JP5363092B2 - Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter - Google Patents

Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter Download PDF

Info

Publication number
JP5363092B2
JP5363092B2 JP2008326879A JP2008326879A JP5363092B2 JP 5363092 B2 JP5363092 B2 JP 5363092B2 JP 2008326879 A JP2008326879 A JP 2008326879A JP 2008326879 A JP2008326879 A JP 2008326879A JP 5363092 B2 JP5363092 B2 JP 5363092B2
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric substrate
organic adhesive
adhesive layer
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008326879A
Other languages
Japanese (ja)
Other versions
JP2010153961A (en
Inventor
健司 鈴木
康範 岩崎
隆史 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008326879A priority Critical patent/JP5363092B2/en
Publication of JP2010153961A publication Critical patent/JP2010153961A/en
Application granted granted Critical
Publication of JP5363092B2 publication Critical patent/JP5363092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress chipping of an edge part of a piezoelectric substrate of a compound substrate formed by sticking the piezoelectric substrate and a support substrate together when a surface of the piezoelectric substrate is processed with polishing abrasive grains. <P>SOLUTION: A silicon substrate 12 is prepared, and also an LT substrate is prepared which has an external diameter taking of a margin corresponding to a position shift made in sticking into consideration for a length obtained by subtracting a beveled part from the external diameter of the silicon substrate 12 (Fig.5(a)). Then the LT substrate 10 has its backsides coated with an organic adhesive 13 and is stuck on the silicon substrate 12 to form a stuck substrate 16 (Fig.5(b)). Further, slurry containing polishing abrasive grains is supplied to between a surface of the LT substrate 10 and a polishing surface plate and the surface of the LT substrate 10 is polished by the polishing surface plate to polish the surface into a mirror plane while reducing the thickness of the LT substrate 10 (Fig.5(c)). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、複合基板の製造方法及び複合基板に関する。   The present invention relates to a method for manufacturing a composite substrate and a composite substrate.

従来、支持基板と圧電基板とを貼り合わせた複合基板に、電極を設けて弾性波素子を作製することが知られている。ここで、弾性波素子は、例えば、携帯電話などの通信機器におけるバンドパスフィルタとして使用されている。また、複合基板は、圧電基板としてニオブ酸リチウムやタンタル酸リチウム、支持基板としてシリコンや石英などを用いたものが知られている(特許文献1参照)。
特開2006−319679号公報
Conventionally, it is known to provide an acoustic wave element by providing an electrode on a composite substrate in which a support substrate and a piezoelectric substrate are bonded together. Here, the acoustic wave element is used, for example, as a band-pass filter in a communication device such as a mobile phone. A composite substrate using lithium niobate or lithium tantalate as a piezoelectric substrate and silicon or quartz as a supporting substrate is known (see Patent Document 1).
JP 2006-319679 A

ところで、こうした複合基板は、圧電基板と支持基板とを用意し、これらの基板を有機接着層を挟んで貼り合わせた後、圧電基板の厚みを薄くすることにより製造することが多い。ここで、ハンドリング時に基板の角の部分が何かに当たって割れることがあるため、圧電基板には、通常は、面取り加工が施されている。また、圧電基板の厚みを薄くするときには、圧電基板の表面と研磨定盤との間に研磨砥粒を介在させ、圧電基板の表面を研磨定盤により研磨することが行われる。しかし、このような製造方法では、圧電基板と支持基板とを貼り合わせると、縁の部分は、面取りの分だけ圧電基板が有機接着層から離れた状態となる。また、貼り合わせる位置がずれた場合にも、圧電基板の縁の部分が有機接着層から離れた状態となる場合がある。そして、この状態で圧電基板の表面を研磨定盤により研磨すると、その縁の離れた部分を起点とする欠けが多く発生するという問題があった。   By the way, such a composite substrate is often manufactured by preparing a piezoelectric substrate and a supporting substrate, bonding these substrates together with an organic adhesive layer interposed therebetween, and then reducing the thickness of the piezoelectric substrate. Here, since the corner portion of the substrate hits something and breaks during handling, the piezoelectric substrate is usually chamfered. When the thickness of the piezoelectric substrate is reduced, polishing abrasive grains are interposed between the surface of the piezoelectric substrate and the polishing surface plate, and the surface of the piezoelectric substrate is polished by the polishing surface plate. However, in such a manufacturing method, when the piezoelectric substrate and the support substrate are bonded together, the edge portion is in a state where the piezoelectric substrate is separated from the organic adhesive layer by the amount of chamfering. Even when the bonding position is shifted, the edge portion of the piezoelectric substrate may be in a state of being separated from the organic adhesive layer. When the surface of the piezoelectric substrate is polished with a polishing surface plate in this state, there is a problem that many chips are generated starting from a portion apart from the edge.

本発明は、上述した課題に鑑みなされたものであり、圧電基板と支持基板とを貼り合わせた複合基板につき、その圧電基板の表面を研磨砥粒で処理する際の圧電基板の縁の部分の欠けの発生を抑制することを主目的とする。   The present invention has been made in view of the above-described problems. For a composite substrate in which a piezoelectric substrate and a support substrate are bonded together, the edge portion of the piezoelectric substrate when the surface of the piezoelectric substrate is treated with abrasive grains. The main purpose is to suppress the occurrence of chipping.

本発明は、上述の目的を達成するために以下の手段を採った。   The present invention adopts the following means in order to achieve the above-mentioned object.

本発明の複合基板の製造方法は、
(a)支持基板と、該支持基板の表面の平坦部の直径よりも外径が小さいか又は同じであり且つ少なくとも前記支持基板と貼り合わせる側の角が面取りされていない角立った状態の圧電基板とを用意する工程と、
(b)前記支持基板の表面と前記圧電基板の裏面とを有機接着層を介して貼り合わせて貼り合わせ基板を形成するにあたり、前記圧電基板の外周面が、前記有機接着層の外周面と同一面上になるか又は該有機接着層の外周面よりも内側に位置するようにして貼り合わせる工程と、
(c)前記圧電基板の表面と研磨定盤との間に研磨砥粒を介在させて、該圧電基板の表面を該研磨定盤により研磨することにより該圧電基板の厚みを薄くすると共に該圧電基板の表面を鏡面研磨する工程と、
を含むものである。
The method for producing the composite substrate of the present invention comprises:
(A) A piezoelectric substrate having an angled state in which the outer diameter is smaller than or the same as the diameter of the flat portion of the surface of the support substrate and at least the corner to be bonded to the support substrate is not chamfered Preparing a substrate;
(B) When forming the bonded substrate by bonding the front surface of the support substrate and the back surface of the piezoelectric substrate through an organic adhesive layer, the outer peripheral surface of the piezoelectric substrate is the same as the outer peripheral surface of the organic adhesive layer Bonding to be on the surface or located inside the outer peripheral surface of the organic adhesive layer; and
(C) Abrasive grains are interposed between the surface of the piezoelectric substrate and a polishing surface plate, and the surface of the piezoelectric substrate is polished by the polishing surface plate to reduce the thickness of the piezoelectric substrate and the piezoelectric substrate. Mirror polishing the surface of the substrate;
Is included.

本発明の複合基板は、
支持基板と、
前記支持基板の表面の平坦部の直径よりも外径が小さいか又は同じであり且つ少なくとも前記支持基板と貼り合わせる側の角が面取りされていない角立った状態の圧電基板と、
前記圧電基板と前記支持基板とを接着する有機接着層と、
を備え、
前記圧電基板の外周面が、前記有機接着層の外周面と同一面上にあるか又は該有機接着層の外周面よりも内側に位置しているものである。
The composite substrate of the present invention is
A support substrate;
An outer diameter smaller than or equal to the diameter of the flat portion of the surface of the support substrate, and at least a corner of the side to be bonded to the support substrate is not chamfered;
An organic adhesive layer for bonding the piezoelectric substrate and the support substrate;
With
The outer peripheral surface of the piezoelectric substrate is on the same plane as the outer peripheral surface of the organic adhesive layer or is located on the inner side of the outer peripheral surface of the organic adhesive layer.

本発明の複合基板の製造方法によれば、工程(c)の実施時には、圧電基板は、支持基板の表面の平坦部の直径よりも外径が小さいか又は同じであり且つ少なくとも支持基板と貼り合わせる側の角が面取りされていない角立った状態である。また、圧電基板の外周面が、有機接着層の外周面と同一面上になるか又はその有機接着層の外周面よりも内側に位置するように、支持基板の表面と圧電基板の裏面とが有機接着層を介して貼り合わせられている。このため、圧電基板の縁は有機接着層から離れた状態とはならず、貼り合わせたときの位置ずれや面取りなどによって圧電基板の縁が有機接着層から離れた状態となっているものに比して欠けが発生しにくい。したがって、圧電基板と支持基板とを貼り合わせた複合基板につき、その圧電基板の表面を研磨砥粒で処理する際の圧電基板の縁の部分の欠けの発生を抑制することができる。この理由は、圧電基板の縁が有機接着層から離れている場合には、圧電基板の表面を研磨するとその縁の部分がシャープエッジとなって、研磨時の圧電基板の厚み方向に働く力により欠けやすいのに対し、圧電基板の縁が有機接着層から離れていない場合には、そのような欠けが生じにくいためと考えられる。   According to the method for manufacturing a composite substrate of the present invention, when the step (c) is performed, the piezoelectric substrate has an outer diameter smaller than or equal to the diameter of the flat portion of the surface of the support substrate and is attached to at least the support substrate. The corners on the mating side are not chamfered and are in a standing state. In addition, the surface of the support substrate and the back surface of the piezoelectric substrate are arranged such that the outer peripheral surface of the piezoelectric substrate is flush with the outer peripheral surface of the organic adhesive layer or is located inside the outer peripheral surface of the organic adhesive layer. It is bonded through an organic adhesive layer. For this reason, the edge of the piezoelectric substrate is not separated from the organic adhesive layer, as compared to the case where the edge of the piezoelectric substrate is separated from the organic adhesive layer due to misalignment or chamfering when bonded. As a result, chipping hardly occurs. Therefore, it is possible to suppress the occurrence of chipping at the edge of the piezoelectric substrate when the surface of the piezoelectric substrate is treated with the abrasive grains for the composite substrate in which the piezoelectric substrate and the support substrate are bonded together. The reason for this is that when the edge of the piezoelectric substrate is separated from the organic adhesive layer, when the surface of the piezoelectric substrate is polished, the edge becomes a sharp edge, which is due to the force acting in the thickness direction of the piezoelectric substrate during polishing. This is probably because the chipping is not easily caused when the edge of the piezoelectric substrate is not separated from the organic adhesive layer.

本発明の複合基板の製造方法において、工程(a)では、支持基板と、該支持基板の表面の平坦部の直径よりも外径が小さいか又は同じであり且つ少なくとも前記支持基板と貼り合わせる側の角が面取りされていない角立った状態の圧電基板とを用意する。ここで、圧電基板としては、弾性波(特に、弾性表面波)を伝搬可能な基板が挙げられ、この圧電基板の材質としては、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体単結晶、ホウ酸リチウム、ランガサイト、水晶などが挙げられる。この圧電基板は、支持基板と貼り合わせる側の角が面取りされていない角立った状態となっている。また、圧電基板は、支持基板と貼り合わせる側とは反対側の角が予め面取りされていてもよい。面取りされている部分は何かに当たったとしても欠けにくい。ここで、面取りとは、2つの面の交差部分(稜)が所定の角度の面でカットされたC面取りであってもよいし、稜が所定の曲率半径となるようにカットされたR面取りであってもよい。なお、圧電基板の裏面には、例えば、厚さが0.1〜5μmの金属や二酸化ケイ素の層が設けられていてもよい。また、支持基板の材質としては、シリコン、サファイア、窒化アルミニウム、アルミナ、ホウ珪酸ガラス、石英ガラス、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体単結晶、ホウ酸リチウム、ランガサイト、水晶などが挙げられる。支持基板も、角が予め面取りされていてもよい。更に、支持基板のうち圧電基板と貼り合わせる側の角が面取りされている場合、支持基板の表面の平坦部の直径は、この支持基板の外径から面取り部分を除いたものとなる。   In the method for producing a composite substrate of the present invention, in step (a), the outer diameter is smaller than or equal to the diameter of the support substrate and the flat portion of the surface of the support substrate, and at least the side to be bonded to the support substrate And a piezo-electric substrate in an angled state in which the corners are not chamfered. Here, examples of the piezoelectric substrate include a substrate capable of propagating an elastic wave (particularly, a surface acoustic wave). The material of the piezoelectric substrate is lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution. Single crystal, lithium borate, langasite, crystal and the like can be mentioned. This piezoelectric substrate is in an angled state where the corner on the side to be bonded to the support substrate is not chamfered. Further, the corner of the piezoelectric substrate opposite to the side to be bonded to the support substrate may be chamfered in advance. Even if the chamfered part hits something, it is hard to chip. Here, the chamfering may be a C chamfer in which an intersection (ridge) between two surfaces is cut at a predetermined angle, or an R chamfer cut so that the ridge has a predetermined radius of curvature. It may be. For example, a metal or silicon dioxide layer having a thickness of 0.1 to 5 μm may be provided on the back surface of the piezoelectric substrate. The supporting substrate is made of silicon, sapphire, aluminum nitride, alumina, borosilicate glass, quartz glass, lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution single crystal, lithium borate, langasite. And crystal. The support substrate may also be chamfered in advance. Further, when the corner of the support substrate to be bonded to the piezoelectric substrate is chamfered, the diameter of the flat portion on the surface of the support substrate is obtained by removing the chamfered portion from the outer diameter of the support substrate.

本発明の複合基板の製造方法において、工程(b)では、前記支持基板の表面と前記圧電基板の裏面とを有機接着層を介して貼り合わせて貼り合わせ基板を形成するにあたり、前記圧電基板の外周面が、前記有機接着層の外周面と同一面上になるか又は該有機接着層の外周面よりも内側に位置するようにして貼り合わせる。例えば、支持基板の表面及び圧電基板の裏面の一方又は両方に有機接着剤を均一に塗布し、両者を重ね合わせた状態で有機接着剤を固化させることにより貼り合わせ基板を形成する。特に、圧電基板の裏面に有機接着剤を塗布して、この圧電基板と支持基板とを貼り合わせ、有機接着剤を固化させて有機接着層とするのが好ましい。こうすれば、圧電基板の外周面より外側に有機接着層が存在しないため、圧電基板の表面を研磨する際に有機接着層が剥がれてゴミとなり、圧電基板の表面に付着したり該表面の仕上げに悪影響を及ぼしたりすることを防止することができる。ここで、有機接着剤を塗布する方法としては、例えば、スピンコートや印刷が挙げられる。有機接着剤としては、エポキシ系接着剤やアクリル系接着剤が挙げられる。また、工程(a)で圧電基板よりも熱膨張係数の小さい支持基板を用意した場合には、加熱して形成された有機接着層の厚さは0.1〜1.0μmとするのが好ましい。このような場合としては、例えば、圧電基板が、タンタル酸リチウム、ニオブ酸リチウム及びニオブ酸リチウム−タンタル酸リチウム固溶体単結晶、ホウ酸リチウム、ランガサイト、水晶からなる群より選ばれた材質からなり、支持基板が、シリコン、サファイア、窒化アルミニウム、アルミナ、ホウ珪酸ガラス及び石英ガラスからなる群より選ばれた材質からなる場合が挙げられる。こうすれば、最終的に製造された複合基板を用いて弾性表面波素子を作製したときに、温度変化に対する周波数特性の変化の比較的抑えられた素子を作製することができる。有機接着層の厚さが1.0μmを超えると圧電基板と支持基板との熱膨張係数の差がこの有機接着層に吸収され、温度変化に対する周波数特性の変化を抑える効果が得られないため好ましくない。また、有機接着層の厚さが、0.1μm未満になるとボイドの影響で、温度変化に対する周波数特性の変化を抑える効果が得られないため好ましくない。   In the method for producing a composite substrate of the present invention, in the step (b), when the bonded substrate is formed by bonding the front surface of the support substrate and the back surface of the piezoelectric substrate through an organic adhesive layer, Bonding is performed so that the outer peripheral surface is flush with the outer peripheral surface of the organic adhesive layer or is located on the inner side of the outer peripheral surface of the organic adhesive layer. For example, an organic adhesive is uniformly applied to one or both of the front surface of the support substrate and the back surface of the piezoelectric substrate, and the bonded substrate is formed by solidifying the organic adhesive in a state where both are overlapped. In particular, it is preferable that an organic adhesive is applied to the back surface of the piezoelectric substrate, the piezoelectric substrate and the support substrate are bonded together, and the organic adhesive is solidified to form an organic adhesive layer. In this way, since there is no organic adhesive layer outside the outer peripheral surface of the piezoelectric substrate, the organic adhesive layer is peeled off when polishing the surface of the piezoelectric substrate, and becomes attached to the surface of the piezoelectric substrate or finishes the surface. Can be prevented from adversely affecting. Here, examples of the method for applying the organic adhesive include spin coating and printing. Examples of the organic adhesive include an epoxy adhesive and an acrylic adhesive. Further, when a support substrate having a smaller thermal expansion coefficient than that of the piezoelectric substrate is prepared in the step (a), the thickness of the organic adhesive layer formed by heating is preferably 0.1 to 1.0 μm. . In such a case, for example, the piezoelectric substrate is made of a material selected from the group consisting of lithium tantalate, lithium niobate and lithium niobate-lithium tantalate solid solution, lithium borate, langasite, and quartz. The support substrate may be made of a material selected from the group consisting of silicon, sapphire, aluminum nitride, alumina, borosilicate glass, and quartz glass. In this way, when a surface acoustic wave element is manufactured using the finally manufactured composite substrate, an element in which a change in frequency characteristics with respect to a temperature change is relatively suppressed can be manufactured. If the thickness of the organic adhesive layer exceeds 1.0 μm, the difference in thermal expansion coefficient between the piezoelectric substrate and the support substrate is absorbed by the organic adhesive layer, and the effect of suppressing the change in frequency characteristics with respect to temperature change is not obtained. Absent. Moreover, when the thickness of the organic adhesive layer is less than 0.1 μm, it is not preferable because the effect of suppressing the change of the frequency characteristic with respect to the temperature change cannot be obtained due to the influence of the void.

本発明の複合基板の製造方法において、工程(c)では、圧電基板の表面と研磨定盤との間に研磨砥粒を介在させて、該圧電基板の表面を該研磨定盤により研磨することにより該圧電基板の厚みを薄くすると共に該圧電基板の表面を鏡面研磨する。工程(c)で使用する装置としては、一般的な研磨機が挙げられる。例えば、貼り合わせ基板の片面を研磨する研磨機では、まず、プレッシャープレートと研磨定盤との間に研磨対象の貼り合わせ基板を加圧して挟み込み、貼り合わせ基板と研磨定盤との間に研磨砥粒を含むスラリーを供給しながらプレッシャープレートに自転運動を与えることによって、圧電基板を薄くする。続いて、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、プレッシャープレートに自転運動及び公転運動を与えることによって、圧電基板の表面を鏡面研磨する。この工程(c)に供される貼り合わせ基板は、圧電基板の縁の部分が有機接着層から離れていないため、圧電基板の表面を研磨砥粒で処理する際に、この縁の部分が有機接着層から離れたもの(例えば、全ての角が面取りされた同じ大きさの圧電基板と支持基板とを貼付けた貼り合わせ基板)に比して、圧電基板の縁の部分の欠けが発生しにくい。   In the composite substrate manufacturing method of the present invention, in step (c), polishing abrasive grains are interposed between the surface of the piezoelectric substrate and the polishing surface plate, and the surface of the piezoelectric substrate is polished by the polishing surface plate. Thus, the thickness of the piezoelectric substrate is reduced and the surface of the piezoelectric substrate is mirror-polished. As an apparatus used at a process (c), a common grinder is mentioned. For example, in a polishing machine that polishes one side of a bonded substrate, first, the bonded substrate to be polished is pressed between the pressure plate and the polishing surface plate, and then polished between the bonded substrate and the polishing surface plate. The piezoelectric substrate is thinned by applying a rotational motion to the pressure plate while supplying slurry containing abrasive grains. Subsequently, the surface of the piezoelectric substrate is mirror-finished by changing the polishing surface plate to a higher one and giving the rotation and revolution motion to the pressure plate. Grind. In the bonded substrate provided in this step (c), since the edge portion of the piezoelectric substrate is not separated from the organic adhesive layer, the edge portion is organic when the surface of the piezoelectric substrate is treated with abrasive grains. Compared with a substrate separated from the adhesive layer (for example, a bonded substrate in which all the corners are chamfered and a substrate having the same size and a support substrate are bonded), chipping at the edge of the piezoelectric substrate is less likely to occur. .

上述した複合基板の製造方法によって製造された複合基板の具体例の断面を図1〜図4に示す。図中、一点鎖線で囲まれた部分は工程(c)で研磨により除去された部分を示す。図1は、まず、支持基板の表面の平坦部の直径よりも外径が小さく且つ角が面取りされていない角立った状態の圧電基板と、支持基板とを、圧電基板の裏面に有機接着剤を塗布しこの圧電基板の外周面が有機接着層の外周面と同一面上になるように貼り合わせて貼り合わせ基板を形成し(かっこ内参照)、その後、圧電基板を研磨して得られた複合基板である。なお、図1のかっこ内は工程(b)で得られた貼り合わせ基板を示す。図2は、まず、支持基板の表面の平坦部の直径よりも外径が小さく且つ角が面取りされていない角立った状態の圧電基板と、支持基板とを、支持基板の表面に有機接着剤を塗布し圧電基板の外周面が有機接着層の外周面よりも内側に位置するように貼り合わせて貼り合わせ基板を形成し、その後、圧電基板を研磨して得られた複合基板である。図3は、まず、支持基板の表面の平坦部の直径よりも外径が小さく且つ支持基板と貼り合わせる側の角が面取りされていない角立った状態の圧電基板と、支持基板とを、圧電基板の裏面に有機接着剤を塗布しこの圧電基板の外周面が有機接着層の外周面と同一面上になるように貼り合わせて貼り合わせ基板を形成し、その後、圧電基板を研磨して得られた複合基板である。図4は、まず、支持基板の表面の平坦部の直径と外径が同じで且つ支持基板と貼り合わせる側の角が面取りされていない角立った状態の圧電基板と、支持基板とを、支持基板の表面及び圧電基板の裏面の一方又は両方に有機接着剤を塗布し、この圧電基板の外周面が有機接着層の外周面と同一面上になるように貼り合わせて貼り合わせ基板を形成し、その後、圧電基板を研磨して得られた複合基板である。いずれの複合基板も、上述した製造方法で製造されるため、圧電基板の縁の部分の欠けが少ないものである。また、図1,3,4の複合基板は、圧電基板の外周面より外側に有機接着層が存在しないため、圧電基板の表面を研磨する際に有機接着層が剥がれてゴミとなり、圧電基板の表面に付着したり該表面の仕上げに悪影響が及ぼされていないものである。   The cross section of the specific example of the composite substrate manufactured by the manufacturing method of the composite substrate mentioned above is shown in FIGS. In the figure, the part surrounded by the alternate long and short dash line indicates the part removed by polishing in the step (c). FIG. 1 shows that a piezoelectric substrate having an outer diameter smaller than the diameter of the flat portion on the surface of the support substrate and having a corner not chamfered, and the support substrate, and an organic adhesive on the back surface of the piezoelectric substrate. Was applied to form a bonded substrate so that the outer peripheral surface of the piezoelectric substrate was flush with the outer peripheral surface of the organic adhesive layer (see the parentheses), and then the piezoelectric substrate was polished. It is a composite substrate. 1 indicates the bonded substrate obtained in the step (b). In FIG. 2, first, a piezoelectric substrate in a state where the outer diameter is smaller than the diameter of the flat portion of the surface of the support substrate and the corners are not chamfered, and the support substrate are bonded to the surface of the support substrate with an organic adhesive. The composite substrate is obtained by coating the substrate so that the outer peripheral surface of the piezoelectric substrate is positioned inside the outer peripheral surface of the organic adhesive layer to form a bonded substrate, and then polishing the piezoelectric substrate. In FIG. 3, first, a piezoelectric substrate having an outer diameter smaller than the diameter of the flat portion on the surface of the support substrate and having a corner that is not chamfered on the side to be bonded to the support substrate, and the support substrate are An organic adhesive is applied to the back surface of the substrate and bonded so that the outer peripheral surface of the piezoelectric substrate is flush with the outer peripheral surface of the organic adhesive layer to form a bonded substrate, and then the piezoelectric substrate is polished. Composite substrate. FIG. 4 is a plan view of supporting a support substrate and a piezoelectric substrate in a standing state in which the diameter of the flat portion on the surface of the support substrate is the same as the outer diameter and the corner on the side to be bonded to the support substrate is not chamfered. An organic adhesive is applied to one or both of the front surface of the substrate and the back surface of the piezoelectric substrate, and bonded so that the outer peripheral surface of the piezoelectric substrate is flush with the outer peripheral surface of the organic adhesive layer to form a bonded substrate. Thereafter, the composite substrate obtained by polishing the piezoelectric substrate. Since any composite substrate is manufactured by the above-described manufacturing method, the edge portion of the piezoelectric substrate is less chipped. In addition, since the organic adhesive layer does not exist outside the outer peripheral surface of the piezoelectric substrate in the composite substrate of FIGS. 1, 3, and 4, when the surface of the piezoelectric substrate is polished, the organic adhesive layer is peeled off to become dust, and the piezoelectric substrate It does not adhere to the surface or adversely affect the finish of the surface.

また、本発明の複合基板は、支持基板と、該支持基板の表面の平坦部の直径よりも外径が小さいか又は同じであり且つ少なくとも前記支持基板と貼り合わせる側の角が面取りされていない角立った状態の圧電基板と、前記圧電基板と前記支持基板とを接着する有機接着層と、を備え、前記圧電基板の外周面が、前記有機接着層の外周面と同一面上にあるか又は該有機接着層の外周面よりも内側に位置しているものである。こうした複合基板は、例えば上述した複合基板の製造方法によって製造することができる。   Further, the composite substrate of the present invention has an outer diameter smaller than or equal to the diameter of the support substrate and the flat portion of the surface of the support substrate, and at least the corner on the side to be bonded to the support substrate is not chamfered. A piezoelectric substrate in an angled state, and an organic adhesive layer that bonds the piezoelectric substrate and the support substrate, and whether the outer peripheral surface of the piezoelectric substrate is flush with the outer peripheral surface of the organic adhesive layer Or it is located inside the outer peripheral surface of the organic adhesive layer. Such a composite substrate can be manufactured, for example, by the above-described composite substrate manufacturing method.

[実施例1]
図5は、本実施例の複合基板の製造プロセスを模式的に示す断面図である。まず、支持基板として、オリエンテーションフラット部(OF部)を有し、直径が100mm(4インチ)、厚さが350μmのシリコン基板12を用意した。また、圧電基板として、OF部を有し、直径が98mm、厚さが250μmのタンタル酸リチウム基板(LT基板)10を用意した(図5(a))。ここで、シリコン基板12は、角が面取りされている。図6は、面取り部分を説明する部分断面図である。図示するように、シリコン基板12の外周面から300μm内側の位置から面取りが始まり、この位置での面取りの角度は20°である。LT基板10は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬LT基板を用いた。このLT基板10の外径は、シリコン基板12の外径(100mm)から面取り部分(0.6mm)を減じて、シリコン基板12の表面の平坦部の直径を求め、この直径(99.4mm)に、貼り合わせ時に想定される最大の位置ずれ量に対応するマージンを見込んで98mmとした。また、LT基板10は、面取りされた基板の面取り部分を切り落として全ての角が面取りされていない角立った状態のものを用意した。次いで、LT基板10にスピンコートによりエポキシ系接着剤13を塗布し、シリコン基板12を貼付けて180℃に加熱し、有機接着層14(エポキシ系接着剤13が固化した層)の厚さが0.3μmの貼り合わせ基板16を形成した(図5(b))。このとき、貼り合わせ後は、LT基板10の外周面と有機接着層14の外周面とが同一面上になった。
[Example 1]
FIG. 5 is a cross-sectional view schematically showing the manufacturing process of the composite substrate of this example. First, a silicon substrate 12 having an orientation flat portion (OF portion), a diameter of 100 mm (4 inches), and a thickness of 350 μm was prepared as a support substrate. In addition, a lithium tantalate substrate (LT substrate) 10 having an OF portion, a diameter of 98 mm, and a thickness of 250 μm was prepared as a piezoelectric substrate (FIG. 5A). Here, the corners of the silicon substrate 12 are chamfered. FIG. 6 is a partial cross-sectional view for explaining the chamfered portion. As shown in the drawing, chamfering starts from a position 300 μm inside from the outer peripheral surface of the silicon substrate 12, and the chamfering angle at this position is 20 °. The LT substrate 10 is a 36 ° Y-cut X-propagation LT substrate in which the propagation direction of surface acoustic waves (SAW) is X and the cutting angle is a rotating Y-cut plate. The outer diameter of the LT substrate 10 is obtained by subtracting the chamfered portion (0.6 mm) from the outer diameter (100 mm) of the silicon substrate 12 to obtain the diameter of the flat portion on the surface of the silicon substrate 12, and this diameter (99.4 mm). In addition, the margin corresponding to the maximum amount of positional deviation assumed at the time of bonding is set to 98 mm. In addition, the LT substrate 10 was prepared in a state where the chamfered portion of the chamfered substrate was cut off so that all corners were not chamfered. Next, the epoxy adhesive 13 is applied to the LT substrate 10 by spin coating, the silicon substrate 12 is pasted and heated to 180 ° C., and the thickness of the organic adhesive layer 14 (the layer in which the epoxy adhesive 13 is solidified) is 0. A bonded substrate 16 having a thickness of 3 μm was formed (FIG. 5B). At this time, after bonding, the outer peripheral surface of the LT substrate 10 and the outer peripheral surface of the organic adhesive layer 14 were on the same plane.

次いで、研磨機にてLT基板10の厚さが30μmとなるまで研磨した(図5(c))。研磨機としては、以下のように厚みを薄くしたあと鏡面研磨を行うものを用いた。即ち、厚みを薄くするときには、研磨定盤とプレッシャープレートとの間に貼り合わせ基板16を挟み込み、その貼り合わせ基板16と研磨定盤との間に研磨砥粒を含むスラリーを供給し、このプレッシャープレートにより貼り合わせ基板16を定盤面に押し付けながらプレッシャープレートに自転運動を与えて行うものを用いた。続いて、鏡面研磨を行うときには、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、プレッシャープレートに自転運動及び公転運動を与えることによって、圧電基板の表面を鏡面研磨するものを用いた。まず、貼り合わせ基板16のLT基板の表面を定盤面に押し付け、自転運動の回転速度を100rpm、研磨を継続する時間を60分として研磨した。続いて、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、貼り合わせ基板16を定盤面に押し付ける圧力を0.2MPa、自転運動の回転速度を100rpm、公転運動の回転速度を100rpm、研磨を継続する時間を60分として鏡面研磨した。   Subsequently, it grind | polished until the thickness of LT board | substrate 10 was set to 30 micrometers with the grinder (FIG.5 (c)). As the polishing machine, a machine that performs mirror polishing after reducing the thickness as follows was used. That is, when the thickness is reduced, the bonded substrate 16 is sandwiched between the polishing platen and the pressure plate, and a slurry containing abrasive grains is supplied between the bonded substrate 16 and the polishing platen. A pressure plate was used to rotate the pressure plate while pressing the laminated substrate 16 against the surface plate using a plate. Subsequently, when performing mirror polishing, the polishing surface plate is assumed to have a pad attached to the surface and the abrasive grains are changed to a high count, and by giving rotation and revolution motion to the pressure plate, A piezoelectric substrate whose surface was mirror-polished was used. First, the surface of the LT substrate of the bonded substrate 16 was pressed against the surface of the platen, and the rotation was performed at a rotation speed of 100 rpm and the polishing duration was 60 minutes. Subsequently, the polishing surface plate is assumed to have a pad attached to the surface, and the abrasive grains are changed to a higher one, the pressure for pressing the bonded substrate 16 against the surface plate is 0.2 MPa, rotation of rotation Mirror polishing was performed with a speed of 100 rpm, a revolution speed of 100 rpm, and a polishing duration of 60 minutes.

同じ製造工程で、5枚の複合基板を製造したときの、LT基板10の縁の欠けの様子を図7に示す。図7は、LT基板10の縁の欠けの様子を目視にて確認して作成したスケッチである。図示するように、1〜5枚目の複合基板につき、欠けは見られなかった。   FIG. 7 shows a state in which the edge of the LT substrate 10 is chipped when five composite substrates are manufactured in the same manufacturing process. FIG. 7 is a sketch created by visually confirming the chipping of the edge of the LT substrate 10. As shown in the drawing, no chipping was observed in the first to fifth composite substrates.

[比較例1]
シリコン基板12と同じ外径でありこのシリコン基板12と貼り合わせられる角が面取りされたLT基板を用意した以外は、実施例1と同様にして複合基板を作製した。同じ製造工程で、5枚の複合基板を製造したときの、LT基板10の縁の欠けの様子を図8に示す。図8は、LT基板10の縁の欠けの様子を目視にて確認し作成したスケッチである。図中、網掛け部分がLT基板10の欠けている部分である。図示するように、1〜5枚目の複合基板につき、それぞれ複数箇所に大きな欠けが見られた。
[Comparative Example 1]
A composite substrate was fabricated in the same manner as in Example 1 except that an LT substrate having the same outer diameter as that of the silicon substrate 12 and a chamfered corner to be bonded to the silicon substrate 12 was prepared. FIG. 8 shows a state in which the edge of the LT substrate 10 is chipped when five composite substrates are manufactured in the same manufacturing process. FIG. 8 is a sketch created by visually confirming the state of the chipping of the edge of the LT substrate 10. In the figure, the shaded portion is a portion where the LT substrate 10 is missing. As shown in the figure, for the first to fifth composite substrates, large chips were observed at a plurality of locations.

実施例1及び比較例1の結果から、実施例1は、比較例1に比して研磨時のLT基板10の欠けの発生が抑制されることが分かった。   From the results of Example 1 and Comparative Example 1, it was found that in Example 1, the occurrence of chipping of the LT substrate 10 during polishing was suppressed as compared with Comparative Example 1.

[実施例2]
有機接着層14の厚さを表1に示すように変更した以外は、実施例1と同様にして複合基板を作製した。そして、作製した複合基板に、LT基板の表面に金属アルミニウム製の入力電極及び出力電極を形成してSAWフィルタを作製し、その熱膨張係数と周波数温度特性とを測定した。その測定結果を表1に示す。ここで、LT基板のSAWの伝搬方向Xの線熱膨張係数は16ppm/℃である。また、単結晶シリコン基板のSAWの伝搬方向Xの線膨張係数は3ppm/℃である。この表1の結果から明らかなように、有機接着層の厚さを0.1〜1.0μmとすることで、周波数温度特性(温度特性)が臨界的に著しく向上することが分かった。
[Example 2]
A composite substrate was produced in the same manner as in Example 1 except that the thickness of the organic adhesive layer 14 was changed as shown in Table 1. Then, an input electrode and an output electrode made of metal aluminum were formed on the surface of the LT substrate on the prepared composite substrate to produce a SAW filter, and its thermal expansion coefficient and frequency temperature characteristics were measured. The measurement results are shown in Table 1. Here, the linear thermal expansion coefficient in the propagation direction X of the SAW of the LT substrate is 16 ppm / ° C. The linear expansion coefficient in the SAW propagation direction X of the single crystal silicon substrate is 3 ppm / ° C. As is apparent from the results in Table 1, it was found that the frequency temperature characteristics (temperature characteristics) are significantly improved by setting the thickness of the organic adhesive layer to 0.1 to 1.0 μm.

Figure 0005363092
Figure 0005363092

本発明の複合基板の製造方法で製造した複合基板の断面図である。It is sectional drawing of the composite substrate manufactured with the manufacturing method of the composite substrate of this invention. 本発明の複合基板の製造方法で製造した複合基板の断面図である。It is sectional drawing of the composite substrate manufactured with the manufacturing method of the composite substrate of this invention. 本発明の複合基板の製造方法で製造した複合基板の断面図である。It is sectional drawing of the composite substrate manufactured with the manufacturing method of the composite substrate of this invention. 本発明の複合基板の製造方法で製造した複合基板の断面図である。It is sectional drawing of the composite substrate manufactured with the manufacturing method of the composite substrate of this invention. 複合基板の製造プロセスを模式的に示す断面図である。It is sectional drawing which shows the manufacturing process of a composite substrate typically. 面取り部分を説明する部分断面図である。It is a fragmentary sectional view explaining a chamfer part. 実施例のLT基板の縁の欠けの様子を表すスケッチ図である。It is a sketch figure showing the mode of the chip of the edge of the LT substrate of an example. 比較例のLT基板の縁の欠けの様子を表すスケッチ図である。It is a sketch figure showing the mode of the edge notch of the LT board of a comparative example.

符号の説明Explanation of symbols

10 タンタル酸リチウム基板(LT基板)、12 シリコン基板、13 有機接着剤、14 有機接着層、16 貼り合わせ基板。   10 Lithium tantalate substrate (LT substrate), 12 Silicon substrate, 13 Organic adhesive, 14 Organic adhesive layer, 16 Bonded substrate.

Claims (4)

(a)外径よりも小さい直径の平坦部を表面に有する支持基板と、前記平坦部の直径よりも外径が小さいか又は同じであり且つ少なくとも前記支持基板と貼り合わせる側の角が面取りされていない角立った状態の圧電基板とを用意する工程と、
(b)前記支持基板の表面と前記圧電基板の裏面とを有機接着層を介して貼り合わせて貼り合わせ基板を形成するにあたり、前記圧電基板の外周面が、前記有機接着層の外周面と同一面上になるか又は該有機接着層の外周面よりも内側に位置するようにして貼り合わせる工程と、
(c)前記圧電基板の表面と研磨定盤との間に研磨砥粒を介在させて、該圧電基板の表面を該研磨定盤により研磨することにより該圧電基板の厚みを薄くすると共に該圧電基板の表面を鏡面研磨する工程と、
を含み、
前記工程(a)では、圧電基板よりも熱膨張係数の小さい支持基板を用意し、
前記工程(b)では、前記有機接着層の厚さが0.1〜1.0μmとなるようにする、
表面弾性波フィルタ用複合基板の製造方法。
(A) A support substrate having a flat portion with a diameter smaller than the outer diameter on the surface, and an outer diameter smaller than or equal to the diameter of the flat portion, and at least a corner to be bonded to the support substrate is chamfered. A step of preparing a piezoelectric substrate in a non-square state;
(B) When forming the bonded substrate by bonding the front surface of the support substrate and the back surface of the piezoelectric substrate through an organic adhesive layer, the outer peripheral surface of the piezoelectric substrate is the same as the outer peripheral surface of the organic adhesive layer Bonding to be on the surface or located inside the outer peripheral surface of the organic adhesive layer; and
(C) Abrasive grains are interposed between the surface of the piezoelectric substrate and a polishing surface plate, and the surface of the piezoelectric substrate is polished by the polishing surface plate to reduce the thickness of the piezoelectric substrate and the piezoelectric substrate. Mirror polishing the surface of the substrate;
Including
In the step (a), a support substrate having a thermal expansion coefficient smaller than that of the piezoelectric substrate is prepared,
In the step (b), the organic adhesive layer has a thickness of 0.1 to 1.0 μm.
Manufacturing method of composite substrate for surface acoustic wave filter.
前記工程(b)では、前記圧電基板の裏面に有機接着剤を塗布して、該圧電基板と前記支持基板とを貼り合わせ、前記有機接着剤を固化させて前記有機接着層とする、
請求項1に記載の表面弾性波フィルタ用複合基板の製造方法。
In the step (b), an organic adhesive is applied to the back surface of the piezoelectric substrate, the piezoelectric substrate and the support substrate are bonded together, and the organic adhesive is solidified to form the organic adhesive layer.
The manufacturing method of the composite substrate for surface acoustic wave filters of Claim 1.
前記圧電基板は、タンタル酸リチウム、ニオブ酸リチウム及びニオブ酸リチウム−タンタル酸リチウム固溶体単結晶、ホウ酸リチウム、ランガサイト、水晶からなる群より選ばれた材質からなり、
前記支持基板は、シリコン、サファイア、窒化アルミニウム、アルミナ、ホウ珪酸ガラス及び石英ガラスからなる群より選ばれた材質からなる、
請求項1又は2に記載の表面弾性波フィルタ用複合基板の製造方法。
The piezoelectric substrate is made of a material selected from the group consisting of lithium tantalate, lithium niobate and lithium niobate-lithium tantalate solid solution, lithium borate, langasite, crystal,
The support substrate is made of a material selected from the group consisting of silicon, sapphire, aluminum nitride, alumina, borosilicate glass, and quartz glass.
The manufacturing method of the composite substrate for surface acoustic wave filters of Claim 1 or 2.
支持基板と、
前記支持基板の表面の平坦部の直径よりも外径が小さいか又は同じであり且つ少なくとも前記支持基板と貼り合わせる側の角が面取りされていない角立った状態の圧電基板と、
前記圧電基板と前記支持基板とを接着する有機接着層と、
を備え、
前記圧電基板の外周面が、前記有機接着層の外周面と同一面上にあるか又は該有機接着層の外周面よりも内側に位置しており、
前記支持基板は、前記圧電基板よりも熱膨張係数が小さく、前記平坦部の直径が該支持基板の外径よりも小さく、
前記有機接着層は、厚さが0.1〜1.0μmである、
表面弾性波フィルタ用複合基板。
A support substrate;
An outer diameter smaller than or equal to the diameter of the flat portion of the surface of the support substrate, and at least a corner of the side to be bonded to the support substrate is not chamfered;
An organic adhesive layer for bonding the piezoelectric substrate and the support substrate;
With
The outer peripheral surface of the piezoelectric substrate is on the same plane as the outer peripheral surface of the organic adhesive layer or is located on the inner side of the outer peripheral surface of the organic adhesive layer,
The support substrate has a smaller coefficient of thermal expansion than the piezoelectric substrate , the diameter of the flat portion is smaller than the outer diameter of the support substrate,
The organic adhesive layer has a thickness of 0.1 to 1.0 μm.
Composite substrate for surface acoustic wave filter.
JP2008326879A 2008-12-24 2008-12-24 Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter Active JP5363092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326879A JP5363092B2 (en) 2008-12-24 2008-12-24 Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326879A JP5363092B2 (en) 2008-12-24 2008-12-24 Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JP2010153961A JP2010153961A (en) 2010-07-08
JP5363092B2 true JP5363092B2 (en) 2013-12-11

Family

ID=42572579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326879A Active JP5363092B2 (en) 2008-12-24 2008-12-24 Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP5363092B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458651B2 (en) * 2009-04-28 2014-04-02 株式会社村田製作所 Surface acoustic wave element substrate and surface acoustic wave element manufacturing method
JP5588836B2 (en) 2010-11-12 2014-09-10 太陽誘電株式会社 Elastic wave device
WO2014148648A1 (en) * 2013-03-21 2014-09-25 日本碍子株式会社 Composite substrate for elastic wave element and elastic wave element
JP6220279B2 (en) * 2014-02-04 2017-10-25 日本碍子株式会社 Polishing method for composite substrate
JP6454606B2 (en) * 2015-06-02 2019-01-16 信越化学工業株式会社 Method for manufacturing composite wafer having oxide single crystal thin film
JP6342051B2 (en) * 2017-08-31 2018-06-13 日本碍子株式会社 Polishing method for composite substrate
JP7501889B2 (en) * 2020-03-25 2024-06-18 三安ジャパンテクノロジー株式会社 Method for manufacturing bonded wafer and method for manufacturing acoustic wave device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754069A (en) * 1980-09-09 1982-03-31 Citizen Watch Co Ltd Precision lapping and polishing method
JPS5753120A (en) * 1980-09-16 1982-03-30 Citizen Watch Co Ltd Production of adhesive substrate for precise lapping of thin material
JPH1154809A (en) * 1997-07-30 1999-02-26 Osaka Prefecture Laminate for piezoelectric device, its manufacture, and manufacture of the piezoelectric device
JP4368499B2 (en) * 1999-06-14 2009-11-18 パナソニック株式会社 Method for manufacturing surface acoustic wave element and method for manufacturing surface acoustic wave device using the same
JP3952666B2 (en) * 2000-06-23 2007-08-01 株式会社日立製作所 Surface acoustic wave device
JP2002026684A (en) * 2000-07-04 2002-01-25 Matsushita Electric Ind Co Ltd Surface acoustic wave element
JP2002079457A (en) * 2000-09-05 2002-03-19 Noboru Ueda Method of manufacturing thin plate, piezo-electric plate, and piezo-electric vibrator
JP2003110392A (en) * 2001-10-02 2003-04-11 Matsushita Electric Ind Co Ltd Method of manufacturing electronic component
JP2003124767A (en) * 2001-10-16 2003-04-25 Hitachi Ltd Surface acoustic wave element and production method therefor
JP2007134889A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Composite piezoelectric substrate
JP5073329B2 (en) * 2006-07-13 2012-11-14 日本碍子株式会社 Piezoelectric thin film device

Also Published As

Publication number Publication date
JP2010153961A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP5384313B2 (en) Composite substrate manufacturing method and composite substrate
JP5591240B2 (en) Composite substrate and manufacturing method thereof
KR101842278B1 (en) Composite substrate and method for manufacturing the composite substrate
JP5363092B2 (en) Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter
JP3187231U (en) Composite board
JP2011071967A (en) Method for manufacturing composite substrate
TWI424484B (en) Wafer grinding method and wafer
TWI637540B (en) Method for manufacturing piezoelectric device, piezoelectric device and piezoelectric independent substrate
KR101645634B1 (en) Bonded wafer production method
JP5399229B2 (en) Composite substrate and manufacturing method thereof
JP6247054B2 (en) Elastic wave device and manufacturing method thereof
JP6226774B2 (en) Composite substrate manufacturing method and composite substrate
JP2007260793A (en) Wafer substrate polishing method and wafer made of piezoelectric single crystal
JP2001332949A (en) Method for manufacturing surface acoustic wave element
JP6660113B2 (en) Composite substrate and method of manufacturing the same
JP5234780B2 (en) Composite substrate manufacturing method and composite substrate
JP5677030B2 (en) Elastic wave device and manufacturing method thereof
JPH11189500A (en) Production of oxide single crystal substrate
JP2007090515A (en) Wafer polishing method and wafer
JP2001133475A (en) Method of manufacturing electronic component and method of manufacturing acceleration sensor using this manufacturing method
JP2007335433A (en) Method for treating end face of wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5363092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150