JP2003124767A - Surface acoustic wave element and production method therefor - Google Patents

Surface acoustic wave element and production method therefor

Info

Publication number
JP2003124767A
JP2003124767A JP2001317579A JP2001317579A JP2003124767A JP 2003124767 A JP2003124767 A JP 2003124767A JP 2001317579 A JP2001317579 A JP 2001317579A JP 2001317579 A JP2001317579 A JP 2001317579A JP 2003124767 A JP2003124767 A JP 2003124767A
Authority
JP
Japan
Prior art keywords
substrate
acoustic wave
surface acoustic
thermal expansion
linear thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001317579A
Other languages
Japanese (ja)
Inventor
Kengo Asai
健吾 浅井
Mitsutaka Hikita
光孝 疋田
Atsushi Isobe
敦 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001317579A priority Critical patent/JP2003124767A/en
Publication of JP2003124767A publication Critical patent/JP2003124767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a surface acoustic wave (SAW) element which has an improved linear thermal expansion coefficient and a reduced delay time temperature coefficient. SOLUTION: Two substrates of different linear thermal expansion coefficients are used for first and second substrates, the difference of the linear thermal expansion coefficients in the direction of the smallest thermal expansion coefficient on the first substrate and a direction to be matched with the direction of the smallest thermal expansion coefficient on the first substrate when bonding the second substrate is settled within 4 ppm/ deg.C and further in a direction perpendicular to the exciting direction of SAW on the first substrate, a slit pattern is formed for relaxing stress caused by the first substrate, the second substrate or on both the substrates due to difference of linear thermal expansion coefficients.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は携帯電話等に用いら
れる弾性表面波を用いる素子、およびその基板の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element using surface acoustic waves used in mobile phones and the like, and a method for manufacturing a substrate thereof.

【0002】[0002]

【従来の技術】従来、携帯電話等に用いられる弾性表面
波素子は、例えば、電子情報通信学会論文誌エー ジェ
イ76−エー巻 2号 185頁 1993年2月(電
子情報通信学会論文誌A Vol.J76−A No.
2 pp185−192 1993/2)に示されてい
るように、タンタル酸リチウム基板、ニオブ酸リチウム
基板および四ホウ酸リチウム基板などの単結晶圧電基板
上に金属薄膜の櫛形交差指電極を形成して構成されてい
る。
2. Description of the Related Art Conventionally, a surface acoustic wave element used in a mobile phone or the like is disclosed in, for example, the Institute of Electronics, Information and Communication Engineers, Journal of the Institute of Electronics, Information and Communication A 76-A Vol. J76-A No.
2 pp185-192 1993/2), a comb-shaped interdigitated electrode of a metal thin film is formed on a single crystal piezoelectric substrate such as a lithium tantalate substrate, a lithium niobate substrate and a lithium tetraborate substrate. It is configured.

【0003】近年、携帯電話等の高性能化に伴い、それ
等に用いる弾性表面波素子用基板の遅延時間温度係数を
改善した報告がなされている。例えば、特開平11−5
5070号に示されているように単結晶圧電基板とガラ
ス基板を直接接合させた事例がある。さらに、第20回
超音波シンポジウム予稿集 51頁 1999年11月
に示されているように単結晶圧電基板とマイナス膨張ガ
ラスを紫外線硬化型樹脂で接合させた事例がある。
In recent years, as the performance of mobile phones and the like has improved, it has been reported that the temperature coefficient of delay time of the surface acoustic wave element substrate used therefor has been improved. For example, Japanese Patent Laid-Open No. 11-5
There is a case where a single crystal piezoelectric substrate and a glass substrate are directly bonded as shown in No. 5070. Furthermore, there is a case in which a single crystal piezoelectric substrate and a minus expansion glass are bonded with an ultraviolet curable resin as shown in Nov. 1999, page 51 of the 20th ultrasonic symposium proceedings.

【0004】[0004]

【発明が解決しようとする課題】携帯電話等は市場の急
速な拡大から、近年、送受信の各周波数帯域がより拡大
される傾向があり、送信帯域と受信帯域の周波数間隔が
非常に狭いシステムも存在している。このことから、携
帯電話等に内蔵される各種デバイスに対してもより一層
の高性能化が要求されている。特にタンタル酸リチウム
基板、ニオブ酸リチウム基板等の単結晶圧電基板上に金
属薄膜の櫛形交差指電極を形成する従来の弾性表面波素
子では、帯域間減衰量を確保するため、遅延時間温度係
数の低減が大きな課題となっている。
Due to the rapid expansion of the market for mobile phones and the like, in recent years, there has been a tendency for the frequency bands for transmission and reception to become wider, and even for systems in which the frequency interval between the transmission band and the reception band is very narrow. Existing. For this reason, even higher performance is required for various devices built into mobile phones and the like. In particular, in a conventional surface acoustic wave element in which a comb-shaped interdigital electrode of a metal thin film is formed on a single crystal piezoelectric substrate such as a lithium tantalate substrate or a lithium niobate substrate, the delay time temperature coefficient Reduction is a major issue.

【0005】弾性表面波素子の遅延時間温度係数は、単
結晶圧電基板の線熱膨張係数と弾性表面波伝搬速度の温
度係数との差によって決定する。これらの値は単結晶圧
電基板固有の値であり、線熱膨張係数に関して言えば、
例えばX軸を中心にY軸からZ軸方向に36°〜46°
の角度で回転された面方位を持つタンタル酸リチウム基
板のX軸、すなわち弾性表面波伝搬方向では、約16.
1ppm/℃と大きな値となっている。
The temperature coefficient of delay time of the surface acoustic wave element is determined by the difference between the linear thermal expansion coefficient of the single crystal piezoelectric substrate and the temperature coefficient of the surface acoustic wave propagation velocity. These values are unique to the single crystal piezoelectric substrate, and in terms of linear thermal expansion coefficient,
For example, 36 degrees to 46 degrees from the Y axis in the Z axis direction around the X axis
In the X-axis of the lithium tantalate substrate having the plane orientation rotated by the angle of, that is, in the surface acoustic wave propagation direction, about 16.
It is a large value of 1 ppm / ° C.

【0006】最近では、単結晶圧電基板の線熱膨張係数
を低減させる方法として、線熱膨張係数が小さい下地基
板と単結晶圧電基板とを接合させた接合基板が提案され
ている。これは、単結晶圧電基板の線熱膨張係数を下地
基板の線熱膨張係数によって抑圧することで、線熱膨張
係数の改善を図るものである。しかしながら、この方法
は単結晶圧電基板の伸縮を下地基板により力で抑圧する
ということであり、基板接合界面には線熱膨張係数の差
異に相当する応力が発生し、基板が破損するという課題
が生じる。
Recently, as a method of reducing the linear thermal expansion coefficient of a single crystal piezoelectric substrate, a bonded substrate in which a base substrate having a small linear thermal expansion coefficient and a single crystal piezoelectric substrate are bonded has been proposed. This is intended to improve the linear thermal expansion coefficient by suppressing the linear thermal expansion coefficient of the single crystal piezoelectric substrate by the linear thermal expansion coefficient of the base substrate. However, this method means that the expansion and contraction of the single crystal piezoelectric substrate is suppressed by the base substrate with a force, and a stress corresponding to the difference in the coefficient of linear thermal expansion occurs at the substrate bonding interface, which causes the problem that the substrate is damaged. Occurs.

【0007】基板破損に対する解決策として、単結晶圧
電基板の板厚を薄くするなどの方法が提案されている
が、その効果は十分ではなく、基板サイズが大きくなる
と、同様に基板破損が問題となる。
As a solution to the substrate damage, a method of reducing the thickness of the single crystal piezoelectric substrate has been proposed. However, the effect is not sufficient, and if the substrate size becomes large, the substrate damage also becomes a problem. Become.

【0008】さらに、特開平9−27645号公報に
は、熱処理工程を2段階に分け、低温で行う第1の熱処
理の後、接合基板を小片に分割したのち、第2の熱処理
を高温で行う方法が述べられているが、この方法では接
合基板がウエハ形状ではなくなるため、櫛形交差指電極
の作製工程の際に不具合が生じる。本発明は、上記のよ
うな課題を解決し、単結晶圧電基板の線熱膨張係数を改
善することによって、遅延時間温度係数が向上した弾性
表面波素子用接合基板、および弾性表面波素子を実現す
ることを目的とする。
Further, in Japanese Unexamined Patent Publication No. 9-27645, the heat treatment process is divided into two steps, and after the first heat treatment performed at low temperature, the bonded substrate is divided into small pieces, and then the second heat treatment is performed at high temperature. Although the method is described, in this method, the bonded substrate is not in the shape of a wafer, so that a problem occurs during the manufacturing process of the comb-shaped interdigital finger electrodes. The present invention solves the above problems and realizes a surface acoustic wave device-bonded substrate having an improved delay time temperature coefficient and a surface acoustic wave device by improving the linear thermal expansion coefficient of a single crystal piezoelectric substrate. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明による弾性表面波素子は単結晶圧電基板であ
る第1の基板と、第1の基板に接合された第2の基板
と、第1の基板の第2の基板との接合面と反対側の面上
に形成され弾性表面波を励振伝搬する櫛型交差指電極と
を備えた弾性表面波素子の製造方法において、第1の基
板と第2の基板には線熱膨張係数の異なる基板を用い、
第1の基板の線熱膨張係数が最も小さい方向と、第2の
基板の第1の基板の最も熱膨張係数が小さい方向と一致
させる方向との、線熱膨張係数の差を4ppm/℃以内
とし、かつ第1の基板の線熱膨張係数が最も大きい方向
と直交する方向に沿って、第1の基板もしくは第2の基
板またはその両方の基板に切込みパターンを形成するこ
とを特徴とする。線熱膨張係数が異なる2枚の基板を接
合し加熱処理を行うと、基板接合界面に線熱膨張係数の
差異に応じた応力が発生する。ここで、第2の基板の線
熱膨張係数を、第1の基板の最も熱膨張係数が小さい方
向の線熱膨張係数と、ほぼ一致させることにより、基板
接合界面に発生する応力を一方向に限定することができ
る。このため、応力を緩和する切込みパターンの形状が
単純な直線状となり、任意の間隔で形成された直線状の
切込みにより応力が緩和され、基板破損や基板の反りが
生じることのない基板接合が可能となる。
In order to achieve the above object, a surface acoustic wave device according to the present invention comprises a first substrate which is a single crystal piezoelectric substrate and a second substrate which is bonded to the first substrate. A method for manufacturing a surface acoustic wave device, comprising: a comb-shaped interdigital finger electrode that is formed on a surface of the first substrate opposite to a surface where the first substrate and the second substrate are joined and excites and propagates a surface acoustic wave. Substrates with different linear thermal expansion coefficients are used for the second substrate and
The difference in linear thermal expansion coefficient between the direction in which the linear thermal expansion coefficient of the first substrate is the smallest and the direction in which the linear thermal expansion coefficient of the second substrate is the smallest is 4 ppm / ° C or less. In addition, the notch pattern is formed on the first substrate, the second substrate, or both of them along the direction orthogonal to the direction in which the linear thermal expansion coefficient of the first substrate is the largest. When two substrates having different linear thermal expansion coefficients are joined and subjected to heat treatment, stress corresponding to the difference in linear thermal expansion coefficient is generated at the substrate bonding interface. Here, by making the linear thermal expansion coefficient of the second substrate substantially match the linear thermal expansion coefficient of the first substrate in the direction of the smallest thermal expansion coefficient, the stress generated at the substrate bonding interface is made unidirectional. Can be limited. For this reason, the shape of the notch pattern that relieves stress is a simple linear shape, the stress is relieved by the linear notches formed at arbitrary intervals, and substrate bonding that does not cause substrate damage or substrate warpage is possible Becomes

【0010】以上の手段により、櫛形交差指電極の作製
工程時の基板加熱に対しても、高温の熱処理が可能とな
り、弾性表面波素子用基板接合には非常に効果的な製造
方法である。
By the above means, a high-temperature heat treatment is possible even when the substrate is heated during the manufacturing process of the comb-shaped interdigital finger electrode, which is a very effective manufacturing method for bonding the surface acoustic wave element substrate.

【0011】[0011]

【発明の実施の形態】本発明の具体的な実施例を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Specific examples of the present invention will be described.

【0012】図1は本発明により作製した弾性表面波素
子の一例を示す斜視図である。
FIG. 1 is a perspective view showing an example of a surface acoustic wave device manufactured according to the present invention.

【0013】ここでは、例えば第1の基板1にはX軸を
中心にY軸からZ軸方向に36°〜46°の角度で回転
された面方位を持つタンタル酸リチウム基板を用い、第
2の基板2には線熱膨張係数が4ppm/℃であるガラ
ス基板を用いた。基板の大きさは第1の基板1、第2の
基板2ともに厚さ360μm、直径3インチの円形基板
とした。また、接着層10には、ガラス転移温度が20
0℃以上である紫外線硬化型樹脂を用いた。
Here, for example, as the first substrate 1, a lithium tantalate substrate having a plane orientation rotated about the X axis in the Z axis direction from the Y axis at an angle of 36 ° to 46 ° is used. As the substrate 2, a glass substrate having a linear thermal expansion coefficient of 4 ppm / ° C. was used. Regarding the size of the substrate, both the first substrate 1 and the second substrate 2 were circular substrates having a thickness of 360 μm and a diameter of 3 inches. Further, the adhesive layer 10 has a glass transition temperature of 20.
An ultraviolet curable resin having a temperature of 0 ° C. or higher was used.

【0014】本発明により作製した弾性表面波素子は単
結晶圧電基板である第1の基板1と、第1の基板1に接
合された第2の基板2と、第1の基板1の第2の基板2
との接合面と反対側の面上に形成され弾性表面波を励振
する櫛型交差指電極3とを備えた弾性表面波素子であ
り、第1の基板1と第2の基板2とが接着層10によっ
て接合された接合基板6を弾性表面波素子用基板として
用いる。第1の基板1上に形成された櫛型交差指電極3
により励振された弾性表面波は第1の基板1上を伝搬
し、弾性表面波素子として機能する。
The surface acoustic wave device manufactured according to the present invention is a first substrate 1 which is a single crystal piezoelectric substrate, a second substrate 2 bonded to the first substrate 1, and a second substrate of the first substrate 1. Board 2
A surface acoustic wave device having a comb-shaped interdigital finger electrode 3 formed on a surface opposite to a surface to be joined with and interposing a comb-shaped interdigital finger electrode 3 between the first substrate 1 and the second substrate 2. The bonded substrate 6 bonded by the layer 10 is used as a surface acoustic wave element substrate. Comb type interdigital electrode 3 formed on the first substrate 1
The surface acoustic wave excited by is propagated on the first substrate 1 and functions as a surface acoustic wave element.

【0015】第1の基板1上に櫛形交差電極3を形成し
た弾性表面波素子における遅延時間温度係数は、第1の
基板1の弾性表面波伝搬方向4の線熱膨張係数と弾性表
面波伝搬速度の温度係数との差によって決定する。これ
らの値は単結晶圧電基板固有の値であり、例えば、X軸
を中心にY軸からZ軸方向に36°〜46°の角度で回
転された面方位を持つタンタル酸リチウム基板の弾性表
面波伝搬方向4(X軸方向)の線熱膨張係数は約16.
1ppm/℃と良好な数値ではない。
The temperature coefficient of delay time in the surface acoustic wave device in which the comb-shaped cross electrodes 3 are formed on the first substrate 1 is the coefficient of linear thermal expansion in the surface acoustic wave propagation direction 4 of the first substrate 1 and the surface acoustic wave propagation. It is determined by the difference between the velocity and the temperature coefficient. These values are values unique to the single crystal piezoelectric substrate, and are, for example, elastic surfaces of a lithium tantalate substrate having a plane orientation rotated about the X axis from the Y axis in the Z axis direction at an angle of 36 ° to 46 °. The linear thermal expansion coefficient in the wave propagation direction 4 (X-axis direction) is about 16.
It is not a good value of 1 ppm / ° C.

【0016】電気機械結合係数が大きな単結晶圧電基板
を用いて、遅延時間温度係数の小さい弾性表面波素子を
実現するため、本発明では単結晶圧電基板である第1の
基板1を、線熱膨張係数の小さい第2の基板2と接合し
た接合基板を用いる。これは、第2の基板2の線熱膨張
係数によって第1の基板1の線熱膨張係数が抑制される
ため、遅延時間温度係数が改善されるものである。しか
し、第1の基板1の線熱膨張係数がそのまま第2の基板
2の線熱膨張係数となる訳ではなく、第1の基板1と第
2の基板2の線熱膨張係数差によって接合面に生じる熱
応力に準じた数値となるため、第1の基板1と第2の基
板2の基板厚さが重要となる。検討した結果、第2の基
板2の厚さが第1の基板1の厚さの3倍以上となるよう
に第1の基板1の板厚を薄板化することにより、接合基
板6において弾性表面波伝搬方向4の線熱膨張係数をよ
り顕著に改善出来ることが分った。また、基板接合に接
着層10を適用することにより第1の基板1および第2
の基板2の接合面を鏡面処理する必要が無く、第1の基
板1の接合面に中心線平均あらさ0.15μm以上の凹
凸を設けることにより、接合界面による弾性表面波の反
射波の影響を抑圧することが可能である。
In order to realize a surface acoustic wave device having a small delay time temperature coefficient by using a single crystal piezoelectric substrate having a large electromechanical coupling coefficient, in the present invention, the first substrate 1 which is a single crystal piezoelectric substrate is treated with a linear heat treatment. A bonded substrate bonded to the second substrate 2 having a small expansion coefficient is used. This is because the coefficient of linear thermal expansion of the first substrate 1 is suppressed by the coefficient of linear thermal expansion of the second substrate 2, so that the temperature coefficient of delay time is improved. However, the coefficient of linear thermal expansion of the first substrate 1 does not directly become the coefficient of linear thermal expansion of the second substrate 2, but the difference in linear thermal expansion coefficient between the first substrate 1 and the second substrate 2 causes Since the numerical value is based on the thermal stress generated in the above, the substrate thickness of the first substrate 1 and the second substrate 2 is important. As a result of the study, by reducing the thickness of the first substrate 1 so that the thickness of the second substrate 2 is three times or more the thickness of the first substrate 1, the elastic surface of the bonding substrate 6 is reduced. It has been found that the linear thermal expansion coefficient in the wave propagation direction 4 can be improved significantly. In addition, by applying the adhesive layer 10 to the substrate bonding, the first substrate 1 and the second substrate 1
It is not necessary to perform mirror-finishing on the bonding surface of the substrate 2 and the unevenness having the center line average roughness of 0.15 μm or more is provided on the bonding surface of the first substrate 1 to prevent the influence of the reflected wave of the surface acoustic wave from the bonding interface. It is possible to suppress.

【0017】ここでは、第1の基板1であるX軸を中心
にY軸からZ軸方向に36°〜46°の角度で回転され
た面方位を持つタンタル酸リチウム基板の板厚を50μ
m、第2の基板2であるガラス基板の板厚を360μ
m、接着層10である紫外線硬化型樹脂の膜厚を6μm
とした弾性表面波素子を作製し、遅延時間温度係数を測
定した結果、18ppm/℃であった。基板接合を行わ
ない従来の弾性表面波素子の遅延時間温度係数が31p
pm/℃であるから、本発明により13ppm/℃の改
善効果があった。また、第1の基板1の板厚をより一層
薄くすることで、より大きい効果が現れることは明らか
である。
Here, the plate thickness of the lithium tantalate substrate having a plane orientation rotated from the Y axis in the Z axis direction by 36 ° to 46 ° about the X axis, which is the first substrate 1, is 50 μm.
m, the thickness of the glass substrate, which is the second substrate 2, is 360μ.
m, the thickness of the ultraviolet curable resin that is the adhesive layer 10 is 6 μm
The surface acoustic wave device was manufactured and the temperature coefficient of delay time was measured, and the result was 18 ppm / ° C. The temperature coefficient of delay time of the conventional surface acoustic wave device without substrate bonding is 31p.
Since it was pm / ° C, the present invention had an improvement effect of 13 ppm / ° C. Moreover, it is clear that a greater effect will be exhibited by making the plate thickness of the first substrate 1 thinner.

【0018】図2は、第1の基板1と第2の基板2を接
合させる場合の接合方向を示した図である。ここで、第
1の基板1および第2の基板2の線熱膨張係数を考え
る。第1の基板1であるX軸を中心にY軸からZ軸方向
に36°〜46°の角度で回転された面方位を持つタン
タル酸リチウム基板の線熱膨張係数が最も大きい方向1
1は、弾性表面波の伝搬方向4であるX軸方向で約1
6.1ppm/℃、また線熱膨張係数の最も小さい方向
13は弾性表面波の伝搬方向4と直交する方向で4.1
ppm/である。これに対して、第2の基板2として用
いたガラス基板は、接合時に第1の基板1の線熱膨張係
数の最も大きい方向11と一致する方向12、及び第1
の基板1の線熱膨張係数が最も小さい方向13と一致す
る方向14共に線熱膨張係数は4ppm/℃である。本
発明では、第1の基板1の線熱膨張係数が最も小さい方
向13と、第2の基板2の第1の基板1の線熱膨張係数
が最も小さい方向13と一致する方向14の線熱膨張係
数をほぼ一致させることにより、線熱膨張係数差による
応力を線熱膨張係数が最も大きい方向11の一方向のみ
に限定させることが特徴である。
FIG. 2 is a view showing a bonding direction when the first substrate 1 and the second substrate 2 are bonded. Here, the linear thermal expansion coefficients of the first substrate 1 and the second substrate 2 will be considered. The direction in which the linear thermal expansion coefficient of the lithium tantalate substrate having the plane orientation rotated about the X axis, which is the first substrate 1 from the Y axis in the Z axis direction at an angle of 36 ° to 46 °, is 1
1 is about 1 in the X-axis direction, which is the surface acoustic wave propagation direction 4.
The direction 13 having the smallest linear thermal expansion coefficient is 6.1 ppm / ° C., and the direction 13 is orthogonal to the propagation direction 4 of the surface acoustic wave.
It is ppm /. On the other hand, the glass substrate used as the second substrate 2 has a direction 12 that coincides with the direction 11 having the largest linear thermal expansion coefficient of the first substrate 1 at the time of bonding, and the first substrate 1.
The linear thermal expansion coefficient is 4 ppm / ° C. in both the direction 14 and the direction 13 in which the substrate 1 has the smallest linear thermal expansion coefficient. In the present invention, the linear thermal expansion in the direction 13 in which the linear thermal expansion coefficient of the first substrate 1 is the smallest and the linear thermal expansion 14 in the direction 14 in which the linear thermal expansion coefficient of the first substrate 1 in the second substrate 2 is the minimum It is a feature that the stress due to the difference in linear thermal expansion coefficient is limited to only one direction 11 having the largest linear thermal expansion coefficient by making the expansion coefficients substantially equal.

【0019】図3に本発明による弾性表面波素子用基板
の第1の実施例を示す。第1の基板1であるX軸を中心
にY軸からZ軸方向に36°〜46°の角度で回転され
た面方位を持つタンタル酸リチウム基板と第2の基板2
であるガラス基板を接合する場合には、基板の線熱膨張
係数が異なるために接合界面に線熱膨張係数差に伴う応
力が発生し、基板破損,基板反りなどが発生する可能性
がある。第1の基板1の線熱膨張係数が最も大きい方向
11(弾性表面波の伝搬方向4と同方向)は線熱膨張係
数が16.1ppm/℃であり、第2の基板2の線熱膨
張係数である4ppm/℃とは約4倍の差が有り、この
方向の接合に関しては応力を緩和する必要がある。一
方、第1の基板1の線熱膨張係数が最も小さい方向13
と第2の基板2の線熱膨張係数は4ppm/℃と等しい
ため、線熱膨張係数差により発生する応力は無視でき、
応力緩和の必要がない。したがって、応力緩和のための
切込みパターン9は第1の基板1の線熱膨張係数が最も
大きい方向11に直交する方向に沿って、ダイシングソ
ー等によって切込みを入れることによって形成される。
図3に示した第1の実施例では、応力緩和のための切込
みパターン9を第1の基板1に形成することを特徴とす
る。
FIG. 3 shows a first embodiment of the surface acoustic wave device substrate according to the present invention. The first substrate 1 is a lithium tantalate substrate having a plane orientation rotated about the X axis from the Y axis in the Z axis direction at an angle of 36 ° to 46 °, and the second substrate 2
When the glass substrates are bonded together, the linear thermal expansion coefficients of the substrates are different, so stress is generated at the bonding interface due to the difference in the linear thermal expansion coefficients, and there is a possibility that substrate damage, substrate warpage, or the like will occur. The direction 11 having the largest linear thermal expansion coefficient of the first substrate 1 (the same direction as the surface acoustic wave propagation direction 4) has a linear thermal expansion coefficient of 16.1 ppm / ° C., and the linear thermal expansion of the second substrate 2 is There is a difference of about 4 times from the coefficient of 4 ppm / ° C., and it is necessary to relieve stress when joining in this direction. On the other hand, the direction 13 in which the linear thermal expansion coefficient of the first substrate 1 is the smallest 13
Since the coefficient of linear thermal expansion of the second substrate 2 is equal to 4 ppm / ° C., the stress caused by the difference in coefficient of linear thermal expansion can be ignored,
No need for stress relaxation. Therefore, the notch pattern 9 for stress relaxation is formed by making a notch with a dicing saw or the like along a direction orthogonal to the direction 11 in which the first substrate 1 has the largest linear thermal expansion coefficient.
The first embodiment shown in FIG. 3 is characterized in that a notch pattern 9 for stress relaxation is formed on the first substrate 1.

【0020】図4に本発明による弾性表面波素子用基板
の第2の実施例を示す。図に示したように本実施例では
応力緩和のための切込みパターン9を第2の基板2に形
成することを特徴とする。
FIG. 4 shows a second embodiment of the surface acoustic wave device substrate according to the present invention. As shown in the figure, the present embodiment is characterized in that the notch pattern 9 for stress relaxation is formed on the second substrate 2.

【0021】図5に本発明による弾性表面波素子用基板
の第3の実施例を示す。図に示したように本実施例では
応力緩和のための切込みパターン9を第1の基板1およ
び第2の基板2の両方に形成することを特徴とする。
FIG. 5 shows a third embodiment of the surface acoustic wave element substrate according to the present invention. As shown in the figure, the present embodiment is characterized in that the notch pattern 9 for stress relaxation is formed on both the first substrate 1 and the second substrate 2.

【0022】図3〜5に示したように第1の基板1の線
熱膨張係数が最も大きい方向11に直交する方向に沿っ
て切込みパターン9を形成することにより、線熱膨張係
数の差異に起因して接合界面に発生する応力が分散され
るため、基板破損が無く、基板の反りも無い基板接合が
実現出来る。さらには、櫛形交差指電極3の作製工程時
の基板加熱に対しても、高温の熱処理が可能となる。第
1〜3の実施例共に同等の応力緩和効果がある。
As shown in FIGS. 3 to 5, the cut pattern 9 is formed along the direction orthogonal to the direction 11 in which the first substrate 1 has the largest linear thermal expansion coefficient. Since the stress generated at the bonding interface due to the dispersion is dispersed, it is possible to realize substrate bonding without substrate damage and substrate warpage. Furthermore, high-temperature heat treatment can be performed even when the substrate is heated during the manufacturing process of the comb-shaped interdigital finger electrode 3. The first to third embodiments have the same stress relaxation effect.

【0023】図6に本発明による弾性表面波素子用基板
の第1の実施例の製造方法を示す。
FIG. 6 shows a method for manufacturing a surface acoustic wave device substrate according to the first embodiment of the present invention.

【0024】まず第1の基板1と第2の基板2の洗浄を
行う。
First, the first substrate 1 and the second substrate 2 are cleaned.

【0025】次いで、接合する2枚の基板を、紫外線効
果型樹脂からなる接着層10を間に挟み接合する。次い
で、接合基板6に紫外線を照射することにより接着層1
0を硬化させ接合を完全にする。次いで、第1の基板1
の接合界面と反対側表面から、切込みパターン9をダイ
シングソーを用いて形成する。この製造方法では第1の
基板1の板厚360μmをダイシングソーにより完全に
切断する。
Next, the two substrates to be joined are joined by sandwiching the adhesive layer 10 made of an ultraviolet effect resin. Then, by irradiating the bonding substrate 6 with ultraviolet rays, the adhesive layer 1
Cure 0 to complete the bond. Then, the first substrate 1
The cut pattern 9 is formed from the surface on the opposite side of the bonding interface of (1) using a dicing saw. In this manufacturing method, the plate thickness of 360 μm of the first substrate 1 is completely cut by a dicing saw.

【0026】次いで、接合基板6が第2の基板2の線熱
膨張係数が支配的となるように、第1の基板1の薄板化
を行う。基板研磨装置を用いて、第1の基板1の板厚
を、第2の基板2の板厚に対して3分の1以下となるよ
うに基板研磨を行う。研磨工程は粗研磨から仕上げ研磨
までを段階的に行い、鏡面研磨を実現する。
Next, the first substrate 1 is thinned so that the bonding substrate 6 has the linear thermal expansion coefficient of the second substrate 2 dominant. Using the substrate polishing apparatus, the substrate polishing is performed so that the plate thickness of the first substrate 1 becomes one third or less of the plate thickness of the second substrate 2. In the polishing process, rough polishing to finish polishing are performed in stages to achieve mirror polishing.

【0027】さらに、金属薄膜からなる櫛形交差指電極
3を、第2の基板2に接合された第1の基板1上に通常
の電極作製工程を行って作製する。
Further, the comb-shaped interdigital finger electrode 3 made of a metal thin film is manufactured on the first substrate 1 bonded to the second substrate 2 by a usual electrode manufacturing process.

【0028】図7に本発明による弾性表面波素子用基板
の第1の実施例の別の製造方法を示す。
FIG. 7 shows another method of manufacturing the surface acoustic wave device substrate according to the first embodiment of the present invention.

【0029】まず第1の基板1の接合面側に、切込みパ
ターン9をダイシングソーを用いて形成する。ここでは
第1の基板1の接合面側に20μmの深さの切込みをダ
イシングソーにより形成する。
First, the cut pattern 9 is formed on the bonding surface side of the first substrate 1 by using a dicing saw. Here, a notch having a depth of 20 μm is formed on the bonding surface side of the first substrate 1 with a dicing saw.

【0030】次いで、第1の基板1と第2の基板2の洗
浄を行う。
Then, the first substrate 1 and the second substrate 2 are cleaned.

【0031】次いで、接合する2枚の基板を、紫外線硬
化型樹脂からなる接着層10を間に挟み接合する。次い
で、接合基板6に紫外線を照射することにより接着層1
0を硬化させ完全な基板接合を行う。
Next, the two substrates to be joined are joined by sandwiching the adhesive layer 10 made of an ultraviolet curable resin therebetween. Then, by irradiating the bonding substrate 6 with ultraviolet rays, the adhesive layer 1
0 is hardened and complete substrate bonding is performed.

【0032】次いで、接合基板6が第2の基板2の線熱
膨張係数が支配的となるように、第1の基板1の薄板化
を行う。基板研磨装置を用いて、第1の基板1の板厚
を、第2の基板2の板厚に対して3分の1以下となるよ
うに基板研磨を行う。研磨工程は粗研磨から仕上げ研磨
までを段階的に行い、鏡面研磨を実現する。
Next, the first substrate 1 is thinned so that the bonding substrate 6 has the linear thermal expansion coefficient of the second substrate 2 dominant. Using the substrate polishing apparatus, the substrate polishing is performed so that the plate thickness of the first substrate 1 becomes one third or less of the plate thickness of the second substrate 2. In the polishing process, rough polishing to finish polishing are performed in stages to achieve mirror polishing.

【0033】さらに、図1に示すような櫛形交差指電極
3を、第2の基板2に接合された第1の基板1上に通常
の電極作製工程を行って作製する。
Further, a comb-shaped interdigital finger electrode 3 as shown in FIG. 1 is produced on the first substrate 1 joined to the second substrate 2 by a usual electrode producing process.

【0034】図8に本発明による弾性表面波素子用基板
の第2の実施例の製造方法を示す。
FIG. 8 shows a method of manufacturing a surface acoustic wave device substrate according to a second embodiment of the present invention.

【0035】第1の実施例との相違点は、線熱膨張係数
差により基板接合界面に発生する応力を緩和する切り込
みパターン9を第2の基板2に形成する点である。
The difference from the first embodiment is that a notch pattern 9 is formed on the second substrate 2 to reduce the stress generated at the substrate bonding interface due to the difference in linear thermal expansion coefficient.

【0036】図9に本発明による弾性表面波素子用基板
の第3の実施例の製造方法を示す。
FIG. 9 shows a method of manufacturing a surface acoustic wave device substrate according to a third embodiment of the present invention.

【0037】第1の実施例との相違点は、線熱膨張係数
差により基板接合界面に発生する応力を緩和する切り込
みパターン9を第1の基板1と第2の基板2の両方に形
成する点である。
The difference from the first embodiment is that a notch pattern 9 is formed on both the first substrate 1 and the second substrate 2 to reduce the stress generated at the substrate bonding interface due to the difference in linear thermal expansion coefficient. It is a point.

【0038】図10は本発明により作製した別の形態の
弾性表面波素子の一例を示す斜視図である。図に示す弾
性表面波素子は、単結晶圧電基板である第1の基板1
と、第1の基板1に接合された第2の基板2と、第1の
基板1の第2の基板2との接合面と反対側の面上に形成
され弾性表面波を励振する櫛型交差電極3とを備えた弾
性表面波素子であり、第1の基板1の弾性表面波の伝搬
方向4における第2の基板2の線熱膨張係数は、第1の
基板1の同方向の線熱膨張係数より小さくなるように接
合されている。本第1の実施例における弾性表面波素子
では、第1の基板1と第2の基板2とが直接接合によっ
て接合され、直接接合基板7を弾性表面波素子用基板と
して用いる。
FIG. 10 is a perspective view showing an example of a surface acoustic wave element of another embodiment produced according to the present invention. The surface acoustic wave element shown in the figure is a first substrate 1 which is a single crystal piezoelectric substrate.
And a comb shape for exciting a surface acoustic wave formed on the surface of the first substrate 1 opposite to the bonding surface between the second substrate 2 bonded to the first substrate 1 and the second substrate 2. A surface acoustic wave element including a crossing electrode 3 and a linear thermal expansion coefficient of the second substrate 2 in a surface acoustic wave propagation direction 4 of the first substrate 1 is a line of the first substrate 1 in the same direction. Bonded so as to be smaller than the coefficient of thermal expansion. In the surface acoustic wave device according to the first embodiment, the first substrate 1 and the second substrate 2 are bonded by direct bonding, and the direct bonding substrate 7 is used as a surface acoustic wave device substrate.

【0039】図11に本発明による弾性表面波素子用基
板の第4の実施例を示す。第1の実施例との相違点は第
1の基板1と第2の基板2との接合を直接接合によって
行う点である。
FIG. 11 shows a fourth embodiment of the surface acoustic wave element substrate according to the present invention. The difference from the first embodiment is that the first substrate 1 and the second substrate 2 are directly joined to each other.

【0040】図12に本発明による弾性表面波素子用基
板の第4の実施例の製造方法を示す。
FIG. 12 shows a method for manufacturing a surface acoustic wave device substrate according to a fourth embodiment of the present invention.

【0041】まず第1の基板1の接合面側に、切込みパ
ターン9をダイシングソーを用いて形成する。ここでは
第1の基板1の接合界面側に20μmの深さの切込みパ
ターン9をダイシングソーにより形成する。
First, the cut pattern 9 is formed on the bonding surface side of the first substrate 1 by using a dicing saw. Here, the cut pattern 9 having a depth of 20 μm is formed on the bonding interface side of the first substrate 1 with a dicing saw.

【0042】次いで、第1の基板1と第2の基板2の接
合面を鏡面研磨して洗浄を行った後、接合する2枚の基
板を過酸化水素(H)とアンモニア水溶液(NH
)と純水(HO)を混合した溶液に約10分程度浸
漬させた後、純水によるリンスを行う。これは第1の基
板1および第2の基板2の表面に親水性を持たせ、基板
接合時に基板表面に吸着されている水分子間に働くファ
ンデルワース力により基板を結合させる効果がある。
Next, after the bonded surfaces of the first substrate 1 and the second substrate 2 are mirror-polished and washed, the two substrates to be bonded are treated with hydrogen peroxide (H 2 O 2 ) and an aqueous ammonia solution ( NH
3 ) It is immersed in a mixed solution of pure water (H 2 O) for about 10 minutes, and then rinsed with pure water. This has the effect of imparting hydrophilicity to the surfaces of the first substrate 1 and the second substrate 2 and binding the substrates by Van der Waals force acting between water molecules adsorbed on the substrate surfaces when the substrates are joined.

【0043】次いで、2枚の基板を乾燥させた後、室
温、空気雰囲気中で、互いの鏡面研磨した面どうしを向
かい合わせて基板接合を行う。ここではパーティクルフ
リーの接合界面を得ることが特に重要であり、前記洗浄
後、クラス10以上のクリーン度を持つクリーンルーム
で基板接合を行うことが望ましい。また、基板接合の直
前に洗浄を行うことによりパーティクルフリーの界面と
親水性を持った界面を両立させることが出来る。
Next, after the two substrates are dried, the mirror-polished surfaces of the two substrates are made to face each other in an air atmosphere at room temperature to bond the substrates. Here, it is particularly important to obtain a particle-free bonding interface, and it is desirable to bond the substrates in a clean room having a cleanness of class 10 or higher after the cleaning. In addition, by performing cleaning just before bonding the substrates, it is possible to achieve both a particle-free interface and a hydrophilic interface.

【0044】次いで、直接接合基板7を300℃の温度
で約2時間の熱処理を行うことにより、水素結合による
接合から共有結合に変化し完全な接合となる。
Next, the direct bonding substrate 7 is heat-treated at a temperature of 300 ° C. for about 2 hours to change from hydrogen bonding to covalent bonding to complete bonding.

【0045】次いで、直接接合基板7が第2の基板2の
線熱膨張係数が支配的となるように、第1の基板1の薄
板化を行う。基板研磨装置を用いて、第1の基板1の板
厚を、第2の基板2の板厚に対して3分の1以下となる
ように基板研磨を行う。研磨工程は粗研磨から仕上げ研
磨までを段階的に行い、鏡面研磨を実現する。
Next, the first bonded substrate 7 is thinned so that the linear thermal expansion coefficient of the second bonded substrate 2 becomes dominant. Using the substrate polishing apparatus, the substrate polishing is performed so that the plate thickness of the first substrate 1 becomes one third or less of the plate thickness of the second substrate 2. In the polishing process, rough polishing to finish polishing are performed in stages to achieve mirror polishing.

【0046】さらに、図1に示すような櫛形交差指電極
3を、第2の基板2に接合された第1の基板1上に通常
の電極作製工程を行って作製する。
Further, a comb-shaped interdigital finger electrode 3 as shown in FIG. 1 is produced on the first substrate 1 joined to the second substrate 2 by a usual electrode producing process.

【0047】ここでは説明の簡単化のため前記第1の実
施例の弾性表面波素子用基板の製造方法についてのみ説
明したが、前記第2〜3の実施例の形態で実施すれば各
実施例で示した効果が同様に得られるものである。
Although only the method for manufacturing the surface acoustic wave element substrate of the first embodiment has been described here for simplification of the description, each embodiment can be carried out if the embodiments of the second to third embodiments are carried out. The effect shown in is obtained in the same manner.

【0048】上記に示した実施例では、切込みパターン
9の加工にダイシングソーを用いたが、レジスト等をマ
スク材として任意の形状をパターンニングした後、ドラ
イエッチングによる加工、もしくは弗化水素酸(HF)
系のエッチング液によるウエットエッチング等によって
切込み加工を行ってもよく、切込みパターン9が形成さ
れていれば、その製法は特に問わない。
Although the dicing saw is used for processing the cut pattern 9 in the above-described embodiment, after patterning an arbitrary shape using a resist or the like as a mask material, processing by dry etching or hydrofluoric acid ( HF)
The cutting process may be performed by wet etching with a system-based etching solution, and the manufacturing method is not particularly limited as long as the cutting pattern 9 is formed.

【0049】上記に示した実施例では、第1の基板1の
薄板化を研磨工程によって実現しているが、あらかじめ
第2の基板2の板厚に対して3分の1以下の板厚となる
第1の基板1を用意しておいて接合しても良く、第1の
基板1の板厚が第2の基板2の板厚に対して3分の1以
下の板厚であれば、その製法は特に問わない。
In the above-described embodiment, the thinning of the first substrate 1 is realized by the polishing process. However, the thickness of the second substrate 2 is not more than one third of the thickness of the second substrate 2 in advance. The first substrate 1 may be prepared and joined, and if the plate thickness of the first substrate 1 is one third or less of the plate thickness of the second substrate 2, The manufacturing method is not particularly limited.

【0050】上記に示した実施例では、第1の基板1と
してX軸を中心にY軸からZ軸方向に36°〜46°の
角度で回転された面方位を持つタンタル酸リチウム基板
について説明したが、第1の基板1としてX軸を面方位
とするタンタル酸リチウム、X軸を中心にY軸からZ軸
方向に0°〜15°および41〜64°の範囲の角度で
回転された面方位を有するニオブ酸リチウム基板を用い
た場合も同様の効果がある。
In the embodiment shown above, a lithium tantalate substrate having a plane orientation rotated about the X axis in the Z axis direction from the Y axis at an angle of 36 ° to 46 ° will be described as the first substrate 1. However, as the first substrate 1, lithium tantalate having the X-axis as the plane orientation was rotated about the X-axis in the Z-axis direction from the Y-axis at angles of 0 ° to 15 ° and 41 to 64 °. The same effect is obtained when a lithium niobate substrate having a plane orientation is used.

【0051】また、第2の基板2としてガラス基板を用
いて説明を行ったが、酸化珪素、ダイアモンド、四ホウ
酸リチウム、窒化アルミニウム、窒化珪素、硼素、酸化
硼素、窒化硼素、タンタル酸リチウム、ニオブ酸リチウ
ム、またはそれらの複合材料による基板においても同様
な効果がある。
Although a glass substrate is used as the second substrate 2, silicon oxide, diamond, lithium tetraborate, aluminum nitride, silicon nitride, boron, boron oxide, boron nitride, lithium tantalate, The same effect can be obtained with a substrate made of lithium niobate or a composite material thereof.

【0052】[0052]

【発明の効果】以上に説明したように、本発明は弾性表
面波素子用接合基板の製造方法において、基板破損や基
板の反りが生じることのない接合が可能となる製造方法
を提案したものである。
As described above, the present invention proposes a method for manufacturing a bonded substrate for a surface acoustic wave device, which enables bonding without damage to the substrate or warpage of the substrate. is there.

【0053】本発明の製造方法によれば、櫛形交差指電
極作製時の基板加熱に対しても高温の熱処理が可能とな
るため、弾性表面波素子用基板接合にとっては非常に効
果的な方法である。作製された弾性表面波素子は、線熱
膨張係数が改善され、遅延時間温度係数が小さく、かつ
電気機械結合係数が大きいため、近年の送信帯域と受信
帯域の周波数間隔が非常に狭いシステムに対しても十分
に対応できるものであり、弾性表面波素子の可能性を高
めるものである。
According to the manufacturing method of the present invention, a high-temperature heat treatment can be performed even when the substrate is heated when the comb-shaped interdigital electrode is manufactured, and therefore, it is a very effective method for bonding the surface acoustic wave element substrate. is there. The fabricated surface acoustic wave device has an improved linear thermal expansion coefficient, a small delay time temperature coefficient, and a large electromechanical coupling coefficient, which makes it suitable for systems with extremely narrow frequency intervals between the transmission band and the reception band in recent years. However, it can sufficiently deal with it, and it increases the possibility of the surface acoustic wave element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により作製した弾性表面波素子の一例を
示す斜視図。
FIG. 1 is a perspective view showing an example of a surface acoustic wave device manufactured according to the present invention.

【図2】本発明による弾性表面波素子用基板の基板接合
時の接合方向を示す模式図。
FIG. 2 is a schematic diagram showing a bonding direction when bonding a substrate for a surface acoustic wave device according to the present invention.

【図3】本発明による弾性表面波素子用基板の第1の実
施例を示す斜視図。
FIG. 3 is a perspective view showing a first embodiment of the surface acoustic wave element substrate according to the present invention.

【図4】本発明による弾性表面波素子用基板の第2の実
施例を示す斜視図。
FIG. 4 is a perspective view showing a second embodiment of the surface acoustic wave element substrate according to the present invention.

【図5】本発明による弾性表面波素子用基板の第3の実
施例を示す斜視図。
FIG. 5 is a perspective view showing a third embodiment of the surface acoustic wave element substrate according to the present invention.

【図6】本発明による弾性表面波素子用基板の第1の実
施例の製造方法を示す斜視図。
FIG. 6 is a perspective view showing a method of manufacturing a surface acoustic wave device substrate according to a first embodiment of the present invention.

【図7】本発明による弾性表面波素子用基板の第1の実
施例の別の製造方法を示す斜視図。
FIG. 7 is a perspective view showing another manufacturing method of the first embodiment of the surface acoustic wave element substrate according to the present invention.

【図8】本発明による弾性表面波素子用基板の第2の実
施例の製造方法を示す斜視図。
FIG. 8 is a perspective view showing a manufacturing method of a second embodiment of the surface acoustic wave element substrate according to the present invention.

【図9】本発明による弾性表面波素子用基板の第3の実
施例の製造方法を示す斜視図。
FIG. 9 is a perspective view showing a method of manufacturing a surface acoustic wave device substrate according to a third embodiment of the present invention.

【図10】本発明により作製した別の形態の弾性表面波
素子の一例を示す斜視図。
FIG. 10 is a perspective view showing an example of a surface acoustic wave element of another form produced according to the present invention.

【図11】本発明による弾性表面波素子用基板の第4の
実施例を示す斜視図。
FIG. 11 is a perspective view showing a fourth embodiment of the surface acoustic wave element substrate according to the present invention.

【図12】本発明による弾性表面波用基板の第4の実施
例の製造方法を示す斜視図。
FIG. 12 is a perspective view showing a method of manufacturing a surface acoustic wave substrate according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…第1の基板、2…第2の基板、3…櫛形交差指電
極、4…第1の基板の弾性表面波伝搬方向、5…第1の
基板の弾性表面波伝搬方向と基板接合後に一致する第2
の基板の方向、6…接合基板 7…直接接合基板、9…切込みパターン、10…接着
層、11…第1の基板の線熱膨張係数が最も大きい方
向、12…第1の基板の線熱膨張係数が最も大きい方向
と基板接合後に一致する第2の基板の方向、13…第1
の基板の線熱膨張係数が最も小さい方向、14…第1の
基板の線熱膨張係数が最も小さい方向と基板接合後に一
致する第2の基板の方向。
DESCRIPTION OF SYMBOLS 1 ... 1st board | substrate, 2 ... 2nd board, 3 ... comb-shaped interdigital electrode, 4 ... 1st board | substrate surface acoustic wave propagation direction, 5 ... 1st board | substrate surface acoustic wave propagation direction, and after board | substrate joining Second matching
Direction of substrate, 6 ... Bonding substrate 7 ... Direct bonding substrate, 9 ... Cut pattern, 10 ... Adhesive layer, 11 ... Direction in which linear thermal expansion coefficient of first substrate is largest, 12 ... Linear heat of first substrate The direction of the second substrate, which coincides with the direction having the largest expansion coefficient after substrate bonding, 13 ...
Direction of the substrate having the smallest linear thermal expansion coefficient, 14 ... the direction of the second substrate which is the same as the direction having the smallest linear thermal expansion coefficient of the first substrate after the substrate bonding.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 礒部 敦 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5J097 AA09 AA28 AA31 EE03 EE08 GG03 GG04 HA03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Atsushi Isobe             1-280, Higashi Koikekubo, Kokubunji, Tokyo             Central Research Laboratory, Hitachi, Ltd. F term (reference) 5J097 AA09 AA28 AA31 EE03 EE08                       GG03 GG04 HA03

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】単結晶圧電基板である第1の基板と、前記
第1の基板に接合された第2の基板と、前記第1の基板
の前記第2の基板との接合面と反対側の面上に形成され
弾性波を励振する櫛型交差指電極とを備えた弾性表面波
素子の製造方法において、上記第1の基板と第2の基板
を接合する際に、前記第1の基板の弾性表面波の伝搬方
向における前記第2の基板の線熱膨張係数は、前記第1
の基板の同方向の線熱膨張係数より小さいこととし、さ
らに前記第1の基板の線熱膨張係数が最も小さい方向の
線熱膨張係数と、前記第1の基板の線熱膨張係数が最も
小さい方向と基板接合後に一致する方向の前記第2の基
板の線熱膨張係数との差が、4ppm/℃以内であるよ
うに接合することを特徴とする弾性表面波素子の製造方
法。
1. A first substrate which is a single crystal piezoelectric substrate, a second substrate bonded to the first substrate, and a side opposite to a bonding surface of the first substrate and the second substrate. In a method of manufacturing a surface acoustic wave device, comprising: a comb-shaped interdigital electrode for exciting an acoustic wave formed on the surface of the first substrate, the first substrate is bonded when the first substrate and the second substrate are bonded together. The linear thermal expansion coefficient of the second substrate in the propagation direction of the surface acoustic wave of
Is smaller than the linear thermal expansion coefficient of the substrate in the same direction, and the linear thermal expansion coefficient of the direction in which the linear thermal expansion coefficient of the first substrate is the smallest and the linear thermal expansion coefficient of the first substrate are the smallest. A method for manufacturing a surface acoustic wave element, characterized in that the bonding is performed so that the difference between the direction and the linear thermal expansion coefficient of the second substrate in the direction that coincides with the bonding after substrate bonding is within 4 ppm / ° C.
【請求項2】前記第1の基板の線熱膨張係数の最も大き
い方向と直交する方向に任意の間隔で切込みを形成する
ことを特徴とする請求項1記載の弾性表面波素子の製造
方法。
2. The method of manufacturing a surface acoustic wave device according to claim 1, wherein notches are formed at arbitrary intervals in a direction orthogonal to a direction having the largest linear thermal expansion coefficient of the first substrate.
【請求項3】前記第2の基板の、前記第1の基板の線熱
膨張係数が最も大きい方向と直交する方向と基板接合後
に一致する方向に、任意の間隔の切込みを形成すること
を特徴とする請求項1または2記載の弾性表面波素子の
製造方法。
3. A notch having an arbitrary interval is formed in the second substrate in a direction orthogonal to a direction in which the linear thermal expansion coefficient of the first substrate is the largest, and a direction that coincides after the substrates are joined. The method for manufacturing a surface acoustic wave device according to claim 1 or 2.
【請求項4】前記切込みが基板を完全に切断しないこと
を特徴とする請求項2または3記載の弾性表面波素子の
製造方法。
4. The method of manufacturing a surface acoustic wave device according to claim 2, wherein the notch does not completely cut the substrate.
【請求項5】前記切込みが基板を完全に切断することを
特徴とする請求項2または3記載の弾性表面波素子の製
造方法。
5. The method of manufacturing a surface acoustic wave device according to claim 2, wherein the notch completely cuts the substrate.
【請求項6】前記切込みが前記第1の基板と前記第2の
基板の接合界面側に形成されることを特徴とする請求項
2〜4のうちのいずれかに記載の弾性表面波素子の製造
方法。
6. The surface acoustic wave device according to claim 2, wherein the notch is formed on a joint interface side between the first substrate and the second substrate. Production method.
【請求項7】前期切込みが弾性波を励振させる櫛形交差
指電極を形成する面に形成されることを特徴とする請求
項2〜4のうちのいずれかに記載の弾性表面波素子の製
造方法。
7. The method of manufacturing a surface acoustic wave device according to claim 2, wherein the first cut is formed on a surface forming a comb-shaped interdigital finger electrode for exciting an acoustic wave. .
【請求項8】前記第1の基板と前記第2の基板の接合に
は、紫外線硬化型樹脂により接合されることを特徴とす
る請求項1〜7のうちのいずれかに記載の弾性表面波素
子の製造方法。
8. The surface acoustic wave according to claim 1, wherein the first substrate and the second substrate are bonded with an ultraviolet curable resin. Device manufacturing method.
【請求項9】前記第1の基板と前記第2の基板の接合に
用いる紫外線硬化型樹脂はガラス転移温度が200℃以
上であることを特徴とする請求項8記載の弾性表面波素
子の製造方法。
9. The production of a surface acoustic wave device according to claim 8, wherein the ultraviolet curable resin used for joining the first substrate and the second substrate has a glass transition temperature of 200 ° C. or higher. Method.
【請求項10】前記第1の基板の接合面、もしくは前記
第2の基板の接合面、またはその両方の基板の接合面
が、中心線平均あらさで0.15μm以上の表面粗さで
あることを特徴とする請求項8または9記載の弾性表面
波素子の製造方法。
10. The joint surface of the first substrate, the joint surface of the second substrate, or the joint surface of both of the substrates has a surface roughness of 0.15 μm or more in terms of center line average roughness. The method for manufacturing a surface acoustic wave device according to claim 8 or 9,
【請求項11】前記第1の基板および前記第2の基板の
接合面が鏡面研磨されていることを特徴とする請求10
記載の弾性表面波素子の製造方法。
11. The bonding surface of the first substrate and the second substrate is mirror-polished.
A method for manufacturing the surface acoustic wave element according to claim 1.
【請求項12】第1の基板と第2の基盤を直接接合する
ことを特徴とする請求項1〜7および11のうちのいず
れかに記載の弾性表面波素子の製造方法。
12. The method of manufacturing a surface acoustic wave device according to claim 1, wherein the first substrate and the second substrate are directly bonded to each other.
【請求項13】前記第1の基板の厚さが50μm以下で
あることを特徴とする請求項1〜12のうちのいずれか
に記載の弾性表面波素子の製造方法。
13. The method of manufacturing a surface acoustic wave device according to claim 1, wherein the thickness of the first substrate is 50 μm or less.
【請求項14】前記第1の基板及び前記第2の基板に形
成する前記任意の形状の切込みには、ダイシングソーに
よる切込み、もしくはホトレジストをマスク材としたウ
エットエッチングまたはドライエッチングにより形成す
ることを特徴とする請求項2〜7のうちのいずれかに記
載の弾性表面波素子の製造方法。
14. The notch of the arbitrary shape formed on the first substrate and the second substrate is formed by a dicing saw, or by wet etching or dry etching using a photoresist as a mask material. The method for manufacturing a surface acoustic wave device according to any one of claims 2 to 7, which is characterized in that.
【請求項15】前記第1の基板は、X軸を中心にY軸か
らZ軸方向に36〜46°の範囲の角度で回転された面
方位を有するタンタル酸リチウム、X軸を面方位とする
タンタル酸リチウム、またはX軸を中心にY軸からZ軸
方向に0〜15°および41〜64°の範囲の角度で回
転された面方位を有するニオブ酸リチウムであることを
特徴とする請求項1〜14のうちのいずれかに記載の弾
性表面波素子の製造方法。
15. The first substrate is lithium tantalate having a plane orientation rotated about the X axis in the Z axis direction from the Y axis by an angle in the range of 36 to 46 °, and the X axis is the plane orientation. Lithium tantalate, or lithium niobate having a plane orientation rotated about the X axis from the Y axis in the Z axis direction at angles of 0 to 15 ° and 41 to 64 °. Item 15. A method for manufacturing a surface acoustic wave device according to any one of items 1 to 14.
【請求項16】前記第2の基板は、ダイヤモンド、窒化
アルミニウム、珪素、酸化珪素、窒化珪素、硼素、酸化
硼素、窒化硼素、タンタル酸リチウム、ニオブ酸リチウ
ム、四ホウ酸リチウム、またはそれらの複合材料である
ことを特徴とする請求項1〜15のうちのいずれかに記
載の弾性表面波素子の製造方法。
16. The second substrate is diamond, aluminum nitride, silicon, silicon oxide, silicon nitride, boron, boron oxide, boron nitride, lithium tantalate, lithium niobate, lithium tetraborate, or a combination thereof. It is a material, The manufacturing method of the surface acoustic wave element in any one of Claims 1-15.
【請求項17】第1の基板と、該第1の基板に直接また
は中間材を介して接合された第2の基板と、上記第1の
基板の上記第2の基板との接合面と反対側の面上に形成
されて弾性波を励振する電極と、を有する弾性表面波素
子において、上記第1の基板の弾性表面波の伝搬方向に
おける上記第2の基板の線熱膨張係数は、上記第1の基
板の弾性表面波の伝搬方向の線熱膨張係数より小さく、
かつ、上記第1の基板の線熱膨張係数が最も小さい方向
の線熱膨張係数と、上記第1の基板の線熱膨張係数が最
も小さい方向と一致する方向の上記第2の基板の線熱膨
張係数との差が、4ppm/℃以内であるように、上記
第1及び第2の基板が接合されていることを特徴とする
弾性表面波素子。
17. A bonding surface of a first substrate, a second substrate bonded to the first substrate directly or through an intermediate material, and a bonding surface of the first substrate opposite to the second substrate. In a surface acoustic wave element having an electrode for exciting an elastic wave formed on the side surface thereof, the coefficient of linear thermal expansion of the second substrate in the propagation direction of the surface acoustic wave of the first substrate is Smaller than the linear thermal expansion coefficient in the propagation direction of the surface acoustic wave of the first substrate,
Further, the linear thermal expansion coefficient of the second substrate in the direction in which the linear thermal expansion coefficient of the first substrate is the smallest and the linear thermal expansion coefficient of the second substrate in the direction in which the linear thermal expansion coefficient of the first substrate is the smallest. A surface acoustic wave element, wherein the first and second substrates are joined so that the difference from the expansion coefficient is within 4 ppm / ° C.
JP2001317579A 2001-10-16 2001-10-16 Surface acoustic wave element and production method therefor Pending JP2003124767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317579A JP2003124767A (en) 2001-10-16 2001-10-16 Surface acoustic wave element and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317579A JP2003124767A (en) 2001-10-16 2001-10-16 Surface acoustic wave element and production method therefor

Publications (1)

Publication Number Publication Date
JP2003124767A true JP2003124767A (en) 2003-04-25

Family

ID=19135429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317579A Pending JP2003124767A (en) 2001-10-16 2001-10-16 Surface acoustic wave element and production method therefor

Country Status (1)

Country Link
JP (1) JP2003124767A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343359A (en) * 2003-05-14 2004-12-02 Fujitsu Media Device Kk Method of manufacturing surface acoustic wave element
JP2008142541A (en) * 2006-12-08 2008-06-26 General Electric Co <Ge> Self-adhering electrode and manufacturing method thereof
JP2010153961A (en) * 2008-12-24 2010-07-08 Ngk Insulators Ltd Method of manufacturing compound substrate, and compound substrate
JP2010232725A (en) * 2009-03-25 2010-10-14 Ngk Insulators Ltd Composite substrate, elastic wave device using the same, and method for manufacturing composite substrate
JP2010259002A (en) * 2009-04-28 2010-11-11 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave element
JP2010536217A (en) * 2007-08-08 2010-11-25 エプコス アクチエンゲゼルシャフト Low temperature sensitive component and method for manufacturing the same
JP2011040999A (en) * 2009-08-11 2011-02-24 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave device
WO2014027538A1 (en) * 2012-08-17 2014-02-20 日本碍子株式会社 Composite substrate, elastic surface wave device, and method for producing composite substrate
JP2017026906A (en) * 2015-07-24 2017-02-02 日本碍子株式会社 Composite substrate and production method therefor
US10943778B2 (en) 2015-07-17 2021-03-09 Soitec Method for manufacturing a substrate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331092B2 (en) 2003-05-14 2008-02-19 Fujitsu Media Devices Limited Method and manufacturing surface acoustic wave device
JP2004343359A (en) * 2003-05-14 2004-12-02 Fujitsu Media Device Kk Method of manufacturing surface acoustic wave element
JP2008142541A (en) * 2006-12-08 2008-06-26 General Electric Co <Ge> Self-adhering electrode and manufacturing method thereof
US8626258B2 (en) 2006-12-08 2014-01-07 General Electric Company Self-adhering electrodes and methods of making the same
JP2010536217A (en) * 2007-08-08 2010-11-25 エプコス アクチエンゲゼルシャフト Low temperature sensitive component and method for manufacturing the same
JP2010153961A (en) * 2008-12-24 2010-07-08 Ngk Insulators Ltd Method of manufacturing compound substrate, and compound substrate
JP2010232725A (en) * 2009-03-25 2010-10-14 Ngk Insulators Ltd Composite substrate, elastic wave device using the same, and method for manufacturing composite substrate
JP2010259002A (en) * 2009-04-28 2010-11-11 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave element
JP2011040999A (en) * 2009-08-11 2011-02-24 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave device
US8689416B2 (en) 2009-08-11 2014-04-08 Murata Manufacturing Co., Ltd. Method for manufacturing surface acoustic wave element
WO2014027538A1 (en) * 2012-08-17 2014-02-20 日本碍子株式会社 Composite substrate, elastic surface wave device, and method for producing composite substrate
CN103765773A (en) * 2012-08-17 2014-04-30 日本碍子株式会社 Composite substrate, elastic surface wave device, and method for producing composite substrate
JP5539602B1 (en) * 2012-08-17 2014-07-02 日本碍子株式会社 Composite substrate, surface acoustic wave device, and method of manufacturing composite substrate
US8866365B2 (en) 2012-08-17 2014-10-21 Ngk Insulators, Ltd. Composite substrate with partially planarized irregular surface
US10943778B2 (en) 2015-07-17 2021-03-09 Soitec Method for manufacturing a substrate
US11837463B2 (en) 2015-07-17 2023-12-05 Soitec Method for manufacturing a substrate
JP2017026906A (en) * 2015-07-24 2017-02-02 日本碍子株式会社 Composite substrate and production method therefor

Similar Documents

Publication Publication Date Title
JP3435789B2 (en) Surface acoustic wave device
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
US6996882B2 (en) Method for producing a surface acoustic wave element
JP6567970B2 (en) Composite substrate manufacturing method
JP3774782B2 (en) Manufacturing method of surface acoustic wave device
JP3187231U (en) Composite board
KR101636220B1 (en) Composite substrate, piezoelectric device and method of manufacturing composite substrate
US20050194864A1 (en) Bonded substrate, surface acoustic wave chip, and surface acoustic wave device
JP2019526194A (en) Hybrid structure for surface acoustic wave devices
JPH1155070A (en) Surface acoustic wave element and its producing method
JP2011071967A (en) Method for manufacturing composite substrate
JP3952666B2 (en) Surface acoustic wave device
WO2006120994A1 (en) Composite piezoelectric substrate
JP7057288B2 (en) Hybrid construction for surface acoustic wave devices
JP2007134889A (en) Composite piezoelectric substrate
JP2007214902A (en) Surface acoustic wave device
CN105978520A (en) SAW device of multilayer structure and preparation method of SAW device
JP2003124767A (en) Surface acoustic wave element and production method therefor
JP2006304206A (en) Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JP2010259011A (en) Substrate for surface acoustic wave element and method of manufacturing the surface acoustic wave element
KR20210141345A (en) Composite substrate for surface acoustic wave device and manufacturing method thereof
JP2000278087A (en) Surface acoustic wave device
JP2002217666A (en) Surface acoustic wave element and its manufacturing method
JPH08153915A (en) Composite piezoelectric substrate and its manufacture
JP2002026684A (en) Surface acoustic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313