JP2001332949A - Method for manufacturing surface acoustic wave element - Google Patents

Method for manufacturing surface acoustic wave element

Info

Publication number
JP2001332949A
JP2001332949A JP2000148394A JP2000148394A JP2001332949A JP 2001332949 A JP2001332949 A JP 2001332949A JP 2000148394 A JP2000148394 A JP 2000148394A JP 2000148394 A JP2000148394 A JP 2000148394A JP 2001332949 A JP2001332949 A JP 2001332949A
Authority
JP
Japan
Prior art keywords
wafer
acoustic wave
surface acoustic
polishing
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000148394A
Other languages
Japanese (ja)
Other versions
JP2001332949A5 (en
Inventor
Masaaki Sudo
正昭 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000148394A priority Critical patent/JP2001332949A/en
Priority to KR10-2001-0026975A priority patent/KR100453083B1/en
Publication of JP2001332949A publication Critical patent/JP2001332949A/en
Publication of JP2001332949A5 publication Critical patent/JP2001332949A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a surface acoustic wave(SAW) element by which the characteristics of a SAW element can be improved by improving the plurality of a wafer. SOLUTION: This method is provided with a process for forming a wafer 11 by cutting a single crystal material, a process for polishing both surfaces of the wafer 11 into a prescribed thickness, a process for grinding the surfaces 12 of the wafer, a process for mirror-grinding a wafer surface 12 and an element forming process for forming a metal strip electrode 14 on the wafer surface 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通信用フィルタ、
遅延器、発信器等に用いられる弾性表面波素子の製造方
法に関し、特に周波数の高帯域化に対応し得るものに関
する。
TECHNICAL FIELD The present invention relates to a communication filter,
The present invention relates to a method for manufacturing a surface acoustic wave element used for a delay unit, a transmitter, and the like, and more particularly to a method capable of coping with a higher frequency band.

【0002】[0002]

【従来の技術】図8の(a)は、弾性表面波素子1の構
成を示す模式図である。弾性表面波素子1は、500μ
m程度のウエハ2と、このウエハ2の表面2a上に設け
られた所定間隔で形成されたメタルストリップ電極3と
を備えている。このような弾性表面波素子1では、外部
からの電波や音波4を受けると、ウエハ2に伝播する弾
性波として、ウエハ2の表面2aに沿って伝播する弾性
表面波5と、ウエハWの内部を伝播するバルク波6とが
発生する。バルク波6はさらにウエハ2の裏面2bに反
射して、反射波7となるが、反射波7は弾性表面波5に
対する外乱となるため、ウエハ裏面を粗らすことで反射
波7の発生を抑止している。
2. Description of the Related Art FIG. 8A is a schematic diagram showing the structure of a surface acoustic wave device 1. As shown in FIG. The surface acoustic wave element 1 has a thickness of 500 μm.
The wafer 2 has a diameter of about m, and metal strip electrodes 3 formed on the front surface 2a of the wafer 2 at predetermined intervals. In such a surface acoustic wave element 1, when an external radio wave or sound wave 4 is received, the surface acoustic wave 5 propagating along the surface 2 a of the wafer 2 and the surface acoustic wave 5 Is generated. The bulk wave 6 is further reflected on the back surface 2 b of the wafer 2 to become a reflected wave 7. The reflected wave 7 is a disturbance to the surface acoustic wave 5. Deterred.

【0003】一般的には、ウエハ2としては圧電性を示
すタンタル酸リチウム(LiTaO )やニオブ酸リ
チウム(LiNbO)、水晶等が用いられている。
これは、メタルストリップ電極3に電圧印加すること
で、弾性表面波5の中から励振した周波数信号を取り出
せるフィルタ機能が得られるからである。図8の(b)
は、弾性表面波素子1のフィルタ機能の周波数特性を示
す図である。
[0003] Generally, the wafer 2 exhibits piezoelectricity.
Lithium tantalate (LiTaO) 3) And Lithium niobate
Titanium (LiNbO3), Quartz or the like.
This means that voltage is applied to the metal strip electrode 3.
To extract the excited frequency signal from the surface acoustic wave 5
This is because a filter function to make the filter function is obtained. FIG. 8B
Indicates the frequency characteristic of the filter function of the surface acoustic wave element 1.
FIG.

【0004】弾性表面波素子1は、テレビ用チューナ等
の信号フィルタとして古くから民生利用されている。近
年は、携帯電話に代表される移動体通信用フィルタとし
ての需要が著しく、利用周波数が高帯域化の方向にあ
る。
The surface acoustic wave element 1 has been used for a long time as a signal filter for a tuner for television or the like. In recent years, the demand for a filter for mobile communication represented by a mobile phone has been remarkable, and the frequency used has been increasing.

【0005】図9は、従来の弾性表面波素子の製造方法
の一例を示す図である。本製造方法においては、単結晶
のインゴットをスライスした後、べベル、両面研磨加
工、表面鏡面研磨等の工程を経てウエハ2を形成する。
そして、ウエハ2を洗浄した後、その表面2aにメタル
ストリップ電極3の形成を行う。
FIG. 9 is a view showing an example of a conventional method of manufacturing a surface acoustic wave device. In the present manufacturing method, after slicing a single crystal ingot, the wafer 2 is formed through processes such as beveling, double-side polishing, and surface mirror polishing.
After cleaning the wafer 2, a metal strip electrode 3 is formed on the surface 2a.

【0006】図10は、弾性表面波素子の製造方法の別
の例を示す図である。本製造方法においては、鏡面研磨
の削り量を少なくするために、両面研磨加工の後に細い
砥粒による片面研磨加工を行い、その後、鏡面研磨を行
う場合もある。
FIG. 10 is a view showing another example of a method of manufacturing a surface acoustic wave device. In the present manufacturing method, in order to reduce the amount of mirror polishing, there is a case where a single-side polishing with fine abrasive grains is performed after the double-side polishing, and then a mirror-polishing is performed.

【0007】[0007]

【発明が解決しようとする課題】上述した弾性表面波素
子の製造方法であると次のような問題があった。すなわ
ち、弾性表面波5の周波数が高くなるにつれ、メタルス
トリップ電極3の線幅が狭く微細化することになる。弾
性表面波素子1の設計上、約2GHz以上の周波数に対
しては半導体デバイスと同等レベルのサブミクロン線幅
となる。加えて、メタルストリップ電極3の線幅の分布
は弾性表面波5の設計周波数に対する誤差を生む。この
ため、弾性表面波素子1の製造工程の中でも露光工程の
メタルストリップ電極3の線幅の微細化と均一性を満足
し得るウエハ2の平坦平滑性が要求されている。
However, the method of manufacturing a surface acoustic wave device described above has the following problems. That is, as the frequency of the surface acoustic wave 5 increases, the line width of the metal strip electrode 3 becomes narrower and finer. Due to the design of the surface acoustic wave element 1, a submicron line width equivalent to that of a semiconductor device is obtained at a frequency of about 2 GHz or more. In addition, the distribution of the line width of the metal strip electrode 3 causes an error with respect to the design frequency of the surface acoustic wave 5. For this reason, even in the manufacturing process of the surface acoustic wave element 1, the flatness of the wafer 2 that can satisfy the fine line width and uniformity of the metal strip electrode 3 in the exposure process is required.

【0008】ウエハ2は厚さが500μm以下であり、
素子形成面である表面2aの平坦平滑性を向上させよう
とするとウエハ2の製造方法が問題となる。特に、ウエ
ハ製造の最終工程に近い鏡面研磨工程が問題になる。鏡
面研磨は、ウエハ2の表面2aをポリウレタン素材の不
織布と粒径約0.1μm以下のコロイダルシリカ砥粒を
用いて鏡面研磨するものであるが、ウエハ2の加工面に
弾性体を押し付け加圧して行う加工方法であるため、圧
力の不均一性に起因した形状崩れ、すなわちウエハ2の
平坦度が低下する虞があった。
The wafer 2 has a thickness of 500 μm or less,
In order to improve the flat smoothness of the surface 2a, which is the element formation surface, the method of manufacturing the wafer 2 becomes a problem. In particular, a mirror polishing step close to the final step of wafer production becomes a problem. In the mirror polishing, the surface 2a of the wafer 2 is mirror-polished using a nonwoven fabric of polyurethane material and colloidal silica abrasive particles having a particle size of about 0.1 μm or less. Therefore, there is a possibility that the shape may be lost due to pressure non-uniformity, that is, the flatness of the wafer 2 may be reduced.

【0009】平坦度が劣るウエハ2を用いると、サブミ
クロン線幅を満たす弾性表面波素子1の特性と製造の障
害となる。例えば、図8の(a)に示すようにウエハ平
坦度が劣っていると、メタルストリップ電極3を形成す
るための露光工程で線幅等に分布が生じ、図8の(b)
に示すように周波数特性の改善、特に選択周波数に対す
る誤差Δが大きくなる虞があった。
The use of the wafer 2 having poor flatness impairs the characteristics and manufacturing of the surface acoustic wave device 1 satisfying the submicron line width. For example, if the wafer flatness is inferior as shown in FIG. 8A, a distribution occurs in the line width and the like in the exposure step for forming the metal strip electrode 3, and FIG.
As shown in (1), there is a possibility that the frequency characteristic is improved, and in particular, the error Δ with respect to the selected frequency becomes large.

【0010】一方、ウエハ2の材料としては一般的にタ
ンタル酸リチウム、ニオブ酸リチウム、水晶を用いてい
ることから、硬く、脆いという性質がある。このため、
ウエハ加工工程及び素子形成過程において衝撃や熱応力
が発生すると、ウエハ割れを起こし易いという問題があ
る。さらに、単結晶であることから、特にへき開方向へ
の衝撃と熱応力に対する強度が弱い。
On the other hand, since the material of the wafer 2 is generally made of lithium tantalate, lithium niobate, or quartz, it has the property of being hard and brittle. For this reason,
When an impact or thermal stress occurs in the wafer processing step and the element formation step, there is a problem that the wafer is easily cracked. Furthermore, since it is a single crystal, it has low strength particularly against impact in the cleavage direction and thermal stress.

【0011】そこで本発明は、ウエハの平坦度を向上さ
せることで、弾性表面波素子の特性を向上させることが
できる弾性表面波素子の製造方法を提供することを目的
としている。また、ウエハ強度を向上させることでウエ
ハの割れを防止し、製造歩留り向上を図ることができる
弾性表面波素子の製造方法を提供することを目的として
いる。
An object of the present invention is to provide a method of manufacturing a surface acoustic wave device that can improve the characteristics of the surface acoustic wave device by improving the flatness of the wafer. It is another object of the present invention to provide a method of manufacturing a surface acoustic wave device capable of preventing a crack of a wafer by improving a wafer strength and improving a manufacturing yield.

【0012】[0012]

【課題を解決するための手段】上記課題を解決し目的を
達成するために、本発明の弾性表面波素子の製造方法は
次のように構成されている。
Means for Solving the Problems In order to solve the above problems and achieve the object, a method for manufacturing a surface acoustic wave device according to the present invention is configured as follows.

【0013】(1)単結晶材料を切断しウエハを形成す
る切断工程と、上記ウエハの両面を所定の厚さまで研磨
する研磨工程と、上記ウエハ表面を研削する研削工程
と、上記ウエハ表面を鏡面研磨する鏡面研磨工程と、上
記ウエハ表面に素子を形成する素子形成工程とを具備す
ることを特徴とする。
(1) A cutting step of cutting a single crystal material to form a wafer, a polishing step of polishing both surfaces of the wafer to a predetermined thickness, a grinding step of grinding the wafer surface, and a mirror surface of the wafer surface The method includes a mirror polishing step for polishing and an element forming step for forming elements on the wafer surface.

【0014】(2)上記(1)に記載された弾性表面波
素子の製造方法であって、上記研削工程と上記鏡面研磨
工程との間に上記ウエハ周縁部を鏡面研磨する周縁部鏡
面研磨工程を具備することを特徴とする。
(2) The method for manufacturing a surface acoustic wave device according to (1), wherein a peripheral edge mirror polishing step of mirror polishing the peripheral edge of the wafer is provided between the grinding step and the mirror polishing step. It is characterized by having.

【0015】(3)単結晶材料を切断しウエハを形成す
る切断工程と、上記ウエハの両面を所定の厚さまで研磨
する研磨工程と、上記ウエハ両面を鏡面研磨する鏡面研
磨工程と、上記ウエハ裏面を所定の面粗さに研削する研
削工程と、上記ウエハ表面に素子を形成する素子形成工
程とを具備することを特徴とする。
(3) a cutting step of cutting a single crystal material to form a wafer; a polishing step of polishing both sides of the wafer to a predetermined thickness; a mirror polishing step of mirror polishing both sides of the wafer; And a device forming step of forming a device on the wafer surface.

【0016】(4)上記(3)に記載された弾性表面波
素子の製造方法であって、上記研磨工程と上記鏡面研磨
工程との間に上記ウエハ周縁部を鏡面研磨する周縁部鏡
面研磨工程を具備することを特徴とする。
(4) The method for manufacturing a surface acoustic wave device according to (3), wherein a peripheral edge mirror polishing step of mirror polishing the peripheral edge of the wafer is provided between the polishing step and the mirror polishing step. It is characterized by having.

【0017】(5)単結晶材料を切断しウエハを形成す
る切断工程と、上記ウエハの両面を所定の厚さまで研磨
する研磨工程と、上記ウエハ周縁部を鏡面研磨する周縁
部鏡面研磨工程と、上記ウエハ表面を鏡面研磨する鏡面
研磨工程と、上記ウエハ表面に素子を形成する素子形成
工程とを具備することを特徴とする。
(5) a cutting step of cutting a single crystal material to form a wafer, a polishing step of polishing both sides of the wafer to a predetermined thickness, and a mirror polishing step of mirror polishing the peripheral portion of the wafer; A mirror polishing step of mirror polishing the wafer surface; and an element forming step of forming elements on the wafer surface.

【0018】(6)単結晶材料を切断しウエハを形成す
る切断工程と、上記ウエハの両面を所定の厚さまで研磨
する研磨工程と、上記ウエハ周縁部を鏡面研磨する周縁
部鏡面研磨工程と、上記ウエハ表面を研削する研削工程
と、上記ウエハ表面を鏡面研磨する鏡面研磨工程と、上
記ウエハ表面に素子を形成する素子形成工程とを具備す
ることを特徴とする。
(6) a cutting step of cutting a single crystal material to form a wafer, a polishing step of polishing both surfaces of the wafer to a predetermined thickness, and a mirror polishing step of mirror polishing the peripheral portion of the wafer; A grinding step of grinding the wafer surface; a mirror polishing step of mirror polishing the wafer surface; and an element forming step of forming elements on the wafer surface.

【0019】(7)上記(1)〜(6)いずれかに記載
された弾性表面波素子の製造方法であって、上記単結晶
材料はタンタル酸リチウムであることを特徴とする。
(7) The method for manufacturing a surface acoustic wave device according to any one of the above (1) to (6), wherein the single crystal material is lithium tantalate.

【0020】(8)上記(1)〜(6)いずれかに記載
された弾性表面波素子の製造方法であって、上記単結晶
材料はニオブ酸リチウムであることを特徴とする。
(8) The method for manufacturing a surface acoustic wave device according to any one of (1) to (6), wherein the single crystal material is lithium niobate.

【0021】(9)上記(1)〜(6)いずれかに記載
された弾性表面波素子の製造方法であって、上記単結晶
材料は水晶であることを特徴とする。
(9) The method for manufacturing a surface acoustic wave device according to any one of (1) to (6), wherein the single crystal material is quartz.

【0022】[0022]

【発明の実施の形態】図1は本発明の第1の実施の形態
に係る弾性表面波素子10の製造工程を示す説明図であ
る。また、図2の(a)〜(c)は同弾性表面波素子1
0の製造に用いる加工装置20,30,40を示す図、
図3は同弾性表面波素子10の製造工程を示す説明図で
ある。図3の(a)は弾性表面波素子10を示す模式
図、図3の(b)はその周波数特性を示すグラフであ
る。
FIG. 1 is an explanatory view showing a manufacturing process of a surface acoustic wave device 10 according to a first embodiment of the present invention. 2A to 2C show the same surface acoustic wave device 1.
FIG. 2 is a view showing processing apparatuses 20, 30, and 40 used for manufacturing the first manufacturing apparatus;
FIG. 3 is an explanatory view showing a manufacturing process of the surface acoustic wave device 10. FIG. 3A is a schematic diagram illustrating the surface acoustic wave device 10, and FIG. 3B is a graph illustrating the frequency characteristics thereof.

【0023】弾性表面波素子10は、図3の(a)に示
すように例えば厚さ500μmのウエハ11を備えてい
る。ウエハ11の表面12は素子形成面であり、裏面1
3はバルク波の反射面である。ウエハ11の表面12に
は、メタルストリップ電極14が所定間隔で並設されて
いる。なお、図1中12a及び13aはウエハ11の周
縁部に設けられたテーパ面を示している。また、図3の
(a)中、αは外部からの電波・音波、βは弾性表面
波、γはバルク波、δは反射波を示している。
The surface acoustic wave device 10 includes a wafer 11 having a thickness of, for example, 500 μm as shown in FIG. The front surface 12 of the wafer 11 is an element formation surface, and the back surface 1
Reference numeral 3 denotes a bulk wave reflection surface. On the surface 12 of the wafer 11, metal strip electrodes 14 are juxtaposed at predetermined intervals. In FIG. 1, reference numerals 12a and 13a denote tapered surfaces provided on the peripheral portion of the wafer 11. In FIG. 3A, α indicates an external radio wave / sound wave, β indicates a surface acoustic wave, γ indicates a bulk wave, and δ indicates a reflected wave.

【0024】加工装置20は、図2の(a)に示すよう
に、エアスピンドル21と、このエアスピンドル21に
より回転駆動されるテーパ22°の加工面を有する砥石
22とを備えている。砥石22には、粒径1〜50μm
のダイヤモンダ砥粒を結合剤で固めたものを使用する。
As shown in FIG. 2A, the processing device 20 includes an air spindle 21 and a grindstone 22 having a 22 ° tapered processing surface driven to rotate by the air spindle 21. The grindstone 22 has a particle size of 1 to 50 μm.
Of diamond diamond particles hardened with a binder.

【0025】加工装置30は、図2の(b)に示すよう
に、ウエハ11を載置するとともに、100〜300r
pmの回転速度で回転する回転テーブル31と、この回
転テーブル31に対向配置された送り機構32と、この
送り機構32により0.1μmの精度で位置決めされる
エアスピンドル33と、このエアスピンドル33により
1000〜3000rpmで回転駆動される砥石34と
を備えている。砥石34は、直径200mmのアルミベ
ース35と、このアルミベース35に設けられた#36
0〜1500のダイヤ(粒径1〜50μm)やレジン・
メタルビトリファイド等の砥石36とから形成されてい
る。
As shown in FIG. 2B, the processing apparatus 30 places the wafer 11 thereon and
a rotary table 31 rotating at a rotation speed of pm, a feed mechanism 32 disposed opposite to the rotary table 31, an air spindle 33 positioned by the feed mechanism 32 with an accuracy of 0.1 μm, and an air spindle 33. A grindstone 34 that is driven to rotate at 1000 to 3000 rpm. The grindstone 34 has an aluminum base 35 having a diameter of 200 mm and a # 36 provided on the aluminum base 35.
0-1500 diamond (particle size 1-50 μm) and resin
It is formed from a grindstone 36 such as metal vitrified.

【0026】加工装置40は、図2の(c)に示すよう
に、エアスピンドル41と、このエアスピンドル41に
より回転駆動される定盤42と、この定盤42に取り付
けられた弾性体であるポリウレタン素材の不織布からな
るパッド43と、ウエハ11を支持する支持部44と、
支持部44を回転駆動するエアスピンドル45と、定盤
42上に粒径約0.1μm以下のコロイダルシリカ砥粒
を含む研磨液を供給する供給ノズル46とを備えてい
る。
The processing device 40 is, as shown in FIG. 2C, an air spindle 41, a surface plate 42 driven to rotate by the air spindle 41, and an elastic body attached to the surface plate 42. A pad 43 made of a nonwoven fabric of a polyurethane material, a support portion 44 for supporting the wafer 11,
An air spindle 45 that rotationally drives the support unit 44 and a supply nozzle 46 that supplies a polishing liquid containing colloidal silica abrasive grains having a particle size of about 0.1 μm or less onto the surface plate 42 are provided.

【0027】本第1の実施の形態においては、次のよう
な工程により弾性表面波素子の製造を行う。最初に、タ
ンタル酸リチウム、ニオブ酸リチウム、水晶等の単結晶
インゴットをワイヤーソーや内周刃ブレードを用いて板
状に切断し、図3の(a)に示すようにウエハ11を形
成する。次に加工装置20により、図3の(b)に示す
ようにウエハ11の周縁部を角度22°のテーパでベベ
ル研磨加工(面取り加工)を行う。
In the first embodiment, a surface acoustic wave device is manufactured by the following steps. First, a single crystal ingot such as lithium tantalate, lithium niobate, and quartz is cut into a plate shape using a wire saw or an inner peripheral blade, thereby forming a wafer 11 as shown in FIG. Next, as shown in FIG. 3B, the peripheral portion of the wafer 11 is subjected to bevel polishing (chamfering) with a taper of 22 ° by the processing apparatus 20.

【0028】次に研磨装置(不図示)により、上下に配
置した2個の剛体定盤でウエハ11を挟み込み、遊離砥
粒を供給しながらウエハ11を最終仕上げ厚さよりも1
0〜50μm厚くなるまで図1の(c)に示すように両
面研磨加工する。この段階で、ウエハ11に残っていた
うねりや反りが大方除去される。なお、裏面13は、両
面研磨加工で得られた粗さ(0.1〜2μmRa)が素
子形成まで残り、反射波δを弱めることで周波数特性へ
の影響を抑えることができる。
Next, the wafer 11 is sandwiched between two rigid platens arranged vertically by a polishing apparatus (not shown), and the wafer 11 is reduced by one from the final finished thickness while supplying loose abrasive grains.
As shown in FIG. 1C, both sides are polished until the thickness becomes 0 to 50 μm. At this stage, the undulation and warpage remaining on the wafer 11 are largely removed. On the back surface 13, the roughness (0.1 to 2 μmRa) obtained by the double-side polishing processing remains until element formation, and the influence on the frequency characteristics can be suppressed by weakening the reflected wave δ.

【0029】次に加工装置30により、ウエハ11の表
面12を図1の(d)に示すように研削加工する。砥石
34でウエハ11を削り込むことになるので、ウエハ1
1に過負荷が発生しないような切り込み速度、ウエハと
砥石の接線擦過速度を与えながら、研削液を供給しなが
ら加工していく。例えば、切り込み速度0.05〜10
μm/s、ウエハ11と砥石の接線擦過速度10〜20
0m/sの条件範囲とする。なお、ウエハ11の形状
は、回転テーブル31のウエハチャック面の平面度と砥
石の送り精度と位置精度で決まり、平坦度1μmTTV
以下で仕上げることができる。さらに、ウエハ11に対
する負荷を小さくする加工なので、ラップ加工等と比較
して加工面の深さ方向へのクラック層、歪層の発生が極
めて小さい。
Next, the surface 12 of the wafer 11 is ground by the processing device 30 as shown in FIG. Since the wafer 11 is cut by the grindstone 34, the wafer 1
Processing is performed while supplying a grinding fluid while giving a cutting speed and a tangential rubbing speed between the wafer and the grinding wheel so as not to generate an overload on 1. For example, a cutting speed of 0.05 to 10
μm / s, tangential rubbing speed between the wafer 11 and the grindstone 10 to 20
The condition range is 0 m / s. Note that the shape of the wafer 11 is determined by the flatness of the wafer chuck surface of the rotary table 31, the feed accuracy and the positional accuracy of the grindstone, and the flatness is 1 μm.
You can finish with: Furthermore, since the load on the wafer 11 is reduced, generation of crack layers and strain layers in the depth direction of the processed surface is extremely small as compared with lapping or the like.

【0030】次に加工装置40により、図1の(e)に
示すようにウエハ11の表面12を鏡面研磨加工を行い
鏡面を得る。鏡面研磨加工は、表面12をパッド43及
び研磨液を用いて鏡面研磨する。鏡面研磨加工は、加工
面に弾性体を押し付け加圧して行う加工方法であるた
め、圧力の不均一性に起因した形状崩れ、すなわち鏡面
研磨加工の除去量に相応したウエハ11の平坦度低下を
招く虞がある。しかしながら、上述した研削加工を用い
たことにより加工面の深さ方向のクラック層、歪層の発
生量が小さいので、鏡面研磨加工での削り量を最小化す
ることができる。すなわち、ウエハ平坦度を向上させる
ことができる。
Next, as shown in FIG. 1E, the surface 12 of the wafer 11 is mirror-polished by the processing device 40 to obtain a mirror surface. In the mirror polishing, the surface 12 is mirror-polished using the pad 43 and a polishing liquid. Mirror polishing is a processing method in which an elastic body is pressed against a processing surface by pressing, so that the shape collapse due to non-uniform pressure, that is, the flatness of the wafer 11 corresponding to the removal amount of the mirror polishing is reduced. There is a possibility of inviting. However, since the amount of crack layers and strain layers generated in the depth direction of the processed surface is small due to the use of the above-described grinding, the amount of shaving in mirror polishing can be minimized. That is, the wafer flatness can be improved.

【0031】具体的には、従来の研磨加工後の鏡面研磨
除去必要量は10〜25μmであったのに対して、本実
施の形態における研削加工後の鏡面研磨除去必要量は3
〜10μmと少なくすることができる。したがって、鏡
面研磨加工における形状崩れが10%の場合、削り量1
0〜25μmにおいては1.0〜2.5μmの平坦度低
下が生じるが、本実施の形態における削り量は3〜10
μmとなり、0.3〜1.0μmの平坦度低下に抑止で
きる。
More specifically, the required amount of mirror polishing after the conventional polishing is 10 to 25 μm, whereas the required amount of mirror polishing after the grinding in the present embodiment is 3 to 25 μm.
〜1010 μm. Therefore, when the shape collapse in the mirror polishing is 10%, the shaving amount is 1
At 0 to 25 μm, the flatness decreases by 1.0 to 2.5 μm, but the shaving amount in the present embodiment is 3 to 10 μm.
μm, which can be suppressed to a decrease in flatness of 0.3 to 1.0 μm.

【0032】次に、ウエハW上に残留する加工砥粒や異
物を洗浄除去した後、素子形成工程においてウエハ11
の表面12に図1の(f)に示すようにメタルストリッ
プ電極14を形成する。電波・音波を励起させるための
メタルストリップ電極14は、半導体素子と同様に、レ
ジスト塗布、露光、現像、エッチング、レジスト除去と
いった工程によって形成する。
Next, after processing abrasive grains and foreign matters remaining on the wafer W are removed by washing, the wafer 11 is removed in an element forming step.
A metal strip electrode 14 is formed on the surface 12 as shown in FIG. The metal strip electrode 14 for exciting radio waves and sound waves is formed by processes such as resist application, exposure, development, etching, and resist removal, similarly to the semiconductor element.

【0033】上述したように本第1の実施の形態に係る
弾性表面波素子の製造方法によれば、研磨加工に比べて
加工ダメージの小さい研削加工を用い、より目的の厚さ
までウエハ11を削るようにしているので、鏡面研磨除
去量を最小限に抑えることができ、ウエハ11の平坦度
の低下を防止できる。このため、素子形成工程におい
て、平行平滑なウエハ11を用いることができ、線幅が
微細で、かつ、分布が小さいメタルストリップ電極14
が形成できる。したがって、図3の(b)に示すように
弾性表面波素子10の周波数特性の改善、特に選択周波
数に対する誤差Δを小さくすることが可能である。ま
た、ウエハ11の裏面13には研磨加工における面粗さ
が残っているため、反射波δの発生を最小限に抑えるこ
とができる。
As described above, according to the method of manufacturing the surface acoustic wave device according to the first embodiment, the wafer 11 is ground to a more desired thickness by using the grinding process in which the processing damage is smaller than the polishing process. As a result, the amount of mirror polishing removal can be minimized, and a decrease in the flatness of the wafer 11 can be prevented. For this reason, in the element forming process, the parallel and smooth wafer 11 can be used, and the metal strip electrode 14 having a fine line width and a small distribution can be used.
Can be formed. Therefore, as shown in FIG. 3B, it is possible to improve the frequency characteristics of the surface acoustic wave element 10, and particularly to reduce the error Δ with respect to the selected frequency. In addition, since the back surface 13 of the wafer 11 still has surface roughness due to polishing, generation of the reflected wave δ can be minimized.

【0034】図4は本発明の第2の実施の形態に係る弾
性表面波素子の製造工程を示す図、図5の(a),
(b)は同弾性表面波素子の製造に用いる加工装置5
0,60を示す図である。図4において、図1と同一機
能部分には同一符号を付し、その詳細な説明は省略す
る。
FIG. 4 is a view showing a manufacturing process of a surface acoustic wave device according to a second embodiment of the present invention.
(B) Processing device 5 used for manufacturing the same surface acoustic wave element
FIG. 4, the same functional portions as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0035】加工装置50は図5の(a)に示すよう
に、砥石51を備え、テーパ面12a,13aを鏡面研
磨することができる。なお、図中θはテーパ面12a,
13aの角度と一致する角度である。また、加工装置6
0は図5の(b)に示すようにラッピングテープ61を
備え、テーパ面12a,13aを鏡面研磨することがで
きる。
As shown in FIG. 5A, the processing apparatus 50 includes a grindstone 51 and can mirror-polish the tapered surfaces 12a and 13a. In the figure, θ is the tapered surface 12a,
The angle matches the angle of 13a. Processing device 6
No. 0 is provided with a wrapping tape 61 as shown in FIG. 5B, and the tapered surfaces 12a and 13a can be mirror-polished.

【0036】本第2の実施の形態に係る弾性表面波素子
の製造方法においては、上述した第1の実施の形態と同
様に、図4の(a)〜(d)に示すように、切断加工、
ベベル研磨加工、両面研磨加工、研削加工を行う。その
後、図4の(e)に示すように、テーパ面12a,13
aのベベル鏡面研磨を行い、図4の(f)に示すよう
に、ウエハ11の表面12の鏡面研磨を行うようにして
いる。テーパ面12a,13aを鏡面研磨することで、
テーパ面12a,13aを鏡面研磨しない場合と比べ
て、テーパ面12a,13aにおけるクラックが低滅す
る。特に、弾性表面波素子用で硬脆性の単結晶材料であ
る、タンタル酸リチウム、ニオブ酸リチウム、水晶等に
対して効果がある。
In the method of manufacturing a surface acoustic wave device according to the second embodiment, as shown in FIGS. 4 (a) to 4 (d), similar to the first embodiment, processing,
Performs bevel polishing, double-side polishing, and grinding. Thereafter, as shown in FIG. 4E, the tapered surfaces 12a, 13
The bevel mirror polishing of a is performed, and the mirror polishing of the surface 12 of the wafer 11 is performed as shown in FIG. By mirror-polishing the tapered surfaces 12a and 13a,
Cracks on the tapered surfaces 12a and 13a are reduced as compared with the case where the tapered surfaces 12a and 13a are not mirror-polished. In particular, it is effective for hard and brittle single crystal materials for surface acoustic wave devices, such as lithium tantalate, lithium niobate, and quartz.

【0037】本第2の実施の形態に係る弾性表面波素子
の製造方法においては、上述した第1の実施の形態と同
様の効果が得られるとともにこのため、衝撃や熱応力が
加わったときの硬脆性材料に特有の割れを抑止できるよ
うになり、歩留まりを向上させることができる。
In the method of manufacturing the surface acoustic wave device according to the second embodiment, the same effects as those of the above-described first embodiment can be obtained, and therefore, when an impact or thermal stress is applied. Cracks peculiar to hard and brittle materials can be suppressed, and the yield can be improved.

【0038】図6は本発明の第3の実施の形態に係る弾
性表面波素子の製造方法を示す図である。図4におい
て、図1と同一機能部分には同一符号を付し、その詳細
な説明は省略する。
FIG. 6 is a view showing a method of manufacturing a surface acoustic wave device according to a third embodiment of the present invention. 4, the same functional portions as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0039】上述した第1の実施の形態と同様にして図
6の(a)に示すように切断加工、図6の(b)に示す
ようにベベル研磨加工、図6の(c)に示すように両面
研磨加工を行う。次に、図6の(d)に示すようにウエ
ハ11の表面12及び裏面13の両面鏡面研磨を行う。
両面鏡面研磨は、上下に配置した2個の剛体定盤にポリ
ウレタン素材の不織布を貼ってウエハを挟み込み、粒径
約0.1μmのコロイダルシリカ砥粒を供給しながらウ
エハ11の両面を同時に鏡面加工する。ウエハ11を加
圧する基準面が運動しているので、平均効果により均一
な加圧が行える。したがって、片面のみを鏡面研磨する
場合に比べて形状崩れが小さく、より平坦平滑なウエハ
が得られる。
6 (a), bevel polishing as shown in FIG. 6 (b), and FIG. 6 (c) in the same manner as in the first embodiment. Polishing is performed as described above. Next, as shown in FIG. 6D, the front surface 12 and the back surface 13 of the wafer 11 are mirror-polished on both sides.
Double-sided mirror polishing is a method in which a nonwoven fabric of a polyurethane material is stuck on two rigid bases arranged vertically, the wafer is sandwiched, and both sides of the wafer 11 are simultaneously mirror-polished while supplying colloidal silica abrasive grains having a particle size of about 0.1 μm. I do. Since the reference surface for pressing the wafer 11 is moving, uniform pressing can be performed by the averaging effect. Therefore, compared with the case where only one side is mirror-polished, the shape collapse is small and a flatter and smoother wafer can be obtained.

【0040】次に、図6の(e)に示すように所定の面
粗さとなるようにウエハ11の裏面13を加工装置30
により研削加工する。加工装置30の条件範囲は第1の
実施の形態と同様である。なお、面粗さは反射波δによ
る周波数特性への影響を防止できる程度のものとする。
Next, as shown in FIG. 6E, the back surface 13 of the wafer 11 is
Grinding. The condition range of the processing device 30 is the same as that of the first embodiment. The surface roughness is set to such an extent that the influence of the reflected wave δ on the frequency characteristics can be prevented.

【0041】次に、加工砥粒や異物を洗浄除去した後、
図6の(f)に示すように、ウエハ11の表面12に電
極14を形成し、弾性表面波素子10を完成する。
Next, after washing and removing the processing abrasive grains and foreign matters,
As shown in FIG. 6F, the electrodes 14 are formed on the surface 12 of the wafer 11, and the surface acoustic wave device 10 is completed.

【0042】本第3の実施の形態に係る弾性表面波素子
の製造方法においても、上述した第1の実施の形態と同
様の効果を得ることができる。
In the method of manufacturing the surface acoustic wave device according to the third embodiment, the same effects as those of the first embodiment can be obtained.

【0043】図4は本発明の第4の実施の形態に係る弾
性表面波の製造方法を示す図である。図4において、図
3と同一機能部分には同一符号を付し、その詳細な説明
は省略する。
FIG. 4 is a view showing a method of manufacturing a surface acoustic wave according to a fourth embodiment of the present invention. 4, the same reference numerals are given to the same functional portions as those in FIG. 3, and the detailed description thereof will be omitted.

【0044】本第4の実施の形態に係る弾性表面波素子
の製造方法においては、上述した第3の実施の形態と同
様に、図7の(a)〜(c)に示すウエハ11の切断加
工、ベベル研磨加工、両面の研磨加工を行う。その後に
図7の(d)に示すようにテーパ面12a,13aのベ
ベル鏡面研磨を行い、その後に図7の(e)に示すよう
にウエハ11の表面12及び裏面13の両面鏡面研磨加
工を行うようにしている。
In the method of manufacturing a surface acoustic wave device according to the fourth embodiment, similarly to the above-described third embodiment, the cutting of the wafer 11 shown in FIGS. Processing, bevel polishing, polishing on both sides. Thereafter, as shown in FIG. 7D, the beveled mirror surfaces of the tapered surfaces 12a and 13a are polished, and thereafter, as shown in FIG. I'm trying to do it.

【0045】テーパ面12a,13aを鏡面研磨するこ
とで、テーパ面12a,13aを鏡面研磨しない場合と
比べて、テーパ面12a,13aにおけるクラックが低
滅する。このため、衝撃や熱応力が加わったときの硬脆
性材料に特有の割れを抑止できるようになり、歩留まり
を向上させることができる。
By mirror-polishing the tapered surfaces 12a and 13a, cracks on the tapered surfaces 12a and 13a are reduced as compared with the case where the tapered surfaces 12a and 13a are not mirror-polished. For this reason, cracks peculiar to the hard brittle material when an impact or thermal stress is applied can be suppressed, and the yield can be improved.

【0046】その後、図7の(f)に示すように裏面1
3の研削加工、図7の(g)に示すように素子形成を行
う。
Thereafter, as shown in FIG.
Grinding process 3 and element formation are performed as shown in FIG.

【0047】本第4の実施の形態に係る弾性表面波素子
の製造方法においては、上述した第3の実施の形態と同
様の効果が得られるとともにこのため、衝撃や熱応力が
加わったときの硬脆性材料に特有の割れを抑止できるよ
うになり、歩留まりを向上させることができる。
In the method of manufacturing a surface acoustic wave device according to the fourth embodiment, the same effects as those of the above-described third embodiment can be obtained, and therefore, when a shock or thermal stress is applied. Cracks peculiar to hard and brittle materials can be suppressed, and the yield can be improved.

【0048】なお、本発明は前記実施の形態に限定され
るものではなく、本発明の要旨を逸脱しない範囲で種々
変形実施可能であるのは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

【0049】[0049]

【発明の効果】本発明によれば、ウエハの平坦度を向上
させることで、弾性表面波素子の特性を向上させること
ができる。また、ウエハ強度を向上させることでウエハ
の割れを防止し、製造歩留り向上を図ることができる。
According to the present invention, the characteristics of the surface acoustic wave element can be improved by improving the flatness of the wafer. Further, by improving the wafer strength, cracking of the wafer can be prevented, and the production yield can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る弾性表面波素
子の製造方法を示す工程図。
FIG. 1 is a process chart showing a method for manufacturing a surface acoustic wave device according to a first embodiment of the present invention.

【図2】同製造方法に用いる加工装置を示す図。FIG. 2 is a view showing a processing apparatus used in the manufacturing method.

【図3】(a)は同製造方法により製造された弾性表面
波素子の模式図、(b)は同弾性表面波素子の周波数特
性を示すグラフ。
FIG. 3A is a schematic diagram of a surface acoustic wave device manufactured by the same manufacturing method, and FIG. 3B is a graph showing frequency characteristics of the surface acoustic wave device.

【図4】本発明の第2の実施の形態に係る弾性表面波素
子の製造方法を示す工程図。
FIG. 4 is a process chart showing a method for manufacturing a surface acoustic wave device according to a second embodiment of the present invention.

【図5】同製造方法に用いる加工装置を示す図。FIG. 5 is a view showing a processing apparatus used in the manufacturing method.

【図6】本発明の第3の実施の形態に係る弾性表面波素
子の製造方法を示す工程図。
FIG. 6 is a process chart showing a method for manufacturing a surface acoustic wave device according to a third embodiment of the present invention.

【図7】本発明の第4の実施の形態に係る弾性表面波素
子の製造方法を示す工程図。
FIG. 7 is a process chart showing a method for manufacturing a surface acoustic wave device according to a fourth embodiment of the present invention.

【図8】(a)は従来の製造方法により製造された弾性
表面波素子の模式図、(b)は同弾性表面波素子の周波
数特性を示すグラフ。
FIG. 8A is a schematic diagram of a surface acoustic wave device manufactured by a conventional manufacturing method, and FIG. 8B is a graph showing frequency characteristics of the surface acoustic wave device.

【図9】従来の弾性表面波素子の製造方法の一例を示す
工程図。
FIG. 9 is a process chart showing an example of a conventional method for manufacturing a surface acoustic wave element.

【図10】従来の弾性表面波素子の製造方法の別の例を
示す工程図。
FIG. 10 is a process chart showing another example of a conventional method for manufacturing a surface acoustic wave element.

【符号の説明】[Explanation of symbols]

10…弾性表面波素子 11…ウエハ 12…表面 13…裏面 14…メタルストリップ電極(素子) 20,30,40…加工装置 DESCRIPTION OF SYMBOLS 10 ... Surface acoustic wave element 11 ... Wafer 12 ... Front surface 13 ... Back surface 14 ... Metal strip electrode (element) 20, 30, 40 ... Processing apparatus

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】単結晶材料を切断しウエハを形成する切断
工程と、 上記ウエハの両面を所定の厚さまで研磨する研磨工程
と、 上記ウエハ表面を研削する研削工程と、 上記ウエハ表面を鏡面研磨する鏡面研磨工程と、 上記ウエハ表面に素子を形成する素子形成工程とを具備
することを特徴とする弾性表面波素子の製造方法。
A cutting step of cutting a single crystal material to form a wafer; a polishing step of polishing both surfaces of the wafer to a predetermined thickness; a grinding step of grinding the wafer surface; and a mirror polishing of the wafer surface. A method of manufacturing a surface acoustic wave device, comprising: a mirror polishing step of forming a mirror surface; and an element forming step of forming an element on the surface of the wafer.
【請求項2】上記研削工程と上記鏡面研磨工程との間に
上記ウエハ周縁部を鏡面研磨する周縁部鏡面研磨工程を
具備することを特徴とする請求項1に記載の弾性表面波
素子の製造方法。
2. The surface acoustic wave device according to claim 1, further comprising a peripheral mirror polishing step of mirror polishing the peripheral portion of the wafer between the grinding step and the mirror polishing step. Method.
【請求項3】単結晶材料を切断しウエハを形成する切断
工程と、 上記ウエハの両面を所定の厚さまで研磨する研磨工程
と、 上記ウエハ両面を鏡面研磨する鏡面研磨工程と、 上記ウエハ裏面を所定の面粗さに研削する研削工程と、 上記ウエハ表面に素子を形成する素子形成工程とを具備
することを特徴とする弾性表面波素子の製造方法。
3. A cutting step of cutting a single crystal material to form a wafer; a polishing step of polishing both sides of the wafer to a predetermined thickness; a mirror polishing step of mirror polishing both sides of the wafer; A method for manufacturing a surface acoustic wave device, comprising: a grinding step of grinding to a predetermined surface roughness; and an element forming step of forming an element on the wafer surface.
【請求項4】上記研磨工程と上記鏡面研磨工程との間に
上記ウエハ周縁部を鏡面研磨する周縁部鏡面研磨工程を
具備することを特徴とする請求項3に記載の弾性表面波
素子の製造方法。
4. The surface acoustic wave device according to claim 3, further comprising a peripheral edge mirror polishing step of mirror polishing the peripheral edge of the wafer between the polishing step and the mirror polishing step. Method.
【請求項5】単結晶材料を切断しウエハを形成する切断
工程と、 上記ウエハの両面を所定の厚さまで研磨する研磨工程
と、 上記ウエハ周縁部を鏡面研磨する周縁部鏡面研磨工程
と、 上記ウエハ表面を鏡面研磨する鏡面研磨工程と、 上記ウエハ表面に素子を形成する素子形成工程とを具備
することを特徴とする弾性表面波素子の製造方法。
5. A cutting step of cutting a single crystal material to form a wafer; a polishing step of polishing both surfaces of the wafer to a predetermined thickness; a mirror polishing step of mirror polishing a peripheral portion of the wafer; A method for manufacturing a surface acoustic wave device, comprising: a mirror polishing step of mirror polishing a wafer surface; and an element forming step of forming an element on the wafer surface.
【請求項6】単結晶材料を切断しウエハを形成する切断
工程と、 上記ウエハの両面を所定の厚さまで研磨する研磨工程
と、 上記ウエハ周縁部を鏡面研磨する周縁部鏡面研磨工程
と、 上記ウエハ表面を研削する研削工程と、 上記ウエハ表面を鏡面研磨する鏡面研磨工程と、 上記ウエハ表面に素子を形成する素子形成工程とを具備
することを特徴とする弾性表面波素子の製造方法。
6. A cutting step of cutting a single crystal material to form a wafer; a polishing step of polishing both surfaces of the wafer to a predetermined thickness; a mirror polishing step of mirror polishing a peripheral portion of the wafer; A method for manufacturing a surface acoustic wave device, comprising: a grinding step of grinding a wafer surface; a mirror polishing step of mirror polishing the wafer surface; and an element forming step of forming an element on the wafer surface.
【請求項7】上記単結晶材料はタンタル酸リチウムであ
ることを特徴とする請求項1乃至6のいずれか記載の弾
性表面波素子の製造方法。
7. The method according to claim 1, wherein the single crystal material is lithium tantalate.
【請求項8】上記単結晶材料はニオブ酸リチウムである
ことを特徴とする請求項1乃至6のいずれか記載の弾性
表面波素子の製造方法。
8. The method according to claim 1, wherein the single crystal material is lithium niobate.
【請求項9】上記単結晶材料は水晶であることを特徴と
する請求項1乃至6のいずれか記載の弾性表面波素子の
製造方法。
9. The method for manufacturing a surface acoustic wave device according to claim 1, wherein said single crystal material is quartz.
JP2000148394A 2000-05-19 2000-05-19 Method for manufacturing surface acoustic wave element Pending JP2001332949A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000148394A JP2001332949A (en) 2000-05-19 2000-05-19 Method for manufacturing surface acoustic wave element
KR10-2001-0026975A KR100453083B1 (en) 2000-05-19 2001-05-17 A method for manufacturing surface acoustic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148394A JP2001332949A (en) 2000-05-19 2000-05-19 Method for manufacturing surface acoustic wave element

Publications (2)

Publication Number Publication Date
JP2001332949A true JP2001332949A (en) 2001-11-30
JP2001332949A5 JP2001332949A5 (en) 2007-08-16

Family

ID=18654433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148394A Pending JP2001332949A (en) 2000-05-19 2000-05-19 Method for manufacturing surface acoustic wave element

Country Status (2)

Country Link
JP (1) JP2001332949A (en)
KR (1) KR100453083B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017983A (en) * 2001-06-28 2003-01-17 Kyocera Corp Wafer for elastic wave and elastic wave device employing the same
JP2008118558A (en) * 2006-11-07 2008-05-22 Shin Etsu Chem Co Ltd Manufacturing method of surface acoustic wave element
JP2012135854A (en) * 2010-12-28 2012-07-19 Disco Corp Method for grinding lithium tantalate
WO2014148648A1 (en) * 2013-03-21 2014-09-25 日本碍子株式会社 Composite substrate for elastic wave element and elastic wave element
JP2015062958A (en) * 2013-09-24 2015-04-09 株式会社ディスコ Dividing method for lithium tantalate wafer
JP2018042209A (en) * 2016-09-09 2018-03-15 株式会社ディスコ Manufacturing method for surface elastic wave device chip
KR20190000308A (en) 2017-06-22 2019-01-02 가부시기가이샤 디스코 Method for processing a workpiece
WO2020040203A1 (en) * 2018-08-21 2020-02-27 京セラ株式会社 Substrate for surface acoustic wave element, and method for manufacturing said substrate
CN112152588A (en) * 2020-09-25 2020-12-29 福建晶安光电有限公司 Surface acoustic wave filter and method for processing wafer for surface acoustic wave filter

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947822A (en) * 1982-09-10 1984-03-17 Sumitomo Metal Mining Co Ltd Manufacture of substrate for surface acoustic wave
JPH06310479A (en) * 1993-04-26 1994-11-04 Katsuyo Tawara Chamber polishing and mirror polishing of planar work
JPH076984A (en) * 1993-06-18 1995-01-10 Toshiba Corp Manufacture of single crystal wafer
JPH07264001A (en) * 1994-03-25 1995-10-13 Ngk Insulators Ltd Surface acoustic wave filter device
JPH09270396A (en) * 1996-03-29 1997-10-14 Komatsu Electron Metals Co Ltd Method of manufacturing semiconductor wafer
JPH1131670A (en) * 1997-07-10 1999-02-02 Sumitomo Metal Ind Ltd Manufacture of semiconductor substrate
JPH11219923A (en) * 1998-02-03 1999-08-10 Hitachi Ltd Semiconductor wafer and manufacture of the same, and manufacture of semiconductor device
JPH11284469A (en) * 1998-03-31 1999-10-15 Toshiba Corp Production of surface acoustic wave substrate
JP2000082931A (en) * 1998-09-07 2000-03-21 Fujitsu Ltd Piezoelectric single crystal wafer, its manufacture and surface acoustic wave device
JP2000091279A (en) * 1998-09-09 2000-03-31 Shin Etsu Handotai Co Ltd Semiconductor substrate to be mirror surface polished and manufacture of semiconductor substrate
JP2000138192A (en) * 1998-08-28 2000-05-16 Kobe Precision Inc Regenerating method of semiconductor wafer and abrasive fluid therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970051957A (en) * 1995-12-26 1997-07-29 이형도 Processing method of single crystal wafer
JP3658454B2 (en) * 1996-03-29 2005-06-08 コマツ電子金属株式会社 Manufacturing method of semiconductor wafer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947822A (en) * 1982-09-10 1984-03-17 Sumitomo Metal Mining Co Ltd Manufacture of substrate for surface acoustic wave
JPH06310479A (en) * 1993-04-26 1994-11-04 Katsuyo Tawara Chamber polishing and mirror polishing of planar work
JPH076984A (en) * 1993-06-18 1995-01-10 Toshiba Corp Manufacture of single crystal wafer
JPH07264001A (en) * 1994-03-25 1995-10-13 Ngk Insulators Ltd Surface acoustic wave filter device
JPH09270396A (en) * 1996-03-29 1997-10-14 Komatsu Electron Metals Co Ltd Method of manufacturing semiconductor wafer
JPH1131670A (en) * 1997-07-10 1999-02-02 Sumitomo Metal Ind Ltd Manufacture of semiconductor substrate
JPH11219923A (en) * 1998-02-03 1999-08-10 Hitachi Ltd Semiconductor wafer and manufacture of the same, and manufacture of semiconductor device
JPH11284469A (en) * 1998-03-31 1999-10-15 Toshiba Corp Production of surface acoustic wave substrate
JP2000138192A (en) * 1998-08-28 2000-05-16 Kobe Precision Inc Regenerating method of semiconductor wafer and abrasive fluid therefor
JP2000082931A (en) * 1998-09-07 2000-03-21 Fujitsu Ltd Piezoelectric single crystal wafer, its manufacture and surface acoustic wave device
JP2000091279A (en) * 1998-09-09 2000-03-31 Shin Etsu Handotai Co Ltd Semiconductor substrate to be mirror surface polished and manufacture of semiconductor substrate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017983A (en) * 2001-06-28 2003-01-17 Kyocera Corp Wafer for elastic wave and elastic wave device employing the same
JP2008118558A (en) * 2006-11-07 2008-05-22 Shin Etsu Chem Co Ltd Manufacturing method of surface acoustic wave element
JP2012135854A (en) * 2010-12-28 2012-07-19 Disco Corp Method for grinding lithium tantalate
CN105164919A (en) * 2013-03-21 2015-12-16 日本碍子株式会社 Composite substrate for elastic wave element and elastic wave element
JP5668179B1 (en) * 2013-03-21 2015-02-12 日本碍子株式会社 Composite substrate for acoustic wave device and acoustic wave device
WO2014148648A1 (en) * 2013-03-21 2014-09-25 日本碍子株式会社 Composite substrate for elastic wave element and elastic wave element
US9438201B2 (en) 2013-03-21 2016-09-06 Ngk Insulators, Ltd. Composite substrates for acoustic wave elements, and acoustic wave elements
JP2015062958A (en) * 2013-09-24 2015-04-09 株式会社ディスコ Dividing method for lithium tantalate wafer
JP2018042209A (en) * 2016-09-09 2018-03-15 株式会社ディスコ Manufacturing method for surface elastic wave device chip
KR20190000308A (en) 2017-06-22 2019-01-02 가부시기가이샤 디스코 Method for processing a workpiece
WO2020040203A1 (en) * 2018-08-21 2020-02-27 京セラ株式会社 Substrate for surface acoustic wave element, and method for manufacturing said substrate
JPWO2020040203A1 (en) * 2018-08-21 2021-09-02 京セラ株式会社 Substrate for surface acoustic wave element and its manufacturing method
JP7019052B2 (en) 2018-08-21 2022-02-14 京セラ株式会社 Substrate for surface acoustic wave element and its manufacturing method
CN112152588A (en) * 2020-09-25 2020-12-29 福建晶安光电有限公司 Surface acoustic wave filter and method for processing wafer for surface acoustic wave filter
CN112152588B (en) * 2020-09-25 2024-01-30 福建晶安光电有限公司 Surface acoustic wave filter and method for processing wafer for surface acoustic wave filter

Also Published As

Publication number Publication date
KR20010105249A (en) 2001-11-28
KR100453083B1 (en) 2004-10-15

Similar Documents

Publication Publication Date Title
JP5384313B2 (en) Composite substrate manufacturing method and composite substrate
JP5591240B2 (en) Composite substrate and manufacturing method thereof
TWI424484B (en) Wafer grinding method and wafer
JP5363092B2 (en) Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter
JP2000031099A (en) Fabrication of semiconductor wafer
JP2001332949A (en) Method for manufacturing surface acoustic wave element
JP2000114216A (en) Manufacture of semiconductor wafer
JP2011135535A (en) Composite substrate, and method for manufacturing the same
JP5871282B2 (en) A method for producing a piezoelectric oxide single crystal wafer.
JP2007260793A (en) Wafer substrate polishing method and wafer made of piezoelectric single crystal
JPH11309665A (en) Manufacture of oxide single crystal substrate
US10826456B2 (en) Method of manufacturing surface acoustic wave device chips
JPH11189500A (en) Production of oxide single crystal substrate
JP2021034629A (en) Piezoelectric substrate, manufacturing method thereof, and composite substrate
JP3286020B2 (en) Manufacturing method of single crystal wafer
JP2013220516A (en) Wafer substrate and method of manufacturing the same
JP2022100895A (en) Edge polishing method for piezoelectric oxide single crystal wafer, and manufacturing method for piezoelectric oxide single crystal wafer
JPH09213593A (en) Bonded substrate and manufacture thereof
JPH11284469A (en) Production of surface acoustic wave substrate
JP2002111420A (en) Wafer for elastic surface wave device and its manufacturing method
JP2005034926A (en) Polishing method of wafer substrate, and wafer
JP2002079457A (en) Method of manufacturing thin plate, piezo-electric plate, and piezo-electric vibrator
JPH03114310A (en) Substrate for surface acoustic wave filter and manufacture thereof
JP2008118558A (en) Manufacturing method of surface acoustic wave element
JP2022178554A (en) Method for manufacturing rough surface piezoelectric substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824