JP2006304206A - Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof - Google Patents

Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof Download PDF

Info

Publication number
JP2006304206A
JP2006304206A JP2005126785A JP2005126785A JP2006304206A JP 2006304206 A JP2006304206 A JP 2006304206A JP 2005126785 A JP2005126785 A JP 2005126785A JP 2005126785 A JP2005126785 A JP 2005126785A JP 2006304206 A JP2006304206 A JP 2006304206A
Authority
JP
Japan
Prior art keywords
substrate
chip
surface acoustic
acoustic wave
composite piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005126785A
Other languages
Japanese (ja)
Inventor
Masayuki Tanno
雅行 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005126785A priority Critical patent/JP2006304206A/en
Priority to PCT/JP2006/301514 priority patent/WO2006114922A1/en
Publication of JP2006304206A publication Critical patent/JP2006304206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02897Means for compensation or elimination of undesirable effects of strain or mechanical damage, e.g. strain due to bending influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave element having high productivity and a high improvement effect of a frequency-temperature characteristic, a composite piezoelectric chip and its manufacturing method. <P>SOLUTION: The surface acoustic wave element with an electrode for exciting and detecting surface acoustic waves formed on a piezoelectric substrate, comprises at least a composite piezoelectric chip obtained by processing a composite piezoelectric substrate with a piezoelectric substrate and a support base stuck together into a chip shape, and a packaging substrate for packaging the composite piezoelectric chip by flip chip bonding across a bump. They are packaged so as to make an expansion coefficient αc (ppm/°C) of the surface of the piezoelectric substrate in a prescribed direction and an expansion coefficient αs (ppm/°C) of the packaging substrate satisfy a relation being αs<αc<αs+6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、弾性表面波素子及び弾性表面波素子等に用いられる複合圧電チップ並びにその製造方法に関するものである。   The present invention relates to a surface acoustic wave element, a composite piezoelectric chip used for a surface acoustic wave element, and the like, and a method for manufacturing the same.

携帯電話等の高周波通信において周波数選択用の部品として、例えば圧電基板上に弾性表面波を励起するための櫛形電極が形成された弾性表面波(Surface Acoustic Wave、SAW)素子が用いられる。これに用いられる圧電基板材料は、電気信号から機械的振動への変換効率(以下電気機械結合係数と記す)が大きいこと、また櫛形電極の電極間隔と弾性波の音速により決まるフィルタ等の中心周波数が温度により変動しないことが求められる(以下、周波数温度特性と記す)。
すなわち、大きな電気機械結合係数と小さな周波数温度係数を兼ね備えた圧電基板が有れば好ましい。
こうした特性を実現する圧電基板の一例として、圧電基板と他の基板を接合した複合圧電基板がある。
A surface acoustic wave (SAW) element in which a comb-shaped electrode for exciting a surface acoustic wave is formed on a piezoelectric substrate is used as a frequency selection component in high-frequency communication such as a cellular phone. The piezoelectric substrate material used for this has high conversion efficiency (hereinafter referred to as electromechanical coupling coefficient) from electrical signals to mechanical vibrations, and the center frequency of filters, etc., determined by the electrode spacing of the comb electrodes and the acoustic velocity of the elastic waves. Is required not to vary with temperature (hereinafter referred to as frequency-temperature characteristics).
In other words, it is preferable to have a piezoelectric substrate having both a large electromechanical coupling coefficient and a small frequency temperature coefficient.
An example of a piezoelectric substrate that realizes such characteristics is a composite piezoelectric substrate in which a piezoelectric substrate and another substrate are bonded.

このような複合圧電基板の一例として、圧電材料の表面に弾性波を励振・検出するための電極が設けられており、前記圧電材料裏面に複合積層体を接合したことを特徴とする温度安定化表面波装置が開示されている。この表面波装置は、制御された応力変化を前記圧電材料に誘起させることにより、前記圧電材料において温度補正がなされるというものである(特許文献1参照)。
この例では、「複合積層体にLiNbO(ニオブ酸リチウム)基板を強固に結合することにより、前述したように基板上に圧縮力が生じ、この圧縮力は温度が増大するに従って増大する。かくして、遅延時間およびフィルタ中心周波数に対する温度の影響を補正する手段を得ることができる。」とされている。これは、支持基板となる複合積層体の膨張係数は圧電材料であるLiNbO基板の弾性表面波伝播方向のそれよりも小さいことを意味し、これにより温度変化に応じて圧電基板に応力が発生してSAWデバイスの遅延時間およびフィルタ中心周波数に対する温度の影響を補正できるということを意味する。
As an example of such a composite piezoelectric substrate, an electrode for exciting and detecting an elastic wave is provided on the surface of the piezoelectric material, and the temperature stabilization is characterized in that a composite laminate is joined to the back surface of the piezoelectric material. A surface wave device is disclosed. This surface wave device is such that temperature correction is performed in the piezoelectric material by inducing a controlled stress change in the piezoelectric material (see Patent Document 1).
In this example, “the LiNbO 3 (lithium niobate) substrate is firmly bonded to the composite laminate to generate a compressive force on the substrate as described above, and this compressive force increases as the temperature increases. It is possible to obtain a means for correcting the influence of temperature on the delay time and the filter center frequency. " This means that the expansion coefficient of the composite laminate as the support substrate is smaller than that of the surface acoustic wave propagation direction of the LiNbO 3 substrate, which is a piezoelectric material, and stress is generated in the piezoelectric substrate in response to temperature changes. This means that the influence of temperature on the delay time and filter center frequency of the SAW device can be corrected.

また、接着剤を使用して剛板と圧電板とを貼り合せて一体の基板とし、前記圧電板表面に電極を設けた機能素子を、パッケージに収納した電気部品が開示されている(特許文献2参照)。
すなわち、圧電材料とこれより小さな膨張係数を有する基板とを貼り合せた複合圧電基板を用いた弾性表面波素子は周波数温度特性が改善されること、接着剤を用いて剛板と圧電板を貼り合せて一体の基板とすることは公知の技術である。
Further, an electrical component is disclosed in which a functional element having an electrode provided on the surface of the piezoelectric plate is housed in a package by bonding a rigid plate and a piezoelectric plate using an adhesive (Patent Document). 2).
That is, a surface acoustic wave device using a composite piezoelectric substrate in which a piezoelectric material and a substrate having a smaller expansion coefficient are bonded has improved frequency temperature characteristics, and a rigid plate and a piezoelectric plate are bonded using an adhesive. It is a well-known technique to combine them into an integrated substrate.

また、圧電性基板と、該圧電性基板上にそれぞれ形成された、複数の電極指およびこれら電極指を共通に接続するバスバーを有するインタディジタルトランスデューサ(IDT)ならびにバンプとを備える、弾性表面波素子が、前記バンプを介したフリップチップボンディングによって実装基板上に実装された、弾性表面波素子の実装構造であって、前記実装基板は、前記圧電性基板より小さい線膨張係数を有し、かつ、前記バンプは、温度変化による前記圧電性基板の熱膨張および熱収縮が前記実装基板によって抑えられるように配置されていることを特徴とする、弾性表面波素子の実装構造が開示されている(特許文献3参照)。
この例の実施例においては、圧電体としてLiTaO(膨張係数16ppm/℃)、実装基材としてアルミナ(膨張係数7ppm/℃)を使用しバンプを介してフリップチップボンディングによって実装基板上に実装された弾性表面波フィルタが、動作周波数1.9GHzにおいて温度による周波数変動が−11kHz/℃だけ改善されたことが開示されている。
この改善効果は、温度係数にして約6ppm/℃だけ改善されるものであり好ましいとされる。
Also, a surface acoustic wave device comprising a piezoelectric substrate, an interdigital transducer (IDT) and a bump each having a plurality of electrode fingers and a bus bar that commonly connects these electrode fingers, formed on the piezoelectric substrate. Is a mounting structure of a surface acoustic wave element mounted on a mounting substrate by flip chip bonding via the bump, the mounting substrate having a smaller linear expansion coefficient than the piezoelectric substrate, and A mounting structure of a surface acoustic wave element is disclosed, wherein the bumps are arranged so that thermal expansion and contraction of the piezoelectric substrate due to temperature changes are suppressed by the mounting substrate (Patent) Reference 3).
In the example of this example, LiTaO 3 (expansion coefficient 16 ppm / ° C.) is used as the piezoelectric body, and alumina (expansion coefficient 7 ppm / ° C.) is used as the mounting base, and the chip is mounted on the mounting substrate by flip chip bonding via bumps. In the surface acoustic wave filter, it is disclosed that the frequency variation due to temperature is improved by −11 kHz / ° C. at an operating frequency of 1.9 GHz.
This improvement effect is preferable because it is improved by about 6 ppm / ° C. in terms of temperature coefficient.

一方、非特許文献1では、圧電体として48°回転YカットLiTaOを用い、この圧電体にその支持基板であるSi基板がSiO層を介して直接接合された複合圧電基板を用いた弾性表面波デバイスが開示されている。この弾性表面波デバイスの動作周波数の温度特性は、複合圧電チップをボンディングワイヤー法で接続すると動作周波数の温度特性が−12ppm/℃であるのに対し、フリップチップボンディング法では−22ppm/℃(乃至−35ppm/℃)と温度特性が劣化してしまうことが記載されている。 On the other hand, in Non-Patent Document 1, 48 ° rotated Y-cut LiTaO 3 is used as a piezoelectric body, and an elastic using a composite piezoelectric substrate in which a Si substrate as a supporting substrate is directly bonded to the piezoelectric body via a SiO 2 layer. A surface wave device is disclosed. The temperature characteristics of the operating frequency of this surface acoustic wave device are as follows. When the composite piezoelectric chip is connected by the bonding wire method, the temperature characteristic of the operating frequency is −12 ppm / ° C., whereas the flip chip bonding method is −22 ppm / ° C. (−35 ppm / ° C.) and temperature characteristics are described as being deteriorated.

特開昭51−25951号公報JP 51-25951 A 特開平02−62108号公報Japanese Patent Laid-Open No. 02-62108 特開2003−324334号公報JP 2003-324334 A B.P.Abbot, J.Caron, J.Chocola, K.Lin , S.Malocha , N.Naumenko and P.Welsh, "Advances in Rf SAW Substrates",2nd International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems,pp.233-243,2003BPAbbot, J. Caron, J. Chocola, K. Lin, S. Malocha, N. Naumenko and P. Welsh, "Advances in Rf SAW Substrates", 2nd International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, pp. 233-243,2003

本発明は、上記の問題に鑑みてなされたものであり、本発明の目的は、生産性が高く、周波数温度特性改善効果が高い弾性表面波素子及び複合圧電チップ並びにその製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a surface acoustic wave element, a composite piezoelectric chip, and a method of manufacturing the same, which are highly productive and have a high effect of improving frequency temperature characteristics. It is in.

上記課題を解決するために、本発明は、圧電基板上に弾性表面波を励振・検出する電極が形成された弾性表面波素子であって、少なくとも、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップと、該複合圧電チップをバンプを介してフリップチップボンディングによって実装する実装基板とを具備し、前記圧電基板表面の特定方向の膨張係数αc(ppm/℃)と、前記実装基板の膨張係数αs(ppm/℃)とが、
αs<αc<αs+6
なる関係を満たすように実装されたものであることを特徴とする弾性表面波素子を提供する(請求項1)。
In order to solve the above problems, the present invention provides a surface acoustic wave element in which an electrode for exciting and detecting surface acoustic waves is formed on a piezoelectric substrate, and is a composite comprising at least a piezoelectric substrate and a support substrate bonded together. A composite piezoelectric chip obtained by processing a piezoelectric substrate into a chip shape, and a mounting substrate on which the composite piezoelectric chip is mounted by flip chip bonding via a bump, and an expansion coefficient αc (ppm / ° C.) in a specific direction on the surface of the piezoelectric substrate. ) And an expansion coefficient αs (ppm / ° C.) of the mounting substrate,
αs <αc <αs + 6
The surface acoustic wave device is provided so as to satisfy the following relationship (claim 1).

このように、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップと、該複合圧電チップをバンプを介してフリップチップボンディングによって実装する実装基板とを具備し、圧電基板表面の特定方向の膨張係数αcと実装基板の膨張係数αsとが上記関係を満たすように実装されたものであれば、生産性が高く、周波数温度特性改善効果が高い弾性表面波素子とできる。   Thus, a composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape, and a mounting substrate on which the composite piezoelectric chip is mounted by flip chip bonding via a bump, If the surface acoustic wave element is mounted so that the expansion coefficient αc in the specific direction of the surface of the piezoelectric substrate and the expansion coefficient αs of the mounting substrate satisfy the above relationship, the surface acoustic wave element has high productivity and high frequency temperature characteristic improvement effect. it can.

この場合、前記特定方向は、前記電極により励振される弾性表面波の伝播方向から±0.5度以内のものであることが好ましい(請求項2)。
このように、前記特定方向が弾性表面波の伝播方向から±0.5度以内のものであれば、周波数温度特性改善効果を確実に得ることができ、また弾性表面波の伝播ロスが少なくなり、挿入損失の少ない弾性表面波素子とできる。
In this case, the specific direction is preferably within ± 0.5 degrees from the propagation direction of the surface acoustic wave excited by the electrode.
As described above, if the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave, the effect of improving the frequency-temperature characteristics can be surely obtained, and the propagation loss of the surface acoustic wave is reduced. Thus, a surface acoustic wave device with little insertion loss can be obtained.

また、前記実装基板は、アルミナ又は低膨張セラミックからなるものであることが好ましい(請求項3)。
このように、実装基板がアルミナ又は低膨張セラミックからなるものであれば、圧電基板の厚み等を調整することにより、複合圧電チップが膨張係数αcとαsとが上記関係を満たすように実装された弾性表面波素子とできる。
The mounting substrate is preferably made of alumina or a low expansion ceramic.
As described above, if the mounting substrate is made of alumina or low expansion ceramic, the composite piezoelectric chip is mounted so that the expansion coefficients αc and αs satisfy the above relationship by adjusting the thickness of the piezoelectric substrate and the like. It can be a surface acoustic wave element.

また、前記圧電基板は、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか1つからなるものであることが好ましい(請求項4)。
このように、圧電基板が上記の電気機械結合係数が大きい結晶材料からなるものであれば、周波数選択フィルタとしての帯域幅が広く、挿入損失が小さい弾性表面波素子となる。
The piezoelectric substrate is preferably made of any one of lithium tantalate, lithium niobate, and lithium borate.
Thus, if the piezoelectric substrate is made of a crystal material having a large electromechanical coupling coefficient, a surface acoustic wave element having a wide bandwidth as a frequency selective filter and a small insertion loss is obtained.

また、本発明は、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップであって、該複合圧電チップは前記圧電基板上に弾性表面波を励振・検出する電極が形成され、かつバンプを介してフリップチップボンディングによって実装基板に実装されるものであり、前記圧電基板表面の特定方向の膨張係数αc(ppm/℃)が、前記実装基板の膨張係数αs(ppm/℃)と、
αs<αc<αs+6
なる関係を満たすように実装されるものであることを特徴とする複合圧電チップを提供する(請求項5)。
Further, the present invention is a composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape, and the composite piezoelectric chip excites and detects surface acoustic waves on the piezoelectric substrate. An electrode is formed and mounted on a mounting board by flip chip bonding via a bump, and an expansion coefficient αc (ppm / ° C.) in a specific direction on the surface of the piezoelectric substrate is an expansion coefficient αs ( ppm / ° C)
αs <αc <αs + 6
Provided is a composite piezoelectric chip that is mounted so as to satisfy the following relationship.

このように、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップであって、圧電基板上に弾性表面波を励振・検出する電極が形成され、かつバンプを介してフリップチップボンディングによって実装基板に実装されるものであり、さらに圧電基板表面の特定方向の膨張係数αcが実装基板の膨張係数αsと上記関係を満たすように実装されるものであれば、生産性が高く、周波数温度特性改善効果が高い弾性表面波素子を作製できる複合圧電チップとできる。   Thus, a composite piezoelectric chip obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate and a support substrate are bonded into a chip shape, electrodes for exciting and detecting surface acoustic waves are formed on the piezoelectric substrate, and bumps are formed. If it is mounted on the mounting substrate by flip-chip bonding and mounted so that the expansion coefficient αc in the specific direction of the piezoelectric substrate surface satisfies the above relationship with the expansion coefficient αs of the mounting substrate, production It is possible to obtain a composite piezoelectric chip capable of producing a surface acoustic wave device having high performance and high frequency temperature characteristic improvement effect.

この場合、前記特定方向は、前記電極により励振される弾性表面波の伝播方向から±0.5度以内のものであることが好ましい(請求項6)。
このように、特定方向が弾性表面波の伝播方向から±0.5度以内のものであれば、周波数温度特性改善効果を確実に得ることができ、また弾性表面波の伝播ロスが少なくなり、挿入損失の少ない弾性表面波素子を作製できる複合圧電チップとできる。
In this case, the specific direction is preferably within ± 0.5 degrees from the propagation direction of the surface acoustic wave excited by the electrode.
Thus, if the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave, the effect of improving the frequency-temperature characteristics can be reliably obtained, and the propagation loss of the surface acoustic wave is reduced. A composite piezoelectric chip capable of producing a surface acoustic wave element with low insertion loss can be obtained.

また、前記実装基板は、アルミナ又は低膨張セラミックからなるものであることが好ましい(請求項7)。
このように、複合圧電基板が実装される実装基板がアルミナ又は低膨張セラミックからなるものであれば、圧電基板の厚み等を調整することにより、膨張係数αcとαsとが上記関係を満たすように実装することが可能な複合圧電チップとできる。
The mounting board is preferably made of alumina or a low expansion ceramic.
As described above, when the mounting substrate on which the composite piezoelectric substrate is mounted is made of alumina or low expansion ceramic, the expansion coefficient αc and αs satisfy the above relationship by adjusting the thickness of the piezoelectric substrate. A composite piezoelectric chip that can be mounted can be obtained.

また、前記圧電基板は、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか1つからなるものであることが好ましい(請求項8)。
このように、圧電基板が上記の電気機械結合係数が大きい結晶材料からなるものであれば、周波数選択フィルタとしての帯域幅が広く、挿入損失が小さい弾性表面波素子を作製できる複合圧電チップとできる。
The piezoelectric substrate is preferably made of any one of lithium tantalate, lithium niobate, and lithium borate.
Thus, if the piezoelectric substrate is made of a crystal material having a large electromechanical coupling coefficient, a composite piezoelectric chip capable of producing a surface acoustic wave element having a wide bandwidth as a frequency selective filter and a small insertion loss can be obtained. .

また、本発明は、弾性表面波素子の製造方法であって、少なくとも、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップの該圧電基板上に弾性表面波を励振・検出する電極を形成し、該複合圧電チップをバンプを介してフリップチップボンディングによって実装基板に実装する際に、前記圧電基板表面の特定方向の膨張係数αc(ppm/℃)と、前記実装基板の膨張係数αs(ppm/℃)とが、
αs<αc<αs+6
なる関係を満たすように実装することを特徴とする弾性表面波素子の製造方法を提供する(請求項9)。
The present invention also relates to a method of manufacturing a surface acoustic wave device, wherein at least a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate to a chip shape is processed into a surface acoustic wave on the piezoelectric substrate. When the composite piezoelectric chip is mounted on a mounting substrate by flip chip bonding via a bump, an expansion coefficient αc (ppm / ° C.) in a specific direction of the surface of the piezoelectric substrate, The expansion coefficient αs (ppm / ° C.) of the mounting substrate is
αs <αc <αs + 6
The surface acoustic wave device is manufactured so as to satisfy the following relationship: (Claim 9)

このように、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップの圧電基板上に弾性表面波を励振・検出する電極を形成し、該複合圧電チップをバンプを介してフリップチップボンディングによって実装基板に実装する際に、圧電基板表面の特定方向の膨張係数αc(ppm/℃)と、前記実装基板の膨張係数αs(ppm/℃)とが上記関係を満たすように実装すれば、周波数温度特性改善効果が高い弾性表面波素子を高生産性で製造できる。   Thus, an electrode for exciting and detecting surface acoustic waves is formed on a piezoelectric substrate of a composite piezoelectric chip obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate and a support substrate are bonded to a chip shape, and the composite piezoelectric chip is bumped. When mounting on a mounting substrate by flip-chip bonding via the substrate, the expansion coefficient αc (ppm / ° C.) of the piezoelectric substrate surface in a specific direction and the expansion coefficient αs (ppm / ° C.) of the mounting substrate satisfy the above relationship. If mounted in this manner, a surface acoustic wave device having a high frequency temperature characteristic improvement effect can be manufactured with high productivity.

本発明に従う弾性表面波素子であって、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップと、複合圧電チップをバンプを介してフリップチップボンディングによって実装する実装基板とを具備し、圧電基板表面の特定方向の膨張係数αcと実装基板の膨張係数αsとがαs<αc<αs+6なる関係を満たすように実装された弾性表面波素子であれば、生産性が高く、周波数温度特性改善効果が高い弾性表面波素子とできる。   A surface acoustic wave device according to the present invention, wherein a composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape, and mounting the composite piezoelectric chip via bumps by flip chip bonding If the surface acoustic wave device is mounted so that the expansion coefficient αc in the specific direction of the surface of the piezoelectric substrate and the expansion coefficient αs of the mounting substrate satisfy the relationship of αs <αc <αs + 6, the productivity is improved. A surface acoustic wave device having a high frequency temperature characteristic improvement effect can be obtained.

また本発明に従う複合圧電チップであって、圧電基板上に弾性表面波を励振・検出する電極が形成され、かつバンプを介してフリップチップボンディングによって実装基板に実装されるものであり、圧電基板表面の特定方向の膨張係数αcが実装基板の膨張係数αsと上記関係を満たすように実装されるものであれば、生産性が高く、周波数温度特性改善効果が高い弾性表面波素子を作製できる複合圧電チップとできる。   Also, a composite piezoelectric chip according to the present invention, in which an electrode for exciting and detecting surface acoustic waves is formed on a piezoelectric substrate, and mounted on a mounting substrate by flip chip bonding via a bump, If it is mounted so that the expansion coefficient αc in a specific direction satisfies the above relationship with the expansion coefficient αs of the mounting substrate, a composite piezoelectric device that can produce a surface acoustic wave device with high productivity and high frequency temperature characteristic improvement effect. Can be a chip.

さらに本発明に従い、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップの圧電基板上に弾性表面波を励振・検出する電極を形成し、該複合圧電チップをバンプを介してフリップチップボンディングによって実装基板に実装する際に、圧電基板表面の特定方向の膨張係数αc(ppm/℃)と、前記実装基板の膨張係数αs(ppm/℃)とが上記関係を満たすように実装すれば、周波数温度特性改善効果が高い弾性表面波素子を高生産性で製造できる。   Further, according to the present invention, an electrode for exciting and detecting surface acoustic waves is formed on a piezoelectric substrate of a composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape. When mounting on a mounting board by flip chip bonding via a bump, the expansion coefficient αc (ppm / ° C.) of the piezoelectric substrate surface in a specific direction and the expansion coefficient α s (ppm / ° C.) of the mounting board satisfy the above relationship. If it is mounted so as to satisfy, a surface acoustic wave element having a high effect of improving frequency temperature characteristics can be manufactured with high productivity.

以下では、本発明の実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。
図1は本発明に係る弾性表面波素子の実施形態の一例を示す断面概略図である。
この弾性表面波素子10は、少なくとも、圧電基板2と支持基板3とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップ1と、複合圧電チップ1をバンプ7を介してフリップチップボンディングによって実装する実装基板8とを具備する。また、圧電基板1上に弾性表面波を励振・検出する電極9が形成されたものである。
そして、圧電基板1の表面の特定方向の膨張係数αc(ppm/℃)と、実装基板の膨張係数αs(ppm/℃)とが、αs<αc<αs+6なる関係を満たすように実装されたものであることを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a surface acoustic wave device according to the present invention.
The surface acoustic wave element 10 includes a composite piezoelectric chip 1 obtained by processing at least a composite piezoelectric substrate obtained by bonding a piezoelectric substrate 2 and a support substrate 3 into a chip shape, and flip-chip bonding of the composite piezoelectric chip 1 via bumps 7. And a mounting substrate 8 to be mounted. An electrode 9 for exciting and detecting surface acoustic waves is formed on the piezoelectric substrate 1.
The piezoelectric substrate 1 is mounted so that the expansion coefficient αc (ppm / ° C.) in the specific direction of the surface of the piezoelectric substrate 1 and the expansion coefficient αs (ppm / ° C.) of the mounting substrate satisfy the relationship of αs <αc <αs + 6. It is characterized by being.

弾性表面波素子10は、このような構成を有することにより、生産性が高く、周波数温度特性改善効果が高いものとできる。
すなわち、本発明のようにフリップチップボンディングにより複合圧電基板を実装した弾性表面波素子は、例えばチップアンドワイヤー法により実装した場合に比べて、周波数温度係数が数ppm/℃〜10数ppm/℃程度改善するだけでなく、フリップチップボンディングにより実装するので、生産性を高くできる。
By having such a configuration, the surface acoustic wave device 10 has high productivity and high frequency temperature characteristic improvement effect.
That is, the surface acoustic wave device on which the composite piezoelectric substrate is mounted by flip-chip bonding as in the present invention has a frequency temperature coefficient of several ppm / ° C. to several tens ppm / ° C. as compared with the case where it is mounted by, for example, the chip and wire method. Not only the degree of improvement but also mounting by flip-chip bonding can increase productivity.

また、αcがαsよりも小さい場合は、非特許文献1と同様に、フリップチップボンディングにより実装した場合の周波数温度特性がチップアンドワイヤー法により実装した場合に比べ劣化してしまうという結果をもたらし、周波数温度特性改善効果と高生産性の両方を達成することができない。また、αcがαs+6(ppm/℃)より大きな場合は、周波数温度係数の改善効果は小さい。すなわち、αs<αc<αs+6なる関係を満たすように実装することにより、高い周波数改善効果と高生産性の両方を達成できる。膨張係数が上記関係を満たすようにするには、例えば圧電基板の厚み、圧電基板と支持基板とを接着する接着層の厚み、チップサイズ等を調整して実装すればよい。   Further, when αc is smaller than αs, similarly to Non-Patent Document 1, the result is that the frequency temperature characteristics when mounted by flip-chip bonding are deteriorated compared to when mounted by the chip-and-wire method, Both the frequency temperature characteristic improvement effect and high productivity cannot be achieved. When αc is larger than αs + 6 (ppm / ° C.), the effect of improving the frequency temperature coefficient is small. That is, by mounting so as to satisfy the relationship of αs <αc <αs + 6, both a high frequency improvement effect and high productivity can be achieved. In order to satisfy the above relationship, the expansion coefficient may be mounted by adjusting the thickness of the piezoelectric substrate, the thickness of the adhesive layer that bonds the piezoelectric substrate and the support substrate, the chip size, and the like.

また、前記特定方向が弾性表面波の伝播方向から±0.5度以内のものであれば、膨張係数の影響は弾性表面波の伝播方向において最も顕著に現れるから、周波数温度特性改善効果を確実に得ることができる。また弾性表面波の伝播ロスが少なくなり、挿入損失の少ない弾性表面波素子とできる。   Also, if the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave, the effect of the expansion coefficient appears most prominently in the propagation direction of the surface acoustic wave. Can get to. In addition, surface acoustic wave propagation loss is reduced, and a surface acoustic wave device with less insertion loss can be obtained.

以下、弾性表面波素子10について具体的に説明する。
複合圧電チップ1は、圧電基板2と支持基板3とを貼り合わせた複合圧電基板をチップ形状に加工したものであって、圧電基板2上に弾性表面波を励振・検出する電極9が形成され、かつバンプを介してフリップチップボンディングによって実装基板に実装されるものであり、圧電基板表面の特定方向の膨張係数αc(ppm/℃)が、実装基板の膨張係数αs(ppm/℃)とαs<αc<αs+6なる関係を満たすように実装されるものであることを特徴とする。
複合圧電チップ1は、このような構成を有することにより、生産性が高く、周波数温度特性改善効果が高い弾性表面波素子を作製できる複合圧電チップとできる。
Hereinafter, the surface acoustic wave element 10 will be described in detail.
The composite piezoelectric chip 1 is obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate 2 and a support substrate 3 into a chip shape, and electrodes 9 for exciting and detecting surface acoustic waves are formed on the piezoelectric substrate 2. In addition, it is mounted on a mounting substrate by flip chip bonding via a bump, and the expansion coefficient αc (ppm / ° C.) in a specific direction on the surface of the piezoelectric substrate is the expansion coefficient αs (ppm / ° C.) and αs of the mounting substrate. It is mounted so as to satisfy the relationship <αc <αs + 6.
By having such a configuration, the composite piezoelectric chip 1 can be a composite piezoelectric chip capable of producing a surface acoustic wave element with high productivity and high frequency temperature characteristic improvement effect.

また、複合圧電チップ1は、圧電基板2とこれよりも小さい膨張係数を有する支持基板3とを直接又は接着層4を介して貼り合せた複合圧電基板をチップ形状に加工して形成したものであってもよい。
このような構成であれば、温度変化に応じて圧電基板2に応力が発生し、膨張係数αcとαsとが上記関係を満たすことによる効果に加えて、より周波数温度特性を改善することができる。また、接着層4を介して貼り合わせたものであれば、比較的安価なものとできる。このような複合圧電チップ1は、例えば圧電基板2及び支持基板3の一方又は両方に接着剤を塗布し、真空下で貼り合わせ強固に接合することにより作製することができる。このとき、接着面に異物が混入しないように貼り合わせ前に各基板の表面を洗浄することが好ましく、また、表面をアンモニア−過酸化水素水溶液等で親水化処理をしたり、またはプラズマ処理をしたり基板を100℃に加熱し波長200nm以下の短波UV光及び高濃度オゾンにより前処理することにより接着力を高めてもよい。
複合圧電チップの元材である複合圧電基板の大きさは特に限られず、例えば直径100mmのものとできるがそれ以上でもそれ以下でもよい。
The composite piezoelectric chip 1 is formed by processing a composite piezoelectric substrate in which a piezoelectric substrate 2 and a support substrate 3 having a smaller expansion coefficient are bonded directly or via an adhesive layer 4 into a chip shape. There may be.
With such a configuration, stress is generated in the piezoelectric substrate 2 in accordance with the temperature change, and in addition to the effect that the expansion coefficients αc and αs satisfy the above relationship, the frequency temperature characteristics can be further improved. . Moreover, if it bonds together through the contact bonding layer 4, it can be made comparatively cheap. Such a composite piezoelectric chip 1 can be manufactured, for example, by applying an adhesive to one or both of the piezoelectric substrate 2 and the support substrate 3 and bonding them firmly under vacuum to bond them firmly. At this time, it is preferable to clean the surface of each substrate before bonding so that no foreign matter is mixed into the adhesive surface, and the surface is subjected to a hydrophilic treatment with an ammonia-hydrogen peroxide aqueous solution or a plasma treatment. Alternatively, the substrate may be heated to 100 ° C. and pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone to increase the adhesive force.
The size of the composite piezoelectric substrate that is the base material of the composite piezoelectric chip is not particularly limited. For example, the composite piezoelectric substrate may have a diameter of 100 mm, but may be larger or smaller.

また、圧電基板2は、厚さが5〜100μmであって、圧電基板2の接着面5が粗面に加工されたものであることが好ましい。接着面5が粗面に加工されたものであれば、バルク波の裏面反射が抑制され、圧電基板の接着力をより高めることができる。また圧電基板2の厚さが5〜100μm、特に好ましくは15〜30μmであれば、加熱による反りが少なく割れのないものとなるので好ましい。圧電基板2の厚さが5μmより薄いと、例えば研削、ラップ工程等により生じる加工歪みが圧電基板内部に残存した場合に、圧電基板2を所望の厚さに加工する際にクラックが生じることがある。また、100μmより厚いと、複合圧電チップ1を250℃程度に加熱した場合に、圧電基板2が割れてしまうことがある。圧電基板2の厚さを上記範囲内の所望の値とするには、例えば複合圧電基板を形成後、圧電基板を研削、ラップ、ポリッシュ(研磨)加工すればよい。   Moreover, it is preferable that the piezoelectric substrate 2 is 5-100 micrometers in thickness, and the adhesion surface 5 of the piezoelectric substrate 2 is processed into the rough surface. If the adhesive surface 5 is processed into a rough surface, the reflection of the back surface of the bulk wave is suppressed, and the adhesive force of the piezoelectric substrate can be further increased. Further, if the thickness of the piezoelectric substrate 2 is 5 to 100 μm, particularly preferably 15 to 30 μm, it is preferable because warpage due to heating is small and there is no crack. If the thickness of the piezoelectric substrate 2 is less than 5 μm, cracks may occur when the piezoelectric substrate 2 is processed to a desired thickness, for example, when processing strain generated by, for example, grinding or lapping process remains inside the piezoelectric substrate. is there. On the other hand, if the thickness is larger than 100 μm, the piezoelectric substrate 2 may be cracked when the composite piezoelectric chip 1 is heated to about 250 ° C. In order to set the thickness of the piezoelectric substrate 2 to a desired value within the above range, for example, after forming the composite piezoelectric substrate, the piezoelectric substrate may be ground, lapped, or polished (polished).

また、圧電基板2は、水晶等圧電性結晶材料からなるものであればいずれのものでもよいが、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか1つからなるものであれば、これらは電気機械結合係数が大きい結晶材料なので、周波数選択フィルタとしての帯域幅が広く、挿入損失が小さい弾性表面波素子とでき、またこのような弾性表面波素子を作製できる複合圧電チップとできる。これらの圧電結晶材料からなる圧電基板は、例えばチョクラルスキー法でこれらの単結晶棒を育成し、これを所望の厚さにスライスすることによって高品質なものが得られる。
また、基板方位についても、36°回転Yカット、41°回転Yカット、45°回転Yカット等、圧電性結晶材料の種類や弾性表面波素子の用途、所望特性等に応じて適宜選択することができる。
The piezoelectric substrate 2 may be any material as long as it is made of a piezoelectric crystal material such as quartz, but if it is made of any one of lithium tantalate, lithium niobate, and lithium borate, these Is a crystalline material having a large electromechanical coupling coefficient, so that it can be a surface acoustic wave element having a wide bandwidth as a frequency selective filter and a small insertion loss, and a composite piezoelectric chip capable of producing such a surface acoustic wave element. A piezoelectric substrate made of these piezoelectric crystal materials can be obtained with a high quality by growing these single crystal rods by, for example, the Czochralski method and slicing them to a desired thickness.
The substrate orientation is also appropriately selected according to the type of piezoelectric crystal material, the use of the surface acoustic wave element, desired characteristics, such as 36 ° rotation Y-cut, 41 ° rotation Y-cut, 45 ° rotation Y-cut, etc. Can do.

また、支持基板3は、例えば合成石英からなるものでもよいが、Siからなるものであって、好ましくは支持基板3の両表面層が0.1〜20μmの厚さで酸化され、Si酸化膜6が形成されたものでもよい。
このように、支持基板3が半導体デバイス作製用として最も実用化されているSiからなるものであれば、弾性表面波素子と半導体デバイスを複合化しやすくなる。通常、Si基板と圧電基板を貼り合わせて形成した複合圧電基板は、両基板の膨張係数が異なるため加熱すると反りが生じる場合がある。そこで、支持基板3の両表面層を0.1〜20μmの厚さだけ酸化し、Si酸化膜6を形成すれば、複合圧電チップ1の反りを低減できる。さらに接着層4がある場合は、その表面抵抗値が1×1015Ω以上であり、且つSiの支持基板3の抵抗値が2000Ω・cm以上であり、かつSi酸化膜6が形成されたものであれば、絶縁性を十分確保可能とし、電気的特性も向上できる。このように接着層4及びSiの支持基板3の抵抗が極めて大きければ、支持基板3の両表面のSi酸化膜がある程度薄くても電気的絶縁性を飛躍的に向上させることができる。
Further, the support substrate 3 may be made of, for example, synthetic quartz, but is made of Si. Preferably, both surface layers of the support substrate 3 are oxidized to a thickness of 0.1 to 20 μm, and an Si oxide film is formed. 6 may be formed.
Thus, if the support substrate 3 is made of Si that is most practically used for semiconductor device fabrication, the surface acoustic wave element and the semiconductor device can be easily combined. Usually, a composite piezoelectric substrate formed by bonding a Si substrate and a piezoelectric substrate has different expansion coefficients, and thus may be warped when heated. Therefore, warping of the composite piezoelectric chip 1 can be reduced by oxidizing both surface layers of the support substrate 3 to a thickness of 0.1 to 20 μm and forming the Si oxide film 6. Further, when the adhesive layer 4 is present, the surface resistance value is 1 × 10 15 Ω or more, the resistance value of the Si support substrate 3 is 2000 Ω · cm or more, and the Si oxide film 6 is formed. If so, sufficient insulation can be ensured and electrical characteristics can be improved. Thus, if the resistance of the adhesive layer 4 and the Si support substrate 3 is extremely large, even if the Si oxide films on both surfaces of the support substrate 3 are thin to some extent, the electrical insulation can be dramatically improved.

もし支持基板3の一方の表面のみにSi酸化膜6がある場合には、複合圧電基板1に室温でも反りが生じ、圧電基板2を前記の厚さに加工する際に外周から剥がれたり、外周からクラックが生じるので好ましくない。またSi酸化膜6の厚さが0.1μmより薄いと、複合圧電基板1の反りの低減効果が少なく、20μmより厚いと、例えば複合圧電基板1をN雰囲気下、300℃程度に加熱した時に圧電基板2にクラックが生じることがあるので好ましくない。 If the Si oxide film 6 is present only on one surface of the support substrate 3, the composite piezoelectric substrate 1 warps even at room temperature, and the piezoelectric substrate 2 is peeled off from the outer periphery when the piezoelectric substrate 2 is processed to the above thickness. Therefore, it is not preferable because a crack is generated. When the thickness of the Si oxide film 6 is less than 0.1 μm, the effect of reducing the warp of the composite piezoelectric substrate 1 is small. When the thickness is greater than 20 μm, for example, the composite piezoelectric substrate 1 is heated to about 300 ° C. in an N 2 atmosphere. Since cracks sometimes occur in the piezoelectric substrate 2, it is not preferable.

なお、Si酸化膜6の厚さは、上記範囲内であれば必ずしも両表面が同じである必要はないが、同程度であることが好ましい。また、このようなSiからなる支持基板3は、例えばフローティングゾーン法でSiの単結晶棒を育成し、これを所望の厚さにスライスすることによって2000Ω・cm以上の極めて高抵抗の高品質なものが得られる。また、支持基板3の両表面層を酸化するには、例えば高圧酸化法を用いることができ、生産性よくSi酸化膜6を容易に前記の所望の厚さとできる。   It should be noted that the thickness of the Si oxide film 6 is not necessarily the same on both surfaces as long as it is within the above range, but it is preferable that the thickness be the same. In addition, such a support substrate 3 made of Si is produced by growing a single crystal rod of Si by, for example, a floating zone method, and slicing it to a desired thickness, thereby achieving a high quality with an extremely high resistance of 2000 Ω · cm or more. Things are obtained. Moreover, in order to oxidize both surface layers of the support substrate 3, for example, a high pressure oxidation method can be used, and the Si oxide film 6 can be easily made to have the desired thickness with high productivity.

接着層4を構成する接着剤としては、例えばエポキシメタクリレートを主成分とする光硬化接着剤であれば、250℃以上の耐熱性が得られ、かつ光硬化前の粘度が100cps以下と低いので、スピンコーティングやその他の塗布方法で容易に均一な接着層とできる。このように接着層が均一とできれば、複合圧電チップ1は均一に接着された高品質なものとなり、より剥離しにくいものとなる。そして、光硬化性であるから、室温で光照射により圧電基板2と支持基板3を強固に貼り合わせ接合することができ、高温にしなくてもよいので貼り合わせ時に圧電基板2が高温で変形せず室温でフラットな形状を保つことができるので好ましい。また、この接着剤は表面抵抗値が1×1015Ωと大きく、なおかつ1GHzにおけるtanδが0.1以下と小さいので高周波領域での損失が小さく好ましい。ここでtanδとは誘電正接を表す量である。 As an adhesive constituting the adhesive layer 4, for example, if it is a photo-curing adhesive mainly composed of epoxy methacrylate, heat resistance of 250 ° C. or more is obtained, and the viscosity before photo-curing is as low as 100 cps or less, A uniform adhesive layer can be easily formed by spin coating or other application methods. If the adhesive layer can be made uniform in this way, the composite piezoelectric chip 1 becomes a high-quality one that is uniformly bonded, and is more difficult to peel off. And since it is photocurable, the piezoelectric substrate 2 and the support substrate 3 can be firmly bonded and bonded by light irradiation at room temperature, and it is not necessary to raise the temperature, so that the piezoelectric substrate 2 is deformed at a high temperature at the time of bonding. It is preferable because it can maintain a flat shape at room temperature. Further, this adhesive has a large surface resistance value of 1 × 10 15 Ω, and tan δ at 1 GHz is as small as 0.1 or less, so that the loss in the high frequency region is small. Here, tan δ is a quantity representing the dielectric loss tangent.

このような複合圧電チップ1は、圧電基板2上に弾性表面波を励振・検出する電極9が形成されたものである。電極9は、従来のフォトリソグラフィ法等を用いて形成でき、例えば複数の電極指と該電極指を共通に接続するバスバーとからなる1対の櫛型電極が電極指が交差するように対向配置されたIDTであり、弾性表面波素子の所望の機能・用途に応じて1又は複数の電極が形成される。また、電極9の両側には反射器が形成されてもよい。   In such a composite piezoelectric chip 1, an electrode 9 for exciting and detecting a surface acoustic wave is formed on a piezoelectric substrate 2. The electrode 9 can be formed by using a conventional photolithography method or the like. For example, a pair of comb-shaped electrodes including a plurality of electrode fingers and a bus bar that commonly connects the electrode fingers are arranged so that the electrode fingers intersect each other. In the IDT, one or a plurality of electrodes are formed according to a desired function / use of the surface acoustic wave element. In addition, reflectors may be formed on both sides of the electrode 9.

そして、このような複合圧電チップ1は、例えばAuやSnからなるバンプ7を介して従来のフリップチップボンディングによって実装基板8に実装される。実装基板8は、アルミナ(膨張係数8ppm/℃)や低膨張セラミック(膨張係数5.5ppm/℃)からなるものであれば、膨張係数が適当な値であり、膨張係数αcとαsとが前述の関係を満たすように調整して実装することが容易であるが、他の材料からなる実装基板でもよい。   Such a composite piezoelectric chip 1 is mounted on the mounting substrate 8 by conventional flip chip bonding via bumps 7 made of, for example, Au or Sn. If the mounting substrate 8 is made of alumina (expansion coefficient 8 ppm / ° C.) or low expansion ceramic (expansion coefficient 5.5 ppm / ° C.), the expansion coefficient is an appropriate value, and the expansion coefficients αc and αs are the above-mentioned values. It is easy to adjust and mount so as to satisfy the above relationship, but a mounting substrate made of other materials may be used.

このような弾性表面波素子10は、本発明に従い、圧電基板2と支持基板3とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップ1の圧電基板上に弾性表面波を励振・検出する電極9を形成し、複合圧電チップ1をバンプ7を介してフリップチップボンディングによって実装基板8に実装する際に、圧電基板2の表面の特定方向の膨張係数αc(ppm/℃)と実装基板8の膨張係数αs(ppm/℃)とが、αs<αc<αs+6なる関係を満たすように、例えば圧電基板の厚み、圧電基板と支持基板とを接着する接着層の厚み、チップサイズ等を調整して実装することにより、製造することができる。   According to the present invention, such a surface acoustic wave element 10 excites surface acoustic waves on the piezoelectric substrate of the composite piezoelectric chip 1 obtained by processing a composite piezoelectric substrate in which the piezoelectric substrate 2 and the support substrate 3 are bonded into a chip shape. When the electrode 9 to be detected is formed and the composite piezoelectric chip 1 is mounted on the mounting substrate 8 via the bump 7 by flip chip bonding, the expansion coefficient αc (ppm / ° C.) in the specific direction of the surface of the piezoelectric substrate 2 is mounted. For example, the thickness of the piezoelectric substrate, the thickness of the adhesive layer that bonds the piezoelectric substrate and the support substrate, and the chip size are set so that the expansion coefficient αs (ppm / ° C.) of the substrate 8 satisfies the relationship of αs <αc <αs + 6. It can be manufactured by adjusting and mounting.

以下に本発明の実施例および比較例をあげてさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
直径4インチ(100mm)で厚さが200μmであり、抵抗値が5000Ω・cmのSi基板の両面の表面層を高圧酸化法により6μmの厚さで酸化した。次に直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を厚さが0.2mm(200μm)で両面ラップにより表面のRa(平均表面粗さ)が0.12μmとなる様加工した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
Example 1
The surface layers on both sides of the Si substrate having a diameter of 4 inches (100 mm) and a thickness of 200 μm and a resistance value of 5000 Ω · cm were oxidized to a thickness of 6 μm by a high pressure oxidation method. Next, a 36 ° rotated Y-cut lithium tantalate (LiTaO 3 ) substrate having a diameter of 4 inches (100 mm) has a thickness of 0.2 mm (200 μm) and a surface Ra (average surface roughness) of 0.12 μm by double-sided lapping. It was processed to become.

次いで、この酸化膜付きSi基板の表面を洗浄し、さらにこの基板を100℃に加熱しながら波長200nm以下の短波UV光及び高濃度オゾンにより前処理し、次にエポキシメタクリレートを主成分とする紫外線硬化接着剤をスピンコートしこの基板の片側表面上に均一に塗布した。次いで、前記LiTaO基板の裏面を洗浄し、前記接着剤を同様に塗布し、前記酸化膜付きSi基板の接着剤塗布面と前記LiTaO基板の接着剤塗布面を圧力1×10−3mbarの真空下で貼り合せた。 Next, the surface of the Si substrate with an oxide film is cleaned, and the substrate is pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C., and then ultraviolet light mainly composed of epoxy methacrylate. The cured adhesive was spin coated and applied uniformly on one side surface of the substrate. Next, the back surface of the LiTaO 3 substrate is washed and the adhesive is applied in the same manner, and the adhesive application surface of the Si substrate with oxide film and the adhesive application surface of the LiTaO 3 substrate are pressured at 1 × 10 −3 mbar. Were bonded together under vacuum.

次に、この貼り合わせた複合圧電基板に、照度50mW/cmの紫外線を10分間照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に5μmの厚さだった。そして、この複合圧電基板を面取り加工した後、LiTaO基板の表面側をラップ及び研削により160μm削り落とし、さらにポリッシュによりLiTaO基板の厚さが15μmになるようにした。 Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 μm thick within the substrate surface. After this was a composite piezoelectric substrate chamfered, scraped 160μm by wrap and grinding the surface of the LiTaO 3 substrate, and as the thickness of the LiTaO 3 substrate is 15μm by further polishing.

このようにして作製した複合圧電基板を150℃に加熱したところその反り量は最大で2mmと小さかった。次に、この複合圧電基板を1×1.2mmの複合圧電基板チップに切断し、このチップをN雰囲気下、300℃まで加熱したところチップは割れなかった。また、前記チップを−40℃〜125℃のヒートサイクルに1000サイクルかけても、ヒートサイクル前と変化が無かった。 When the composite piezoelectric substrate thus fabricated was heated to 150 ° C., the amount of warpage was as small as 2 mm at the maximum. Next, the composite piezoelectric substrate was cut into 1 × 1.2 mm composite piezoelectric substrate chips, and when the chips were heated to 300 ° C. in an N 2 atmosphere, the chips were not broken. Further, even when the chip was subjected to a heat cycle of −40 ° C. to 125 ° C. for 1000 cycles, there was no change from before the heat cycle.

次に、上記の複合圧電チップに、動作周波数が約1.9GHzとなるように、弾性表面波を励振・検出するための電極幅が約0.5ミクロンである電極を設け、その両側に反射器を形成して1ポートの弾性表面波共振子を作製した。   Next, the composite piezoelectric chip is provided with electrodes having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves so that the operating frequency is about 1.9 GHz, and reflection is performed on both sides thereof. A 1-port surface acoustic wave resonator was fabricated by forming a container.

このとき、LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向であるX方向±0.5°の膨張係数αcを、前記複合圧電チップを加熱及び冷却し電極幅の温度変化をその場観察により求めたところ、αc=10ppm/℃であった。 At this time, the expansion coefficient αc in the X direction ± 0.5 °, which is the leakage acoustic surface wave propagation direction, of the surface on which the electrode of the LiTaO 3 substrate is formed is heated and cooled to change the temperature change of the electrode width. As a result of in-situ observation, αc = 10 ppm / ° C.

次に電極が形成された前記複合圧電チップを、低膨張セラミック(膨張係数αs=5.5ppm/℃)からなる実装基板にSnからなるハンダバンプを介してフリップチップ接続して、パッケージングをおこなった。   Next, the composite piezoelectric chip with electrodes formed thereon was flip-chip connected to a mounting substrate made of low expansion ceramic (expansion coefficient αs = 5.5 ppm / ° C.) via solder bumps made of Sn, and packaging was performed. .

前記複合圧電チップをフリップチップ接続した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は−10ppm/℃、反共振周波数の温度係数は−20ppm/℃であった。   The temperature dependence of the resonance frequency and antiresonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is examined by changing the ambient temperature from -40 ° C to 85 ° C, and the temperature coefficient of each is investigated. As a result, the temperature coefficient of the resonance frequency was −10 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −20 ppm / ° C.

(実施例2)
直径4インチ(100mm)で厚さが200μmであり、抵抗値が5000Ω・cmのSi基板を用意した。次に直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を厚さが0.2mm(200μm)で両面ラップにより表面のRaが0.12μmとなる様加工した。
(Example 2)
A Si substrate having a diameter of 4 inches (100 mm), a thickness of 200 μm, and a resistance value of 5000 Ω · cm was prepared. Next, a 36-degree rotated Y-cut lithium tantalate (LiTaO 3 ) substrate having a diameter of 4 inches (100 mm) was processed to have a thickness of 0.2 mm (200 μm) and a surface Ra of 0.12 μm by double-sided lapping.

次いで、Si基板の表面を洗浄し、さらにこの基板を100℃に加熱しながら波長200nm以下の短波UV光及び高濃度オゾンにより前処理し、エポキシメタクリレートを主成分とする紫外線硬化接着剤をスピンコートしこの基板の片側表面上に均一に塗布した。次いで、前記LiTaO基板の裏面を洗浄し、前記接着剤を同様に塗布し、前記Si基板の接着剤塗布面と前記LiTaO基板の接着剤塗布面を圧力1×10−3mbarの真空下で貼り合せた。 Next, the surface of the Si substrate is cleaned, and the substrate is pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C., and an ultraviolet curable adhesive mainly composed of epoxy methacrylate is spin-coated. Then, it was uniformly applied on one surface of the substrate. Next, the back surface of the LiTaO 3 substrate is washed, and the adhesive is applied in the same manner. The adhesive application surface of the Si substrate and the adhesive application surface of the LiTaO 3 substrate are subjected to a vacuum of 1 × 10 −3 mbar. We pasted together.

次に、この貼り合わせた複合圧電基板に、照度50mW/cmの紫外線を10分間照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に5μmの厚さだった。そして、この複合圧電基板を面取り加工した後、LiTaO基板の表面側を研削及びラップにより155μm削り落とし、さらにポリッシュによりLiTaO基板の厚さが20μmになるようにした。 Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 μm thick within the substrate surface. Then, after chamfering the composite piezoelectric substrate, scraping 155μm the surface of the LiTaO 3 substrate by grinding and lap, and as the thickness of the LiTaO 3 substrate is 20μm through further polished.

このようにして作製した複合圧電基板を150℃に加熱したところその反り量は最大で4mmと小さかった。また、この複合圧電基板を1×1.2mmの複合圧電基板チップに切断し、このチップをN雰囲気下、300℃まで加熱したところチップは割れなかった。また、前記チップを−40℃〜125℃のヒートサイクルに1000サイクルかけても、ヒートサイクル前と変化が無かった。 When the composite piezoelectric substrate thus fabricated was heated to 150 ° C., the amount of warping was as small as 4 mm at the maximum. Further, when this composite piezoelectric substrate was cut into 1 × 1.2 mm composite piezoelectric substrate chips and this chip was heated to 300 ° C. in an N 2 atmosphere, the chips were not broken. Further, even when the chip was subjected to a heat cycle of −40 ° C. to 125 ° C. for 1000 cycles, there was no change from before the heat cycle.

次に、上記の複合圧電チップに、動作周波数が約1.9GHzとなるように、弾性表面波を励振・検出するための電極幅が約0.5ミクロンである電極を設け、その両側に反射器を形成して1ポートの弾性表面波共振子を作製した。   Next, the composite piezoelectric chip is provided with electrodes having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves so that the operating frequency is about 1.9 GHz, and reflection is performed on both sides thereof. A 1-port surface acoustic wave resonator was fabricated by forming a container.

このとき、LiTaO3基板の電極が形成された面の漏洩弾性表面波伝播方向であるX方向±0.5°の膨張係数αcを、前記複合圧電チップを加熱及び冷却し電極幅の温度変化をその場観察により求めたところ、αc=11ppm/℃であった。   At this time, the expansion coefficient αc in the X direction ± 0.5 °, which is the leakage acoustic surface wave propagation direction, of the surface on which the electrode of the LiTaO 3 substrate is formed is heated and cooled to change the temperature change of the electrode width. As a result of field observation, αc = 11 ppm / ° C.

次に電極が形成された前記複合圧電チップを、低膨張セラミック(膨張係数αs=5.5ppm/℃)からなる実装基板にSnからなるハンダバンプを介してフリップチップ接続して、パッケージングをおこなった。   Next, the composite piezoelectric chip with electrodes formed thereon was flip-chip connected to a mounting substrate made of low expansion ceramic (expansion coefficient αs = 5.5 ppm / ° C.) via solder bumps made of Sn, and packaging was performed. .

前記複合圧電チップをフリップチップ接続した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は−14ppm/℃、反共振周波数の温度係数は−24ppm/℃であった。   The temperature dependence of the resonance frequency and antiresonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is examined by changing the ambient temperature from -40 ° C to 85 ° C, and the temperature coefficient of each is investigated. As a result, the temperature coefficient of the resonance frequency was −14 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −24 ppm / ° C.

(実施例3)
直径4インチ(100mm)で厚さが150μmである合成石英基板を用意した。次に直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を厚さが0.2mm(200μm)で両面ラップにより表面のRaが0.12μmとなる様加工した。
(Example 3)
A synthetic quartz substrate having a diameter of 4 inches (100 mm) and a thickness of 150 μm was prepared. Next, a 36-degree rotated Y-cut lithium tantalate (LiTaO 3 ) substrate having a diameter of 4 inches (100 mm) was processed to have a thickness of 0.2 mm (200 μm) and a surface Ra of 0.12 μm by double-sided lapping.

次いで、合成石英基板の表面を洗浄し、さらにこの基板を100℃に加熱しながら波長200nm以下の短波UV光及び高濃度オゾンにより前処理し、エポキシメタクリレートを主成分とする紫外線硬化接着剤をスピンコートしこの基板の片側表面上に均一に塗布した。次いで、前記LiTaO基板の裏面を洗浄し、前記接着剤を同様に塗布し、前記合成石英基板の接着剤塗布面と前記LiTaO基板の接着剤塗布面を圧力1×10−3mbarの真空下で貼り合せた。 Next, the surface of the synthetic quartz substrate is cleaned, and the substrate is pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C., and an ultraviolet curable adhesive mainly composed of epoxy methacrylate is spun. Coated and applied uniformly on one side of the substrate. Next, the back surface of the LiTaO 3 substrate is washed and the adhesive is applied in the same manner, and the adhesive application surface of the synthetic quartz substrate and the adhesive application surface of the LiTaO 3 substrate are vacuumed at a pressure of 1 × 10 −3 mbar. Laminated below.

次に、この貼り合わせた複合圧電基板に、照度50mW/cmの紫外線を10分間照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に5μmの厚さだった。そして、この複合圧電基板を面取り加工した後、LiTaO基板の表面側を研削及びラップにより155μm削り落とし、さらにポリッシュによりLiTaO基板の厚さが20μmになるようにした。 Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 μm thick within the substrate surface. Then, after chamfering the composite piezoelectric substrate, scraping 155μm the surface of the LiTaO 3 substrate by grinding and lap, and as the thickness of the LiTaO 3 substrate is 20μm through further polished.

このようにして作製した複合圧電基板を150℃に加熱したところその反り量は最大で4mmと小さかった。また、この複合圧電基板を1×1.2mmの複合圧電基板チップに切断し、このチップをN雰囲気下、300℃まで加熱したところチップは割れなかった。また、前記チップを−40℃〜125℃のヒートサイクルに1000サイクルかけても、ヒートサイクル前と変化が無かった。 When the composite piezoelectric substrate thus fabricated was heated to 150 ° C., the amount of warping was as small as 4 mm at the maximum. Further, when this composite piezoelectric substrate was cut into 1 × 1.2 mm composite piezoelectric substrate chips and this chip was heated to 300 ° C. in an N 2 atmosphere, the chips were not broken. Further, even when the chip was subjected to a heat cycle of −40 ° C. to 125 ° C. for 1000 cycles, there was no change from before the heat cycle.

次に、上記の複合圧電チップに、動作周波数が約1.9GHzとなるように、弾性表面波を励振・検出するための電極幅が約0.5ミクロンである電極を設け、その両側に反射器を形成して1ポートの弾性表面波共振子を作製した。   Next, the composite piezoelectric chip is provided with electrodes having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves so that the operating frequency is about 1.9 GHz, and reflection is performed on both sides thereof. A 1-port surface acoustic wave resonator was fabricated by forming a container.

このとき、LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向であるX方向±0.5°の膨張係数αcを、前記複合圧電チップを加熱及び冷却し電極幅の温度変化をその場観察により求めたところ、αc=8ppm/℃であった。 At this time, the expansion coefficient αc in the X direction ± 0.5 °, which is the leakage acoustic surface wave propagation direction, of the surface on which the electrode of the LiTaO 3 substrate is formed is heated and cooled to change the temperature change of the electrode width. As a result of in-situ observation, αc = 8 ppm / ° C.

次に電極が形成された前記複合圧電チップを、低膨張セラミック(膨張係数αs=5.5ppm/℃)からなる実装基板にSnからなるハンダバンプを介してフリップチップ接続して、パッケージングをおこなった。   Next, the composite piezoelectric chip with electrodes formed thereon was flip-chip connected to a mounting substrate made of low expansion ceramic (expansion coefficient αs = 5.5 ppm / ° C.) via solder bumps made of Sn, and packaging was performed. .

前記複合圧電チップをフリップチップ接続した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は−13ppm/℃、反共振周波数の温度係数は−23ppm/℃であった。   The temperature dependence of the resonance frequency and antiresonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is examined by changing the ambient temperature from -40 ° C to 85 ° C, and the temperature coefficient of each is investigated. As a result, the temperature coefficient of the resonance frequency was −13 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −23 ppm / ° C.

(実施例4)
直径4インチ(100mm)で厚さが200μmであり、抵抗値が5000Ω・cmの片側が鏡面加工されたSi基板を用意した。次に直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を厚さが0.15mm(150μm)となるよう両面研磨により仕上げた。前記基板を各々100℃に加熱しながら波長200nm以下の短波UV光及び高濃度オゾンにより前処理した。
そして、前記LiTaO基板とSi基板を圧力1×10−4mbarの真空下で室温で貼り合せた。
Example 4
A Si substrate having a diameter of 4 inches (100 mm), a thickness of 200 μm, and a resistance value of 5000 Ω · cm on which one side was mirror-finished was prepared. Next, a 36-degree rotated Y-cut lithium tantalate (LiTaO 3 ) substrate having a diameter of 4 inches (100 mm) was finished by double-side polishing so as to have a thickness of 0.15 mm (150 μm). Each of the substrates was pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C.
Then, the LiTaO 3 substrate and the Si substrate were bonded at room temperature under a vacuum of 1 × 10 −4 mbar.

次に、同様な方法で作製したLiTaO基板とSi基板の貼り合わせ基板2枚を、LiTaO基板側で対向させエポキシ接着剤を介して接着し、250℃まで加熱した。
その後、室温まで冷却し、硫酸にて接着層を剥がし、複合圧電基板を作製した。
そして、この複合圧電基板を面取り加工した後、LiTaO基板の表面側を研削及びラップにより95μm削り落とし、さらにポリッシュによりLiTaO基板の厚さが30μmになるようにした。
Next, two bonded substrates of a LiTaO 3 substrate and a Si substrate manufactured by the same method were opposed to each other on the LiTaO 3 substrate side, bonded through an epoxy adhesive, and heated to 250 ° C.
Then, it cooled to room temperature, peeled off the contact bonding layer with the sulfuric acid, and produced the composite piezoelectric substrate.
Then, after chamfering the composite piezoelectric substrate, scraping 95μm surface side of the LiTaO 3 substrate by grinding and lap, and as the thickness of the LiTaO 3 substrate is 30μm by further polishing.

また、この複合圧電基板を1×1.2mmの複合圧電基板チップに切断し、このチップをN雰囲気下、300℃まで加熱したところチップは割れなかった。また、前記チップを−40℃〜125℃のヒートサイクルに1000サイクルかけても、ヒートサイクル前と変化が無かった。 Further, when this composite piezoelectric substrate was cut into 1 × 1.2 mm composite piezoelectric substrate chips and this chip was heated to 300 ° C. in an N 2 atmosphere, the chips were not broken. Further, even when the chip was subjected to a heat cycle of −40 ° C. to 125 ° C. for 1000 cycles, there was no change from before the heat cycle.

次に、上記の複合圧電チップに、動作周波数が約1.9GHzとなるように、弾性表面波を励振・検出するための電極幅が約0.5ミクロンである電極を設け、その両側に反射器を形成して1ポートの弾性表面波共振子を作製した。   Next, the composite piezoelectric chip is provided with electrodes having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves so that the operating frequency is about 1.9 GHz, and reflection is performed on both sides thereof. A 1-port surface acoustic wave resonator was fabricated by forming a container.

このとき、LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向であるX方向±0.5°の膨張係数αcを、前記複合圧電チップを加熱及び冷却し電極幅の温度変化をその場観察により求めたところ、αc=7ppm/℃であった。 At this time, the expansion coefficient αc in the X direction ± 0.5 °, which is the leakage acoustic surface wave propagation direction, of the surface on which the electrode of the LiTaO 3 substrate is formed is heated and cooled to change the temperature change of the electrode width. As a result of in-situ observation, αc = 7 ppm / ° C.

次に電極が形成された前記複合圧電チップを、低膨張セラミック(膨張係数αs=5.5ppm/℃)からなる実装基板にSnからなるハンダバンプを介してフリップチップ接続して、パッケージングをおこなった。   Next, the composite piezoelectric chip with electrodes formed thereon was flip-chip connected to a mounting substrate made of low expansion ceramic (expansion coefficient αs = 5.5 ppm / ° C.) via solder bumps made of Sn, and packaging was performed. .

前記複合圧電チップをフリップチップ接続した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は−13ppm/℃、反共振周波数の温度係数は−23ppm/℃であった。
上記いずれの実施例においても共振周波数、反共振周波数とも温度係数が小さく、周波数温度特性改善効果が高いことが確認された。
The temperature dependence of the resonance frequency and antiresonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is examined by changing the ambient temperature from -40 ° C to 85 ° C, and the temperature coefficient of each is investigated. As a result, the temperature coefficient of the resonance frequency was −13 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −23 ppm / ° C.
In any of the above examples, it was confirmed that both the resonance frequency and the antiresonance frequency had a small temperature coefficient, and the effect of improving the frequency temperature characteristic was high.

(比較例1〜4)
比較例1〜4として、それぞれ実施例1〜4と全く同様な方法にて作製した複合圧電チップをチップアンドワイヤー法にて実装して作製した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を、周囲温度を−40℃から85℃まで変化させ手調べ、各々の温度係数を調べた。その結果、比較例1においては、共振周波数の温度係数は−20ppm/℃、反共振周波数の温度係数は−30ppm/℃であった。また比較例2においては、共振周波数の温度係数は−24ppm/℃、反共振周波数の温度係数は−34ppm/℃であった。また比較例3においては、共振周波数の温度係数は−23ppm/℃、反共振周波数の温度係数は−33ppm/℃であった。また比較例4においては、共振周波数の温度係数は−19ppm/℃、反共振周波数の温度係数は−29ppm/℃であった。すなわち、比較例1〜4においては、実施例1〜4と比較して各温度係数が6〜10ppm/℃だけ大きかった。
(Comparative Examples 1-4)
As Comparative Examples 1 to 4, the resonance frequency and anti-resonance of a 1-port surface acoustic wave resonator produced by mounting a composite piezoelectric chip produced by the same method as in Examples 1 to 4 by the chip and wire method, respectively. The temperature dependence of the resonance frequency was manually examined by changing the ambient temperature from −40 ° C. to 85 ° C., and each temperature coefficient was examined. As a result, in Comparative Example 1, the temperature coefficient of the resonance frequency was −20 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −30 ppm / ° C. In Comparative Example 2, the temperature coefficient of the resonance frequency was −24 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −34 ppm / ° C. In Comparative Example 3, the temperature coefficient of the resonance frequency was −23 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −33 ppm / ° C. In Comparative Example 4, the temperature coefficient of the resonance frequency was −19 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −29 ppm / ° C. That is, in Comparative Examples 1 to 4, each temperature coefficient was larger by 6 to 10 ppm / ° C. than Examples 1 to 4.

(比較例5、6)
直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を厚さが0.2mm(200μm)で表面は鏡面仕上げ、裏面はラップによりRaが0.12μmとなる様加工した。次いで、この圧電基板を1×1.2mmの圧電チップに加工した。
(Comparative Examples 5 and 6)
A 36-degree rotated Y-cut lithium tantalate (LiTaO 3 ) substrate with a diameter of 4 inches (100 mm) was processed to a thickness of 0.2 mm (200 μm) with a mirror-finished surface and Ra with a back surface of 0.12 μm by lapping. . Next, this piezoelectric substrate was processed into a 1 × 1.2 mm piezoelectric chip.

次に、上記の圧電チップに、動作周波数が約1.9GHzとなるように、弾性表面波を励振・検出するための電極幅が約0.5ミクロンである電極を設け、その両側に反射器を形成して1ポートの弾性表面波共振子を作製した。   Next, an electrode having an electrode width of about 0.5 microns for exciting and detecting the surface acoustic wave is provided on the piezoelectric chip so that the operating frequency is about 1.9 GHz, and reflectors are provided on both sides thereof. To form a 1-port surface acoustic wave resonator.

このとき、LiTaO3基板の電極が形成された面の漏洩弾性表面波伝播方向であるX方向±0.5°の膨張係数αcを、前記圧電チップを加熱及び冷却し電極幅の温度変化をその場観察により求めたところ、αc=16ppm/℃であった。   At this time, the expansion coefficient αc of the surface of the LiTaO3 substrate on which the electrode is formed is X-direction ± 0.5 °, which is the direction of propagation of the leaky surface acoustic wave. As a result of observation, αc = 16 ppm / ° C.

次に電極が形成された前記圧電チップを、低膨張セラミック(膨張係数αs=5.5ppm/℃)からなる実装基板にSnからなるハンダバンプを介してフリップチップ接続して、パッケージングをおこなった。   Next, the piezoelectric chip on which the electrode was formed was flip-chip connected to a mounting substrate made of a low expansion ceramic (expansion coefficient αs = 5.5 ppm / ° C.) via a solder bump made of Sn to perform packaging.

前記圧電チップをフリップチップ接続した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は−26ppm/℃、反共振周波数の温度係数は−36ppm/℃と大きい値であった。   The temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the piezoelectric chip is flip-chip connected was examined by changing the ambient temperature from -40 ° C. to 85 ° C., and each temperature coefficient was examined. As a result, the temperature coefficient of the resonance frequency was −26 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −36 ppm / ° C., which was a large value.

また、前記と同様の圧電チップをチップアンドワイヤー法にて実装して作製した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は−30ppm/℃、反共振周波数の温度係数は−40ppm/℃と大きい値であった。   Further, the temperature dependence of the resonance frequency and anti-resonance frequency of a 1-port surface acoustic wave resonator manufactured by mounting the same piezoelectric chip as described above by the chip-and-wire method is from -40 ° C. to 85 ° C. As a result of examining each temperature coefficient, the temperature coefficient of the resonance frequency was −30 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was as large as −40 ppm / ° C.

(比較例7)
直径4インチ(100mm)で厚さが200μmであり、抵抗値が5000Ω・cmの片側が鏡面加工されたSi基板を用意した。そして、鏡面加工されたSi表面にプラズマCVD法によりSiOを6μm堆積した。
次に直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を厚さが0.15mm(150μm)となるよう両面研磨により仕上げた。
(Comparative Example 7)
A Si substrate having a diameter of 4 inches (100 mm), a thickness of 200 μm, and a resistance value of 5000 Ω · cm on which one side was mirror-finished was prepared. Then, 6 μm of SiO 2 was deposited on the mirror-finished Si surface by plasma CVD.
Next, a 36-degree rotated Y-cut lithium tantalate (LiTaO 3 ) substrate having a diameter of 4 inches (100 mm) was finished by double-side polishing so as to have a thickness of 0.15 mm (150 μm).

このSiO付きSi基板のSiOを堆積した側の面とタンタル酸リチウム基板の接合する側の面に窒素プラズマを照射した。
次に前記LiTaO基板とSi基板を圧力1×10−4mbarの真空下で室温で貼り合せた。
It was irradiated with nitrogen plasma to the surface of the side to be bonded of the SiO 2 with Si side surface of lithium tantalate substrate depositing a SiO 2 substrate.
Next, the LiTaO 3 substrate and the Si substrate were bonded together at room temperature under a vacuum of 1 × 10 −4 mbar.

次に、同様な方法で作製したLiTaO基板とSi基板の貼り合わせ基板2枚を、LiTaO基板側で対向させエポキシ接着剤を介して接着し、250℃まで加熱した。
その後、室温まで冷却し、硫酸にて接着層を剥がし、複合圧電基板を作製した。
そして、この複合圧電基板を面取り加工した後、LiTaO基板の表面側を研削及びラップにより110μm削り落とし、さらにポリッシュによりLiTaO基板の厚さが25μmになるようにした。
Next, two bonded substrates of a LiTaO 3 substrate and a Si substrate manufactured by the same method were opposed to each other on the LiTaO 3 substrate side, bonded through an epoxy adhesive, and heated to 250 ° C.
Then, it cooled to room temperature, peeled off the contact bonding layer with the sulfuric acid, and produced the composite piezoelectric substrate.
Then, after chamfering the composite piezoelectric substrate, scraping 110μm the surface of the LiTaO 3 substrate by grinding and lap, and as the thickness of the LiTaO 3 substrate is 25μm by further polishing.

次に、この複合圧電基板を1×1.2mmの複合圧電基板チップに切断し、この複合圧電チップに、動作周波数が約1.9GHzとなるように、弾性表面波を励振・検出するための電極幅が約0.5ミクロンである電極を設け、その両側に反射器を形成して1ポートの弾性表面波共振子を作製した。   Next, the composite piezoelectric substrate is cut into a 1 × 1.2 mm composite piezoelectric substrate chip, and surface acoustic waves are excited and detected on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz. An electrode having an electrode width of about 0.5 microns was provided, and reflectors were formed on both sides thereof to produce a 1-port surface acoustic wave resonator.

このとき、LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向であるX方向±0.5°の膨張係数αcを、前記複合圧電チップを加熱及び冷却し電極幅の温度変化をその場観察により求めたところ、αc=4ppm/℃であった。 At this time, the expansion coefficient αc in the X direction ± 0.5 °, which is the leakage acoustic surface wave propagation direction, of the surface on which the electrode of the LiTaO 3 substrate is formed is heated and cooled to change the temperature change of the electrode width. As a result of in-situ observation, αc = 4 ppm / ° C.

次に電極が形成された前記複合圧電チップを、アルミナセラミック(膨張係数αs=8ppm/℃)からなる実装基板にSnからなるハンダバンプを介してフリップチップ接続してパッケージングをおこなった。   Next, the composite piezoelectric chip on which the electrode was formed was flip-chip connected to a mounting substrate made of alumina ceramic (expansion coefficient αs = 8 ppm / ° C.) via a solder bump made of Sn for packaging.

前記複合圧電チップをフリップチップ接続した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果共振周波数の温度係数は−23ppm/℃、反共振周波数の温度係数は−35ppm/℃と温度特性改善効果が小さかった。   The temperature dependence of the resonance frequency and antiresonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is examined by changing the ambient temperature from -40 ° C to 85 ° C, and the temperature coefficient of each is investigated. As a result, the temperature coefficient of the resonance frequency was −23 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −35 ppm / ° C., so that the effect of improving the temperature characteristics was small.

また、前記複合圧電チップをチップアンドワイヤー接続して実装した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果共振周波数の温度係数は−12ppm/℃、反共振周波数の温度係数は−22ppm/℃と良好な温度特性であったが、実装作業が煩雑であり、生産性が高いものではない。   Further, the temperature dependence of the resonance frequency and antiresonance frequency of the 1-port surface acoustic wave resonator mounted by connecting the composite piezoelectric chip by chip-and-wire connection is investigated by changing the ambient temperature from −40 ° C. to 85 ° C., As a result of examining each temperature coefficient, the temperature coefficient of the resonance frequency was −12 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −22 ppm / ° C., which were good temperature characteristics, but the mounting work was complicated and the productivity was low. Not expensive.

(比較例8)
直径4インチ(100mm)で厚さが200μmであるガドリニウム・ガリウム・ガーネット(GGG)基板を用意した。次に直径4インチ(100mm)の36°回転Yカットタンタル酸リチウム(LiTaO)基板を厚さが0.2mm(200μm)で両面ラップにより表面のRaが0.12μmとなる様加工した。
(Comparative Example 8)
A gadolinium gallium garnet (GGG) substrate having a diameter of 4 inches (100 mm) and a thickness of 200 μm was prepared. Next, a 36-degree rotated Y-cut lithium tantalate (LiTaO 3 ) substrate having a diameter of 4 inches (100 mm) was processed to have a thickness of 0.2 mm (200 μm) and a surface Ra of 0.12 μm by double-sided lapping.

次いで、GGG基板の表面を洗浄し、さらにこの基板を100℃に加熱しながら波長200nm以下の短波UV光及び高濃度オゾンにより前処理し、エポキシメタクリレートを主成分とする紫外線硬化接着剤をスピンコートし片側表面上に均一に塗布した。次いで、前記LiTaO基板の裏面を洗浄し、前記接着剤を同様に塗布し、前記GGG基板の接着剤塗布面と前記LiTaO基板の接着剤塗布面を圧力1×10−3mbarの真空下で貼り合せた。 Next, the surface of the GGG substrate is cleaned, and the substrate is further pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C., and an ultraviolet curable adhesive mainly composed of epoxy methacrylate is spin-coated. Then, it was uniformly applied on one surface. Next, the back surface of the LiTaO 3 substrate is washed, and the adhesive is applied in the same manner. The adhesive application surface of the GGG substrate and the adhesive application surface of the LiTaO 3 substrate are subjected to a vacuum of 1 × 10 −3 mbar. We pasted together.

次に、この貼り合わせた複合圧電基板に、照度50mW/cmの紫外線を10分間照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に5μmの厚さだった。そして、この複合圧電基板を面取り加工した後、LiTaO基板の表面側を研削及びラップにより155μm削り落とし、さらにポリッシュによりLiTaO基板の厚さが20μmになるようにした。 Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 μm thick within the substrate surface. Then, after chamfering the composite piezoelectric substrate, scraping 155μm the surface of the LiTaO 3 substrate by grinding and lap, and as the thickness of the LiTaO 3 substrate is 20μm through further polished.

次に、この複合圧電基板を1×1.2mmの複合圧電基板チップに切断し、この複合圧電チップに、動作周波数が約1.9GHzとなるように、弾性表面波を励振・検出するための電極幅が0.5ミクロンである電極を設け、その両側に反射器を形成して1ポートの弾性表面波共振子を作製した。   Next, the composite piezoelectric substrate is cut into a 1 × 1.2 mm composite piezoelectric substrate chip, and surface acoustic waves are excited and detected on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz. An electrode having an electrode width of 0.5 microns was provided, and reflectors were formed on both sides thereof to produce a 1-port surface acoustic wave resonator.

このとき、LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向であるX方向±0.5°の膨張係数αcを、前記複合圧電チップを加熱及び冷却し電極幅の温度変化をその場観察により求めたところ、αc=15ppm/℃であった。 At this time, the expansion coefficient αc in the X direction ± 0.5 °, which is the leakage acoustic surface wave propagation direction, of the surface on which the electrode of the LiTaO 3 substrate is formed is heated and cooled to change the temperature change of the electrode width. As a result of in-situ observation, αc = 15 ppm / ° C.

次に電極が形成された前記複合圧電チップを、アルミナセラミック基板(膨張係数αs=8ppm/℃)からなる実装基板にSnからなるハンダバンプを介してフリップチップ接続して、パッケージングをおこなった。   Next, the composite piezoelectric chip on which the electrode was formed was flip-chip connected to a mounting substrate made of an alumina ceramic substrate (expansion coefficient αs = 8 ppm / ° C.) via a solder bump made of Sn, and packaging was performed.

前記複合圧電チップをフリップチップ接続した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は−29ppm/℃、反共振周波数の温度係数は−39ppm/℃と温度特性改善はほとんど無かった。   The temperature dependence of the resonance frequency and antiresonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is examined by changing the ambient temperature from -40 ° C to 85 ° C, and the temperature coefficient of each is investigated. As a result, the temperature coefficient of the resonance frequency was −29 ppm / ° C., the temperature coefficient of the anti-resonance frequency was −39 ppm / ° C., and there was almost no improvement in temperature characteristics.

また、前記複合圧電チップをチップアンドワイヤー接続して実装した1ポート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を−40℃から85℃まで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は−30ppm/℃、反共振周波数の温度係数は−40ppm/℃と温度特性改善効果は無かった。   Further, the temperature dependence of the resonance frequency and antiresonance frequency of the 1-port surface acoustic wave resonator mounted by connecting the composite piezoelectric chip by chip-and-wire connection is investigated by changing the ambient temperature from −40 ° C. to 85 ° C., As a result of examining each temperature coefficient, the temperature coefficient of the resonance frequency was −30 ppm / ° C. and the temperature coefficient of the anti-resonance frequency was −40 ppm / ° C., and there was no effect of improving temperature characteristics.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

例えば、実施例では圧電基板として36°回転YカットLiTaO基板を用いたが、LiNbO基板や他の圧電基板を用いてもよい。また、これらの圧電基板は、焦電性による表面電荷の蓄積をなくしたものであってもよい。 For example, in the embodiment, a 36 ° rotated Y-cut LiTaO 3 substrate is used as the piezoelectric substrate, but a LiNbO 3 substrate or another piezoelectric substrate may be used. In addition, these piezoelectric substrates may be those in which surface charge accumulation due to pyroelectricity is eliminated.

本発明に係る弾性表面波素子の実施形態の一例を示す断面概略図である。1 is a schematic cross-sectional view showing an example of an embodiment of a surface acoustic wave element according to the present invention.

符号の説明Explanation of symbols

1…複合圧電チップ、 2…圧電基板、 3…支持基板、 4…接着層、
5…圧電基板の接着面、 6…Si酸化膜、 7…バンプ、 8…実装基板、
9…電極、 10…弾性表面波素子。
DESCRIPTION OF SYMBOLS 1 ... Composite piezoelectric chip, 2 ... Piezoelectric substrate, 3 ... Supporting substrate, 4 ... Adhesive layer,
5 ... Bonding surface of piezoelectric substrate, 6 ... Si oxide film, 7 ... Bump, 8 ... Mounting substrate,
9 ... electrode, 10 ... surface acoustic wave element.

Claims (9)

圧電基板上に弾性表面波を励振・検出する電極が形成された弾性表面波素子であって、少なくとも、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップと、該複合圧電チップをバンプを介してフリップチップボンディングによって実装する実装基板とを具備し、前記圧電基板表面の特定方向の膨張係数αc(ppm/℃)と、前記実装基板の膨張係数αs(ppm/℃)とが、
αs<αc<αs+6
なる関係を満たすように実装されたものであることを特徴とする弾性表面波素子。
A surface acoustic wave element in which an electrode for exciting and detecting surface acoustic waves is formed on a piezoelectric substrate, and at least a composite piezoelectric chip obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate and a support substrate are bonded together into a chip shape A mounting substrate on which the composite piezoelectric chip is mounted by flip chip bonding via bumps, and an expansion coefficient αc (ppm / ° C.) in a specific direction of the surface of the piezoelectric substrate and an expansion coefficient αs (ppm) of the mounting substrate / ℃)
αs <αc <αs + 6
The surface acoustic wave device is mounted so as to satisfy the following relationship.
請求項1に記載の弾性表面波素子において、前記特定方向は、前記電極により励振される弾性表面波の伝播方向から±0.5度以内のものであることを特徴とする弾性表面波素子。   2. The surface acoustic wave device according to claim 1, wherein the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave excited by the electrode. 請求項1又は請求項2に記載の弾性表面波素子において、前記実装基板は、アルミナ又は低膨張セラミックからなるものであることを特徴とする弾性表面波素子。   3. The surface acoustic wave element according to claim 1, wherein the mounting substrate is made of alumina or a low expansion ceramic. 請求項1乃至請求項3のいずれか一項に記載の弾性表面波素子において、前記圧電基板は、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか1つからなるものであることを特徴とする弾性表面波素子。   4. The surface acoustic wave device according to claim 1, wherein the piezoelectric substrate is made of any one of lithium tantalate, lithium niobate, and lithium borate. 5. A surface acoustic wave device. 圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップであって、該複合圧電チップは前記圧電基板上に弾性表面波を励振・検出する電極が形成され、かつバンプを介してフリップチップボンディングによって実装基板に実装されるものであり、前記圧電基板表面の特定方向の膨張係数αc(ppm/℃)が、前記実装基板の膨張係数αs(ppm/℃)と、
αs<αc<αs+6
なる関係を満たすように実装されるものであることを特徴とする複合圧電チップ。
A composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape, wherein the composite piezoelectric chip has electrodes for exciting and detecting surface acoustic waves formed on the piezoelectric substrate, and It is mounted on a mounting substrate by flip chip bonding via a bump, and an expansion coefficient αc (ppm / ° C.) in a specific direction of the piezoelectric substrate surface is an expansion coefficient αs (ppm / ° C.) of the mounting substrate.
αs <αc <αs + 6
A composite piezoelectric chip that is mounted so as to satisfy the following relationship.
請求項5に記載の複合圧電チップにおいて、前記特定方向は、前記電極により励振される弾性表面波の伝播方向から±0.5度以内のものであることを特徴とする複合圧電チップ。   6. The composite piezoelectric chip according to claim 5, wherein the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave excited by the electrode. 請求項5又は請求項6に記載の複合圧電チップにおいて、前記実装基板は、アルミナ又は低膨張セラミックからなるものであることを特徴とする複合圧電チップ。   7. The composite piezoelectric chip according to claim 5, wherein the mounting substrate is made of alumina or a low expansion ceramic. 請求項5乃至請求項7のいずれか一項に記載の複合圧電チップにおいて、前記圧電基板は、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか1つからなるものであることを特徴とする複合圧電チップ。   The composite piezoelectric chip according to any one of claims 5 to 7, wherein the piezoelectric substrate is made of any one of lithium tantalate, lithium niobate, and lithium borate. Composite piezoelectric chip. 弾性表面波素子の製造方法であって、少なくとも、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップの該圧電基板上に弾性表面波を励振・検出する電極を形成し、該複合圧電チップをバンプを介してフリップチップボンディングによって実装基板に実装する際に、前記圧電基板表面の特定方向の膨張係数αc(ppm/℃)と、前記実装基板の膨張係数αs(ppm/℃)とが、
αs<αc<αs+6
なる関係を満たすように実装することを特徴とする弾性表面波素子の製造方法。
A method of manufacturing a surface acoustic wave device, wherein at least an electrode for exciting and detecting surface acoustic waves on a piezoelectric substrate of a composite piezoelectric chip obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate and a support substrate are bonded together into a chip shape When the composite piezoelectric chip is mounted on a mounting substrate by flip chip bonding via a bump, an expansion coefficient αc (ppm / ° C.) in a specific direction on the surface of the piezoelectric substrate and an expansion coefficient αs of the mounting substrate (Ppm / ° C)
αs <αc <αs + 6
The surface acoustic wave device is manufactured so as to satisfy the relationship.
JP2005126785A 2005-04-25 2005-04-25 Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof Pending JP2006304206A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005126785A JP2006304206A (en) 2005-04-25 2005-04-25 Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
PCT/JP2006/301514 WO2006114922A1 (en) 2005-04-25 2006-01-31 Surface acoustic wave element, composite piezoelectric chip and method for manufacturing such surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126785A JP2006304206A (en) 2005-04-25 2005-04-25 Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006304206A true JP2006304206A (en) 2006-11-02

Family

ID=37214553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126785A Pending JP2006304206A (en) 2005-04-25 2005-04-25 Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2006304206A (en)
WO (1) WO2006114922A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251978A (en) * 2009-04-14 2010-11-04 Shin-Etsu Chemical Co Ltd Method of manufacturing composite piezoelectric board and composite piezoelectric board
DE112018004250B4 (en) 2017-12-28 2022-06-15 Ngk Insulators, Ltd. Arrangement of a substrate made of a piezoelectric material and a carrier substrate and method for producing the arrangement

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010002856B4 (en) 2009-07-07 2021-10-28 Murata Manufacturing Co., Ltd. Elastic wave device and method of making such a device
JP6477721B2 (en) * 2014-11-28 2019-03-06 株式会社村田製作所 Elastic wave device
JP6668292B2 (en) * 2017-06-07 2020-03-18 日本碍子株式会社 Bonded body of piezoelectric material substrate, bonding method, and elastic wave element
JP6963423B2 (en) * 2017-06-14 2021-11-10 株式会社日本製鋼所 Manufacturing method of bonded substrate, surface acoustic wave element and bonded substrate
JP6648339B2 (en) * 2017-12-28 2020-02-14 日本碍子株式会社 Bonded body of piezoelectric material substrate and support substrate and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326553A (en) * 1993-03-15 1994-11-25 Matsushita Electric Ind Co Ltd Surface acoustic wave element
JP2000196410A (en) * 1998-12-31 2000-07-14 Kazuhiko Yamanouchi High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element
JP2001244781A (en) * 2000-02-28 2001-09-07 Toshiba Corp Surface acoustic wave device
JP2002009584A (en) * 2000-06-23 2002-01-11 Hitachi Ltd Surface acoustic wave device
JP2004129193A (en) * 2002-07-31 2004-04-22 Kyocera Corp Elastic surface wave apparatus
JP2004297693A (en) * 2003-03-28 2004-10-21 Fujitsu Media Device Kk Method for manufacturing surface acoustic wave device and surface acoustic wave device
JP2004336503A (en) * 2003-05-09 2004-11-25 Fujitsu Media Device Kk Surface acoustic wave element and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326553A (en) * 1993-03-15 1994-11-25 Matsushita Electric Ind Co Ltd Surface acoustic wave element
JP2000196410A (en) * 1998-12-31 2000-07-14 Kazuhiko Yamanouchi High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element
JP2001244781A (en) * 2000-02-28 2001-09-07 Toshiba Corp Surface acoustic wave device
JP2002009584A (en) * 2000-06-23 2002-01-11 Hitachi Ltd Surface acoustic wave device
JP2004129193A (en) * 2002-07-31 2004-04-22 Kyocera Corp Elastic surface wave apparatus
JP2004297693A (en) * 2003-03-28 2004-10-21 Fujitsu Media Device Kk Method for manufacturing surface acoustic wave device and surface acoustic wave device
JP2004336503A (en) * 2003-05-09 2004-11-25 Fujitsu Media Device Kk Surface acoustic wave element and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251978A (en) * 2009-04-14 2010-11-04 Shin-Etsu Chemical Co Ltd Method of manufacturing composite piezoelectric board and composite piezoelectric board
DE112018004250B4 (en) 2017-12-28 2022-06-15 Ngk Insulators, Ltd. Arrangement of a substrate made of a piezoelectric material and a carrier substrate and method for producing the arrangement
US11700771B2 (en) 2017-12-28 2023-07-11 Ngk Insulators, Ltd. Assembly of piezoelectric material substrate and support substrate, and method for manufacturing said assembly

Also Published As

Publication number Publication date
WO2006114922A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4657002B2 (en) Composite piezoelectric substrate
JP4723207B2 (en) Composite piezoelectric substrate
KR101766487B1 (en) Composite substrate manufacturing method and composite substrate
US8421314B2 (en) Composite substrate, elastic wave device using the same, and method for manufacturing composite substrate
US6426583B1 (en) Surface acoustic wave element, method for producing the same and surface acoustic wave device using the same
JP5668179B1 (en) Composite substrate for acoustic wave device and acoustic wave device
JP3774782B2 (en) Manufacturing method of surface acoustic wave device
JP2005229455A (en) Compound piezoelectric substrate
JP2007214902A (en) Surface acoustic wave device
US7208859B2 (en) Bonded substrate, surface acoustic wave chip, and surface acoustic wave device
JP2010187373A (en) Composite substrate and elastic wave device using the same
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
US9680083B2 (en) Composite substrate, piezoelectric device, and method for manufacturing composite substrate
JP3187231U (en) Composite board
KR20180018250A (en) Bonded substrate, surface acoustic wave element, surface acoustic wave element device, and method for producing bonded substrate
JP2007134889A (en) Composite piezoelectric substrate
JP6756843B2 (en) Manufacturing method of composite substrate
JP2006304206A (en) Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
US20230370043A1 (en) Composite substrate for surface acoustic wave device and manufacturing method thereof
JP2011254354A (en) Composite substrate and surface acoustic wave device using the same
US20100269319A1 (en) Method for manufacturing surface acoustic wave device
JP2010259011A (en) Substrate for surface acoustic wave element and method of manufacturing the surface acoustic wave element
JP2007228120A (en) Surface acoustic wave element
JP2002026684A (en) Surface acoustic wave element
JP2010068484A (en) Combined piezoelectric substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100916

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101105