JP2003017983A - Wafer for elastic wave and elastic wave device employing the same - Google Patents

Wafer for elastic wave and elastic wave device employing the same

Info

Publication number
JP2003017983A
JP2003017983A JP2001197123A JP2001197123A JP2003017983A JP 2003017983 A JP2003017983 A JP 2003017983A JP 2001197123 A JP2001197123 A JP 2001197123A JP 2001197123 A JP2001197123 A JP 2001197123A JP 2003017983 A JP2003017983 A JP 2003017983A
Authority
JP
Japan
Prior art keywords
wafer
elastic wave
wave device
less
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001197123A
Other languages
Japanese (ja)
Inventor
Shin Murakami
慎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001197123A priority Critical patent/JP2003017983A/en
Publication of JP2003017983A publication Critical patent/JP2003017983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wafer for elastic waves that manufactures elastic wave devices with excellent yield by preventing the wafer from being cracked to the utmost in processes until exciting electrodes are formed even in the case of an LT(Lithium Tantalate) wafer of 0.3 mm or less in thickness and providing a stable exposure condition and to provide the elastic wave device employing the wafer. SOLUTION: This invention provides the wafer for elastic wave devices to form the exciting electrode for stimulating an elastic wave on one major side of the wafer comprising lithium tantalate single crystal and the wafer is characterized in that the arithmetic mean roughness (Ra) of the other major side of the wafer is less than 0.6 micron and a bent of the other major side is 10 μm-40 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気信号を濾波し
たり、基準信号を発生させる等の弾性波装置に好適に使
用可能な弾性波装置用ウエハ及びそれを用いた弾性波装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an elastic wave device wafer which can be suitably used for an elastic wave device such as filtering an electric signal or generating a reference signal, and an elastic wave device using the same.

【0002】[0002]

【発明の背景】従来、弾性波装置として代表的な弾性表
面波フィルタは、圧電体基板の表面に互いに交差させた
1対の櫛状電極から成る励振電極を1以上設け、この励
振電極の形状を変化させることにより、任意のフィルタ
特性や共振特性が得られるので、電子機器に広く応用さ
れている。また、近年の携帯電話等に代表される通信機
器や情報機器市場の拡大により、弾性表面波装置の需要
が大きく増加している。特に、弾性表面波装置用の圧電
基板として電気機械結合係数や温度特性に優れたタンタ
ル酸リチウム単結晶(以下、LTという)ウエハが広く
利用されている。
BACKGROUND OF THE INVENTION Conventionally, a surface acoustic wave filter as a typical acoustic wave device is provided with at least one excitation electrode composed of a pair of comb-shaped electrodes intersecting each other on the surface of a piezoelectric substrate, and the shape of the excitation electrode. Since a desired filter characteristic or resonance characteristic can be obtained by changing the value of, it is widely applied to electronic devices. In addition, the demand for surface acoustic wave devices has greatly increased due to the expansion of the market of communication devices and information devices typified by mobile phones in recent years. Particularly, as a piezoelectric substrate for a surface acoustic wave device, a lithium tantalate single crystal (hereinafter referred to as LT) wafer having excellent electromechanical coupling coefficient and temperature characteristics is widely used.

【0003】この種の弾性表面波装置の作製において、
ウエハ上に電極を形成するまでのプロセスにつき説明す
る。まず、片面が鏡面加工されたLTウエハの鏡面に、
励振電極となるアルミニウムを蒸着形成し、その上にフ
ォトレジストをスピンコートする。
In the production of this type of surface acoustic wave device,
The process of forming electrodes on the wafer will be described. First, on the mirror surface of the LT wafer with one surface mirror-finished,
Aluminum serving as an excitation electrode is formed by vapor deposition, and a photoresist is spin coated thereon.

【0004】次に、縮小投影露光機(通称ステッパー)
を用いて、フォトレジストを露光し、デベロッパーを用
いて現像することでフォトレジストをパターニングす
る。さらに、RIE(反応性イオンエッチング)により
電極をパターニングし、電極上のフォトレジストを剥離
することでウエハ上にアルミニウム電極が形成される。
Next, a reduction projection exposure machine (commonly called a stepper)
Is used to expose the photoresist, and the developer is developed to pattern the photoresist. Further, the electrode is patterned by RIE (reactive ion etching), and the photoresist on the electrode is peeled off to form an aluminum electrode on the wafer.

【0005】ところで、電子機器の市場拡大に伴い、電
子機器を構成している電子部品も小型化,低背化、低コ
スト化が要求されており、弾性表面波装置に代表される
弾性波装置についても同様に、小型化,低背化、コスト
ダウンが要求されている。このため、素子に用いるウエ
ハも薄片化が必要となり、また素子の歩留まりを向上さ
せ生産性を向上させることが不可欠となってきている。
Incidentally, with the expansion of the market of electronic equipment, electronic parts constituting the electronic equipment are also required to be downsized, low in height and low in cost, and an acoustic wave device represented by a surface acoustic wave device is required. Similarly, there is a demand for downsizing, height reduction, and cost reduction. For this reason, it is necessary to thin the wafer used for the device, and it is becoming indispensable to improve the yield of the device and improve the productivity.

【0006】上述した電極を形成するプロセスにおい
て、ウエハに割れが発生する場合が多々ある。スピンコ
ート、露光、及びデベロッパーを用いた現像時等におい
てウエハを製造装置に吸着固定する作業で割れが発生し
やすく、特に、厚みが0.3μm以下の極めて薄いLT
ウエハにおいては、割れが極めて生じやすいことを本発
明者等は見出した。
In the process of forming the electrodes described above, cracks often occur on the wafer. Cracks are liable to occur during the work of adsorbing and fixing the wafer to the manufacturing apparatus during spin coating, exposure, and development using a developer, and in particular, the extremely thin LT with a thickness of 0.3 μm or less.
The present inventors have found that cracks are extremely likely to occur in a wafer.

【0007】このように、割れが発生したLTウエハ
は、弾性表面波装置の信頼性の面から全て廃棄しなけれ
ばならないため、LTウエハの割れは弾性表面波装置の
歩留まりを大きく低下させ問題である。
As described above, all the LT wafers having cracks must be discarded from the viewpoint of the reliability of the surface acoustic wave device. Therefore, the LT wafer cracks greatly reduce the yield of the surface acoustic wave device, which is a problem. is there.

【0008】また、ウエハの割れが発生しない場合にお
いても、露光時にウエハを吸着した状態で、素子を作製
する鏡面側の平坦度が悪い(反りが大きい)と、ステッ
パーを用いて露光を行う場合、通常は5〜10ミリ角サ
イトに分け順次露光を行い全面を露光するが、ショット
毎に焦点距離や角度を補正する必要があり、大変時間が
かかる。ショット毎に焦点距離や角度の補正を行わずに
露光すると、露光条件が安定せず、ショート不良が発生
し、素子の歩留まりを低下させ、ひいては、弾性波装置
の製造コストアップにつながる。
Even when the wafer is not cracked, when the wafer is adsorbed at the time of exposure and the flatness on the mirror surface side for producing the element is poor (the warpage is large), the exposure is performed using a stepper. Usually, it is divided into 5 to 10 mm square sites and sequentially exposed to expose the entire surface, but it is necessary to correct the focal length and angle for each shot, which takes a very long time. If the exposure is performed without correcting the focal length and the angle for each shot, the exposure condition is not stable, a short circuit failure occurs, the yield of the device is reduced, and the manufacturing cost of the acoustic wave device is increased.

【0009】そこで本発明は、厚みが0.3mm以下の
LTウエハにおいても、励振電極を形成するまでのプロ
セスでウエハの割れを極力防止し、安定した露光条件を
提供することにより、歩留まり良く弾性波装置を作製す
るための弾性波装置用ウエハ及びそれを用いた弾性波装
置を提供することを目的とする。
Therefore, according to the present invention, even in an LT wafer having a thickness of 0.3 mm or less, cracking of the wafer is prevented as much as possible in the process up to the formation of the excitation electrode, and stable exposure conditions are provided, so that the yield elasticity is improved. An object of the present invention is to provide an elastic wave device wafer for producing a wave device and an elastic wave device using the same.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明の弾性波装置用ウエハは、タンタル酸リチウ
ム単結晶から成るウエハの一方主面に、弾性波を発生さ
せる励振電極を形成するための弾性波装置用ウエハであ
って、前記ウエハの他方主面の算術平均粗さ(Ra)が
0.6μm未満であるとともに、該他方主面の反り量が
10μm〜40μm(10μm以上40μm未満)であ
ることを特徴とする。
In order to achieve the above object, the elastic wave device wafer of the present invention has an excitation electrode for generating an elastic wave formed on one main surface of a wafer made of a lithium tantalate single crystal. A wafer for an acoustic wave device, wherein the arithmetic mean roughness (Ra) of the other main surface of the wafer is less than 0.6 μm, and the warp amount of the other main surface is 10 μm to 40 μm (10 μm or more and 40 μm or more. Less than)).

【0011】また特に、前記ウエハの厚みが0.3mm
以下であるとともに、前記ウエハの一方主面が凹状で且
つ他方主面が凸状を成していることを特徴とする。ま
た、前記ウエハの平坦度(TTV)が5μm未満である
ことを特徴とする。
In particular, the wafer has a thickness of 0.3 mm.
In addition to the following, one main surface of the wafer is concave and the other main surface is convex. The flatness (TTV) of the wafer is less than 5 μm.

【0012】また、本発明の弾性波装置は、前記ウエハ
上に、又はウエハを所定形状に切り出した基板の一方主
面に、弾性波を発生させる励振電極が形成されて成る。
In the elastic wave device of the present invention, an excitation electrode for generating an elastic wave is formed on the wafer or on one main surface of a substrate obtained by cutting the wafer into a predetermined shape.

【0013】ここで、反り量とは、例えば日本水晶デバ
イス工業会により制定された技術標準QIAJ−B−0
07(2000年2月10日制定)に規定された方法で
測定されたSoriであり、クランプされない状態のウ
エハのうねりを示し、ウエハの裏面に接する平面を基準
平面として、その平面からのずれの最大値であらわす。
また、平坦度TTVとは、同様に技術標準QIAJ−B
−007(2000年2月10日制定)で規定されたT
TV(Total Thickness Variationであり、ウエハをク
ランプした状態で、ウエハの裏面を基準平面として、最
大高さと最小高さとの差であらわす。
Here, the warp amount is, for example, a technical standard QIAJ-B-0 established by the Japan Crystal Device Industry Association.
07 (established February 10, 2000) is the Sori measured by the method, showing the undulation of the wafer in an unclamped state, and using the plane in contact with the back surface of the wafer as the reference plane, The maximum value.
Further, the flatness TTV is the same as the technical standard QIAJ-B.
-007 (established February 10, 2000)
TV (Total Thickness Variation), which is the difference between the maximum height and the minimum height when the wafer is clamped and the back surface of the wafer is the reference plane.

【0014】本発明者等は、厚みが0.3mm以下のL
Tウエハの割れ発生は、弾性表面波装置を作製するプロ
セスにおいて、ウエハの一主面側を製造装置に吸着する
時に発生し、ウエハの形状及び励振電極を形成しない粗
面側の算術平均粗さ(Ra)と関係があることをつきと
め、前述の構成とすることにより、ウエハの割れが皆無
になることを見出した。
The present inventors have found that the thickness L is 0.3 mm or less.
The cracking of the T-wafer occurs when the one main surface side of the wafer is adsorbed to the manufacturing apparatus in the process of manufacturing the surface acoustic wave device, and the shape of the wafer and the arithmetic average roughness of the rough surface side where the excitation electrode is not formed. By finding that there is a relationship with (Ra), it has been found that the above-mentioned configuration eliminates any cracks in the wafer.

【0015】具体的には、励振電極を形成する鏡面(R
aが1nm未満)側が凹状で且つ励振電極の非形成面で
ある粗面(非鏡面)側が凸状であり、粗面側の反りを1
0μm〜40μmとすることで、割れの発生は激減また
は皆無となる。
Specifically, the mirror surface (R
a is less than 1 nm) is concave and the rough surface (non-mirror surface) side where the excitation electrode is not formed is convex, and the warp on the rough surface side is 1
By setting the thickness to 0 μm to 40 μm, the occurrence of cracks is drastically reduced or eliminated.

【0016】特に、ウエハ厚みが0.3mm以下となる
と割れが発生しやすくなるが、粗面のRaを0.6μm
未満とすることで、割れの発生を極力少なくすることが
できる。さらに、厚みむら(平坦度(TTV))が5μ
m未満のウエハにおいて、ウエハを吸着するとデバイス
を作製する鏡面側の平坦度が5μm未満となり、ステッ
パーによるショット毎の焦点距離や角度の補正を行う必
要がない。
In particular, when the wafer thickness is 0.3 mm or less, cracks are likely to occur, but Ra of the rough surface is 0.6 μm.
By setting it to be less than, the occurrence of cracks can be minimized. Furthermore, thickness unevenness (flatness (TTV)) is 5μ
When a wafer having a size of less than m is adsorbed on the wafer, the flatness on the mirror surface side for producing the device becomes less than 5 μm, and it is not necessary to correct the focal length and angle for each shot by the stepper.

【0017】平坦度が5μm未満のウエハを使用する事
で露光時間が短縮され、ショット毎の焦点距離や角度を
補正する事無く露光精度が向上するためショート不良が
発生しなくなり、弾性表面波装置の歩留まりを著しく向
上させる。
By using a wafer having a flatness of less than 5 μm, the exposure time is shortened, and the exposure accuracy is improved without correcting the focal length and angle for each shot, so that a short-circuit defect does not occur and the surface acoustic wave device. Significantly improves the yield of.

【0018】[0018]

【発明の実施の形態】以下に、厚みが0.25mm〜
0.3mmの本発明に係る単結晶ウエハ及びその作製工
程について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Below, the thickness is from 0.25 mm to
The 0.3 mm single crystal wafer according to the present invention and its manufacturing process will be described in detail.

【0019】タンタル酸リチウム単結晶から成る単結晶
ウエハは、通常、チョクラルスキー法で育成した結晶イ
ンゴットをポーリングして円筒研削を行い、所定の方位
でウエハの厚みが0.4mm〜0.5mmとなるように
切断する。弾性表面波フィルタとして特性に優れた結晶
方位とするために、33°〜45°回転Yカット面が主
面となるように切断する。
A single crystal wafer made of a lithium tantalate single crystal is usually subjected to cylindrical grinding by poling a crystal ingot grown by the Czochralski method and having a wafer thickness of 0.4 mm to 0.5 mm in a predetermined orientation. To cut. In order to obtain a crystal orientation having excellent characteristics as a surface acoustic wave filter, the 33 ° -45 ° rotated Y-cut surface is cut so as to be the main surface.

【0020】その後、ラップ研磨により厚みを0.3m
m〜0.35mmとすることで、切断によるウエハ面の
凹凸を取り除き、ウエハの厚みむら(平坦度(TT
V))をなくす。この時の厚みむらは、後の工程で励振
電極を形成する鏡面(Raが1nm以下)側を凹状、粗
面(非鏡面)側を凸状とするため、5μm未満となるよ
うにする。
Then, the thickness is 0.3 m by lapping.
By setting m to 0.35 mm, unevenness of the wafer surface due to cutting is removed, and unevenness of the wafer thickness (flatness (TT
V)) is eliminated. The thickness unevenness at this time is set to be less than 5 μm because the mirror surface (Ra having a thickness of 1 nm or less) forming the excitation electrode in the subsequent step has a concave shape and the rough surface (non-mirror surface) side has a convex shape.

【0021】その後、片面をコロイダルシリカやセリウ
ム等を用いて鏡面研磨を行い、ウエハ厚みを0.26m
m〜0.31mmとする。片面が鏡面に加工されたウエ
ハは、トワイマン効果により反りが大きくなる。このウ
エハを酸に浸しエッチングを行うが、エッチング時間と
エッチング液である酸の温度を管理することで、図1に
示すように、ウエハ1の鏡面1a側が凹状、粗面1b側
が凸状でその反り量が10μm〜40μmとなるようす
る。
After that, one surface is mirror-polished using colloidal silica, cerium or the like, and the wafer thickness is 0.26 m.
m to 0.31 mm. A wafer whose one surface is mirror-finished has a large warp due to the Twyman effect. This wafer is etched by immersing it in acid. By controlling the etching time and the temperature of the acid that is the etching solution, the mirror surface 1a side of the wafer 1 is concave and the rough surface 1b side is convex, as shown in FIG. The warp amount is set to 10 μm to 40 μm.

【0022】エッチングにより鏡面側が凹状で粗面側が
凸状とし、粗面側の反りが10μm〜40μmとなった
ウエハは、鏡面が酸に侵されているため、鏡面側を再度
鏡面研磨し、厚みを0.25mm〜0.3mmとする。
再度研磨されたウエハはエッチングにより歪みが除去さ
れているため、再研磨前と再研磨後で反りや形状の変化
が無い優れたウエハが得られる。
Since the mirror surface is concave and the rough surface is convex by etching, and the warp of the rough surface is 10 μm to 40 μm, the mirror surface is mirror-polished again because the mirror surface is corroded by acid. Is 0.25 mm to 0.3 mm.
Since the strain on the re-polished wafer is removed by etching, an excellent wafer having no warp or shape change before and after re-polishing can be obtained.

【0023】そして、図2に示すように、このウエハ1
又はこのウエハ1を切断線L1,L2に沿って所定形状
に切断した基板11の一方主面に、弾性波を発生させる
例えば1対の櫛歯状電極から成る励振電極を1以上形成
して、弾性表面波フィルタや振動子等の弾性波装置を得
ることができる。
Then, as shown in FIG.
Alternatively, one or more excitation electrodes formed of, for example, a pair of comb-teeth electrodes that generate elastic waves are formed on one main surface of the substrate 11 obtained by cutting the wafer 1 into a predetermined shape along the cutting lines L1 and L2. It is possible to obtain an acoustic wave device such as a surface acoustic wave filter or a vibrator.

【0024】かくして、本発明の弾性波装置用ウエハ
は、ウエハの励振電極を形成しない主面の算術平均粗さ
(Ra)が0.6μm未満であるとともに、その反り量
が10μm〜40μmであることにより、ウエハの厚み
が0.3mm以下であっても、励振電極の作製工程にお
いてウエハ割れが発生しない。
Thus, in the wafer for acoustic wave device of the present invention, the arithmetic mean roughness (Ra) of the main surface of the wafer on which the excitation electrodes are not formed is less than 0.6 μm, and the amount of warpage is 10 μm to 40 μm. As a result, even if the thickness of the wafer is 0.3 mm or less, cracking of the wafer does not occur in the manufacturing process of the excitation electrode.

【0025】また、そのようなウエハ、及びこのウエハ
を所定形状に切断した基板の一方主面に、弾性波を発生
させる励振電極を形成して、生産性・信頼性を向上させ
た弾性波装置を得ることができる。
An elastic wave device having improved productivity and reliability is formed by forming an exciting electrode for generating an elastic wave on one of the main surfaces of such a wafer and a substrate obtained by cutting the wafer into a predetermined shape. Can be obtained.

【0026】[0026]

【実施例】(例1)チョクラルスキー法で育成した直径
φ110mm結晶インゴットをポーリングし直径φ10
0mmに円筒研削を行い、38°回転Yの方位でウエハ
の厚みが0.5mmとなるように切断した。GC#80
0〜1000にてラップ研磨を行い、厚みを0.4mm
とした後、コロイダルシリカを用いて片面を鏡面研磨
し、厚みを0.31mmとした。
Example (Example 1) A diameter of φ10 mm crystal ingot grown by the Czochralski method was poled to obtain a diameter of φ10.
Cylindrical grinding was performed to 0 mm, and the wafer was cut in the Y direction of 38 ° rotation so that the thickness of the wafer was 0.5 mm. GC # 80
Lapping is performed at 0 to 1000, and the thickness is 0.4 mm.
After that, one surface was mirror-polished with colloidal silica to a thickness of 0.31 mm.

【0027】これらのウエハを40℃の硝酸:弗酸=
1:3の混合液に10分〜30分浸した後、鏡面側を再
度コロイダルシリカにて鏡面研磨し、直径φ100mm
厚み0.3mmのウエハを作製した。
These wafers were treated with nitric acid at 40 ° C .: hydrofluoric acid =
After soaking in a 1: 3 mixture for 10 to 30 minutes, the mirror side is mirror-polished with colloidal silica again, and the diameter is φ100 mm.
A wafer having a thickness of 0.3 mm was produced.

【0028】作製したウエハに電極を作製するプロセス
に投入し、ウエハ割れについて試験を行った。
The process for producing electrodes on the produced wafer was put into the process, and the wafer was tested for cracks.

【0029】[0029]

【表1】 [Table 1]

【0030】表1に0.3mm厚みで鏡面側が凹状、粗
面側が凸状のウエハにおいて、粗面の反り量及びRaと
ウエハの割れの関係について示す。ここで、反り量は光
干渉式平坦度測定器により、粗面側の干渉縞を測定する
ことにより得た。
Table 1 shows the relationship between the amount of warp of the rough surface and the relationship between Ra and the crack of the wafer in a wafer having a thickness of 0.3 mm and a concave surface on the mirror surface side and a convex surface on the rough surface side. Here, the amount of warpage was obtained by measuring the interference fringes on the rough surface side with an optical interference type flatness measuring device.

【0031】割れの発生は、鏡面側が凹状、粗面が凸状
の場合、粗面側の反り量と大きな関係があり、表1から
明らかなように、粗面側の反り量が10μm〜40μm
で、粗面側のRaが0.6μm未満の場合に、割れが全
く発生しないことが判明した。
When the mirror surface side is concave and the rough surface is convex, the occurrence of cracks has a great relationship with the amount of warp on the rough surface side. As is clear from Table 1, the amount of warp on the rough surface side is 10 μm to 40 μm.
It was found that when Ra on the rough surface side was less than 0.6 μm, no cracks occurred.

【0032】また、鏡面側が凸状、粗面側が凹状のウエ
ハについては、プロセス投入において粗面側の反り量及
び粗面側のRaに関係なく殆どのウエハに割れが発生し
た。
Regarding wafers having a convex surface on the mirror surface side and a concave surface on the rough surface side, most of the wafers were cracked during the process introduction regardless of the amount of warp on the rough surface side and Ra on the rough surface side.

【0033】さらに、同様の方法にて直径が125〜1
50mmのウエハーを作製し、ウエハ形状、反り量、粗
面側のRaと割れについて調べた結果、この実施例と同
様の結果が得られた。 (例2)ウエハ厚みが0.25mmのウエハについても
例1と同様な試験を行った。
Further, the diameter is 125 to 1 by the same method.
As a result of making a 50 mm wafer and examining the wafer shape, the amount of warpage, Ra on the rough surface side and cracks, the same results as in this example were obtained. (Example 2) The same test as in Example 1 was performed on a wafer having a wafer thickness of 0.25 mm.

【0034】例1と同様にチョクラルスキー法で育成し
た直径φ110mm結晶インゴットをポーリングし直径
φ100mmに円筒研削を行い、38°回転Yの方位で
切断した。この時、ウエハの厚みが0.4mmとなるよ
うに切断を行った。GC#800〜1000にてラップ
研磨を行い厚みを0.3mmとした後、コロイダルシリ
カを用いて片面を鏡面研磨し厚みを0.26mmとし
た。
In the same manner as in Example 1, a diameter φ110 mm crystal ingot grown by the Czochralski method was poled, cylindrically ground to a diameter φ100 mm, and cut in the Y direction of 38 ° rotation. At this time, cutting was performed so that the thickness of the wafer was 0.4 mm. After lapping with GC # 800-1000 to a thickness of 0.3 mm, one side was mirror-polished with colloidal silica to a thickness of 0.26 mm.

【0035】これらのウエハを40℃の硝酸:弗酸=
1:3の液に10分〜30分浸した後、鏡面側を再度コ
ロイダルシリカにて鏡面研磨し、直径φ100mm厚み
0.25mmのウエハを作製した。
These wafers were treated with nitric acid at 40 ° C .: hydrofluoric acid =
After dipping in a solution of 1: 3 for 10 to 30 minutes, the mirror surface side was mirror-polished again with colloidal silica to prepare a wafer having a diameter of 100 mm and a thickness of 0.25 mm.

【0036】[0036]

【表2】 [Table 2]

【0037】作製したウエハに励振電極を作製するプロ
セスに投入し、ウエハ割れについて試験を行った結果を
表2に示す。厚みが0.25mmウエハの割れの発生
は、0.3mmウエハと同様に、鏡面側が凹状で粗面側
が凸状の場合、大きな関係があり、粗面側の反り量が1
0μm〜40μm、Raが0.5μm未満の時に割れが
全く発生しないことが判明した。
Table 2 shows the results of testing the wafer for cracks by introducing it into the process for manufacturing the excitation electrode on the manufactured wafer. The occurrence of cracks in a wafer having a thickness of 0.25 mm has a great relationship when the mirror surface side is concave and the rough surface side is convex, as in the case of the 0.3 mm wafer, and the warp amount on the rough surface side is 1
It was found that no cracks occur at 0 μm to 40 μm and when Ra is less than 0.5 μm.

【0038】また、鏡面側が凸状、粗面側が凹状のウエ
ハについては、0.3mmのウエハと同様に、プロセス
投入において粗面側の反り量及び粗面側のRaに関係な
く殆どのウエハに割れが発生した。
As to the wafer having a convex surface on the mirror surface side and a concave surface on the rough surface side, similar to the 0.3 mm wafer, most of the wafers are irrespective of the amount of warp on the rough surface side and Ra on the rough surface side in the process introduction. A crack occurred.

【0039】(例3)まず、TTVが1μm〜7μmで
φ100mmウエハーを作製した。ここで、TTVの測
定は光干渉式平坦度測定器により、粗面側をクランプし
た状態で測定した。
Example 3 First, a φ100 mm wafer having a TTV of 1 μm to 7 μm was prepared. Here, the TTV was measured by an optical interference type flatness measuring device with the rough surface side clamped.

【0040】次いで、ステッパーを用いショットエリア
20ミリ角にてショット毎の焦点距離や角度を補正せず
にウエハー全面を露光した。
Next, the entire surface of the wafer was exposed in a 20 mm square shot area using a stepper without correcting the focal length and angle for each shot.

【0041】そして、中心周波数が1.9GHzの弾性
表面波素子となるように励振電極を作製し、ショート不
良とTTVの関係について調べた。その結果を表3に示
す。
Then, an excitation electrode was prepared so as to be a surface acoustic wave element having a center frequency of 1.9 GHz, and the relationship between short circuit failure and TTV was investigated. The results are shown in Table 3.

【0042】[0042]

【表3】 [Table 3]

【0043】表3より明らかなように、TTVが5μm
を境にショート不良の発生が大きく変化する事が分かっ
た。すなわち、TTVが5μm未満の場合、ショート不
良は皆無であった。
As is clear from Table 3, TTV is 5 μm.
It was found that the occurrence of short circuit defects greatly changed at the boundary. That is, when TTV was less than 5 μm, there were no short-circuit defects.

【0044】[0044]

【発明の効果】本発明の弾性波装置用ウエハは、タンタ
ル酸リチウム単結晶から成るウエハの一方主面に、弾性
波を発生させる励振電極を形成するための弾性波装置用
ウエハにおいて、ウエハの他方主面の算術平均粗さ(R
a)が0.6μm未満、その主面の反り量を10μm〜
40μmとした。これにより、作製される弾性波装置の
生産性・信頼性を向上させるだけでなく、低背化・小型
化が図れた優れた弾性波装置を提供できる。
The elastic wave device wafer of the present invention is a wafer for an elastic wave device for forming an excitation electrode for generating an elastic wave on one main surface of a wafer made of a lithium tantalate single crystal. On the other hand, the arithmetic mean roughness (R
a) is less than 0.6 μm, and the warp amount of the main surface is 10 μm to
It was 40 μm. As a result, it is possible to provide an excellent acoustic wave device which not only improves the productivity and reliability of the produced acoustic wave device but also has a low profile and a small size.

【0045】また、ウエハの平坦度(TTV)が5μm
未満であれば、弾性波素子の作製時における露光時間が
短縮され、ショット毎の焦点距離や角度を補正する事無
く露光精度が向上するためショート不良が発生しなくな
り、弾性波素子の歩留まりを著しく向上させるることが
できる。
The flatness (TTV) of the wafer is 5 μm.
If it is less than, the exposure time at the time of manufacturing the acoustic wave device is shortened, and the exposure accuracy is improved without correcting the focal length and the angle for each shot, so that the short circuit failure does not occur and the yield of the acoustic wave device is significantly increased. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るウエハを模式的に示す断面図であ
る。
FIG. 1 is a sectional view schematically showing a wafer according to the present invention.

【図2】本発明に係るウエハを模式的に示す平面図であ
る。
FIG. 2 is a plan view schematically showing a wafer according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 タンタル酸リチウム単結晶から成るウエ
ハの一方主面に、弾性波を発生させる励振電極を形成す
るための弾性波装置用ウエハであって、前記ウエハの他
方主面の算術平均粗さ(Ra)が0.6μm未満である
とともに、該他方主面の反り量が10μm〜40μmで
あることを特徴とする弾性波装置用ウエハ。
1. A wafer for an acoustic wave device for forming an exciting electrode for generating an acoustic wave on one main surface of a wafer made of a lithium tantalate single crystal, the arithmetic mean roughness of the other main surface of the wafer. (Ra) is less than 0.6 μm, and the warp amount of the other main surface is 10 μm to 40 μm.
【請求項2】 前記ウエハの厚みが0.3mm以下であ
ることを特徴とする請求項1に記載の弾性波装置用ウエ
ハ。
2. The acoustic wave device wafer according to claim 1, wherein the thickness of the wafer is 0.3 mm or less.
【請求項3】 前記ウエハの平坦度(TTV)が5μm
未満であることを特徴とする請求項1に記載の弾性波装
置用ウエハ。
3. The flatness (TTV) of the wafer is 5 μm.
The wafer for acoustic wave device according to claim 1, wherein the wafer is less than 1.
【請求項4】 前記ウエハ又は該ウエハを所定形状に切
断した基板の一方主面に、弾性波を発生させる励振電極
が形成されていることを特徴とする弾性波装置。
4. An elastic wave device, wherein an excitation electrode for generating an elastic wave is formed on one main surface of the wafer or a substrate obtained by cutting the wafer into a predetermined shape.
JP2001197123A 2001-06-28 2001-06-28 Wafer for elastic wave and elastic wave device employing the same Pending JP2003017983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197123A JP2003017983A (en) 2001-06-28 2001-06-28 Wafer for elastic wave and elastic wave device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197123A JP2003017983A (en) 2001-06-28 2001-06-28 Wafer for elastic wave and elastic wave device employing the same

Publications (1)

Publication Number Publication Date
JP2003017983A true JP2003017983A (en) 2003-01-17

Family

ID=19034788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197123A Pending JP2003017983A (en) 2001-06-28 2001-06-28 Wafer for elastic wave and elastic wave device employing the same

Country Status (1)

Country Link
JP (1) JP2003017983A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118558A (en) * 2006-11-07 2008-05-22 Shin Etsu Chem Co Ltd Manufacturing method of surface acoustic wave element
WO2011111934A2 (en) * 2010-03-11 2011-09-15 (주)에스엠씨 Acid-modified urethane phenoxy acrylate resin, and method for preparing same
JP2015050653A (en) * 2013-09-02 2015-03-16 日本碍子株式会社 Composite substrate for elastic wave device, manufacturing method of the same, and elastic wave device
JP2021034629A (en) * 2019-08-28 2021-03-01 住友金属鉱山株式会社 Piezoelectric substrate, manufacturing method thereof, and composite substrate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161248A (en) * 1978-06-12 1979-12-20 Toshiba Corp Manufacture of surface-wave filter element
JPS55137714A (en) * 1979-04-16 1980-10-27 Toshiba Corp Surface wave filter device
JPS5656020A (en) * 1979-10-15 1981-05-16 Toshiba Corp Manufacture of elastic surface wave device
JPS5633872B2 (en) * 1976-10-25 1981-08-06
JPS5636808B2 (en) * 1977-06-28 1981-08-26
JPS5947822A (en) * 1982-09-10 1984-03-17 Sumitomo Metal Mining Co Ltd Manufacture of substrate for surface acoustic wave
JP2000124520A (en) * 1998-10-12 2000-04-28 Shin Etsu Chem Co Ltd Piezoelectric single crystal wafer for pseudo-elastic surface wave device and manufacture thereof
JP2000261279A (en) * 1999-03-04 2000-09-22 Kyocera Corp Surface acoustic wave device
JP2001156588A (en) * 1999-11-26 2001-06-08 Kyocera Corp Surface acoustic wave device
JP2001332654A (en) * 2000-03-17 2001-11-30 Matsushita Electric Ind Co Ltd Module provided with built-in electric element and manufacturing method thereof
JP2001332949A (en) * 2000-05-19 2001-11-30 Toshiba Corp Method for manufacturing surface acoustic wave element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633872B2 (en) * 1976-10-25 1981-08-06
JPS5636808B2 (en) * 1977-06-28 1981-08-26
JPS54161248A (en) * 1978-06-12 1979-12-20 Toshiba Corp Manufacture of surface-wave filter element
JPS55137714A (en) * 1979-04-16 1980-10-27 Toshiba Corp Surface wave filter device
JPS5656020A (en) * 1979-10-15 1981-05-16 Toshiba Corp Manufacture of elastic surface wave device
JPS5947822A (en) * 1982-09-10 1984-03-17 Sumitomo Metal Mining Co Ltd Manufacture of substrate for surface acoustic wave
JPH0218612B2 (en) * 1982-09-10 1990-04-26 Sumitomo Metal Mining Co
JP2000124520A (en) * 1998-10-12 2000-04-28 Shin Etsu Chem Co Ltd Piezoelectric single crystal wafer for pseudo-elastic surface wave device and manufacture thereof
JP2000261279A (en) * 1999-03-04 2000-09-22 Kyocera Corp Surface acoustic wave device
JP2001156588A (en) * 1999-11-26 2001-06-08 Kyocera Corp Surface acoustic wave device
JP2001332654A (en) * 2000-03-17 2001-11-30 Matsushita Electric Ind Co Ltd Module provided with built-in electric element and manufacturing method thereof
JP2001332949A (en) * 2000-05-19 2001-11-30 Toshiba Corp Method for manufacturing surface acoustic wave element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118558A (en) * 2006-11-07 2008-05-22 Shin Etsu Chem Co Ltd Manufacturing method of surface acoustic wave element
WO2011111934A2 (en) * 2010-03-11 2011-09-15 (주)에스엠씨 Acid-modified urethane phenoxy acrylate resin, and method for preparing same
WO2011111934A3 (en) * 2010-03-11 2012-01-12 (주)에스엠씨 Acid-modified urethane phenoxy acrylate resin, and method for preparing same
JP2015050653A (en) * 2013-09-02 2015-03-16 日本碍子株式会社 Composite substrate for elastic wave device, manufacturing method of the same, and elastic wave device
JP2021034629A (en) * 2019-08-28 2021-03-01 住友金属鉱山株式会社 Piezoelectric substrate, manufacturing method thereof, and composite substrate
JP7439415B2 (en) 2019-08-28 2024-02-28 住友金属鉱山株式会社 Piezoelectric substrate, piezoelectric substrate manufacturing method, and composite substrate

Similar Documents

Publication Publication Date Title
JP4658925B2 (en) Manufacturing method of crystal unit
JP2007028669A (en) Method of manufacturing thin-film acoustic resonator
JP2010109527A (en) Crystal vibration chip and method of manufacturing the same
JP5155620B2 (en) Manufacturing method of thickness sliding vibration piece
JPH02312310A (en) Piezoelectric parts and manufacture thereof
JP2003017983A (en) Wafer for elastic wave and elastic wave device employing the same
JP4600140B2 (en) Method for manufacturing piezoelectric vibrating piece
JP2007142628A (en) Manufacturing method of piezoelectric vibration chip
JP3663845B2 (en) Crystal surface processing method and crystal piece manufacturing method
JP2001053036A (en) Dicing blade and piezoelectric element plate
JP4701504B2 (en) Manufacturing method of triple mode piezoelectric filter
JP2001223557A (en) Method for forming electrode of crystal oscillator and crystal oscillator
JP3714082B2 (en) Method for producing langasite single crystal substrate, langasite single crystal substrate and piezoelectric device
JP2003165795A (en) Oxide single crystal wafer, method for producing the same, and its evaluation method
JP2002171008A (en) Piezoelectric element piece and manufacturing method of piezoelectric device
JPH07111435A (en) Production of crystal piezoelectric device
JP2005244735A (en) Manufacturing method of quartz oscillator, and quartz oscillator
KR20150060343A (en) Quartz vibrator and manufactering method thereof
JP2004289217A (en) Manufacturing method of vibration reed, vibration reed and vibrator
JP7501889B2 (en) Method for manufacturing bonded wafer and method for manufacturing acoustic wave device
JPH04294622A (en) Production of piezoelectric element
JPH04130810A (en) Manufacture of at cut crystal oscillating piece
JP2000082931A (en) Piezoelectric single crystal wafer, its manufacture and surface acoustic wave device
WO2020040203A1 (en) Substrate for surface acoustic wave element, and method for manufacturing said substrate
JPS61236207A (en) Manufacture of surface acoustic wave resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A131 Notification of reasons for refusal

Effective date: 20110621

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207