JP6906845B2 - Processing method of work piece - Google Patents

Processing method of work piece Download PDF

Info

Publication number
JP6906845B2
JP6906845B2 JP2017122264A JP2017122264A JP6906845B2 JP 6906845 B2 JP6906845 B2 JP 6906845B2 JP 2017122264 A JP2017122264 A JP 2017122264A JP 2017122264 A JP2017122264 A JP 2017122264A JP 6906845 B2 JP6906845 B2 JP 6906845B2
Authority
JP
Japan
Prior art keywords
workpiece
wafer
grinding
thickness
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017122264A
Other languages
Japanese (ja)
Other versions
JP2019009218A (en
Inventor
匠 諸徳寺
匠 諸徳寺
幸弘 桐林
幸弘 桐林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2017122264A priority Critical patent/JP6906845B2/en
Priority to TW107115377A priority patent/TWI757482B/en
Priority to CN201810578439.0A priority patent/CN109119336B/en
Priority to KR1020180070321A priority patent/KR102518004B1/en
Publication of JP2019009218A publication Critical patent/JP2019009218A/en
Application granted granted Critical
Publication of JP6906845B2 publication Critical patent/JP6906845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Description

本発明は、交差する複数の分割予定ラインが表面に設定された被加工物の加工方法に関する。 The present invention relates to a method for processing a workpiece in which a plurality of intersecting scheduled division lines are set on the surface.

特定の周波数帯域の電気信号を取り出すSAWフィルタ(Surface Acoustic Wave Filter:表面弾性波フィルタ)は、RFフィルタ(Radio Frequency Filter)やIFフィルタ(Intermediate Frequency Filter)としてほとんどの携帯電話で使用されている他、デジタルテレビやGPS、無線LAM等のフィルタとしても広く使用されている。 SAW filters (Surface Acoustic Wave Filters) that extract electrical signals in a specific frequency band are used in most mobile phones as RF filters (Radio Frequency Filters) and IF filters (Intermediate Frequency Filters). , It is also widely used as a filter for digital television, GPS, wireless LAM, and the like.

SAWフィルタの製造プロセスでは、回転引き上げ法や二重るつぼ法でリチウムナイオベート(LiNbO)やリチウムタンタレート(LiTaO)等の単結晶インゴットが育成され、その後、インゴットをウェーハ状にスライスした後、研削装置や研磨装置で研削、研摩して平坦化する(例えば、特開2001−332949号公報参照)。 In the SAW filter manufacturing process, single crystal ingots such as lithium niobate (LiNbO 3 ) and lithium tantalate (LiTaO 3 ) are grown by the rotary pulling method or the double pot method, and then the ingot is sliced into wafers. , Grinding, polishing and flattening with a grinding device or a polishing device (see, for example, Japanese Patent Application Laid-Open No. 2001-332949).

平坦化されたリチウムナイオベートウェーハ又はリチウムタンタレートウェーハ上には、フォトリソグラフィー技術を用いてアルミニウムやアルミニウム合金の薄膜で例えば周期2〜5μm程度の櫛歯電極からなるSAWフィルタを複数形成する。 On the flattened lithium niobate wafer or lithium tantalate wafer, a plurality of SAW filters made of a thin film of aluminum or an aluminum alloy and having a period of about 2 to 5 μm, for example, are formed by using a photolithography technique.

表面にSAWフィルタ等のSAWデバイスが複数形成されたリチウムナイオベートウェーハ(LNウェーハ)又はリチウムタンタレートウェーハ(LTウェーハ)はモース硬度が高く、切削ブレードで切削すると送り速度の上昇が難しく、生産性が非常に悪い。 Lithium niobate wafers (LN wafers) or lithium tantalate wafers (LT wafers) in which multiple SAW devices such as SAW filters are formed on the surface have high Mohs hardness, and it is difficult to increase the feed rate when cutting with a cutting blade, resulting in productivity. Is very bad.

従って、一般的な厚みの表面にSAWデバイスが形成されたリチウムナイオベートウェーハ又はリチウムタンタレートウェーハでは、レーザ加工で分割起点を形成した後、ウェーハに外力を付与することにより個々のチップに分割している。 Therefore, in a lithium niobate wafer or a lithium tantalate wafer in which a SAW device is formed on a surface of a general thickness, after forming a division starting point by laser processing, the wafer is divided into individual chips by applying an external force. ing.

然し、LNウェーハ又はLTウェーハに対して吸収性を有する波長のパルスレーザビームを照射するアブレーション加工方法又はLNウェーハ又はLTウェーハに対して透過性を有する波長のパルスレーザビームを照射してウェーハ内部に改質層を形成するSD(Stealth Dicing)加工方法では、1本の分割予定ラインに対して複数回パルスレーザービームを照射しなければならず、更なる生産性の向上が要望されている。 However, the ablation processing method of irradiating the LN wafer or LT wafer with a pulsed laser beam having an absorbable wavelength or irradiating the LN wafer or LT wafer with a pulsed laser beam having a wavelength having transparency is irradiated inside the wafer. In the SD (Stearth Dicking) processing method for forming a modified layer, one scheduled division line must be irradiated with a pulsed laser beam a plurality of times, and further improvement in productivity is required.

そこで、特開2014−221483号公報では、比較的開口数の小さい集光レンズを使用して単結晶基板からなる被加工物に単結晶基板に対して透過性を有するパルスレーザビームを照射して、被加工物内部に細孔とこの細孔をシールドする非晶質とからなるシールドトンネルを形成した後、被加工物に外力を付与することにより被加工物を個々のチップに分割する加工方法が記載されている。 Therefore, in Japanese Patent Application Laid-Open No. 2014-221483, a condenser lens having a relatively small numerical aperture is used to irradiate a work piece made of a single crystal substrate with a pulsed laser beam having transparency to the single crystal substrate. A processing method in which a shield tunnel composed of pores and an amorphous material that shields the pores is formed inside the workpiece, and then the workpiece is divided into individual chips by applying an external force to the workpiece. Is described.

特開2001−332949号公報Japanese Unexamined Patent Publication No. 2001-332949 特開2014−221483号公報Japanese Unexamined Patent Publication No. 2014-221483

然し、特許文献2に記載された加工方法では、切削ブレードやパルスレーザビームを使用するSD加工方法、アブレーション加工方法に比べて生産性は向上するが、切削ブレードによるダイシングに比較してチップの抗折強度が劣るという問題がある。 However, the machining method described in Patent Document 2 improves productivity as compared with the SD machining method and the ablation machining method using a cutting blade or a pulse laser beam, but the chip resistance is higher than that of dicing with a cutting blade. There is a problem that the folding strength is inferior.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、生産性を向上させると共にチップの抗折強度を低下させることのない被加工物の加工方法を提供することである。 The present invention has been made in view of these points, and an object of the present invention is to provide a method for processing a workpiece that improves productivity and does not reduce the bending strength of the insert. Is.

本発明によると、交差する複数の分割予定ラインが表面に設定された被加工物の加工方法であって、被加工物の表面側をチャックテーブルで保持する保持ステップと、該チャックテーブルに保持された被加工物に対して透過性を有する波長のパルスレーザビームの集光領域の上端部が、被加工物の表面から被加工物の仕上げ厚みだけ離れた位置よりも該表面から遠い位置と、被加工物の裏面と、の間に位置付けられるように、該パルスレーザビームを被加工物の裏面側から照射して、被加工物の面か仕上げ厚みよりも長く、かつ、被加工物の厚みよりも短い細孔と該細孔を囲繞する非晶質又は変質層とからなるシールドトンネルを複数形成するレーザ加工ステップと、該レーザ加工ステップを実施した後、該シールドトンネルの上端部が除去されるように、被加工物の裏面を研削して該仕上げ厚みへと被加工物を薄化する研削ステップと、を備えたことを特徴とする被加工物の加工方法が提供される。 According to the present invention, a method of processing a workpiece in which a plurality of intersecting scheduled division lines are set on the surface, a holding step of holding the surface side of the workpiece on a chuck table and holding the workpiece on the chuck table. and the workpiece, the upper end portion of the condensing region of the pulse laser beam having a transmission wavelength to the a position far from the surface than a position apart finished thickness of the workpiece from the surface of the workpiece , to be positioned between the rear surface of the workpiece, and the pulse laser beam is irradiated from the back side of the workpiece is longer than the table surface or al the finish thickness of the workpiece, and, A laser processing step of forming a plurality of shield tunnels composed of pores shorter than the thickness of the workpiece and an amorphous or altered layer surrounding the pores, and after performing the laser processing step, the shield tunnel as upper portion is removed, the processing method of the workpiece, characterized in that it and a grinding step of thinning the workpiece to the finished thickness by grinding the back surface of the workpiece Provided.

本発明の加工方法によると、レーザ加工が1パスで済むので、従来のSD加工やアブレーション加工によるレーザ加工に比べて生産性が向上する。また、シールドトンネルの上端部分は研削によって除去されてチップに残存しないため、抗折強度が向上する。 According to the processing method of the present invention, laser processing requires only one pass, so that productivity is improved as compared with conventional laser processing by SD processing or ablation processing. Further, since the upper end portion of the shield tunnel is removed by grinding and does not remain on the chip, the bending strength is improved.

更に、本発明では、レーザ加工後に被加工物の裏面の研削を実施して被加工物を仕上げ厚みに薄化すると共に研削負荷によって部分的に個々のチップに分割できるため、低出力のレーザビームによりシールドトンネルを形成することができ、レーザ加工後に研削を実施しない場合に比べてチップの抗折強度が向上する。 Further, in the present invention, after laser machining, the back surface of the work piece is ground to reduce the work piece to a finished thickness, and the work piece can be partially divided into individual chips by a grinding load, so that a low-power laser beam can be obtained. Therefore, a shield tunnel can be formed, and the bending strength of the chip is improved as compared with the case where grinding is not performed after laser machining.

ウェーハの表面に保護テープを貼着する様子を示す斜視図である。It is a perspective view which shows the state of sticking a protective tape on the surface of a wafer. 保持ステップを示す断面図である。It is sectional drawing which shows the holding step. レーザ加工ステップを示す断面図である。It is sectional drawing which shows the laser processing step. 図4(A)はシールドトンネルをウェーハの表面から途中まで形成した実施形態の断面図、図4(B)はシールドトンネルをウェーハの表面から裏面にわたって形成した実施形態の断面図である。FIG. 4 (A) is a cross-sectional view of an embodiment in which a shield tunnel is formed halfway from the front surface of the wafer, and FIG. 4 (B) is a cross-sectional view of an embodiment in which a shield tunnel is formed from the front surface to the back surface of the wafer. 研削ステップを示す一部断面側面図である。It is a partial cross-sectional side view which shows the grinding step. 転写ステップを示す斜視図である。It is a perspective view which shows the transfer step. チップ間に間隔を形成する間隔形成ステップを示す断面図である。It is sectional drawing which shows the interval forming step which forms the interval between chips.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1は、リチウムナイオベート(LiNbO)ウェーハ11の表面11aに保護テープ17を貼着する様子を示す斜視図が示されている。リチウムナイオベートウェーハ(LNウェーハ又は単にウェーハと称することがある)11の表面11aには格子状に形成された複数の分割予定ライン13により区画された各領域にSAWフィルタ等のSAWデバイス15が形成されている。SAWデバイス15はアルミニウムやアルミニウム合金の薄膜で例えば周期2〜5μm程度の櫛歯電極として形成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing how the protective tape 17 is attached to the surface 11a of the lithium niobate (LiNbO 3) wafer 11. A SAW device 15 such as a SAW filter is formed on the surface 11a of a lithium niobate wafer (sometimes referred to as an LN wafer or simply a wafer) 11 in each region partitioned by a plurality of scheduled division lines 13 formed in a grid pattern. Has been done. The SAW device 15 is a thin film of aluminum or an aluminum alloy, and is formed as a comb tooth electrode having a period of, for example, about 2 to 5 μm.

LNウェーハ11の厚みは約350μmであり、本実施形態の加工方法では、LNウェーハ11の裏面11bを研削して厚み130μmの仕上げ厚みへと薄化する研削ステップを含んでいる。 The thickness of the LN wafer 11 is about 350 μm, and the processing method of the present embodiment includes a grinding step of grinding the back surface 11b of the LN wafer 11 to a final thickness of 130 μm.

本実施形態の加工方法では、被加工物としてLNウェーハを採用した例について説明するが、被加工物はこれに限定されるものではなく、リチウムタンタレートウェーハ(LiTaOウェーハ)、SiCウェーハ、サファイアウェーハ、GaNウェーハ、Siウェーハ、ガラスウェーハ等の他の被加工物も採用可能である。 In the processing method of the present embodiment, an example in which an LN wafer is used as the workpiece will be described, but the workpiece is not limited to this, and a lithium tantalate wafer (LiTaO 3 wafer), a SiC wafer, and a sapphire are used. Other workpieces such as wafers, GaN wafers, Si wafers, and glass wafers can also be used.

LNウェーハ11の表面11aに保護テープ17を貼着した後、図2に示すように、レーザ加工装置のチャックテーブル10で保護テープ17を下側にしてLNウェーハ11を吸引保持し、LNウェーハ11の裏面11bを露出させる。 After the protective tape 17 is attached to the surface 11a of the LN wafer 11, as shown in FIG. 2, the LN wafer 11 is sucked and held with the protective tape 17 facing down on the chuck table 10 of the laser processing apparatus, and the LN wafer 11 is sucked and held. The back surface 11b of the is exposed.

次いで、図3に示すように、集光レンズ12aを有する集光器12からLNウェーハ11に対して透過性を有する波長のパルスレーザビームLBを照射して、ウェーハ11の内部に複数のシールドトンネル19を形成するレーザ加工ステップを実施する。 Next, as shown in FIG. 3, a plurality of shield tunnels are irradiated inside the wafer 11 by irradiating the LN wafer 11 with a pulsed laser beam LB having a wavelength that is transparent from the condenser 12 having the condenser lens 12a. A laser processing step of forming 19 is performed.

ウェーハ11の内部にシールドトンネル19を形成するレーザ加工ステップでは、集光レンズ12aの開口数(NA)を単結晶基板であるLNウェーハ11の屈折率で除した値を0.05〜0.35の範囲内に設定する。 In the laser processing step of forming the shield tunnel 19 inside the wafer 11, the numerical aperture (NA) of the condenser lens 12a divided by the refractive index of the LN wafer 11 which is a single crystal substrate is 0.05 to 0.35. Set within the range of.

リチウムナイオベートの屈折率は2.2であるから、集光レンズの12aの開口数(NA)を0.1〜0.7に設定するのが好ましい。例えば集光レンズ12aとして球面収差を有する集光レンズを使用する。 Since the refractive index of lithium niobate is 2.2, it is preferable to set the numerical aperture (NA) of 12a of the condenser lens to 0.1 to 0.7. For example, a condenser lens having spherical aberration is used as the condenser lens 12a.

もしくは集光レンズの上流側や下流側にレンズを配設することで球面収差を生成するようにしてもよいし、レーザビーム自体が所定の拡がり角を持っているレーザビームをレーザビーム発振器から発振し、集光レンズで集光するようにしてもよい。 Alternatively, spherical aberration may be generated by arranging the lens on the upstream side or the downstream side of the condenser lens, or the laser beam itself oscillates a laser beam having a predetermined spreading angle from the laser beam oscillator. However, it may be condensed by a condenser lens.

従って、集光レンズで集光されたレーザビームに縦収差が生じた状態でウェーハにレーザビームを照射することにより、ウェーハ11の内部にシールドトンネル19を形成することができる。 Therefore, the shield tunnel 19 can be formed inside the wafer 11 by irradiating the wafer with the laser beam in a state where the laser beam focused by the condenser lens has longitudinal aberration.

このレーザ加工ステップでは、所定の出力に制御されたパルスレーザビームLBの集光領域Pの上端部をウェーハ11の表面11aから仕上げ厚みt1+αの位置に位置付けて、パルスレーザビームLBをウェーハ11の裏面11b側から照射する。 In this laser machining step, the upper end of the condensing region P of the pulsed laser beam LB controlled to a predetermined output is positioned from the surface 11a of the wafer 11 to the position of the finishing thickness t1 + α, and the pulsed laser beam LB is placed on the back surface of the wafer 11. Irradiate from the 11b side.

すると、集光領域Pの上端部が位置付けられた位置からウェーハの表面11aに向かってパルスレーザビームLBの進行に伴って瞬間的にシールドトンネル19が形成される。形成されたシールドトンネル19の上端部とその周囲は他の領域に比べて強度が低下しているため、後の研削ステップでこの領域を研削除去することで形成されるデバイスチップの抗折強度が向上する。 Then, the shield tunnel 19 is instantaneously formed as the pulsed laser beam LB advances from the position where the upper end portion of the condensing region P is positioned toward the surface 11a of the wafer. Since the strength of the upper end of the formed shield tunnel 19 and its surroundings is lower than that of other regions, the bending strength of the device chip formed by grinding and removing this region in a later grinding step is increased. improves.

ここで、レーザビームLBの集光領域Pという用語をしているのは、集光レンズ12aが球面収差を有するため、集光レンズ12aを通過するレーザビームLBの半径方向位置によりレーザビームLBの集光される位置が集光レンズ12aの光軸方向に異なるためであり、集光領域Pはウェーハ11の厚み方向に延在する。 Here, the term "condensing region P" of the laser beam LB is used because the condensing lens 12a has spherical aberration, so that the condensing region LB of the laser beam LB depends on the radial position of the laser beam LB passing through the condensing lens 12a. This is because the position of condensing is different in the optical axis direction of the condensing lens 12a, and the condensing region P extends in the thickness direction of the wafer 11.

このように、集光領域Pをウェーハ11の内部に延在するようにパルスレーザビームLBをウェーハ11の裏面11b側から照射し、チャックテーブル10を矢印X軸方向に所定の加工送り速度で加工送りすることにより、ウェーハ11の内部に分割予定ライン13に沿ってウェーハ11の表面11aから仕上げ厚みt1+αの長さのシールドトンネル19を複数形成する。本実施形態では、仕上げ厚みt1を130μmに設定し、αは例えば10〜15μmに設定する。 In this way, the pulse laser beam LB is irradiated from the back surface 11b side of the wafer 11 so that the condensing region P extends inside the wafer 11, and the chuck table 10 is machined in the arrow X-axis direction at a predetermined machining feed rate. By feeding, a plurality of shield tunnels 19 having a finish thickness t1 + α are formed inside the wafer 11 along the planned division line 13 from the surface 11a of the wafer 11. In the present embodiment, the finish thickness t1 is set to 130 μm, and α is set to, for example, 10 to 15 μm.

シールドトンネル19は直径1μm程度の細孔と、この細孔をシールドする非晶質(アモルファス)とから形成される。照射するパルスレーザビームLBの繰り返し周波数を50kHzに設定し、加工送り速度を500mm/sに設定すると、ウェーハ11の分割予定ライン13に沿って10μmの間隔でシールドトンネル19が形成され、隣接する細孔間には一部クラックが生じた状態となる。 The shield tunnel 19 is formed of pores having a diameter of about 1 μm and amorphous (amorphous) that shields the pores. When the repetition frequency of the pulsed laser beam LB to be irradiated is set to 50 kHz and the machining feed rate is set to 500 mm / s, shield tunnels 19 are formed at intervals of 10 μm along the scheduled division line 13 of the wafer 11, and adjacent thin tunnels 19 are formed. Some cracks are formed between the holes.

ウェーハ11の内部にシールドトンネル19を形成するレーザ加工ステップを、第1の方向に伸長する分割予定ラインに沿って次々と実施し、次いでチャックテーブル10を90°回転してから、第1の方向に直交する第2の方向に伸長する全ての分割予定ライン13に沿って実施する。 The laser machining step of forming the shield tunnel 19 inside the wafer 11 is carried out one after another along the planned division line extending in the first direction, and then the chuck table 10 is rotated by 90 ° and then in the first direction. It is carried out along all the planned division lines 13 extending in the second direction orthogonal to.

ウェーハ11の内部にシールドトンネル19を形成するレーザ加工ステップの加工条件は、例えば以下のように設定される。 The machining conditions of the laser machining step for forming the shield tunnel 19 inside the wafer 11 are set as follows, for example.

波長 :1064nm
平均出力 :0.2〜0.5W
繰り返し周波数 :20〜50kHz
パルス幅 :10ps
集光スポット径 :10μm
加工送り速度 :100〜600mm/s
Wavelength: 1064 nm
Average output: 0.2-0.5W
Repeat frequency: 20 to 50 kHz
Pulse width: 10 ps
Condensing spot diameter: 10 μm
Processing feed rate: 100 to 600 mm / s

尚、被加工物としてガラスを採用した場合には、ガラスは元々非晶質であるため、レーザ加工ステップを実施すると細孔とこの細孔をシールドする非晶質の変質層からなるシールドトンネルが形成される。 When glass is used as the workpiece, the glass is originally amorphous. Therefore, when the laser machining step is performed, a shield tunnel composed of pores and an amorphous alteration layer that shields the pores is formed. It is formed.

LNウェーハ11の内部に形成するシールドトンネル19は、図4(A)に示すように、仕上げ厚みt1+αの長さが望ましいが、レーザビームLBの出力を上げて、図4(B)に示すように、シールドトンネル19をウェーハ11の表面11aから裏面11bにわたり形成するようにしてもよい。この場合には、前記レーザ加工条件において、平均出力を2〜4Wに上げるのが好ましい。 As shown in FIG. 4 (A), the shield tunnel 19 formed inside the LN wafer 11 preferably has a finish thickness of t1 + α, but the output of the laser beam LB is increased as shown in FIG. 4 (B). In addition, the shield tunnel 19 may be formed from the front surface 11a to the back surface 11b of the wafer 11. In this case, it is preferable to increase the average output to 2 to 4 W under the laser processing conditions.

シールドトンネルの厚み=仕上げ厚み+αにおいて、好ましくはαは10〜15μmに設定するが、この値以上でもよい。+αが小さいと分割されたデバイスチップの抗折強度が向上するが、αを大きくして、図4(B)に示すように、シールドトンネル19を表面11aから裏面11bにわたり形成するとLNウェーハ11の分割性が向上する。 When the thickness of the shield tunnel = the finish thickness + α, α is preferably set to 10 to 15 μm, but it may be greater than or equal to this value. When + α is small, the bending strength of the divided device chip is improved, but when α is increased and the shield tunnel 19 is formed from the front surface 11a to the back surface 11b as shown in FIG. 4 (B), the LN wafer 11 is formed. Dividability is improved.

ここで、デバイスチップの抗折強度を下げない加工条件で1パスのレーザビームの照射で形成できるシールドトンネルの厚み(長さ)は150μm程度であり、抗折強度を気にしなければ1パスで形成できるシールドトンネルの厚み(長さ)は250μm程度である。 Here, the thickness (length) of the shield tunnel that can be formed by irradiating a laser beam of 1 pass under the processing conditions that do not lower the bending strength of the device chip is about 150 μm, and if the bending strength is not a concern, 1 pass is sufficient. The thickness (length) of the shield tunnel that can be formed is about 250 μm.

レーザ加工ステップを実施した後、ウェーハ11の裏面11bを研削してウェーハ11を仕上げ厚みtへと薄化すると共にウェーハ11を部分的に個々のチップへと分割する研削ステップを実施する。 After performing the laser machining step, the back surface 11b of the wafer 11 is ground to thin the wafer 11 to the finishing thickness t, and the wafer 11 is partially divided into individual chips.

研削ステップでは、図6に示すように、研削装置のチャックテーブル14でウェーハ11の保護テープ17側を吸引保持し、ウェーハ11の裏面11bを露出させる。研削装置の研削ユニット16は、モータにより回転駆動されるスピンドル18と、スピンドル18の先端に固定されたホイールマウント20と、ホイールマウント20に図示しないボルトにより着脱可能に装着された研削ホイール22とを含む。研削ホイール22は、環状のホイール基台24と、ホイール基台24の下端外周部に固着された複数の研削砥石26とから構成される。 In the grinding step, as shown in FIG. 6, the chuck table 14 of the grinding apparatus sucks and holds the protective tape 17 side of the wafer 11 to expose the back surface 11b of the wafer 11. The grinding unit 16 of the grinding device includes a spindle 18 that is rotationally driven by a motor, a wheel mount 20 fixed to the tip of the spindle 18, and a grinding wheel 22 that is detachably attached to the wheel mount 20 by a bolt (not shown). include. The grinding wheel 22 is composed of an annular wheel base 24 and a plurality of grinding wheels 26 fixed to the outer peripheral portion of the lower end of the wheel base 24.

研削ステップでは、チャックテーブル14に保持されたウェーハ11に、図示しない研削送り機構を作動することにより研削ホイール22の研削砥石26を接触させ、所定の研削送り速度で研削ホイール22を研削送りしながらチャックテーブル14を矢印aで示す方向に例えば300rpmで回転しつつ、研削ホイール22を矢印bで示す方向に例えば1500〜2000rpmで回転して、LNウェーハ11の研削を実施する。 In the grinding step, the grinding wheel 26 of the grinding wheel 22 is brought into contact with the wafer 11 held on the chuck table 14 by operating a grinding feed mechanism (not shown), and the grinding wheel 22 is ground and fed at a predetermined grinding feed speed. While rotating the chuck table 14 in the direction indicated by the arrow a at 300 rpm, the grinding wheel 22 is rotated in the direction indicated by the arrow b at 1500-2000 rpm to grind the LN wafer 11.

好ましくは、研削ステップは粗研削ステップと、粗研削ステップ実施後の仕上げ研削ステップの2段階で実施する。粗研削ステップでは、#1000のビトリファイドボンド研削砥石26を使用して、チャックテーブル14を300rpmで回転しつつ、研削ホイール22を2000rpmで回転しながら研削を実施する。 Preferably, the grinding step is carried out in two stages, a rough grinding step and a finish grinding step after the rough grinding step is carried out. In the rough grinding step, grinding is performed while rotating the chuck table 14 at 300 rpm and the grinding wheel 22 at 2000 rpm using the # 1000 Vitrified Bond grinding grindstone 26.

粗研削終了後の仕上げ研削ステップでは、#3000のビトリファイドボンド研削砥石26を使用して、チャックテーブル14を300rpmで回転しつつ、研削ホイール22を1500rpmで回転しながら研削を実施して、ウェーハ11を仕上げ厚みt1=50μmまで薄化する。 In the finish grinding step after the rough grinding is completed, grinding is performed while rotating the chuck table 14 at 300 rpm and the grinding wheel 22 at 1500 rpm using the # 3000 bitrified bond grinding wheel 26 to perform grinding on the wafer 11. Is thinned to a finishing thickness t1 = 50 μm.

粗研削ステップ及び仕上げ研削ステップからなる研削ステップ中に、ウェーハ11の裏面11bには常に所定の研削負荷が掛かるため、この研削負荷によりウェーハ11は分割予定ライン13に沿ってシールドトンネル19を破断起点に個々のデバイスチップに少なくとも部分的に分割される。 During the grinding step consisting of the rough grinding step and the finish grinding step, a predetermined grinding load is always applied to the back surface 11b of the wafer 11, and the wafer 11 breaks the shield tunnel 19 along the scheduled division line 13 due to this grinding load. Is divided into individual device chips at least partially.

尚、研削ステップでは、ウェーハ11が分割予定ライン13に沿ってシールドトンネル19を破断起点に個々のデバイスチップへと完全には分割されない場合もあるため、研削ステップ終了後のウェーハ11に外力を付与して、ウェーハ11を分割予定ライン13に沿って個々のチップへと完全に分割する分割ステップを実施するのが好ましい。 In the grinding step, the wafer 11 may not be completely divided into individual device chips starting from the shield tunnel 19 along the scheduled division line 13, so that an external force is applied to the wafer 11 after the completion of the grinding step. Then, it is preferable to carry out a division step of completely dividing the wafer 11 into individual chips along the planned division line 13.

研削ステップ終了後、図7に示すように、個々のデバイスチップに分割されたウェーハ11の裏面11bを、外周部が環状フレームFに装着されたエキスパンドテープTに貼着し、ウェーハ11の表面11aから保護テープ17を剥離する転写ステップを実施する。好ましくは、エキスパンドテープとして紫外線硬化型テープを採用する。 After the completion of the grinding step, as shown in FIG. 7, the back surface 11b of the wafer 11 divided into individual device chips is attached to the expanding tape T whose outer peripheral portion is mounted on the annular frame F, and the front surface 11a of the wafer 11 is attached. A transfer step is carried out to peel off the protective tape 17 from the wafer. Preferably, an ultraviolet curable tape is adopted as the expanding tape.

転写ステップを実施した後、エキスパンドテープTを拡張してエキスパンドテープTに貼着されたウェーハ11を個々のデバイスチップ25に完全に分割すると共に、チップ間に間隔を形成する分割ステップを実施する。この分割ステップは、一例として図7に示すようなエキスパンド装置30を用いて実施する。 After performing the transfer step, the expanding tape T is expanded to completely divide the wafer 11 attached to the expanding tape T into individual device chips 25, and a dividing step is performed to form an interval between the chips. This division step is carried out using an expanding device 30 as shown in FIG. 7 as an example.

エキスパンド装置30は、環状フレームFを保持するフレーム保持手段32を備えている。フレーム保持手段32は、環状のフレーム保持部材34と、フレーム保持部材34の外周に配設された固定手段としての複数のクランプ36とから構成される。フレーム保持部材34の上面は環状フレームFを載置する載置面34aを形成しており、この載置面34a上に環状フレームFが載置される。 The expanding device 30 includes a frame holding means 32 for holding the annular frame F. The frame holding means 32 is composed of an annular frame holding member 34 and a plurality of clamps 36 as fixing means arranged on the outer periphery of the frame holding member 34. The upper surface of the frame holding member 34 forms a mounting surface 34a on which the annular frame F is placed, and the annular frame F is placed on the mounting surface 34a.

そして、載置面34a上に載置された環状フレームFは、クランプ36によって保持部材34に固定される。この時、ウェーハ11が貼着されたエキスパンドテープTは拡張ドラム38の上端に当接する。 Then, the annular frame F mounted on the mounting surface 34a is fixed to the holding member 34 by the clamp 36. At this time, the expanding tape T to which the wafer 11 is attached comes into contact with the upper end of the expansion drum 38.

拡張ドラム38の内部には保持テーブル46が配設されており、保持テーブル46の吸引保持部46aは吸引路48及び電磁切替弁50を介して吸引源52に選択的に接続されている。 A holding table 46 is arranged inside the expansion drum 38, and the suction holding portion 46a of the holding table 46 is selectively connected to the suction source 52 via the suction path 48 and the electromagnetic switching valve 50.

拡張ドラム38の外側には環状のフレーム保持部材32を上下方向に移動する駆動手段40が配設されている。駆動手段40は複数のエアシリンダ42から構成されており、エアシリンダ42のピストンロッド44が保持部材34の下面に連結されている。 A driving means 40 for moving the annular frame holding member 32 in the vertical direction is arranged on the outside of the expansion drum 38. The drive means 40 is composed of a plurality of air cylinders 42, and the piston rod 44 of the air cylinder 42 is connected to the lower surface of the holding member 34.

複数のエアシリンダ42から構成される駆動手段40は、環状のフレーム保持部材34をその載置面34aが拡張ドラム38の上端と略同一高さとなる基準位置と、拡張ドラム38の上端より所定量下方の拡張位置との間で上下方向に移動する。 The drive means 40 composed of a plurality of air cylinders 42 has an annular frame holding member 34 placed at a reference position where the mounting surface 34a thereof is substantially the same height as the upper end of the expansion drum 38, and a predetermined amount from the upper end of the expansion drum 38. Moves up and down with the lower extension position.

このように構成されたエキスパンド装置30を使用した分割ステップでは、ウェーハ11をエキスパンドテープTを介して支持した環状フレームFを、フレーム保持部材34の載置面34a上に載置し、クランプ36によってフレーム保持部材34に固定する。この時、フレーム保持部材34はその載置面34aが拡張ドラム38の上端と略同一高さとなる基準位置に位置付けられる。 In the division step using the expanding device 30 configured in this way, the annular frame F in which the wafer 11 is supported via the expanding tape T is placed on the mounting surface 34a of the frame holding member 34, and the clamp 36 is used. It is fixed to the frame holding member 34. At this time, the frame holding member 34 is positioned at a reference position where the mounting surface 34a is substantially the same height as the upper end of the expansion drum 38.

次いで、エアシリンダ42を駆動してフレーム保持部材34を図7(B)に示す拡張位置に引き落とす。これにより、フレーム保持部材34の載置面34上に固定されている環状フレームFも引き落とされるため、環状フレームFに貼着されたエキスパンドテープTは拡張ドラム38の上端縁に当接して主に半径方向に拡張される。 Next, the air cylinder 42 is driven to pull the frame holding member 34 to the extended position shown in FIG. 7 (B). As a result, the annular frame F fixed on the mounting surface 34 of the frame holding member 34 is also pulled down, so that the expanding tape T attached to the annular frame F comes into contact with the upper end edge of the expansion drum 38 and mainly Expanded in the radial direction.

その結果、ウェーハ11は分割予定ライン13に沿って個々のデバイスチップ25に完全に分割されると共に、隣接するデバイスチップ25の間に間隔が形成される。エキスパンドテープTを拡張した後、電磁切替弁50を連通位置に切り換えて、保持テーブル46の吸引保持部46aに吸引源52の負圧を作用させて、ウェーハ11をチップ25間に間隔が形成された状態で保持する。 As a result, the wafer 11 is completely divided into individual device chips 25 along the scheduled division line 13, and a space is formed between the adjacent device chips 25. After expanding the expanding tape T, the electromagnetic switching valve 50 is switched to the communication position, and the negative pressure of the suction source 52 is applied to the suction holding portion 46a of the holding table 46, so that the wafer 11 is spaced between the chips 25. Hold it in a closed state.

分割ステップ実施後、保持テーブル46でエキスパンドテープTを吸引保持した状態でエキスパンドテープTに紫外線を照射して、エキスパンドテープTの貼着力を低下させた後、ピックアップ装置でデバイスチップ25をエキスパンドテープTからピックアップする。 After performing the dividing step, the expanding tape T is irradiated with ultraviolet rays while the expanding tape T is sucked and held on the holding table 46 to reduce the adhesive force of the expanding tape T, and then the device chip 25 is expanded tape T by the pickup device. Pick up from.

上述した実施形態によると、レーザ加工後にウェーハ11の裏面研削を実施するため、研削負荷によってウェーハ11が個々のチップに少なくとも部分的に分割される。よって、研削を実施しない場合に比べて低出力のレーザ加工でもチップへと分割し得るため、レーザ加工後に研削を実施しない場合に比べてデバイスチップの抗折強度が向上する。更に、シールドトンネルの上端部分は研削によって除去されてチップに残存しないため、デバイスチップの抗折強度が向上する。 According to the above-described embodiment, since the back surface of the wafer 11 is ground after laser machining, the wafer 11 is divided into individual chips at least partially by the grinding load. Therefore, since the chip can be divided into chips even with low-power laser machining as compared with the case where grinding is not performed, the bending strength of the device chip is improved as compared with the case where grinding is not performed after laser machining. Further, since the upper end portion of the shield tunnel is removed by grinding and does not remain on the chip, the bending strength of the device chip is improved.

11 リチウムナイオベートウェーハ(LNウェーハ)
12 集光器
12a 集光レンズ
13 分割予定ライン
15 SAWデバイス
16 研削ユニット
17 保護テープ
19 シールドトンネル
21 細孔
22 研削ホイール
23 非晶質
25 デバイスチップ
26 研削砥石
30 エキスパンド装置
34 保持部材
38 拡張ドラム
11 Lithium niobate wafer (LN wafer)
12 Condenser 12a Condensing lens 13 Scheduled division line 15 SAW device 16 Grinding unit 17 Protective tape 19 Shield tunnel 21 Pore 22 Grinding wheel 23 Amorphous 25 Device chip 26 Grinding grindstone 30 Expanding device 34 Holding member 38 Expansion drum

Claims (2)

交差する複数の分割予定ラインが表面に設定された被加工物の加工方法であって、
被加工物の表面側をチャックテーブルで保持する保持ステップと、
該チャックテーブルに保持された被加工物に対して透過性を有する波長のパルスレーザビームの集光領域の上端部が、被加工物の表面から被加工物の仕上げ厚みだけ離れた位置よりも該表面から遠い位置と、被加工物の裏面と、の間に位置付けられるように、該パルスレーザビームを被加工物の裏面側から照射して、被加工物の面か仕上げ厚みよりも長く、かつ、被加工物の厚みよりも短い細孔と該細孔を囲繞する非晶質又は変質層とからなるシールドトンネルを複数形成するレーザ加工ステップと、
該レーザ加工ステップを実施した後、該シールドトンネルの上端部が除去されるように、被加工物の裏面を研削して該仕上げ厚みへと被加工物を薄化する研削ステップと、
を備えたことを特徴とする被加工物の加工方法。
It is a processing method of a work piece in which a plurality of intersecting scheduled division lines are set on the surface.
A holding step that holds the surface side of the work piece with a chuck table,
To the workpiece held on the chuck table, the upper end portion of the condensing region of the pulse laser beam having a transmission wavelength to the, from the position apart finished thickness of the workpiece from the surface of the workpiece and a position far from the surface, to be positioned between the rear surface of the workpiece, and the pulse laser beam is irradiated from the back side of the workpiece, the table surface or al the finish thickness of the workpiece A laser machining step of forming a plurality of shield tunnels composed of pores longer than the thickness of the workpiece and shorter than the thickness of the workpiece and an amorphous or altered layer surrounding the pores.
After performing the laser processing step, as the upper end of the shield tunnel is removed, and the grinding step of thinning the workpiece to the finished thickness by grinding the back surface of the workpiece,
A method of processing a work piece, which is characterized by being provided with.
該研削ステップを実施した後、被加工物に外力を付与して被加工物を個々のチップに分割する分割ステップを更に備えた請求項1記載の被加工物の加工方法。 After performing the grinding step, further comprising processing method according to claim 1 Symbol placement of the workpiece and the dividing step of dividing by applying an external force to the workpiece into individual chips to the workpiece.
JP2017122264A 2017-06-22 2017-06-22 Processing method of work piece Active JP6906845B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017122264A JP6906845B2 (en) 2017-06-22 2017-06-22 Processing method of work piece
TW107115377A TWI757482B (en) 2017-06-22 2018-05-07 Processing method of workpiece
CN201810578439.0A CN109119336B (en) 2017-06-22 2018-06-07 Method for processing object to be processed
KR1020180070321A KR102518004B1 (en) 2017-06-22 2018-06-19 Method for processing a workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017122264A JP6906845B2 (en) 2017-06-22 2017-06-22 Processing method of work piece

Publications (2)

Publication Number Publication Date
JP2019009218A JP2019009218A (en) 2019-01-17
JP6906845B2 true JP6906845B2 (en) 2021-07-21

Family

ID=64821896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017122264A Active JP6906845B2 (en) 2017-06-22 2017-06-22 Processing method of work piece

Country Status (4)

Country Link
JP (1) JP6906845B2 (en)
KR (1) KR102518004B1 (en)
CN (1) CN109119336B (en)
TW (1) TWI757482B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218056B2 (en) * 2019-02-20 2023-02-06 株式会社ディスコ Method for manufacturing at least one of chip and frame

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332949A (en) 2000-05-19 2001-11-30 Toshiba Corp Method for manufacturing surface acoustic wave element
JP6151557B2 (en) 2013-05-13 2017-06-21 株式会社ディスコ Laser processing method
JP6097146B2 (en) * 2013-05-16 2017-03-15 株式会社ディスコ Processing method of optical device wafer
US8883614B1 (en) * 2013-05-22 2014-11-11 Applied Materials, Inc. Wafer dicing with wide kerf by laser scribing and plasma etching hybrid approach
US9299614B2 (en) * 2013-12-10 2016-03-29 Applied Materials, Inc. Method and carrier for dicing a wafer
JP6230422B2 (en) * 2014-01-15 2017-11-15 株式会社ディスコ Wafer processing method
JP6324796B2 (en) * 2014-04-21 2018-05-16 株式会社ディスコ Single crystal substrate processing method
JP6328485B2 (en) * 2014-05-13 2018-05-23 株式会社ディスコ Wafer processing method
JP2016171214A (en) * 2015-03-12 2016-09-23 株式会社ディスコ Processing method of single crystal substrate
JP6300763B2 (en) * 2015-08-03 2018-03-28 株式会社ディスコ Workpiece processing method
JP6625854B2 (en) * 2015-10-06 2019-12-25 株式会社ディスコ Optical device wafer processing method

Also Published As

Publication number Publication date
CN109119336A (en) 2019-01-01
CN109119336B (en) 2024-02-09
KR102518004B1 (en) 2023-04-04
TWI757482B (en) 2022-03-11
TW201907456A (en) 2019-02-16
JP2019009218A (en) 2019-01-17
KR20190000308A (en) 2019-01-02

Similar Documents

Publication Publication Date Title
KR102163442B1 (en) Method of machining single crystal substrate
US20060211220A1 (en) Method and device or dividing plate-like member
JP2006108532A (en) Method of grinding wafer
CN107591361B (en) Method for manufacturing semiconductor device chip
WO2017056739A1 (en) Laser processing method
JP6495056B2 (en) Single crystal substrate processing method
KR20130111994A (en) Forming method of chip with die attach film
JP2016171214A (en) Processing method of single crystal substrate
JP2020035873A (en) SiC SUBSTRATE PROCESSING METHOD
TW201715598A (en) Optical device wafer processing method
TWI693633B (en) Processing method of single crystal substrate
JP6045361B2 (en) Wafer processing method
JP6029347B2 (en) Wafer processing method
JP6906845B2 (en) Processing method of work piece
KR102256562B1 (en) Machining method of laminated substrate
JP6970554B2 (en) Processing method
JP5553586B2 (en) Wafer processing method
JP2011114018A (en) Method of manufacturing optical device
JP6576782B2 (en) Wafer processing method
JP2017041604A (en) Processing method for optical device wafer
JP6529414B2 (en) Wafer processing method
JP2023146720A (en) Manufacturing method of chip
JP2021158164A (en) Device chip manufacturing method
JP2010027780A (en) Semiconductor device manufacturing method
JP2019061982A (en) Chip manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150