method for wafer having die bonding film attached to the back side thereof
US8933367B2 (en) 2011-02-09 2015-01-13 Sumitomo Electric Industries, Ltd. Laser processing method
WO2012108503A1 (en) 2011-02-09 2012-08-16 住友電気工業株式会社 Laser processing method
US9174306B2 (en) 2011-03-17 2015-11-03 Disco Corporation Laser processing method for nonlinear crystal substrate
US8461020B2 (en) 2011-05-12 2013-06-11 Disco Corporation Device processing method
US8524576B2 (en) 2011-05-12 2013-09-03 Disco Corporation Wafer processing method
US9358637B2 (en) 2011-07-25 2016-06-07 Disco Corporation Laser beam spot shape detecting method
US8871540B2 (en) 2011-07-27 2014-10-28 Toshiba Kikai Kabushiki Kaisha Laser dicing method
WO2013027645A1 (en) * 2011-08-19 2013-02-28 旭硝子株式会社 Glass substrate cutting method and optical glass for solid-state image capturing device
JPWO2013027645A1 (en) * 2011-08-19 2015-03-19 旭硝子株式会社 Glass substrate cutting method, optical glass for solid-state imaging device
US8673743B2 (en) 2011-09-01 2014-03-18 Disco Corporation Wafer dividing method
TWI594832B (en) * 2011-09-16 2017-08-11 Hamamatsu Photonics Kk Laser processing method
US8753923B2 (en) 2011-09-30 2014-06-17 Disco Corporation Wafer processing method
US8541287B2 (en) 2011-12-26 2013-09-24 Disco Corporation Laser processing method for wafer
JP2013146747A (en) * 2012-01-17 2013-08-01 Aisin Seiki Co Ltd Cleaving method by laser and laser cleaving device
US8497189B1 (en) 2012-01-24 2013-07-30 Disco Corporation Processing method for wafer
US9149886B2 (en) 2012-05-17 2015-10-06 Disco Corporation Modified layer forming method
KR102021154B1 (en) 2012-06-25 2019-09-11 가부시기가이샤 디스코 Machining method and machining apparatus
US20130344685A1 (en) * 2012-06-25 2013-12-26 Disco Corporation Processing method and processing apparatus
KR20140000630A (en) * 2012-06-25 2014-01-03 가부시기가이샤 디스코 Machining method and machining apparatus
US9050683B2 (en) 2012-06-29 2015-06-09 Toshiba Kikai Kabushiki Kaisha Laser dicing method
US9634060B2 (en) 2012-07-04 2017-04-25 Makoto Shizukuishi Stacked solid-state image sensor and imaging apparatus including the same
US9105708B2 (en) 2012-09-10 2015-08-11 Disco Corporation Wafer processing method
JP2014072475A (en) * 2012-10-01 2014-04-21 Disco Abrasive Syst Ltd Wafer processing method
US9018080B2 (en) 2012-10-01 2015-04-28 Disco Corporation Wafer processing method
US9034735B2 (en) 2012-10-16 2015-05-19 Disco Corporation Laser processing method for workpiece
US9117895B2 (en) 2013-01-25 2015-08-25 Disco Corporation Laser processing method
US9349646B2 (en) 2013-03-01 2016-05-24 Disco Corporation Wafer processing method including a filament forming step and an etching step
US9305793B2 (en) 2013-03-05 2016-04-05 Disco Corporation Wafer processing method
US8927395B2 (en) 2013-03-27 2015-01-06 Disco Corporation Wafer processing method
US9434023B2 (en) 2013-04-05 2016-09-06 Disco Corporation Laser machining apparatus
US9379016B2 (en) 2013-04-22 2016-06-28 Disco Corporation Wafer processing method
US9130031B2 (en) 2013-04-24 2015-09-08 Disco Corporation Wafer processing method
KR102024950B1 (en) 2013-05-13 2019-09-24 가부시기가이샤 디스코 Laser machining method
US9209591B2 (en) * 2013-05-13 2015-12-08 Disco Corporation Laser processing method
KR20140134220A (en) * 2013-05-13 2014-11-21 가부시기가이샤 디스코 Laser machining method
US20140334511A1 (en) * 2013-05-13 2014-11-13 Disco Corporation Laser processing method
US9093519B2 (en) 2013-10-07 2015-07-28 Disco Corporation Wafer processing method
US9475152B2 (en) 2013-11-01 2016-10-25 Disco Corporation Laser processing method and laser processing apparatus
JP2015115483A (en) * 2013-12-12 2015-06-22 豊田合成株式会社 Method of manufacturing light-emitting element
JP2015165619A (en) * 2014-03-03 2015-09-17 京セラクリスタルデバイス株式会社 Intermediate product of crystal vibration element and manufacturing method of the same
KR20150113877A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Thermosetting die bond film, dicing·die bond film and manufacturing method for semiconductor device
KR20220050110A (en) 2014-03-31 2022-04-22 닛토덴코 가부시키가이샤 Dicing·die bond film and manufacturing method for semiconductor device
KR20150113862A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Die bond film, die bond film having dicing sheet, semiconductor device and method for manufacturing semiconductor device
KR20150113878A (en) 2014-03-31 2015-10-08 닛토덴코 가부시키가이샤 Dicing film, dicing·die bond film and manufacturing method for semiconductor device
US9285211B2 (en) 2014-04-09 2016-03-15 Disco Corporation Height detecting apparatus
US9269624B2 (en) 2014-06-12 2016-02-23 Disco Corporation Wafer processing method
US9478465B2 (en) 2014-10-09 2016-10-25 Disco Corporation Wafer processing method
JP2016086079A (en) * 2014-10-27 2016-05-19 株式会社ディスコ Laser processing device
US9536786B2 (en) 2014-11-05 2017-01-03 Disco Corporation Wafer processing method using pulsed laser beam to form shield tunnels along division lines of a semiconductor wafer
US9786561B2 (en) 2014-12-08 2017-10-10 Disco Corporation Wafer processing method
KR20170095947A (en) 2014-12-12 2017-08-23 닛토덴코 가부시키가이샤 Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device
US9685377B2 (en) 2014-12-15 2017-06-20 Disco Corporation Wafer processing method
JP2016119426A (en) * 2014-12-23 2016-06-30 学校法人 名古屋電気学園 Surface processing method and manufacturing method of structure
TWI670479B (en) * 2015-01-19 2019-09-01 日商迪思科股份有限公司 Laser light inspection method
KR20160089277A (en) 2015-01-19 2016-07-27 가부시기가이샤 디스코 Method for testing laser beam
JP2016133370A (en) * 2015-01-19 2016-07-25 株式会社ディスコ Laser beam inspection method
KR102333514B1 (en) 2015-01-19 2021-12-01 가부시기가이샤 디스코 Method for testing laser beam
US9543466B2 (en) 2015-02-02 2017-01-10 Disco Corporation Method for forming shield tunnels in single-crystal substrates
JP2016166120A (en) * 2015-03-06 2016-09-15 三星ダイヤモンド工業株式会社 Processing method of laminated substrate, and processing device of laminated substrate by laser beam
US10103061B2 (en) 2015-03-06 2018-10-16 Disco Corporation Processing method of single-crystal substrate
US10157793B2 (en) 2015-03-10 2018-12-18 Disco Corporation Method of processing single-crystal substrate
US9735040B2 (en) 2015-03-12 2017-08-15 Disco Corporation Method of processing single-crystal substrate
US10071442B2 (en) 2015-04-09 2018-09-11 Disco Corporation Laser processing apparatus
US9640420B2 (en) 2015-06-12 2017-05-02 Disco Corporation Wafer processing method
KR20220153543A (en) 2015-08-03 2022-11-18 가부시기가이샤 디스코 Workpiece processing method
KR20170016285A (en) 2015-08-03 2017-02-13 가부시기가이샤 디스코 Workpiece processing method
US10249547B2 (en) 2015-08-07 2019-04-02 Disco Corportation Method for using a test wafer by forming modified layer using a laser beam and observing damage after forming modified layer
US10090186B2 (en) 2015-09-03 2018-10-02 Disco Corporation Chuck table
US10109527B2 (en) 2015-10-06 2018-10-23 Disco Corporation Optical device wafer processing method
US9761492B2 (en) 2015-10-13 2017-09-12 Disco Corporation Processing method of optical device wafer
JP2017098453A (en) * 2015-11-26 2017-06-01 株式会社ディスコ Division method of wafer and laser processing device
US9748182B2 (en) 2015-12-07 2017-08-29 Disco Corporation Wafer processing method
US9768127B2 (en) 2016-01-19 2017-09-19 Disco Corporation Wafer processing method
US10679910B2 (en) * 2016-01-28 2020-06-09 Disco Corporation Packaged wafer processing method
US20170221780A1 (en) * 2016-01-28 2017-08-03 Disco Corporation Packaged wafer processing method
US9997392B2 (en) 2016-02-25 2018-06-12 Disco Corporation Wafer processing method
US9887140B2 (en) 2016-04-13 2018-02-06 Disco Corporation Wafer processing method
KR102232092B1 (en) 2016-04-13 2021-03-24 가부시기가이샤 디스코 Processing method of a wafer
KR20170117318A (en) * 2016-04-13 2017-10-23 가부시기가이샤 디스코 Processing method of a wafer
US9929052B2 (en) 2016-04-27 2018-03-27 Disco Corporation Wafer processing method
US9824926B1 (en) 2016-04-27 2017-11-21 Disco Corporation Wafer processing method
KR20170122666A (en) * 2016-04-27 2017-11-06 가부시기가이샤 디스코 Wafer processing method
KR102242829B1 (en) 2016-04-27 2021-04-20 가부시기가이샤 디스코 Wafer processing method
US10388508B2 (en) 2016-05-09 2019-08-20 Disco Corporation Wafer processing apparatus
US10658171B2 (en) 2016-05-09 2020-05-19 Disco Corporation Wafer processing apparatus
US10692740B2 (en) 2016-05-12 2020-06-23 Disco Corporation Laser processing apparatus
KR20170129059A (en) 2016-05-16 2017-11-24 가부시기가이샤 디스코 Expand sheet
US10103055B2 (en) 2016-06-01 2018-10-16 Disco Corporation Expansion sheet, expansion sheet manufacturing method, and expansion sheet expanding method
DE102017209185A1 (en) 2016-06-01 2017-12-07 Disco Corporation An expansion film, an expansion film manufacturing method, and a stretch film expansion method
KR20170136431A (en) 2016-06-01 2017-12-11 가부시기가이샤 디스코 Expanded sheet, producing method for expanded sheet, and expanding method for expanded sheet
US9929105B2 (en) 2016-06-02 2018-03-27 Disco Corporation Leakage laser beam detecting method
US10490450B2 (en) 2016-07-12 2019-11-26 Disco Corporation Electrostatic chuck table
US10532411B2 (en) 2016-09-06 2020-01-14 Disco Corporation Chuck table and method of manufacturing suction plate of porous ceramics
JP2018052814A (en) * 2016-09-28 2018-04-05 三星ダイヤモンド工業株式会社 Modified layer forming method and modified layer forming device for brittle material substrate
US10586704B2 (en) 2016-11-29 2020-03-10 Disco Corporation Wafer processing method
KR20180061019A (en) 2016-11-29 2018-06-07 가부시기가이샤 디스코 Processing method of a wafer
US10758998B2 (en) 2016-12-08 2020-09-01 Disco Corporation Dividing method of workpiece and laser processing apparatus
KR20180071968A (en) 2016-12-20 2018-06-28 가부시기가이샤 디스코 Method for processing a workpiece
US10265805B2 (en) 2017-01-18 2019-04-23 Disco Corporation Method of processing workpiece
US10132619B2 (en) 2017-01-24 2018-11-20 Disco Corporation Spot shape detection apparatus
US10410901B2 (en) 2017-02-27 2019-09-10 Disco Corporation Electrostatic chuck table using method
KR20190085059A (en) 2017-03-10 2019-07-17 후루카와 덴키 고교 가부시키가이샤 Adhesive tape for semiconductor processing
US11597040B2 (en) 2017-03-13 2023-03-07 Disco Corporation Laser processing apparatus
US10780524B2 (en) 2017-03-13 2020-09-22 Disco Corporation Laser processing method and laser processing apparatus
US10695870B2 (en) 2017-03-14 2020-06-30 Disco Corporation Laser processing apparatus
US10183359B2 (en) 2017-04-13 2019-01-22 Disco Corporation Condensing point position detecting method
US10297710B2 (en) 2017-04-25 2019-05-21 Disco Corporation Method of processing wafer
US10847404B2 (en) 2017-05-11 2020-11-24 Disco Corporation Sheet sticking method
US10471536B2 (en) 2017-05-23 2019-11-12 Disco Corporation Reflective detection method and reflectance detection apparatus
US10475676B2 (en) 2017-05-23 2019-11-12 Disco Corporation Workpiece processing method
US10622230B2 (en) 2017-05-31 2020-04-14 Disco Corporation Protective tape attaching method
KR20180133215A (en) 2017-06-05 2018-12-13 가부시기가이샤 디스코 Method for manufacturing chip
KR20180133214A (en) 2017-06-05 2018-12-13 가부시기가이샤 디스코 Method for manufacturing chip
US11633804B2 (en) 2017-06-30 2023-04-25 Disco Corporation Laser processing apparatus and laser processing method
US10610974B2 (en) 2017-07-06 2020-04-07 Disco Corporation Laser processing apparatus and laser processing method
US10366925B2 (en) 2017-07-24 2019-07-30 Disco Corporation Wafer processing method
KR20190011197A (en) 2017-07-24 2019-02-01 가부시기가이샤 디스코 Method of manufacturing chip
JP2019029560A (en) * 2017-08-01 2019-02-21 株式会社ディスコ Laser processing device
US20190043743A1 (en) * 2017-08-01 2019-02-07 Disco Corporation Laser processing apparatus
US11177148B2 (en) * 2017-08-01 2021-11-16 Disco Corporation Laser processing apparatus
US10483149B2 (en) 2017-08-17 2019-11-19 Disco Corporation Wafer processing method for dividing a wafer, including a shield tunnel forming step
CN109427572A (en) * 2017-08-21 2019-03-05 株式会社迪思科 Dividing method and segmenting device
KR20190020616A (en) 2017-08-21 2019-03-04 가부시기가이샤 디스코 Dividing method and dividing apparatus
US10994368B2 (en) 2017-08-22 2021-05-04 Disco Corporation Wafer for examination and examination method of energy distribution
US10946482B2 (en) 2017-08-30 2021-03-16 Disco Corporation Laser processing apparatus
US11361996B2 (en) 2017-09-06 2022-06-14 Disco Corporation Height detecting apparatus and laser processing apparatus
US10468255B2 (en) 2017-09-22 2019-11-05 Disco Corporation Wafer processing method
KR20190034085A (en) 2017-09-22 2019-04-01 가부시기가이샤 디스코 Method of manufacturing chip
DE102018216234A1 (en) 2017-09-22 2019-03-28 Disco Corporation Wafer processing method
JP2019061983A (en) * 2017-09-22 2019-04-18 株式会社ディスコ Chip manufacturing method
US11027371B2 (en) 2017-10-03 2021-06-08 Disco Corporation Laser applying mechanism
JP2019067979A (en) * 2017-10-03 2019-04-25 株式会社ディスコ Laser irradiation mechanism
JP7039238B2 (en) 2017-10-03 2022-03-22 株式会社ディスコ Laser irradiation mechanism
US11090762B2 (en) 2017-10-11 2021-08-17 Disco Corporation Laser processing apparatus
US11065717B2 (en) 2017-10-17 2021-07-20 Disco Corporation Laser processing apparatus
US10978318B2 (en) 2017-10-19 2021-04-13 Disco Corporation Laser processing apparatus
KR20190045840A (en) 2017-10-24 2019-05-03 가부시기가이샤 디스코 Method of manufacturing chip
US11007605B2 (en) 2017-10-24 2021-05-18 Disco Corporation Laser processing apparatus
US11224941B2 (en) 2017-10-25 2022-01-18 Disco Corporation Laser processing apparatus
US10940560B2 (en) 2017-10-31 2021-03-09 Disco Corporation Laser processing apparatus
US10504783B2 (en) 2017-11-02 2019-12-10 Disco Corporation Laser processing apparatus
US10580698B2 (en) 2017-11-28 2020-03-03 Disco Corporation Wafer processing method
CN109841568B (en) * 2017-11-28 2023-05-26 株式会社迪思科 Wafer processing method
KR20190062182A (en) 2017-11-28 2019-06-05 가부시기가이샤 디스코 Method for processing wafer
CN109841568A (en) * 2017-11-28 2019-06-04 株式会社迪思科 The processing method of chip
DE102018220450A1 (en) 2017-11-28 2019-05-29 Disco Corporation Wafer processing method
US11420294B2 (en) 2017-11-30 2022-08-23 Disco Corporation Wafer processing method
KR20190092926A (en) 2018-01-31 2019-08-08 가부시기가이샤 디스코 Wafer processing method
US10557704B2 (en) 2018-02-07 2020-02-11 Disco Corporation Non-destructive detection method
US10804154B2 (en) 2018-03-06 2020-10-13 Disco Corporation Wafer processing method
WO2019208071A1 (en) 2018-04-27 2019-10-31 日東電工株式会社 Manufacturing method for semiconductor device
KR20190129736A (en) 2018-05-10 2019-11-20 가부시기가이샤 디스코 Method for manufacturing chip
KR20190129737A (en) 2018-05-11 2019-11-20 가부시기가이샤 디스코 Method for manufacturing chip
US10847420B2 (en) 2018-05-14 2020-11-24 Disco Corporation Wafer processing method
US11637032B2 (en) 2018-06-19 2023-04-25 Disco Corporation Tape expanding apparatus
US11154952B2 (en) 2018-06-19 2021-10-26 Disco Corporation Laser processing apparatus
US11548096B2 (en) 2018-06-20 2023-01-10 Disco Corporation Laser processing apparatus
US11315833B2 (en) * 2018-06-22 2022-04-26 Disco Corporation Wafer processing method including a test element group (TEG) cutting step
US10923398B2 (en) 2018-06-27 2021-02-16 Disco Corporation Wafer processing method
US10843381B2 (en) 2018-07-13 2020-11-24 Disco Corporation LED wafer processing method
US10937658B2 (en) 2018-07-20 2021-03-02 Disco Corporation LED wafer processing method
US11322403B2 (en) 2018-07-31 2022-05-03 Disco Corporation Wafer processing method
US11254029B2 (en) 2018-12-04 2022-02-22 Disco Corporation Wafer dividing apparatus
JP7285636B2 (en) 2018-12-06 2023-06-02 株式会社ディスコ Plate-like material processing method
JP2020092212A (en) * 2018-12-06 2020-06-11 株式会社ディスコ Dope amount detection method and processing method of plate
JP7285637B2 (en) 2018-12-06 2023-06-02 株式会社ディスコ Plate-like material processing method
US11597036B2 (en) 2018-12-27 2023-03-07 Fujitsu Optical Components Limited Optical module and manufacturing method thereof
KR20210107032A (en) 2018-12-28 2021-08-31 쇼와덴코머티리얼즈가부시끼가이샤 Evaluation method of photocurable adhesive, dicing and die-bonding integrated film and manufacturing method thereof, and manufacturing method of semiconductor device
US11049772B2 (en) 2019-03-05 2021-06-29 Disco Corporation Wafer processing method including applying a polyester sheet to a wafer
US10998232B2 (en) 2019-03-05 2021-05-04 Disco Corporation Wafer processing method of uniting a wafer and a ring frame using a polyolefin sheet
US11024543B2 (en) 2019-04-10 2021-06-01 Disco Corporation Wafer processing method including applying a polyester sheet to a wafer
US10985067B2 (en) 2019-04-10 2021-04-20 Disco Corporation Wafer processing method using a laser beam dividing step
US11189530B2 (en) 2019-04-19 2021-11-30 Disco Corporation Manufacturing method of chips
JP2019161232A (en) * 2019-04-22 2019-09-19 株式会社東京精密 Laser processing system
US11302578B2 (en) 2019-05-10 2022-04-12 Disco Corporation Wafer processing method
US11251082B2 (en) 2019-05-10 2022-02-15 Disco Corporation Wafer processing method
US11361997B2 (en) 2019-06-07 2022-06-14 Disco Corporation Wafer processing method including uniting a wafer, ring frame and a polyolefin sheet without using an adhesive layer
US11380587B2 (en) 2019-06-07 2022-07-05 Disco Corporation Wafer processing method including uniting a wafer, a ring frame and a polyester sheet without using an adhesive layer
US11322406B2 (en) 2019-07-10 2022-05-03 Disco Corporation Wafer processing method
US11270916B2 (en) 2019-07-10 2022-03-08 Disco Corporation Wafer processing method
US11364573B2 (en) 2019-07-31 2022-06-21 Disco Corporation Laser processing apparatus including imager of mark of processed workpiece
KR20210025479A (en) 2019-08-27 2021-03-09 가부시기가이샤 디스코 Laser machining apparatus
KR20210031605A (en) 2019-09-12 2021-03-22 가부시기가이샤 디스코 Position adjusting method and apparatus thereof
US11938570B2 (en) 2019-09-27 2024-03-26 Disco Corporation Laser processing apparatus
US11328956B2 (en) 2019-10-28 2022-05-10 Disco Corporation Wafer processing method
KR20220088866A (en) 2019-10-28 2022-06-28 쇼와덴코머티리얼즈가부시끼가이샤 Film adhesive and its parting property evaluation method, dicing and die-bonding integrated film and manufacturing method thereof, and semiconductor device
US11565347B2 (en) 2019-10-30 2023-01-31 Disco Corporation Laser processing machine
US11621201B2 (en) 2019-12-11 2023-04-04 Disco Corporation Laser beam spot shape correcting method
US11519865B2 (en) 2020-02-28 2022-12-06 Disco Corporation Crack detection method
US11752574B2 (en) 2020-03-09 2023-09-12 Disco Corporation Laser processing apparatus and adjustment method for laser processing apparatus
US11933667B2 (en) 2020-03-18 2024-03-19 Disco Corporation Inspection apparatus and inspection method
WO2021205963A1 (en) * 2020-04-06 2021-10-14 浜松ホトニクス株式会社 Inspection device and inspection method
WO2021210395A1 (en) 2020-04-14 2021-10-21 学校法人関西学院 Aluminum nitride substrate manufacturing method, aluminum nitride substrate, and method of removing strain layer introduced into aluminum nitride substrate by laser processing
WO2021210394A1 (en) 2020-04-14 2021-10-21 学校法人関西学院 Silicon carbide substrate manufacturing method, silicon carbide substrate, and method of removing strain layer introduced into silicon carbide substrate by laser processing
KR20220003962A (en) 2020-07-02 2022-01-11 가부시기가이샤 디스코 Wafer inspection method
KR20230062565A (en) 2020-09-08 2023-05-09 가부시끼가이샤 레조낙 Film-like adhesive, adhesive sheet, and semiconductor device and manufacturing method thereof
KR20220102116A (en) 2021-01-12 2022-07-19 가부시기가이샤 디스코 Inspection apparatus and tape expansion apparatus
KR20230157294A (en) 2021-03-05 2023-11-16 가부시끼가이샤 레조낙 Film-like adhesive, integrated dicing/die bonding film, and semiconductor device and method of manufacturing the same
KR20240016939A (en) 2021-06-02 2024-02-06 가부시끼가이샤 레조낙 Semiconductor device manufacturing method and dicing/die bonding integrated film
KR20230034885A (en) 2021-09-03 2023-03-10 가부시기가이샤 디스코 Diamond wafer dividing method and chip manufacturing method
US11651989B2 (en) 2021-09-06 2023-05-16 Disco Corporation Wafer transferring method
DE102023205160A1 (en) 2022-06-13 2023-12-14 Disco Corporation RESISTANCE DETECTION METHOD AND MACHINING METHOD FOR A PLATE-SHAPED WORKPIECE
KR20230171387A (en) 2022-06-13 2023-12-20 가부시기가이샤 디스코 Method of detecting resistivity and method of processing plate-shaped object
KR20240002690A (en) 2022-06-29 2024-01-05 가부시기가이샤 디스코 Laser machining apparatus

Also Published As

Publication number Publication date
JP3408805B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
JP3408805B2 (en) Cutting origin region forming method and workpiece cutting method
JP3761567B2 (en) Laser processing method
JP3761565B2 (en) Laser processing method
JP4659300B2 (en) Laser processing method and semiconductor chip manufacturing method
JP3626442B2 (en) Laser processing method
JP4606741B2 (en) Processing object cutting method
JP3722731B2 (en) Laser processing method
JP4837320B2 (en) Processing object cutting method
JP4664140B2 (en) Laser processing method
WO2004080643A1 (en) Laser beam machining method
JP4659301B2 (en) Laser processing method
JP2003088973A (en) Laser beam machining method
JP3751970B2 (en) Laser processing equipment
JP4167094B2 (en) Laser processing method
JP3867109B2 (en) Laser processing method
JP3867108B2 (en) Laser processing equipment
JP3867110B2 (en) Laser processing method
JP5025876B2 (en) Laser processing equipment
JP2003001458A (en) Laser beam machining method
JP4663952B2 (en) Laser processing apparatus and laser processing method
JP2003039184A (en) Laser beam machining method
JP3867003B2 (en) Laser processing method
JP2006148175A (en) Laser beam machining method
JP2003033887A (en) Laser beam machining method
JP2003088975A (en) Laser beam machining method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020911

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20020911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20021002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20021120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20030304

R150 Certificate of patent or registration of utility model

Ref document number: 3408805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

EXPY Cancellation because of completion of term