JP6970554B2 - Processing method - Google Patents

Processing method Download PDF

Info

Publication number
JP6970554B2
JP6970554B2 JP2017158723A JP2017158723A JP6970554B2 JP 6970554 B2 JP6970554 B2 JP 6970554B2 JP 2017158723 A JP2017158723 A JP 2017158723A JP 2017158723 A JP2017158723 A JP 2017158723A JP 6970554 B2 JP6970554 B2 JP 6970554B2
Authority
JP
Japan
Prior art keywords
workpiece
work piece
held
division line
holding table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017158723A
Other languages
Japanese (ja)
Other versions
JP2019034391A (en
Inventor
奈緒 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2017158723A priority Critical patent/JP6970554B2/en
Priority to KR1020180090322A priority patent/KR102524259B1/en
Priority to CN201810921439.6A priority patent/CN109421179B/en
Priority to TW107128938A priority patent/TWI774828B/en
Publication of JP2019034391A publication Critical patent/JP2019034391A/en
Application granted granted Critical
Publication of JP6970554B2 publication Critical patent/JP6970554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work
    • B28D5/0094Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work the supporting or holding device being of the vacuum type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills
    • B28D5/022Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels
    • B28D5/023Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills by cutting with discs or wheels with a cutting blade mounted on a carriage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、被加工物を個々のチップに分割する被加工物の加工方法に関する。 The present invention relates to a method for processing a workpiece that divides the workpiece into individual chips.

ウエーハなどの被加工物は、その表面の格子状の分割予定ラインによって区画された領域にそれぞれデバイスが形成されており、分割予定ラインに沿って分割することによって、デバイスを有する個々のチップに分割される。被加工物を個々のチップに分割する方法としては、被加工物にレーザ加工を施して分割起点を形成してから、被加工物に外力を付与して被加工物を分割する方法が採用されている。 A work piece such as a wafer has a device formed in a region partitioned by a grid-like scheduled division line on its surface, and is divided into individual chips having the device by dividing along the planned division line. Will be done. As a method of dividing the work piece into individual chips, a method is adopted in which the work piece is laser-machined to form a division starting point and then an external force is applied to the work piece to divide the work piece. ing.

レーザ加工の例として、例えば、パルスレーザ光線を被加工物に照射することにより、細孔と細孔をシールドする非晶質とから構成されるシールドトンネルを形成する加工方法がある(下記の特許文献1を参照)。また、他のレーザ加工の例として、被加工物に対して透過性を有する波長のレーザビームを照射して被加工物の内部に改質層を形成する加工方法もある(下記の特許文献2を参照)。そして、被加工物に対してレーザ加工を施した後は、例えば、ブレーキング装置を用いて被加工物に外力を加えて分割している(下記の特許文献3及び4を参照)。 As an example of laser processing, for example, there is a processing method for forming a shield tunnel composed of pores and an amorphous material that shields the pores by irradiating the workpiece with a pulsed laser beam (the following patent). See Document 1). Further, as another example of laser processing, there is also a processing method of irradiating a work piece with a laser beam having a wavelength having a transmittance to form a modified layer inside the work piece (Patent Document 2 below). See). Then, after laser processing is applied to the workpiece, for example, an external force is applied to the workpiece using a braking device to divide the workpiece (see Patent Documents 3 and 4 below).

特開2014−221483号公報Japanese Unexamined Patent Publication No. 2014-221483 特許第3408805号公報Japanese Patent No. 3408805 特開2009−148982号公報Japanese Unexamined Patent Publication No. 2009-148982 特開2013−38434号公報Japanese Unexamined Patent Publication No. 2013-38434

しかし、ブレーキング装置においては、被加工物の上方からブレード(押圧部材)を下降させ、被加工物に衝突させてその打撃で分割するため、適正でない条件でブレーキングを行うと被加工物を破損させるおそれがあり、より被加工物に対して衝撃を与えない分割方法が切望されている。 However, in the braking device, the blade (pressing member) is lowered from above the work piece, collides with the work piece, and is divided by the impact. Therefore, if braking is performed under inappropriate conditions, the work piece is damaged. There is an urgent need for a division method that may be damaged and does not give an impact to the workpiece.

本発明の目的は、従来に比べて被加工物に衝撃を与えることなく被加工物を分割しうる加工方法を提供することである。 An object of the present invention is to provide a processing method capable of dividing a work piece without giving an impact to the work piece as compared with the conventional case.

本発明は、分割予定ラインが設定された被加工物の加工方法であって、被加工物の被保持面にテープを貼着し、該テープを介してレーザ加工装置の保持テーブルにおいて被加工物を保持し、被加工物に対して透過性を有する波長のレーザビームを該分割予定ラインに沿って照射して被加工物にレーザ加工を施すレーザ加工ステップと、該レーザ加工ステップを実施した後、切削装置の保持テーブルの吸引保持面において被加工物の被保持面を保持し、切削ブレードで該分割予定ラインに沿って被加工物の厚み方向の一部を切削することで被加工物を該分割予定ラインに沿って分割する分割ステップと、を備え、被加工物の該被保持面には、該切削装置の該保持テーブルの該吸引保持面より大きいサイズを有したテープが貼着されており、該分割ステップでは、該吸引保持面に、該分割予定ラインの両側に該分割予定ラインの伸長方向に沿って伸長した支持部を備え、被加工物と同等以上のサイズを有し、該吸引保持面よりも小さいサイズを有する支持治具を載置し、該支持治具を介して被加工物を該吸引保持面に載置して該分割予定ラインの直下は支持しない状態とし、該支持治具を介して載置された被加工物に貼着された該テープが該吸引保持面を覆った状態において該保持テーブルにおいて被加工物を吸引保持することで、該支持部間の該テープを被加工物の該被保持面から引き剥がして被加工物を分割するThe present invention is a method for processing a work piece in which a planned division line is set, in which a tape is attached to a held surface of the work piece, and the work piece is placed on a holding table of a laser processing apparatus via the tape. It holds, and laser processing step of applying a laser processing a workpiece with a laser beam having a wavelength is irradiated along the dividing lines capable of passing through the workpiece, after performing the laser processing step The work piece is held by holding the work piece to be held on the suction holding surface of the holding table of the cutting device, and the work piece is cut by a cutting blade along the planned division line in the thickness direction of the work piece. A split step for splitting along the scheduled split line is provided, and a tape having a size larger than the suction holding surface of the holding table of the cutting device is attached to the held surface of the workpiece. In the split step, the suction holding surface is provided with support portions extending along the extension direction of the scheduled split line on both sides of the scheduled split line, and has a size equal to or larger than that of the workpiece. A support jig having a size smaller than the suction holding surface is placed, and the workpiece is placed on the suction holding surface via the support jig so that the area directly under the planned division line is not supported. By sucking and holding the work piece on the holding table while the tape attached to the work piece placed via the support jig covers the suction holding surface, the work piece is sucked and held between the support portions. The tape is peeled off from the held surface of the workpiece to divide the workpiece .

上記切削ブレードの先端の断面形状はV形状であることが好ましい。 The cross-sectional shape of the tip of the cutting blade is preferably V-shaped.

本発明に係る加工方法は、分割予定ラインに沿って被加工物にレーザ加工を施すレーザ加工ステップと、被加工物の厚み方向の一部を切削することにより分割する分割ステップとを備え、分割ステップは、分割予定ラインの両側を分割予定ラインの伸長方向に沿って伸長した支持部で支持するとともに分割予定ラインの直下は支持することなく実施されるため、従来の加工方法に比べて、被加工物に対する衝撃を小さくすることができ、被加工物を良好に個々のチップに分割しうる。また、分割ステップでは、切削ブレードで被加工物の厚み方向の一部を切削するだけでよいため、切削ブレードで被加工物を厚み方向に完全切断する場合と比べて加工送り速度を速くすることが可能となり、チップの生産性が向上する。
上記分割ステップでは、吸引保持面を有した保持テーブル上に被加工物と同等以上のサイズを有し、かつ吸引保持面よりも小さいサイズを有する支持治具を介して保持テーブルで被加工物を吸引保持するため、分割時の被加工物に対する衝撃を小さくでき、被加工物を良好に個々のチップに分割しうる。
上記分割ステップでは、保持テーブルにおいて被加工物を吸引保持することで、支持部間のテープを被加工物の保持面から引き剥がして被加工物を分割するため、分割性がより向上する。
The processing method according to the present invention includes a laser processing step of performing laser processing on a work piece along a planned division line and a division step of cutting a part of the work piece in the thickness direction to divide the work piece. Since the step is carried out by supporting both sides of the planned division line with a support portion extended along the extension direction of the planned division line and without supporting the area directly under the planned division line, the step is covered as compared with the conventional processing method. The impact on the work piece can be reduced and the work piece can be satisfactorily divided into individual chips. Further, in the division step, since it is only necessary to cut a part of the workpiece in the thickness direction with the cutting blade, the machining feed rate should be increased as compared with the case where the workpiece is completely cut in the thickness direction with the cutting blade. This makes it possible to improve the productivity of chips.
In the above division step, the workpiece is placed on the holding table on the holding table having a suction holding surface via a support jig having a size equal to or larger than that of the workpiece and smaller than the suction holding surface. Since the work piece is sucked and held, the impact on the work piece at the time of division can be reduced, and the work piece can be satisfactorily divided into individual chips.
In the above division step, the work piece is sucked and held on the holding table, so that the tape between the supports is peeled off from the holding surface of the work piece to divide the work piece, so that the workability is further improved.

上記切削ブレードの先端の断面形状がV形状である場合は、分割ステップを実施する際に、被加工物の厚み方向に切り込む深さが浅くても、レーザ加工された被加工物を厚み方向に効率よく分割することができる。 When the cross-sectional shape of the tip of the cutting blade is V-shaped, the laser-machined workpiece is cut in the thickness direction even if the depth of cut in the thickness direction of the workpiece is shallow when performing the division step. It can be divided efficiently.

被加工物の一例を示す斜視図である。It is a perspective view which shows an example of the workpiece. レーザ加工装置の一例の構成を示す斜視図である。It is a perspective view which shows the structure of an example of a laser processing apparatus. レーザ加工ステップを示す断面図である。It is sectional drawing which shows the laser processing step. レーザ加工ステップの第1例を実施した後の被加工物の部分拡大断面図であ る。It is a partially enlarged sectional view of the workpiece after carrying out the first example of a laser machining step. 集光レンズの開口数と被加工物の屈折率と開口数を屈折率で除算した値との 関係性を説明する説明図である。It is explanatory drawing explaining the relationship between the numerical aperture of a condenser lens, the refractive index of a work piece, and the value obtained by dividing the numerical aperture by a refractive index. レーザ加工ステップの第2例を実施した後の被加工物の部分拡大断面図であ る。It is a partially enlarged sectional view of the workpiece after carrying out the 2nd example of a laser machining step. 切削装置の一例の構成を示す斜視図である。It is a perspective view which shows the structure of an example of a cutting apparatus. 切削ブレードの構成を示す部分拡大断面図である。It is a partially enlarged sectional view which shows the structure of a cutting blade. 分割ステップの第1例のうち、保持テーブルに支持治具を介して被加工物を 載置する状態を示す斜視図である。It is a perspective view which shows the state which puts the workpiece on the holding table through the support jig in the 1st example of the division step. 分割ステップの第1例を示す部分拡大断面図である。It is a partially enlarged sectional view which shows the 1st example of the division step. (a)は切削ブレードの第2例を示す拡大断面図である。(b)は切削ブ レードの第3例を示す拡大断面図である。(A) is an enlarged cross-sectional view showing a second example of a cutting blade. (B) is an enlarged cross-sectional view showing a third example of a cutting blade. 治具テーブルの構成を示す斜視図である。It is a perspective view which shows the structure of a jig table. 治具ベースに固定された状態の治具テーブルの構成を示す断面図である。It is sectional drawing which shows the structure of the jig table in the state fixed to the jig base. 分割ステップの第2例を示す断面図である。It is sectional drawing which shows the 2nd example of the division step.

1 被加工物
図1に示す被加工物1は、矩形板状の被加工物の一例であって、その上面1aには、格子状の分割予定ライン2が設定されてパターンが形成されている。被加工物1の上面1aと反対側の下面は、例えばテープ4が貼着される被保持面1bとなっている。被加工物1の材質は、例えば、石英ガラスやホウケイ酸ガラスを含む各種ガラス、LT/LN(タンタル酸リチウム/ニオブ酸リチウム)、SiC(シリコンカーバイド)、Si(シリコン)、GaN(窒化ガリウム)、GaAs(ヒ化ガリウム)、サファイア、セラミックス等によって形成されている。被加工物1は、矩形板状に限られず、円形板状でもよい。
1 Workpiece The work piece 1 shown in FIG. 1 is an example of a rectangular plate-shaped work piece, and a grid-like division schedule line 2 is set on the upper surface 1a thereof to form a pattern. .. The lower surface of the workpiece 1 opposite to the upper surface 1a is, for example, a held surface 1b to which the tape 4 is attached. The material of the workpiece 1 is, for example, various glasses including quartz glass and borosilicate glass, LT / LN (lithium tantalate / lithium niobate), SiC (silicon carbide), Si (silicon), GaN (gallium arsenide). , GaAs (gallium arsenide), sapphire, ceramics, etc. The workpiece 1 is not limited to the rectangular plate shape, but may be a circular plate shape.

本実施形態に示す被加工物1は、中央に開口を有する環状のフレーム3の開口を塞いで貼着されたテープ4に被加工物1の被保持面1bが貼着されることにより、テープ4を介してフレーム3と一体となって支持されている。テープ4は、特に限定されないが、例えばポリオレフィンやポリ塩化ビニル等からなる基材層に粘着層が積層された2層構造のエキスパンドシートを用いる。本実施形態に示す被加工物1は、分割予定ライン2が設定されているが、分割予定ライン2が設定されずパターンが形成されていない被加工物でもよい。 The workpiece 1 shown in the present embodiment is a tape in which the held surface 1b of the workpiece 1 is attached to the tape 4 attached by closing the opening of the annular frame 3 having an opening in the center. It is supported integrally with the frame 3 via 4. The tape 4 is not particularly limited, but for example, an expanded sheet having a two-layer structure in which an adhesive layer is laminated on a base material layer made of polyolefin, polyvinyl chloride, or the like is used. The workpiece 1 shown in the present embodiment may be an workpiece in which the scheduled division line 2 is set, but the scheduled division line 2 is not set and the pattern is not formed.

2 加工方法
図2に示すレーザ加工装置10は、後述するレーザ加工ステップを実施するためのレーザ加工装置の一例である。レーザ加工装置10は、装置ベース100を有し、装置ベース100の上には、被加工物1を保持し回転可能な保持テーブル11と、保持テーブル11を加工送り方向(X軸方向)に加工送りする加工送り手段13と、保持テーブル11を割り出し送り方向(Y軸方向)に割り出し送りする割り出し送り手段14とを備えている。
2 Processing method The laser processing apparatus 10 shown in FIG. 2 is an example of a laser processing apparatus for carrying out a laser processing step described later. The laser machining apparatus 10 has an apparatus base 100, and on the apparatus base 100, a holding table 11 that holds and rotates the workpiece 1 and a holding table 11 are machined in the machining feed direction (X-axis direction). The machining feeding means 13 for feeding and the indexing feeding means 14 for indexing and feeding the holding table 11 in the indexing feed direction (Y-axis direction) are provided.

保持テーブル11の上面は、被加工物1を保持する保持面11aとなっている。保持テーブル11の周縁には、上記フレーム3を保持するフレーム保持手段12が複数配設されている。フレーム保持手段12は、フレーム3が載置されるフレーム載置台120と、フレーム載置台120に載置されたフレーム3の上面を押さえるクランプ部121とを備えている。 The upper surface of the holding table 11 is a holding surface 11a for holding the workpiece 1. A plurality of frame holding means 12 for holding the frame 3 are arranged on the peripheral edge of the holding table 11. The frame holding means 12 includes a frame mounting table 120 on which the frame 3 is mounted, and a clamp portion 121 that presses the upper surface of the frame 3 mounted on the frame mounting table 120.

加工送り手段13は、X軸方向に延在するボールネジ130と、ボールネジ130の一端に接続されたモータ131と、ボールネジ130と平行に延在する一対のガイドレール132と、X軸方向に移動可能なX軸ベース133とを備えている。X軸ベース133の一方の面には保持テーブル11が支持され、X軸ベース133の他方の面には一対のガイドレール132が 接し、X軸ベース133の中央部に形成されたナットにはボールネジ130が螺合している。モータ131によって駆動されたボールネジ130が回動することにより、X軸ベース133がガイドレール132に沿ってX軸方向に移動し、保持テーブル11をX軸方向に加工送りすることができる。 The machining feed means 13 can move in the X-axis direction with the ball screw 130 extending in the X-axis direction, the motor 131 connected to one end of the ball screw 130, the pair of guide rails 132 extending in parallel with the ball screw 130, and the ball screw 130. It is equipped with an X-axis base 133. A holding table 11 is supported on one surface of the X-axis base 133, a pair of guide rails 132 are in contact with the other surface of the X-axis base 133, and a ball screw is attached to the nut formed in the center of the X-axis base 133. 130 is screwed. By rotating the ball screw 130 driven by the motor 131, the X-axis base 133 moves in the X-axis direction along the guide rail 132, and the holding table 11 can be machined and fed in the X-axis direction.

割り出し送り手段14は、Y軸方向に延在するボールネジ140と、ボールネジ140の一端に接続されたモータ141と、ボールネジ140と平行に延在する一対のガイドレール142と、Y軸方向に移動可能なY軸ベース143とを備えている。Y軸ベース143の一方の面には加工送り手段13を介して保持テーブル11が支持され、Y軸ベース143の他方の面には一対のガイドレール142が 接し、Y軸ベース143の中央部に形成されたナットにはボールネジ140が螺合している。モータ141によって駆動されたボールネジ140が回動することにより、Y軸ベース143がガイドレール142に沿ってY軸方向に移動し、保持テーブル11をY軸方向に割り出し送りすることができる。 The indexing feed means 14 can move in the Y-axis direction with a ball screw 140 extending in the Y-axis direction, a motor 141 connected to one end of the ball screw 140, a pair of guide rails 142 extending in parallel with the ball screw 140, and the ball screw 140. It is equipped with a Y-axis base 143. A holding table 11 is supported on one surface of the Y-axis base 143 via a machining feed means 13, and a pair of guide rails 142 are in contact with the other surface of the Y-axis base 143, at the center of the Y-axis base 143. A ball screw 140 is screwed into the formed nut. By rotating the ball screw 140 driven by the motor 141, the Y-axis base 143 moves in the Y-axis direction along the guide rail 142, and the holding table 11 can be indexed and fed in the Y-axis direction.

装置ベース100のY軸方向後部側には、Z軸方向に延在する側壁101が立設されている。側壁101の前方には、被加工物1にレーザ加工を施すレーザビーム照射手段15と、レーザビーム照射手段15をZ軸方向に昇降させる昇降手段17とを備えている。レーザビーム照射手段15は、Y軸方向に延在するケーシング150と、ケーシング150の先端に配設された集光器151とを備えている。ケーシング150の内部には、被加工物1に対して透過性を有する波長のレーザビームを発振する発振器が収容されている。集光器151の内部には、発振器から発振されたレーザビームを集光するための集光レンズ(図示せず)が内蔵されている。 On the rear side of the device base 100 in the Y-axis direction, a side wall 101 extending in the Z-axis direction is erected. In front of the side wall 101, a laser beam irradiating means 15 for performing laser machining on the workpiece 1 and an elevating means 17 for raising and lowering the laser beam irradiating means 15 in the Z-axis direction are provided. The laser beam irradiating means 15 includes a casing 150 extending in the Y-axis direction and a condenser 151 disposed at the tip of the casing 150. Inside the casing 150, an oscillator that oscillates a laser beam having a wavelength that is transparent to the workpiece 1 is housed. A condenser lens (not shown) for condensing a laser beam oscillated from an oscillator is built in the condenser 151.

ケーシング150の先端、かつ集光器151に隣接した位置には、レーザビームを照射すべき領域(分割予定ライン2)を検出する撮像手段16が配設されている。撮像手段16は、例えばCCDイメージセンサを内蔵したカメラである。撮像手段16は、保持テーブル11に保持された被加工物1を上方から撮像し、パターンマッチング等の画像処理を行うことにより、分割予定ライン2を検出することができる。 An imaging means 16 for detecting a region to be irradiated with a laser beam (scheduled division line 2) is arranged at the tip of the casing 150 and at a position adjacent to the condenser 151. The image pickup means 16 is, for example, a camera having a built-in CCD image sensor. The image pickup means 16 can detect the scheduled division line 2 by taking an image of the workpiece 1 held on the holding table 11 from above and performing image processing such as pattern matching.

昇降手段17は、Z軸方向に延在するボールネジ170と、ボールネジ170の一端に接続されたモータ171と、ボールネジ170と平行に延在する一対のガイドレール172と、レーザビーム照射手段15を支持する昇降板173とを備えている。昇降板173の一方の面にはケーシング150が固定され、昇降板173の他方の面には一対のガイドレール172が 接し、昇降板173の中央部に形成されたナットにはボールネジ170が螺合している。モータ171によって駆動されたボールネジ170が回動することにより、昇降板173がガイドレール172に沿ってZ軸方向に移動し、集光器151を上下に移動させて、レーザビームの集光位置を所望の位置に調整することができる。 The elevating means 17 supports a ball screw 170 extending in the Z-axis direction, a motor 171 connected to one end of the ball screw 170, a pair of guide rails 172 extending in parallel with the ball screw 170, and a laser beam irradiating means 15. It is provided with an elevating plate 173. A casing 150 is fixed to one surface of the elevating plate 173, a pair of guide rails 172 are in contact with the other surface of the elevating plate 173, and a ball screw 170 is screwed into a nut formed in the center of the elevating plate 173. doing. As the ball screw 170 driven by the motor 171 rotates, the elevating plate 173 moves in the Z-axis direction along the guide rail 172, and the concentrator 151 is moved up and down to move the condensing position of the laser beam. It can be adjusted to the desired position.

(レーザ加工ステップの第1例)
次に、レーザ加工装置10を用いて、被加工物1に対して透過性を有する波長のレーザビームを分割予定ライン2に沿って照射して被加工物1にレーザ加工を施す。例えば球面収差を有する集光レンズを用いて集光レンズで集光されたレーザビームに縦収差が生じた状態で被加工物にレーザビームを照射する。レーザ加工ステップの第1例は、例えば下記の加工条件1に設定されて実施される。
(First example of laser machining step)
Next, the laser processing apparatus 10 is used to irradiate the workpiece 1 with a laser beam having a wavelength having a transmittance along the scheduled division line 2 to perform laser processing on the workpiece 1. For example, using a condenser lens having spherical aberration, the workpiece is irradiated with the laser beam in a state where the laser beam focused by the condenser lens has longitudinal aberration. The first example of the laser machining step is carried out under, for example, the following machining condition 1.

[加工条件1]
被加工物1の材質 :石英ガラス
被加工物1の厚み :500μm
波長 :1064nmのパルスレーザ
平均出力 :2W
繰り返し周波数 :10kHz
加工送り速度 :100mm/s
[Processing condition 1]
Material of work piece 1: Quartz glass Thickness of work piece 1: 500 μm
Wavelength: 1064 nm pulse laser average output: 2 W
Repeat frequency: 10kHz
Processing feed rate: 100 mm / s

図3に示すように、テープ4が貼着された被加工物1の被保持面1b側を保持テーブル11の保持面11aに載置するとともに、フレーム3をフレーム載置台120に載置したら、クランプ部121によりフレーム3の上面を押さえて固定する。続いて、図2に示した加工送り手段13により保持テーブル11をX軸方向に移動させ、撮像手段16によりレーザ加工すべき分割予定ライン2を検出する。その後、割り出し送り手段14によって集光器151と分割予定ライン2とのY軸方向の位置合わせを行ったら、昇降手段17によって集光器151を被加工物1に接近する方向に下降させ、レーザビームLBの集光点の位置を被加工物1の厚み方向に延在するように位置づける。 As shown in FIG. 3, when the held surface 1b side of the workpiece 1 to which the tape 4 is attached is placed on the holding surface 11a of the holding table 11, and the frame 3 is placed on the frame mounting table 120, The upper surface of the frame 3 is pressed and fixed by the clamp portion 121. Subsequently, the holding table 11 is moved in the X-axis direction by the processing feed means 13 shown in FIG. 2, and the scheduled division line 2 to be laser-processed is detected by the image pickup means 16. After that, the indexing feed means 14 aligns the light collector 151 and the scheduled division line 2 in the Y-axis direction, and then the elevating means 17 lowers the light collector 151 in a direction approaching the workpiece 1, and the laser is used. The position of the light collecting point of the beam LB is positioned so as to extend in the thickness direction of the workpiece 1.

図2に示した加工送り手段13によって保持テーブル11を所定の加工送り速度(100mm/s)でX軸方向に加工送りしながら、レーザビーム照射手段15は、図1に示した分割予定ライン2に沿って被加工物1に対して透過性の波長(1064nm)を有するレーザビームLBを被加工物1の上面1a側から照射して、レーザビームLBの照射方向に伸長する図4に示す細孔5を分割予定ライン2に沿って複数形成する。図示の例における細孔5は、被加工物1の被保持面1bにおいて開口6が形成され、上面1aから被保持面1bに向かって縮径した微細な孔となっている。被加工物1の内部に細孔5が形成されることで、後述する分割ステップを実施するときに、比較的小さな外力を上面1a側から加えるだけで、細孔5の拡径した側(開口6が形成された被保持面1b側)が押し拡がりやすくなり、被加工物1を良好に分割しうる。 While the holding table 11 is machined and fed in the X-axis direction at a predetermined machining feed rate (100 mm / s) by the machining feed means 13 shown in FIG. 2, the laser beam irradiation means 15 is the scheduled division line 2 shown in FIG. A laser beam LB having a transmissive wavelength (1064 nm) with respect to the workpiece 1 is irradiated from the upper surface 1a side of the workpiece 1 so as to extend in the irradiation direction of the laser beam LB. A plurality of holes 5 are formed along the planned division line 2. The pore 5 in the illustrated example has an opening 6 formed in the held surface 1b of the workpiece 1, and is a fine hole whose diameter is reduced from the upper surface 1a toward the held surface 1b. By forming the pores 5 inside the workpiece 1, when performing the division step described later, a relatively small external force is only applied from the upper surface 1a side, and the diameter of the pores 5 is expanded (opening). The surface to be held 1b on which 6 is formed) is easy to spread, and the workpiece 1 can be satisfactorily divided.

細孔5の周囲には、変質した変質領域7が細孔5を囲繞して形成されている。レーザビームLBの照射による細孔5の形成を分割予定ライン2の伸張方向に沿って間欠的に繰り返し行って、細孔5を複数形成する。隣接する細孔5間には一部でクラックが形成される。このようにして、細孔5とこれを囲繞する変質領域7とから構成されるシールドトンネルを図1に示した全ての分割予定ライン2に沿って複数形成したら、レーザ加工ステップの第1例が完了する。細孔5は例えばφ1μmとなっており、第1例では、被加工物1の加工送り速度を100mm/s、レーザビームLBの繰り返し周波数を10kHzに設定することで、10μmピッチで分割予定ラインSに沿って細孔3が形成される。なお、第1例では、説明の便宜上、図4に細孔5や変質領域7を模式的に示して明瞭に図示したが、実際に加工で形成された細孔5や変質領域7は明瞭ではなく判然としていない。 Around the pores 5, a altered region 7 is formed so as to surround the pores 5. The formation of the pores 5 by irradiation with the laser beam LB is intermittently repeated along the extension direction of the scheduled division line 2 to form a plurality of pores 5. A crack is partially formed between the adjacent pores 5. In this way, when a plurality of shield tunnels composed of the pores 5 and the altered region 7 surrounding the pores 5 are formed along all the planned division lines 2 shown in FIG. 1, the first example of the laser machining step is performed. Complete. The pores 5 are, for example, φ1 μm. In the first example, the machining feed rate of the workpiece 1 is set to 100 mm / s, and the repetition frequency of the laser beam LB is set to 10 kHz, so that the line S scheduled to be divided at a pitch of 10 μm. Pore 3 is formed along the line. In the first example, for convenience of explanation, the pores 5 and the altered region 7 are schematically shown in FIG. 4 and clearly shown, but the pores 5 and the altered region 7 actually formed by processing are not clearly shown. Not clear.

上記レーザ加工ステップの第1例では、被加工物1の内部に良好なシールドトンネルを形成するために、例えば、図5に示すように、集光レンズ152の開口数(NA)を被加工物1の屈折率(N)で除算した値(S=NA/N)が例えば0.05〜0.2の範囲に設定されることが好ましい。ここで、開口数(NA)と屈折率(N)と開口数(NA)を屈折率(N)で除算した値(S=NA/N)との関係性について説明する。集光レンズ152を通過したレーザビームLBは光軸Oに対して角度θをもって集光されるが、このときのsinθが集光レンズの開口数(NA)である(N=sinθ)。集光レンズ152によって集光されたレーザビームLBが被加工物1に照射されるとき、レーザビームLBは角度θから角度αに屈折して集光点Pに集光される。光軸Oに対する角度αは、被加工物1の屈折率(N)によって異なり、この屈折率(N)は、sinθをsinαで除算した値(N=sinθ/sinα)であることから、開口数(NA)を屈折率(N)で除算した値(S=NA/N)は、sinαとなる。したがって、sinαを0.05〜0.2の範囲(0.05≦sinα≦0.2)に設定するとよい。 In the first example of the laser processing step, in order to form a good shield tunnel inside the workpiece 1, for example, as shown in FIG. 5, the numerical aperture (NA) of the condenser lens 152 is set to the workpiece. It is preferable that the value (S = NA / N) divided by the refractive index (N) of 1 is set in the range of, for example, 0.05 to 0.2. Here, the relationship between the numerical aperture (NA), the refractive index (N), and the numerical aperture (NA) divided by the refractive index (N) (S = NA / N) will be described. The laser beam LB that has passed through the condenser lens 152 is focused at an angle θ with respect to the optical axis O, and sin θ at this time is the numerical aperture (NA) of the condenser lens (N = sin θ). When the laser beam LB focused by the condenser lens 152 irradiates the workpiece 1, the laser beam LB is refracted from the angle θ to the angle α and focused on the focusing point P. The angle α with respect to the optical axis O differs depending on the refractive index (N) of the workpiece 1, and this refractive index (N) is the value obtained by dividing sinθ by sinα (N = sinθ / sinα), and thus the numerical aperture. The value (S = NA / N) obtained by dividing (NA) by the refractive index (N) is sinα. Therefore, it is advisable to set sinα in the range of 0.05 to 0.2 (0.05 ≦ sinα ≦ 0.2).

次に、開口数(NA)を屈折率(N)で除算した値(S=NA/N)を0.05〜0.2の範囲に設定するべき根拠について説明する。具体的には、厚みが500μmで、石英ガラスからなる被加工物1(屈折率(N):1.45)を、集光レンズ152の開口数(NA)を例えば0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4にそれぞれ設定し、上記加工条件1でシールドトンネルを形成して、その良否を判定した。開口数(N)が0.05の場合は、開口数(NA)を被加工物1の屈折率(N)で除算した値(S=NA/N)は0.035となり、被加工物1の内部に形成されるシールドトンネルが不良であることが確認された。また、開口数(N)が0.3,0.35,0.4にそれぞれ設定した場合は、開口数(NA)を被加工物1の屈折率(N)で除算した値(S=NA/N)は0.207,0.241,0.276となり、シールドトンネルが不良となり、特に開口数(N)が0.35,0.4の場合では、ボイドが発生してしまうことが確認された。一方、開口数(N)が0.05,0.1,0.15,0.2,0.25にそれぞれ設定した場合は、被加工物1の屈折率(N)で除算した値(S=NA/N)は0.069,0.103,0.138,0.172となり、被加工物1の内部に良好なシールドトンネルが形成されることが確認された。したがって、開口数(NA)が0.1〜0.25の範囲に設定される集光レンズ152であれば、開口数(NA)を屈折率(N)で除算した値(S=NA/N)が0.05〜0.2の範囲となるため、良好なシールドトンネルを形成できることが確認できた。レーザ加工ステップの第1例では、レーザビームLBに縦収差が生じてレーザビームLBの集光点Pが被加工物1の厚み方向に延在した状態で被加工物1にレーザビームLBを照射する。被加工物1に1パルスのレーザビームLBが照射される都度、1つの細孔5が形成されるため、保持テーブル11を1度加工送りするだけで被加工物1の厚み方向に伸長する変質領域7を形成することができる。なお、第1例では、上述したように球面収差を有した集光レンズ152を使用するほか、集光レンズの上流側や下流側にレンズを配設することで球面収差を生成するようにしてもよいし、自身が所定の拡がり角を有したレーザビームLBを発振器から発振して集光レンズで集光するようにしてもよい。 Next, the grounds for setting the numerical aperture (NA) divided by the refractive index (N) (S = NA / N) in the range of 0.05 to 0.2 will be described. Specifically, the workpiece 1 (refractive index (N): 1.45) made of quartz glass having a thickness of 500 μm and the numerical aperture (NA) of the condenser lens 152 are set to, for example, 0.05, 0.1. , 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, respectively, and a shield tunnel was formed under the above processing condition 1, and its quality was judged. When the numerical aperture (N) is 0.05, the value (S = NA / N) obtained by dividing the numerical aperture (NA) by the refractive index (N) of the workpiece 1 is 0.035, and the workpiece 1 It was confirmed that the shield tunnel formed inside the was defective. When the number of openings (N) is set to 0.3, 0.35, 0.4, respectively, the number of openings (NA) is divided by the refractive index (N) of the workpiece 1 (S = NA). / N) is 0.207, 0.241, 0.276, and it is confirmed that the shield tunnel becomes defective, and voids occur especially when the number of openings (N) is 0.35, 0.4. Was done. On the other hand, when the number of openings (N) is set to 0.05, 0.1, 0.15, 0.2, 0.25, respectively, the value (S) divided by the refractive index (N) of the workpiece 1. = NA / N) was 0.069, 0.103, 0.138, 0.172, and it was confirmed that a good shield tunnel was formed inside the workpiece 1. Therefore, in the case of the condenser lens 152 in which the numerical aperture (NA) is set in the range of 0.1 to 0.25, the numerical aperture (NA) is divided by the refractive index (N) (S = NA / N). ) Is in the range of 0.05 to 0.2, so it was confirmed that a good shield tunnel can be formed. In the first example of the laser machining step, the laser beam LB is irradiated with the laser beam LB in a state where longitudinal aberration occurs in the laser beam LB and the condensing point P of the laser beam LB extends in the thickness direction of the workpiece 1. do. Since one pore 5 is formed each time the work piece 1 is irradiated with the laser beam LB of one pulse, the deterioration is extended in the thickness direction of the work piece 1 only by feeding the holding table 11 once. Region 7 can be formed. In the first example, in addition to using the condenser lens 152 having spherical aberration as described above, spherical aberration is generated by arranging the lenses on the upstream side and the downstream side of the condenser lens. Alternatively, the laser beam LB itself having a predetermined spreading angle may be oscillated from the oscillator and condensed by the condenser lens.

(レーザ加工ステップの第2例)
上記レーザ加工ステップの第1例では、被加工物1の内部にシールドトンネルを形成したが、この場合に限られず、図6に示すように、被加工物1Aの内部に改質層8を形成してもよい。第1例のシールドトンネルを形成する場合では、球面収差を有する集光レンズ152を使用しているが、第2例では被加工物1Aの内部に改質層8を形成する加工を行うため、球面収差のない集光レンズを使用する。つまり、レーザ加工ステップの第2例は、上記したレーザ加工装置10とは異なる光学系のレーザ加工装置(図示せず)を用いて行われる。レーザ加工ステップの第2例は、例えば下記の加工条件2に設定されて実施される。
(Second example of laser machining step)
In the first example of the laser machining step, a shield tunnel is formed inside the workpiece 1, but the present invention is not limited to this case, and as shown in FIG. 6, the modified layer 8 is formed inside the workpiece 1A. You may. In the case of forming the shield tunnel of the first example, the condenser lens 152 having spherical aberration is used, but in the second example, the modified layer 8 is formed inside the workpiece 1A. Use a condenser lens without spherical aberration. That is, the second example of the laser machining step is performed using a laser machining device (not shown) having an optical system different from that of the laser machining device 10 described above. The second example of the laser machining step is carried out under, for example, the following machining condition 2.

[加工条件2]
被加工物1の材質 :石英ガラス
被加工物1の厚み :500μm
波長 :1064nmのパルスレーザ
平均出力 :0.2W
繰り返し周波数 :80kHz
加工送り速度 :200mm/s
[Processing condition 2]
Material of work piece 1: Quartz glass Thickness of work piece 1: 500 μm
Wavelength: 1064 nm pulse laser average output: 0.2 W
Repeat frequency: 80kHz
Processing feed rate: 200 mm / s

図示していないが、集光器を被加工物1Aに接近する方向に下降させ、レーザビームの集光点の位置を被加工物1Aの被保持面1b側に近い所定の深さに位置づける。保持テーブルを所定の加工送り速度(200mm/s)でX軸方向に加工送りしながら、分割予定ライン2に沿って被加工物1Aに対して透過性の波長(1064nm)を有するレーザビームを被加工物1の上面1a側から照射して、図6に示すように、被加工物1Aの内部に分割予定ライン2の伸張方向に沿って強度の低下した改質層8を形成する。改質層8の端部から被加工物1Aの厚さ方向にクラック9が生じている。なお、クラック9が被加工物1Aの被保持面1bに至るようにレーザビームの出力を調整しておくとよい。 Although not shown, the concentrator is lowered in a direction approaching the workpiece 1A, and the position of the condensing point of the laser beam is positioned at a predetermined depth close to the held surface 1b side of the workpiece 1A. While machining and feeding the holding table in the X-axis direction at a predetermined machining feed rate (200 mm / s), a laser beam having a wavelength (1064 nm) transparent to the workpiece 1A is applied along the scheduled division line 2. By irradiating from the upper surface 1a side of the workpiece 1, as shown in FIG. 6, a modified layer 8 having a reduced strength is formed inside the workpiece 1A along the extension direction of the scheduled division line 2. Cracks 9 are formed from the end of the modified layer 8 in the thickness direction of the workpiece 1A. It is preferable to adjust the output of the laser beam so that the crack 9 reaches the held surface 1b of the workpiece 1A.

被加工物1Aの内部に形成される改質層8の数は、特に限定されず、1層でもよいし、2層以上でもよい。したがって、被加工物1Aの内部に複数の改質層8を形成する場合は、集光器を上昇させ、レーザビームの集光点の位置を被加工物1Aの被保持面1b側から上面1a側へと均等な間隔をあけてより上面1a側にレーザビームの集光点を位置づけてレーザビームを照射することにより、被加工物1Aの内部に2層以上の改質層8を形成する。また、保持テーブルを複数回加工送りして複数層の改質層8を形成してもよいし、レーザビームを分岐して集光点の位置を複数箇所に位置づけた状態で保持テーブルを加工送りして複数層の改質層8を形成してもよい。被加工物1Aの内部に全ての分割予定ライン2の伸張方向に沿って改質層8を形成したら、レーザ加工ステップの第2例が完了する。 The number of the modified layers 8 formed inside the workpiece 1A is not particularly limited, and may be one layer or two or more layers. Therefore, when a plurality of modified layers 8 are formed inside the workpiece 1A, the condenser is raised and the position of the condensing point of the laser beam is positioned from the held surface 1b side of the workpiece 1A to the upper surface 1a. Two or more modified layers 8 are formed inside the workpiece 1A by irradiating the work piece 1A with the focusing points of the laser beam positioned on the upper surface 1a side at equal intervals toward the side. Further, the holding table may be machined and fed a plurality of times to form a plurality of modified layers 8, or the holding table may be machined and fed in a state where the laser beam is branched and the positions of the condensing points are positioned at a plurality of locations. Then, a plurality of modified layers 8 may be formed. When the modified layer 8 is formed inside the workpiece 1A along the extending direction of all the scheduled division lines 2, the second example of the laser machining step is completed.

図7に示す切削装置20は、後述する分割ステップを実施するための切削装置の一例である。切削装置20は、装置ベース200を有し、装置ベース200の上には、被加工物1を吸引保持する吸引保持面21aを有し回転可能な保持テーブル21と、保持テーブル21をX軸方向に加工送りする加工送り手段23と、被加工物1に切削加工を施す切削手段25と、切削手段25をY軸方向に割り出し送りする割り出し送り手段24とを備えている。保持テーブル21の周縁には、フレーム3を保持するフレーム保持手段22が配設されている。 The cutting device 20 shown in FIG. 7 is an example of a cutting device for carrying out a division step described later. The cutting device 20 has a device base 200, and on the device base 200, a holding table 21 having a suction holding surface 21a for sucking and holding the workpiece 1 and a rotatable holding table 21 and a holding table 21 are placed in the X-axis direction. It is provided with a machining feed means 23 for machining and feeding, a cutting means 25 for performing cutting on the workpiece 1, and an indexing feed means 24 for indexing and feeding the cutting means 25 in the Y-axis direction. A frame holding means 22 for holding the frame 3 is arranged on the peripheral edge of the holding table 21.

加工送り手段23は、X軸方向に延在するボールネジ230と、ボールネジ230の一端に接続されたモータ231と、ボールネジ230と平行に延在する一対のガイドレール232と、X軸方向に移動可能なX軸ベース233とを備えている。X軸ベース233の一方の面には保持テーブル21が回転自在に支持され、X軸ベース233の他方の面には一対のガイドレール232が 接し、X軸ベース233の中央部に形成されたナットにはボールネジ230が螺合している。モータ231によって駆動されたボールネジ230が回動することにより、X軸ベース233がガイドレール232に沿ってX軸方向に移動し、保持テーブル21をX軸方向に加工送りすることができる。 The machining feed means 23 is movable in the X-axis direction with a ball screw 230 extending in the X-axis direction, a motor 231 connected to one end of the ball screw 230, a pair of guide rails 232 extending in parallel with the ball screw 230, and the ball screw 230. It is equipped with an X-axis base 233. A holding table 21 is rotatably supported on one surface of the X-axis base 233, a pair of guide rails 232 are in contact with the other surface of the X-axis base 233, and a nut formed in the center of the X-axis base 233. A ball screw 230 is screwed into the wheel. By rotating the ball screw 230 driven by the motor 231, the X-axis base 233 moves in the X-axis direction along the guide rail 232, and the holding table 21 can be machined and fed in the X-axis direction.

割り出し送り手段24は、Y軸方向に延在するボールネジ240と、ボールネジ240の一端に接続されたモータ241と、ボールネジ240と平行に延在する一対のガイドレール242と、断面略L字形状の可動基台243とを備えている。可動基台243の上部には、昇降手段29を介して切削手段25が支持されている。一方、可動基台243の下部には一対のガイドレール242が 接し、可動基台243の中央部に形成されたナットにはボールネジ240が螺合している。モータ241によって駆動されたボールネジ240が回動することにより、可動基台243がガイドレール242に沿ってY軸方向に移動し、切削手段25をY軸方向に割り出し送りすることができる。 The index feeding means 24 includes a ball screw 240 extending in the Y-axis direction, a motor 241 connected to one end of the ball screw 240, a pair of guide rails 242 extending in parallel with the ball screw 240, and a substantially L-shaped cross section. It is equipped with a movable base 243. A cutting means 25 is supported on the upper portion of the movable base 243 via an elevating means 29. On the other hand, a pair of guide rails 242 are in contact with the lower portion of the movable base 243, and a ball screw 240 is screwed into a nut formed in the central portion of the movable base 243. By rotating the ball screw 240 driven by the motor 241 the movable base 243 moves in the Y-axis direction along the guide rail 242, and the cutting means 25 can be indexed and fed in the Y-axis direction.

昇降手段29は、Z軸方向に延在する図示しないボールネジと、ボールネジの一端に接続されたモータ290とを少なくとも備え、モータ290が駆動することにより、ボールネジが回動し、切削手段25をZ軸方向に昇降させることができる。保持テーブル21の加工送りの経路上には、被加工物1を分割すべき領域(分割予定ライン2)を検出する撮像手段30が配設されている。撮像手段30は、例えばCCDイメージセンサを内蔵したカメラであり、保持テーブル21に保持された被加工物1を上方から撮像し、パターンマッチング等の画像処理を行うことで分割予定ライン2を検出することができる。 The elevating means 29 includes at least a ball screw (not shown) extending in the Z-axis direction and a motor 290 connected to one end of the ball screw. When the motor 290 is driven, the ball screw rotates and the cutting means 25 is Z. It can be raised and lowered in the axial direction. An imaging means 30 for detecting a region (scheduled division line 2) in which the workpiece 1 should be divided is arranged on the processing feed path of the holding table 21. The image pickup means 30 is, for example, a camera having a built-in CCD image sensor, and detects the scheduled division line 2 by taking an image of the workpiece 1 held on the holding table 21 from above and performing image processing such as pattern matching. be able to.

切削手段25は、Y軸方向の軸心を有するスピンドル250と、スピンドル250を回転可能に支持するスピンドルハウジング251と、スピンドル250の先端に装着された環状の切り刃を備えた切削ブレード26とを少なくとも備えている。切削手段25は、スピンドル250が回転することにより、切削ブレード26を所定の速度で回転させる構成となっている。 The cutting means 25 includes a spindle 250 having an axial center in the Y-axis direction, a spindle housing 251 that rotatably supports the spindle 250, and a cutting blade 26 having an annular cutting edge mounted on the tip of the spindle 250. At least I have. The cutting means 25 is configured to rotate the cutting blade 26 at a predetermined speed by rotating the spindle 250.

切削ブレード26の切り刃は、ダイヤモンドや立方晶窒化ホウ素等の砥粒を樹脂や金属等のボンド材で結合して形成され、図8に示すように、その先端部分が鋭角に尖った刃先260を有しており、先端部分の断面形状が例えばV形状に形成されている。切削ブレード26の先端角度261は、30°〜60°の範囲に設定されていることが好ましい。このように、先端部分がV形状に形成された切削ブレード26によれば、細孔5が形成された被加工物1の分割性が高くなる。すなわち、切削ブレード26の刃先260を分割予定ライン2に沿って切り込ませる際に被加工物1の厚み方向の切り込み深さが浅くても、細孔5の開口6側が押し拡がっていき、被加工物1を厚み方向に効率よく分割することができる。 The cutting edge of the cutting blade 26 is formed by bonding abrasive grains such as diamond and cubic boron nitride with a bonding material such as resin or metal, and as shown in FIG. 8, the cutting edge 260 having an acute-angled tip portion thereof. The cross-sectional shape of the tip portion is formed into, for example, a V shape. The tip angle 261 of the cutting blade 26 is preferably set in the range of 30 ° to 60 °. As described above, according to the cutting blade 26 whose tip portion is formed in a V shape, the work piece 1 in which the pores 5 are formed is highly divisible. That is, when the cutting edge 260 of the cutting blade 26 is cut along the scheduled division line 2, even if the cutting depth in the thickness direction of the workpiece 1 is shallow, the opening 6 side of the pore 5 is expanded and covered. The work piece 1 can be efficiently divided in the thickness direction.

(分割ステップの第1例)
レーザ加工ステップを実施した後、切削装置20において、切削ブレード26によって分割予定ライン2に沿って被加工物1の厚み方向の一部を切削することで被加工物1を分割する。分割ステップの第1例は、例えば、図9に示す支持治具40を介して保持テーブル21で被加工物1を保持しながら実施される。本実施形態では、レーザ加工ステップの第1例でレーザ加工した被加工物1を分割する場合について説明する。
(First example of division step)
After performing the laser machining step, the machining apparatus 20 divides the workpiece 1 by cutting a part of the workpiece 1 in the thickness direction along the scheduled division line 2 by the cutting blade 26. The first example of the division step is carried out while holding the workpiece 1 on the holding table 21 via the support jig 40 shown in FIG. 9, for example. In this embodiment, a case where the laser-machined workpiece 1 is divided in the first example of the laser-machining step will be described.

支持治具40は、矩形板状に形成され、被加工物1の分割予定ライン2の両側を支持するために分割予定ライン2の伸長方向に沿って伸長した支持部41と、分割予定ライン2に対応する位置に形成された溝42とを備えている。分割予定ライン2の両側とは、被加工物1のうち、分割予定ライン2が形成されていない部分であり、分割予定ライン2を挟んだ一対の外側1cである。 The support jig 40 is formed in a rectangular plate shape, and has a support portion 41 extending along the extension direction of the planned division line 2 to support both sides of the planned division line 2 of the workpiece 1, and the planned division line 2. It is provided with a groove 42 formed at a position corresponding to. Both sides of the scheduled division line 2 are portions of the workpiece 1 on which the scheduled division line 2 is not formed, and are a pair of outer 1c sandwiching the scheduled division line 2.

溝42は、分割予定ライン2の直下を支持しない間隙であり、図示の例では一方向のみに伸張して形成されている。支持治具40は、例えば、ゴム、ウレタン等の柔軟部材によって構成されており、被加工物1の分割時において吸引保持面21aに対して支持治具40が沈み込みやすく、被加工物1に対する衝撃を緩和させることができる。このように構成される支持治具40では、被加工物1の分割予定ライン2の両側(一対の外側1c)を支持部41で支持するとともに、2つの支持部41間の溝42に位置づけられた分割予定ライン2の直下は支持することなく、被加工物1を保持テーブル21に保持させることができる。 The groove 42 is a gap that does not support directly below the planned division line 2, and is formed so as to extend in only one direction in the illustrated example. The support jig 40 is made of a flexible member such as rubber or urethane, and the support jig 40 easily sinks into the suction holding surface 21a when the workpiece 1 is divided, so that the support jig 40 easily sinks into the workpiece 1. The impact can be mitigated. In the support jig 40 configured in this way, both sides (a pair of outer sides 1c) of the planned division line 2 of the workpiece 1 are supported by the support portion 41, and the support jig 40 is positioned in the groove 42 between the two support portions 41. The workpiece 1 can be held on the holding table 21 without supporting the line directly under the planned division line 2.

また、支持治具40は、被加工物1と同等以上のサイズを有し、かつ、保持テーブル21の吸引保持面21aよりも小さいサイズを有していることが好ましい。本実施形態に示す支持治具40は、被加工物1と略同等のサイズとなっており、分割時に被加工物1が破損しないように支持することができる。なお、支持治具40のサイズや形状は、分割しようとする被加工物1のサイズや形状に応じて適宜変更すればよい。 Further, it is preferable that the support jig 40 has a size equal to or larger than that of the workpiece 1 and smaller than the suction holding surface 21a of the holding table 21. The support jig 40 shown in the present embodiment has substantially the same size as the workpiece 1, and can support the workpiece 1 so as not to be damaged during division. The size and shape of the support jig 40 may be appropriately changed according to the size and shape of the workpiece 1 to be divided.

保持テーブル21でテープ4を介してフレーム3と一体となった被加工物1を吸引保持する際には、支持治具40を保持テーブル21の吸引保持面21aに載置してから、被加工物1の被保持面1bに貼着されたテープ4側から支持治具40の上に載置する。このとき、分割予定ライン2の外側1cを支持部41に位置づけるとともに、分割予定ライン2の直下に溝42を位置づける。 When the workpiece 1 integrated with the frame 3 is suction-held by the holding table 21 via the tape 4, the support jig 40 is placed on the suction holding surface 21a of the holding table 21 and then processed. The object 1 is placed on the support jig 40 from the side of the tape 4 attached to the held surface 1b. At this time, the outer side 1c of the scheduled division line 2 is positioned at the support portion 41, and the groove 42 is positioned directly below the scheduled division line 2.

次いで、支持治具40の上に載置された被加工物1に貼着されたテープ4が吸引保持面21aを覆った状態で被加工物1を保持テーブル21で吸引保持する。具体的には、図示しない吸引源の吸引力が吸引保持面21aを介して支持治具40に作用すると、図10に示すように、支持部41間の溝42の真上に位置するテープ4が吸引力によって被加工物1の被保持面1bから引き剥がされ、溝42の形状にならって張り付いた状態となる。つまり、溝42の真上に位置する細孔5の開口6が露出して被加工物1は何もサポートされていない状態となる。テープ4が被保持面1bに貼着されていてもよいが、切削ブレード26で被加工物1を切削する際に、溝42の真上の部分が何もサポートされていない状態の方が被加工物1の分割性がより向上する。溝42を挟む2つの支持部41間の距離Hは、被加工物1が分割されることで形成されるチップサイズの1/5〜1/6程度に設定されることが好ましい。 Next, the work piece 1 is sucked and held by the holding table 21 in a state where the tape 4 attached to the work piece 1 placed on the support jig 40 covers the suction holding surface 21a. Specifically, when the suction force of a suction source (not shown) acts on the support jig 40 via the suction holding surface 21a, the tape 4 located directly above the groove 42 between the support portions 41, as shown in FIG. Is peeled off from the held surface 1b of the workpiece 1 by the suction force, and is in a state of being stuck in the shape of the groove 42. That is, the opening 6 of the pore 5 located directly above the groove 42 is exposed, and the workpiece 1 is in a state where nothing is supported. The tape 4 may be attached to the held surface 1b, but when the workpiece 1 is cut by the cutting blade 26, it is covered when the portion directly above the groove 42 is not supported at all. The partitionability of the work piece 1 is further improved. The distance H between the two support portions 41 sandwiching the groove 42 is preferably set to about 1/5 to 1/6 of the chip size formed by dividing the workpiece 1.

図7に示した撮像手段30によって分割予定ライン2を検出し、分割予定ライン2と切削ブレード26との位置合わせを行う。続いて、加工送り手段23で保持テーブル21を所定の加工送り速度でX軸方向に加工送りしながら、切削ブレード26を回転させながら、昇降手段29によって切削ブレード26を被加工物1の上面1aから所定の切り込み深さLだけ切り込ませ、被加工物1の厚み方向の一部を切削する。切削ブレード26の図8に示した先端角度261が例えば60°に設定されている場合、切り込み深さLは、被加工物1の厚みの1/5程度(100μm程度)に設定されることが好適である。このようにして被加工物1の厚み方向の一部を切削することにより、細孔5の拡径した開口6側が押し拡がって溝42の上方に位置する部分が下方に押され、外力に耐えられなくなった被加工物1は分割される。なお、切削ブレード26の先端角度261が鋭角になるほど被加工物1の分割性が向上するが、切削ブレード26の摩耗量が大きくなるため、被加工物1の材質に応じて先端角度261や切り込み深さLを適宜調整するとよい。 The scheduled division line 2 is detected by the imaging means 30 shown in FIG. 7, and the scheduled division line 2 and the cutting blade 26 are aligned with each other. Subsequently, while the holding table 21 is machined and fed in the X-axis direction at a predetermined machining feed rate by the machining feed means 23, the cutting blade 26 is moved by the elevating means 29 while the cutting blade 26 is rotated in the X-axis direction. A part of the workpiece 1 in the thickness direction is cut by making a cut by a predetermined cutting depth L. When the tip angle 261 shown in FIG. 8 of the cutting blade 26 is set to, for example, 60 °, the cutting depth L may be set to about 1/5 (about 100 μm) of the thickness of the workpiece 1. Suitable. By cutting a part of the workpiece 1 in the thickness direction in this way, the enlarged opening 6 side of the pore 5 is expanded and the portion located above the groove 42 is pushed downward to withstand the external force. The work piece 1 that can no longer be used is divided. The sharper the tip angle 261 of the cutting blade 26, the better the partitionability of the workpiece 1, but since the amount of wear of the cutting blade 26 increases, the tip angle 261 and the notch are increased depending on the material of the workpiece 1. The depth L may be adjusted as appropriate.

被加工物1の一方向に伸張する分割予定ライン2に沿って切削ブレード26で切削したら、一度被加工物1を支持治具40から取り外して90°回転させ、未切削の分割予定ライン2の直下に溝42を位置づけたのち、支持治具40の上に被加工物1を載置し直す。その後、上記同様に、支持治具40の上に載置された被加工物1に貼着されたテープ4が吸引保持面21aを覆った状態で被加工物1を保持テーブル21で吸引保持しながら、分割予定ライン2に沿って上記同様の切削を行い、被加工物1を個々のチップに分割する。支持治具40の溝42は、格子状の分割予定ライン2に対応させて格子状に形成されていてもよい。この場合は、被加工物1の一方向に伸張する分割予定ライン2に沿って切削した後、保持テーブル21を90°回転させることにより、未切削の分割予定ライン2の向きを変えて、分割予定ライン2に沿って上記同様の切削を行えばよい。 After cutting with the cutting blade 26 along the planned division line 2 extending in one direction of the workpiece 1, the workpiece 1 is once removed from the support jig 40 and rotated by 90 ° to form the uncut planned division line 2. After positioning the groove 42 directly below, the workpiece 1 is relocated on the support jig 40. After that, in the same manner as described above, the workpiece 1 is suction-held by the holding table 21 in a state where the tape 4 attached to the workpiece 1 placed on the support jig 40 covers the suction holding surface 21a. However, the same cutting as described above is performed along the scheduled division line 2, and the workpiece 1 is divided into individual chips. The groove 42 of the support jig 40 may be formed in a grid pattern corresponding to the grid-shaped scheduled division line 2. In this case, after cutting along the scheduled division line 2 extending in one direction of the workpiece 1, the holding table 21 is rotated by 90 ° to change the direction of the uncut scheduled division line 2 for division. The same cutting as described above may be performed along the scheduled line 2.

本実施形態に示した切削ブレード26は、先端部分の断面形状がV形状であるが、この形状に限定されるものではない。例えば、図11(a)に示すように、一方の面に傾斜するテーパ状の外周面270を有し、先端部分の断面形状がV字の片側形状に形成された切削ブレード27を用いて分割ステップを実施してもよい。また、図11(b)に示すように、先端部分の形状がフラットな刃先280を有する切削ブレード28を用いて分割ステップを実施してもよい。この切削ブレード28を用いて分割ステップを実施するときの切り込み深さは、被加工物1の厚みの1/2程度(250μm程度)に設定されることが好ましい。 The cutting blade 26 shown in the present embodiment has a V-shaped cross-sectional shape at the tip portion thereof, but the cutting blade 26 is not limited to this shape. For example, as shown in FIG. 11A, it is divided by using a cutting blade 27 having a tapered outer peripheral surface 270 inclined to one surface and having a cross-sectional shape of a tip portion formed into a V-shaped one-sided shape. Steps may be performed. Further, as shown in FIG. 11B, the division step may be performed by using a cutting blade 28 having a cutting edge 280 having a flat tip portion. The cutting depth when performing the division step using the cutting blade 28 is preferably set to about ½ (about 250 μm) of the thickness of the workpiece 1.

(分割ステップの第2例)
分割ステップでは、例えば図12に示す治具テーブル50を用いて実施してもよい。治具テーブル50は、被加工物1を支持する支持面51を含み、分割予定ライン2に対応した溝52が形成されるとともに溝52で区画された各領域に被加工物1を吸引する吸引孔53が形成されている。治具テーブル50は、図13に示す治具ベース54の上に固定される。治具ベース54の内部には、吸引孔53に連通する吸引路55が形成されている。吸引路55には、バルブ56を介して吸引源57に接続されている。バルブ56を開くことにより、吸引孔53を通じて支持面51に吸引力を作用させることができる。また、治具ベース54には、治具テーブル50を吸引保持するための吸引孔58が形成されている。吸引孔58は、バルブ56aを介して吸引源57aに接続されている。バルブ56aを開くことにより、吸引孔58を通じて治具ベース54の上面に吸引力を作用させて治具テーブル50を吸引保持することができる。このように、治具ベース54と一体となって構成される治具テーブル50は、被加工物1を直に吸引保持する保持テーブルとして機能する。
(Second example of division step)
In the division step, for example, the jig table 50 shown in FIG. 12 may be used. The jig table 50 includes a support surface 51 that supports the workpiece 1, and a groove 52 corresponding to the planned division line 2 is formed, and the workpiece 1 is sucked into each region partitioned by the groove 52. The hole 53 is formed. The jig table 50 is fixed on the jig base 54 shown in FIG. Inside the jig base 54, a suction path 55 communicating with the suction hole 53 is formed. The suction path 55 is connected to the suction source 57 via a valve 56. By opening the valve 56, a suction force can be applied to the support surface 51 through the suction hole 53. Further, the jig base 54 is formed with a suction hole 58 for sucking and holding the jig table 50. The suction hole 58 is connected to the suction source 57a via a valve 56a. By opening the valve 56a, a suction force can be applied to the upper surface of the jig base 54 through the suction hole 58 to suck and hold the jig table 50. As described above, the jig table 50 integrally formed with the jig base 54 functions as a holding table that directly sucks and holds the workpiece 1.

治具テーブル50を用いて分割ステップを実施する場合には、図14に示すように、細孔5が分割予定ライン2に沿って形成された被加工物1を被保持面1b側から治具テーブル50に載置する。このとき、治具テーブル50の溝52の上方側に細孔5の開口6を位置づける。続いて、バルブ56を開いて吸引路55を通じて吸引孔53と吸引源57とを連通させ、治具テーブル50の支持面51に吸引力を作用させる。これにより、治具テーブル50で被加工物1を直に吸引保持する。分割ステップの第2例では、治具テーブル50で被加工物1を直接吸引保持できるため、上記テープ4を使用しなくてよい。 When the division step is carried out using the jig table 50, as shown in FIG. 14, the workpiece 1 in which the pores 5 are formed along the scheduled division line 2 is jigged from the held surface 1b side. Place it on the table 50. At this time, the opening 6 of the pore 5 is positioned above the groove 52 of the jig table 50. Subsequently, the valve 56 is opened to allow the suction hole 53 and the suction source 57 to communicate with each other through the suction path 55, and a suction force is applied to the support surface 51 of the jig table 50. As a result, the work piece 1 is directly sucked and held by the jig table 50. In the second example of the division step, the work piece 1 can be directly sucked and held by the jig table 50, so that the tape 4 does not have to be used.

分割ステップの第1例と同様、切削ブレード26を例えば矢印A方向に回転させながら、切削ブレード26を被加工物1の上面1aから所定の切り込み深さだけ切り込ませ、被加工物1の厚み方向の一部を切削する。細孔5の拡径した開口6側が押し拡がって溝52の上方に位置する部分が下方に押され、外力に耐えられなくなった被加工物1は分割される。そして、すべての分割予定ライン2に沿って上記同様の切削を行い、被加工物1を個々のチップに分割する。 Similar to the first example of the division step, the cutting blade 26 is cut from the upper surface 1a of the workpiece 1 by a predetermined cutting depth while rotating the cutting blade 26 in the direction of arrow A, for example, to obtain the thickness of the workpiece 1. Cut a part of the direction. The enlarged opening 6 side of the pore 5 is expanded and the portion located above the groove 52 is pushed downward, and the workpiece 1 that cannot withstand the external force is divided. Then, the same cutting as described above is performed along all the scheduled division lines 2, and the workpiece 1 is divided into individual chips.

このように、本発明に係る加工方法では、被加工物1の厚み方向の一部を切削することにより分割する分割ステップを備えたため、ブレーキング装置等を用いた従来の加工方法に比べて、被加工物1に対する衝撃を小さくすることができ、被加工物1を良好に個々のチップに分割することができる。また、分割ステップでは、切削ブレード26で被加工物1の厚み方向の一部を切削するだけでよいため、切削ブレード26で被加工物1を厚み方向に完全切断する場合と比べて加工送り速度を速くすることが可能となり、チップの生産性が向上する。
分割ステップの第1例では、吸引保持面21aを有した保持テーブル21上に被加工物1と同等以上のサイズを有し、かつ吸引保持面21aよりも小さいサイズを有する支持治具40を介して保持テーブル21で被加工物1を吸引保持するため、分割時の被加工物1に対する衝撃を小さくでき、被加工物1を良好に個々のチップに分割することができる。
また、分割ステップの第2例では、テープ4が貼着されていない被加工物1を治具テーブル50で直に吸引保持する構成となっているため、分割時の被加工物1に対する衝撃を小さくでき、被加工物1を良好に個々のチップに分割することができる。
As described above, since the processing method according to the present invention includes a division step of dividing the workpiece 1 by cutting a part in the thickness direction, the processing method is compared with the conventional processing method using a braking device or the like. The impact on the workpiece 1 can be reduced, and the workpiece 1 can be satisfactorily divided into individual chips. Further, in the division step, since it is only necessary to cut a part of the workpiece 1 in the thickness direction with the cutting blade 26, the machining feed rate is higher than that in the case where the workpiece 1 is completely cut in the thickness direction with the cutting blade 26. It becomes possible to increase the speed, and the productivity of the chip is improved.
In the first example of the division step, a support jig 40 having a size equal to or larger than that of the workpiece 1 and a size smaller than the suction holding surface 21a is interposed on the holding table 21 having the suction holding surface 21a. Since the workpiece 1 is sucked and held by the holding table 21, the impact on the workpiece 1 at the time of division can be reduced, and the workpiece 1 can be satisfactorily divided into individual chips.
Further, in the second example of the division step, since the workpiece 1 to which the tape 4 is not attached is directly sucked and held by the jig table 50, the impact on the workpiece 1 at the time of division is applied. It can be made smaller and the workpiece 1 can be satisfactorily divided into individual chips.

1:被加工物 2:分割予定ライン 3:フレーム 4:テープ 5:細孔
6:開口 7:変質領域 8:改質層 9:クラック
10:レーザ加工装置 100:装置ベース 101:側壁
11:保持テーブル 11a:保持面 12:フレーム保持手段
120:フレーム載置台 121:クランプ部
13:加工送り手段 130:ボールネジ 131:モータ 132:ガイドレール
133:X軸ベース
14:割り出し送り手段 140:ボールネジ 141:モータ 142:ガイドレール143:Y軸ベース
15:レーザビーム照射手段 150:ケーシング 151:集光器
152:集光レンズ 16:撮像手段
17:昇降手段 170:ボールネジ 171:モータ 172:ガイドレール
173:昇降板
20:切削装置 200:装置ベース 21:保持テーブル 21a:保持面
22:フレーム保持手段
23:加工送り手段 230:ボールネジ 231:モータ 232:ガイドレール
233:X軸ベース
24:割り出し送り手段 240:ボールネジ 241:モータ 242:ガイドレール243:可動基台
25:切削手段 250:スピンドル 251:ハウジング
26,27,28:切削ブレード 29:昇降手段 290:モータ 30:撮像手段
40:支持治具 41:支持部 42:溝 50:治具テーブル 51:支持部
52:吸引孔 53:溝 54:治具ベース 55:吸引路 56,56a:バルブ
57,57a:吸引源 58:吸引孔
1: Work piece 2: Scheduled division line 3: Frame 4: Tape 5: Pore 6: Opening 7: Altered region 8: Modified layer 9: Crack 10: Laser processing device 100: Device base 101: Side wall 11: Holding Table 11a: Holding surface 12: Frame holding means 120: Frame mounting table 121: Clamp portion 13: Processing feeding means 130: Ball screw 131: Motor 132: Guide rail 133: X-axis base 14: Index feeding means 140: Ball screw 141: Motor 142: Guide rail 143: Y-axis base 15: Laser beam irradiation means 150: Casing 151: Condenser 152: Condensing lens 16: Imaging means 17: Elevating means 170: Ball screw 171: Motor 172: Guide rail 173: Elevating plate 20: Cutting device 200: Device base 21: Holding table 21a: Holding surface 22: Frame holding means 23: Processing feeding means 230: Ball screw 231: Motor 232: Guide rail 233: X-axis base 24: Index feeding means 240: Ball screw 241 : Motor 242: Guide rail 243: Movable base 25: Cutting means 250: Spindle 251: Housing 26, 27, 28: Cutting blade 29: Elevating means 290: Motor 30: Imaging means 40: Support jig 41: Support part 42 : Groove 50: Jig table 51: Support 52: Suction hole 53: Groove 54: Jig base 55: Suction path 56, 56a: Valve 57, 57a: Suction source 58: Suction hole

Claims (2)

分割予定ラインが設定された被加工物の加工方法であって、
被加工物の被保持面にテープを貼着し、該テープを介してレーザ加工装置の保持テーブルにおいて被加工物を保持し、被加工物に対して透過性を有する波長のレーザビームを該分割予定ラインに沿って照射して被加工物にレーザ加工を施すレーザ加工ステップと、
該レーザ加工ステップを実施した後、切削装置の保持テーブルの吸引保持面において被加工物の被保持面を保持し、切削ブレードで該分割予定ラインに沿って被加工物の厚み方向の一部を切削することで被加工物を該分割予定ラインに沿って分割する分割ステップと、を備え、
被加工物の該被保持面には、該切削装置の該保持テーブルの該吸引保持面より大きいサイズを有したテープが貼着されており、
該分割ステップでは、該吸引保持面に、該分割予定ラインの両側に該分割予定ラインの伸長方向に沿って伸長した支持部を備え、被加工物と同等以上のサイズを有し、該吸引保持面よりも小さいサイズを有する支持治具を載置し、該支持治具を介して被加工物を該吸引保持面に載置して該分割予定ラインの直下は支持しない状態とし、該支持治具を介して載置された被加工物に貼着された該テープが該吸引保持面を覆った状態において該保持テーブルにおいて被加工物を吸引保持することで、該支持部間の該テープを被加工物の該被保持面から引き剥がして被加工物を分割する加工方法。
It is a processing method of the workpiece for which the planned division line is set.
A tape is attached to the surface to be held of the workpiece, the workpiece is held on the holding table of the laser machining apparatus via the tape, and a laser beam having a wavelength transparent to the workpiece is divided. A laser machining step that irradiates along a planned line to perform laser machining on the workpiece,
After performing the laser machining step, the held surface of the work piece is held on the suction holding surface of the holding table of the cutting device , and a part of the work piece in the thickness direction is formed along the planned division line by the cutting blade. It is provided with a division step of dividing the workpiece along the planned division line by cutting.
A tape having a size larger than the suction holding surface of the holding table of the cutting device is attached to the held surface of the workpiece.
In the division step, the suction holding surface is provided with support portions extended along the extension direction of the planned division line on both sides of the planned division line, has a size equal to or larger than that of the workpiece, and holds the suction. A support jig having a size smaller than the surface is placed, and the workpiece is placed on the suction holding surface via the support jig so that the support directly under the planned division line is not supported. The tape between the supports is sucked and held on the holding table in a state where the tape attached to the work piece placed via the tool covers the suction holding surface. A processing method for dividing a work piece by peeling it off from the held surface of the work piece.
前記切削ブレードの先端の断面形状はV形状である請求項1に記載の加工方法。 The processing method according to claim 1, wherein the cross-sectional shape of the tip of the cutting blade is V-shaped.
JP2017158723A 2017-08-21 2017-08-21 Processing method Active JP6970554B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017158723A JP6970554B2 (en) 2017-08-21 2017-08-21 Processing method
KR1020180090322A KR102524259B1 (en) 2017-08-21 2018-08-02 Processing method
CN201810921439.6A CN109421179B (en) 2017-08-21 2018-08-14 Processing method
TW107128938A TWI774828B (en) 2017-08-21 2018-08-20 processing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158723A JP6970554B2 (en) 2017-08-21 2017-08-21 Processing method

Publications (2)

Publication Number Publication Date
JP2019034391A JP2019034391A (en) 2019-03-07
JP6970554B2 true JP6970554B2 (en) 2021-11-24

Family

ID=65513734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158723A Active JP6970554B2 (en) 2017-08-21 2017-08-21 Processing method

Country Status (4)

Country Link
JP (1) JP6970554B2 (en)
KR (1) KR102524259B1 (en)
CN (1) CN109421179B (en)
TW (1) TWI774828B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112975653A (en) * 2021-02-05 2021-06-18 何宽 Machining device for elliptical ring-shaped optical glass
KR102654348B1 (en) * 2022-04-07 2024-04-04 (주)이오테크닉스 Apparatus of forming groove and method for forming groove

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110455B2 (en) * 1992-10-27 1995-11-29 住友電気工業株式会社 Wafer fixing device
US5445559A (en) * 1993-06-24 1995-08-29 Texas Instruments Incorporated Wafer-like processing after sawing DMDs
JP3408805B2 (en) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 Cutting origin region forming method and workpiece cutting method
WO2004048058A1 (en) * 2002-11-22 2004-06-10 Mitsuboshi Diamond Industrial Co.,Ltd. Method for dividing substrate and method for manufacturing substrate using such method
JP4846411B2 (en) 2006-03-30 2011-12-28 株式会社ディスコ Semiconductor package jig
JP2009148982A (en) 2007-12-20 2009-07-09 Daitron Technology Co Ltd Wafer breaking apparatus
JP5758116B2 (en) * 2010-12-16 2015-08-05 株式会社ディスコ Split method
JP5950502B2 (en) * 2011-03-23 2016-07-13 株式会社ディスコ Wafer division method
JP2013038434A (en) 2012-09-13 2013-02-21 Daitron Technology Co Ltd Braking device
JP6043150B2 (en) * 2012-10-29 2016-12-14 三星ダイヤモンド工業株式会社 Breaking apparatus for laminated brittle material substrate and method for breaking laminated brittle material substrate
EP2762286B1 (en) * 2013-01-31 2015-07-01 ams AG Dicing method
JP6151557B2 (en) 2013-05-13 2017-06-21 株式会社ディスコ Laser processing method
JP6325279B2 (en) * 2014-02-21 2018-05-16 株式会社ディスコ Wafer processing method
JP6430759B2 (en) 2014-09-24 2018-11-28 株式会社ディスコ Laser processing equipment
JP2016082162A (en) * 2014-10-21 2016-05-16 株式会社ディスコ Wafer processing method
JP6407066B2 (en) * 2015-03-06 2018-10-17 株式会社ディスコ Manufacturing method of optical device chip
JP2017054956A (en) * 2015-09-10 2017-03-16 株式会社ディスコ Support tool for workpiece
JP2017135232A (en) * 2016-01-27 2017-08-03 株式会社ディスコ Dividing jig and dividing method for wafer
JP6556066B2 (en) 2016-02-09 2019-08-07 株式会社ディスコ Cutting equipment
JP6316395B2 (en) * 2016-12-16 2018-04-25 三星ダイヤモンド工業株式会社 Multi-layer ceramic substrate scribing equipment

Also Published As

Publication number Publication date
TW201912282A (en) 2019-04-01
KR102524259B1 (en) 2023-04-20
JP2019034391A (en) 2019-03-07
CN109421179B (en) 2022-03-01
KR20190020615A (en) 2019-03-04
CN109421179A (en) 2019-03-05
TWI774828B (en) 2022-08-21

Similar Documents

Publication Publication Date Title
JP6506520B2 (en) SiC slicing method
KR102384101B1 (en) Method of reducing wafer thickness
KR102313271B1 (en) Wafer processing method
JP2005203541A (en) Laser-processing method for wafer
JP6324796B2 (en) Single crystal substrate processing method
JP2005086161A (en) Method of working wafer
JP2016198788A (en) Laser processing device
JP2020035873A (en) SiC SUBSTRATE PROCESSING METHOD
KR102486694B1 (en) Method of processing optical device wafer
KR20170126407A (en) Laser processing apparatus
JP4447392B2 (en) Wafer dividing method and dividing apparatus
TW201709300A (en) Processing method of single crystal substrate
JP2006202933A (en) Wafer dividing method
JP6970554B2 (en) Processing method
TW201707069A (en) Method of processing single-crystal substrate
JP5495869B2 (en) How to check laser processing groove
JP6981806B2 (en) Split method
JP5846765B2 (en) Wafer processing method
TWI793331B (en) Chamfer processing method
JP6576782B2 (en) Wafer processing method
JP6906845B2 (en) Processing method of work piece
JP2017041604A (en) Processing method for optical device wafer
JP6529414B2 (en) Wafer processing method
JP6608746B2 (en) Wafer processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211029

R150 Certificate of patent or registration of utility model

Ref document number: 6970554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150