JP4657002B2 - Composite piezoelectric substrate - Google Patents

Composite piezoelectric substrate Download PDF

Info

Publication number
JP4657002B2
JP4657002B2 JP2005140378A JP2005140378A JP4657002B2 JP 4657002 B2 JP4657002 B2 JP 4657002B2 JP 2005140378 A JP2005140378 A JP 2005140378A JP 2005140378 A JP2005140378 A JP 2005140378A JP 4657002 B2 JP4657002 B2 JP 4657002B2
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric substrate
thickness
composite piezoelectric
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005140378A
Other languages
Japanese (ja)
Other versions
JP2006319679A (en
Inventor
雅行 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005140378A priority Critical patent/JP4657002B2/en
Priority to PCT/JP2006/309232 priority patent/WO2006120994A1/en
Publication of JP2006319679A publication Critical patent/JP2006319679A/en
Application granted granted Critical
Publication of JP4657002B2 publication Critical patent/JP4657002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate

Description

本発明は、複合圧電基板に関するものであり、特に弾性表面波デバイス等に用いられる複合圧電基板に関するものである。   The present invention relates to a composite piezoelectric substrate, and more particularly to a composite piezoelectric substrate used for a surface acoustic wave device or the like.

携帯電話やローカルエリアネットワーク(LAN)、パーソナルエリアネットワーク(PAN)等の高周波通信において用いられる周波数調整・選択用の部品として、例えば圧電基板上に弾性表面波を励振するための櫛形電極が形成された弾性表面波(Surface Acoustic Wave、SAW)デバイスが用いられる。これに用いられる圧電基板材料は、電気信号から機械的振動への変換効率(以下電気機械結合係数と記す)が極めて大きいこと、また櫛形電極の電極間隔と弾性波の音速により決まるフィルタ等の中心周波数が温度により変動しないことが求められる(以下、周波数温度特性と記す)。
すなわち、大きな電気機械結合係数と小さな周波数温度係数を兼ね備えた圧電基板が有れば好ましい。こうした特性を実現する圧電基板の一例として、圧電基板と他の基板を接合した複合圧電基板がある。
For example, a comb-shaped electrode for exciting a surface acoustic wave is formed on a piezoelectric substrate as a component for frequency adjustment / selection used in high-frequency communication such as a cellular phone, a local area network (LAN), and a personal area network (PAN). A surface acoustic wave (SAW) device is used. The piezoelectric substrate material used for this has a very high conversion efficiency (hereinafter referred to as an electromechanical coupling coefficient) from electrical signals to mechanical vibrations, and the center of a filter or the like determined by the electrode spacing of the comb-shaped electrodes and the acoustic velocity of elastic waves. It is required that the frequency does not vary with temperature (hereinafter referred to as frequency-temperature characteristics).
In other words, it is preferable to have a piezoelectric substrate having both a large electromechanical coupling coefficient and a small frequency temperature coefficient. An example of a piezoelectric substrate that realizes such characteristics is a composite piezoelectric substrate in which a piezoelectric substrate and another substrate are bonded.

このような複合圧電基板の一例として、圧電材料の表面に弾性波を励振・検出するための電極が設けられており、前記圧電材料裏面に複合積層体を接合したことを特徴とする温度安定化表面波装置が開示されている。この表面波装置は、制御された応力変化を前記圧電材料に誘起させることにより、前記圧電材料において温度補正がなされるというものである(特許文献1参照)。
この例では、「複合積層体にLiNbO(ニオブ酸リチウム)基板を強固に結合することにより、前述したように基板上に圧縮力が生じ、この圧縮力は温度が増大するに従って増大する。かくして、遅延時間およびフィルタ中心周波数に対する温度の影響を補正する手段を得ることができる。」とされている。これは、支持基板となる複合積層体の膨張係数は圧電材料であるLiNbO基板の弾性表面波伝播方向のそれよりも小さいことを意味し、これにより温度変化に応じて圧電基板に応力が発生してSAWデバイスの遅延時間およびフィルタ中心周波数に対する温度の影響を補正できるということを意味する。
As an example of such a composite piezoelectric substrate, an electrode for exciting and detecting an elastic wave is provided on the surface of the piezoelectric material, and the temperature stabilization is characterized in that a composite laminate is joined to the back surface of the piezoelectric material. A surface wave device is disclosed. This surface wave device is such that temperature correction is performed in the piezoelectric material by inducing a controlled stress change in the piezoelectric material (see Patent Document 1).
In this example, “the LiNbO 3 (lithium niobate) substrate is firmly bonded to the composite laminate to generate a compressive force on the substrate as described above, and this compressive force increases as the temperature increases. It is possible to obtain a means for correcting the influence of temperature on the delay time and the filter center frequency. " This means that the expansion coefficient of the composite laminate as the support substrate is smaller than that of the surface acoustic wave propagation direction of the LiNbO 3 substrate, which is a piezoelectric material, and stress is generated in the piezoelectric substrate in response to temperature changes. This means that the influence of temperature on the delay time and filter center frequency of the SAW device can be corrected.

また、接着剤を使用して剛板と圧電板とを貼り合せて一体の基板とし、前記圧電板表面に電極を設けた機能素子を、パッケージに収納した電気部品が開示されている(特許文献2参照)。
すなわち、圧電材料とこれより小さな膨張係数を有する基板とを貼り合せた複合圧電基板を用いた弾性表面波素子は周波数温度特性が改善されること、接着剤を用いて剛板と圧電板を貼り合せて一体の基板とすることは公知の技術である。
Further, an electrical component is disclosed in which a functional element having an electrode provided on the surface of the piezoelectric plate is housed in a package by bonding a rigid plate and a piezoelectric plate using an adhesive (Patent Document). 2).
That is, a surface acoustic wave device using a composite piezoelectric substrate in which a piezoelectric material and a substrate having a smaller expansion coefficient are bonded has improved frequency temperature characteristics, and a rigid plate and a piezoelectric plate are bonded using an adhesive. It is a well-known technique to combine them into an integrated substrate.

また、非特許文献1には、表面にAlまたはCuの電極を形成しその上にSiO膜を形成した5°回転YカットLiNbO基板は、電気機械結合係数が25%程度と大きく1次の温度特性がほぼ零であることが示されている。
ここでは、漏洩弾性表面波の波長で規格化した電極厚が0.035である例が示されている。
しかし、このような基板では、SiO膜を厚くすると電気機械結合係数が小さくなる。また、例えば送信段で用いる無線通信部品では、大きな電力がかかると、電極が劣化するという問題があった。
また、非特許文献2には64°回転YカットLiNbO基板と石英基板を貼合せた複合圧電基板が開示されている。しかし、非特許文献2では電極材料の厚みについては検討されていない。
Non-Patent Document 1 discloses that a 5 ° rotated Y-cut LiNbO 3 substrate in which an Al or Cu electrode is formed on the surface and an SiO 2 film is formed thereon has a large electromechanical coupling coefficient of about 25%, which is a primary factor. It is shown that the temperature characteristics of are almost zero.
Here, an example is shown in which the electrode thickness normalized by the wavelength of the leaky surface acoustic wave is 0.035.
However, in such a substrate, when the SiO 2 film is thickened, the electromechanical coupling coefficient is reduced. Further, for example, in a wireless communication component used in a transmission stage, there is a problem that an electrode deteriorates when a large amount of power is applied.
Non-Patent Document 2 discloses a composite piezoelectric substrate in which a 64 ° rotated Y-cut LiNbO 3 substrate and a quartz substrate are bonded together. However, Non-Patent Document 2 does not discuss the thickness of the electrode material.

特開昭51−25951号公報JP 51-25951 A 特開平2−62108号公報JP-A-2-62108 圧電材料・デバイスシンポジウム予稿集 2005、 pp.153-158Proceedings of the Symposium on Piezoelectric Materials and Devices 2005, pp.153-158 K. Yamanouchi et al., Proc. 1999 IEEE Ultrasonics Symp., pp.239-242K. Yamanouchi et al., Proc. 1999 IEEE Ultrasonics Symp., Pp.239-242

本発明は、電気機械結合係数が大きく、周波数温度特性が良いとともに、特に耐電力性が高く、大きな電力を印加しても電極が劣化しない複合圧電基板を提供することを目的とする。   An object of the present invention is to provide a composite piezoelectric substrate having a large electromechanical coupling coefficient, good frequency temperature characteristics, particularly high power resistance, and no electrode deterioration even when a large amount of power is applied.

上記課題を解決するために、本発明は、圧電基板と支持基板とを貼り合せて形成された複合圧電基板であって、前記圧電基板の表面には弾性表面波を励振するための金属電極が形成されており、該金属電極の厚さは、漏洩弾性表面波の波長で規格化した値で0.04以上であり、前記支持基板と前記圧電基板とは接着剤を介して又は直接的に接合されたものであることを特徴とする複合圧電基板を提供する。 In order to solve the above problems, the present invention is a composite piezoelectric substrate formed by bonding a piezoelectric substrate and a support substrate, and a metal electrode for exciting a surface acoustic wave is formed on the surface of the piezoelectric substrate. The thickness of the metal electrode is 0.04 or more as a value normalized by the wavelength of the leaky surface acoustic wave, and the support substrate and the piezoelectric substrate are directly or directly via an adhesive. Provided is a composite piezoelectric substrate characterized by being bonded .

このように、複合圧電基板の圧電基板表面に形成された金属電極の厚さが、圧電基板表面を伝播する漏洩弾性表面波の波長で規格化した値で0.04以上であれば、耐電力性が高く、大きな電力を印加しても電極が劣化しないものとできる。また、支持基板と圧電基板が接着剤を介して接合されたものであれば、比較的安価なものとできるし、直接的に接合して、強固に接合したものとでき、特性が良好な複合圧電基板とすることができる。   Thus, if the thickness of the metal electrode formed on the surface of the piezoelectric substrate of the composite piezoelectric substrate is 0.04 or more as a value normalized by the wavelength of the leaky surface acoustic wave propagating on the surface of the piezoelectric substrate, Therefore, the electrode does not deteriorate even when large electric power is applied. In addition, if the support substrate and the piezoelectric substrate are bonded via an adhesive, it can be made relatively inexpensive, or can be directly bonded and firmly bonded, and a composite with good characteristics. A piezoelectric substrate can be used.

この場合、前記支持基板はSi基板、石英基板、あるいはセラミックスを主成分とする基板であることが好ましい。
このように、支持基板が、圧電基板よりも膨張係数が小さくでき、しかも半導体デバイス作製用として最も実用化されているSi基板、または量産性の高い石英基板、あるいはパッケージ材料として汎用されているセラミックスを主成分とする基板であれば、安価で周波数温度特性が改善された高性能な複合圧電基板とできる。
In this case, the support substrate is preferably a Si substrate, a quartz substrate, or a substrate mainly composed of ceramics .
As described above, the support substrate has a smaller expansion coefficient than that of the piezoelectric substrate, and is the Si substrate most practically used for manufacturing semiconductor devices, a quartz substrate with high mass productivity, or a ceramic widely used as a packaging material. If it is a board | substrate which has as a main component, it can be set as a high-performance composite piezoelectric substrate which was cheap and whose frequency temperature characteristic was improved.

また、前記圧電基板は35°±35°回転YカットLiNbO基板又はLiTaO基板であること好ましい。
このように、圧電基板が35°±35°回転YカットLiNbO基板又はLiTaO基板であれば、周波数温度特性、伝播ロス特性、電気機械結合係数が良好な複合圧電基板とできる。
Further, it is preferable that the piezoelectric substrate is a 35 ° ± 35 ° rotation Y-cut LiNbO 3 substrate or LiTaO 3 substrate.
Thus, if the piezoelectric substrate is a 35 ° ± 35 ° rotated Y-cut LiNbO 3 substrate or LiTaO 3 substrate, a composite piezoelectric substrate having good frequency temperature characteristics, propagation loss characteristics, and electromechanical coupling coefficient can be obtained.

また、前記圧電基板の表面に前記金属電極を覆うようにSiO2−x層(但し0.01<x<0.5)が形成されており、該SiO2−x層の厚さは、漏洩弾性表面波の波長で規格化した値で0.1以下であるものとすることが好ましい。
このように、圧電基板の表面に金属電極を覆うようにSiO2−x層が形成されていれば、基板表面の電極の保護と周波数温度特性の調整ができ、また漏洩弾性表面波及び弾性表面波が混在する場合、結合が小さい弾性表面波はこの膜により減衰し不要モード(スプリアスモード)を抑圧する効果がある。またその厚さが漏洩弾性表面波の波長で規格化した値で0.1以下、特には0.05程度であれば、漏洩弾性表面波の音速の低下と結合係数の低下が発生しないようにできる。また、xが0.01以下では、SiO2−x層の弾性的性質が経時的に変化してしまい、xが0.5以上では膜質が劣化する可能性がある。xは好ましくは0.1程度であれば、Nを含まない場合に比べ層自身の耐電力性が向上し好ましい。
In addition, a SiO 2−x N x layer (where 0.01 <x <0.5) is formed on the surface of the piezoelectric substrate so as to cover the metal electrode, and the thickness of the SiO 2−x N x layer The thickness is preferably 0.1 or less as a value normalized by the wavelength of the leaky surface acoustic wave .
Thus, if the SiO 2-x N x layer is formed so as to cover the metal electrode on the surface of the piezoelectric substrate, the electrode on the substrate surface can be protected and the frequency temperature characteristics can be adjusted, and the leaky surface acoustic wave and When surface acoustic waves are mixed, surface acoustic waves with small coupling are attenuated by this film, and there is an effect of suppressing unnecessary modes (spurious modes). In addition, if the thickness is a value normalized to the wavelength of the leaky surface acoustic wave of 0.1 or less, particularly about 0.05, the sound velocity of the leaky surface acoustic wave and the coupling coefficient do not decrease. it can. If x is 0.01 or less, the elastic properties of the SiO 2 -xN x layer change with time, and if x is 0.5 or more, the film quality may be deteriorated. If x is preferably about 0.1, the power durability of the layer itself is improved as compared with the case where N is not included.

また、前記支持基板と圧電基板とは、波長200nm以下の短波UV光及びオゾンにより処理した後、直接的に接合されたものであることが好ましい。
このように、支持基板と圧電基板とが、波長200nm以下の短波UV光及びオゾンにより処理した後、直接的に接合されたものであれば、処理によりOH基が増加して活性化した表面が水素結合で強固に接合されたものとできる。
The support substrate and the piezoelectric substrate are preferably bonded directly after being treated with short wave UV light having a wavelength of 200 nm or less and ozone .
As described above, if the support substrate and the piezoelectric substrate are directly bonded after being treated with short wave UV light having a wavelength of 200 nm or less and ozone, the surface activated by the increase of OH groups by the treatment is obtained. It can be firmly bonded by hydrogen bonding.

本発明に従う複合圧電基板であれば、耐電力性が高く、大きな電力を印加しても電極が劣化しないものとでき、電気機械結合係数や周波数温度特性等の諸特性も良好な複合圧電基板とできる。   The composite piezoelectric substrate according to the present invention has a high power durability, the electrode does not deteriorate even when a large amount of power is applied, and a composite piezoelectric substrate having excellent characteristics such as an electromechanical coupling coefficient and frequency temperature characteristics. it can.

以下では、本発明の実施形態について具体的に説明するが、本発明はこれらに限定されるものではない。
本発明者は、例えば送信段の無線通信部品に用いるSAWデバイスには大きな電力がかかることから、このSAWデバイスの圧電基板の表面に形成される弾性表面波を励振するための金属電極が劣化しにくいように、厚い電極材料を圧電基板上に形成する必要があり、電極材料の膜厚が十分厚くなければ、良好な耐電力性は期待できないと考えた。これまで、電極材料の厚さについては十分な検討がされていなかったが、本発明者は、金属電極の厚さが、漏洩弾性表面波の波長で規格化した値で0.04以上であれば、耐電力性が十分に高いものとできることに想到し、本発明を完成させた。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
The present inventor, for example, applies a large amount of electric power to a SAW device used for a wireless communication component in a transmission stage, so that a metal electrode for exciting a surface acoustic wave formed on the surface of the piezoelectric substrate of the SAW device deteriorates. It was necessary to form a thick electrode material on the piezoelectric substrate so as to be difficult, and it was thought that good power durability could not be expected unless the electrode material was sufficiently thick. Until now, the thickness of the electrode material has not been sufficiently studied. However, the present inventor has determined that the thickness of the metal electrode is 0.04 or more as a value normalized by the wavelength of the leaky surface acoustic wave. Thus, the inventors have conceived that the power durability can be sufficiently high and completed the present invention.

図1は本発明に係る複合圧電基板の実施形態の一例を示す断面概略図である。
この複合圧電基板1は、圧電基板2と支持基板3とを貼り合せて形成されたものであって、圧電基板2の表面には弾性表面波を励振するための金属電極4が形成されており、該金属電極4の厚さは、漏洩弾性表面波の波長で規格化した値で0.04以上、すなわち、例えば漏洩弾性表面波の波長が2μmであれば電極の厚さは0.08μm以上であり、支持基板3と圧電基板2とは接着剤5を介して又は直接的に接合されたものであることを特徴とする。
FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a composite piezoelectric substrate according to the present invention.
The composite piezoelectric substrate 1 is formed by bonding a piezoelectric substrate 2 and a support substrate 3, and a metal electrode 4 for exciting a surface acoustic wave is formed on the surface of the piezoelectric substrate 2. The thickness of the metal electrode 4 is 0.04 or more as a value normalized by the wavelength of the leaky surface acoustic wave. That is, for example, if the wavelength of the leaky surface acoustic wave is 2 μm, the thickness of the electrode is 0.08 μm or more. The support substrate 3 and the piezoelectric substrate 2 are characterized by being bonded via an adhesive 5 or directly.

複合圧電基板1は、このような構成を有することにより、耐電力性が高く、大きな電力を印加しても電極が劣化しないものとできる。また、接着剤5を介して接合されたものであれば、接合表面の平坦化や洗浄を簡易なものとでき、比較的安価なものとできるし、直接的に接合して、強固に接合したものともできる。   By having such a configuration, the composite piezoelectric substrate 1 has high power resistance, and the electrode does not deteriorate even when large electric power is applied. Moreover, if it was joined via the adhesive 5, the joining surface can be flattened and cleaned easily, and can be made relatively inexpensive, and can be joined directly and firmly. You can do it too.

また、複合圧電基板1は、圧電基板2とこれよりも小さい膨張係数を有する支持基板3とを貼り合せて形成したものであることが好ましい。
このような構成であれば、温度変化に応じて圧電基板2に応力が発生し、周波数温度特性を改善することができる。
The composite piezoelectric substrate 1 is preferably formed by bonding a piezoelectric substrate 2 and a support substrate 3 having a smaller expansion coefficient.
With such a configuration, stress is generated in the piezoelectric substrate 2 in accordance with the temperature change, and the frequency temperature characteristics can be improved.

このような複合圧電基板1は、例えば圧電基板2及び支持基板3の一方又は両方に接着剤を塗布し、真空下で貼り合わせ強固に接合することにより作製することができる。接着面に異物が混入しないように貼り合わせ前に各基板の表面を洗浄することが好ましく、また、表面をアンモニア−過酸化水素水溶液等で親水化処理をしたり、またはプラズマ処理をしたり、例えば基板を100℃に加熱して波長200nm以下の短波UV光及びオゾン(好ましくは高濃度オゾン)により前処理することにより接着力を高めてもよい。
複合圧電基板の大きさは特に限られず、例えば直径100mmのものとできるがそれ以上でもそれ以下でもよい。
Such a composite piezoelectric substrate 1 can be produced, for example, by applying an adhesive to one or both of the piezoelectric substrate 2 and the support substrate 3 and bonding them firmly under vacuum and bonding them firmly. It is preferable to clean the surface of each substrate before bonding so that no foreign matter is mixed into the bonding surface, and the surface is hydrophilized with an ammonia-hydrogen peroxide solution or the like, or plasma treated, For example, the adhesion may be increased by heating the substrate to 100 ° C. and pre-treating with short wave UV light having a wavelength of 200 nm or less and ozone (preferably high concentration ozone).
The size of the composite piezoelectric substrate is not particularly limited. For example, the composite piezoelectric substrate can have a diameter of 100 mm, but may be larger or smaller.

また、圧電基板2と支持基板3の接合面を各々鏡面加工し、例えば100℃に加熱しながらその片面もしくは両面を波長200nm以下の短波UV光及びオゾン(好ましくは高濃度オゾン)により前処理した後、減圧下において室温で貼り合せて直接的に接合しても良い。このようにすれば、上記処理によりOH基が増加して活性化した表面が水素結合で強固に接合されたものとできる。   Further, each of the bonding surfaces of the piezoelectric substrate 2 and the support substrate 3 is mirror-finished and pretreated with, for example, short-wave UV light having a wavelength of 200 nm or less and ozone (preferably high-concentration ozone) while heating to 100 ° C. Thereafter, they may be bonded directly at room temperature under reduced pressure. If it does in this way, the surface which the OH group increased by the said process and activated could be joined firmly by the hydrogen bond.

この場合、上記の方法で作製した貼り合わせ基板2枚をほぼ対称構造となるように対向させエポキシ接着剤を介して接着し250℃まで加熱し、その後、室温まで冷却し、硫酸にて接着層を剥がし、複合圧電基板母材を形成しても良い。
そして、この複合圧電基板を面取り加工した後、圧電基板の表面側を研削及びラップにより削り落とし、さらにポリッシュにより圧電基板の厚さが例えば10μm程度になるようにすればよい。
In this case, the two bonded substrates produced by the above method are opposed to each other so as to have a substantially symmetrical structure, bonded via an epoxy adhesive, heated to 250 ° C., then cooled to room temperature, and then an adhesive layer with sulfuric acid. May be removed to form a composite piezoelectric substrate base material.
Then, after this composite piezoelectric substrate is chamfered, the surface side of the piezoelectric substrate may be scraped off by grinding and lapping, and the thickness of the piezoelectric substrate may be set to about 10 μm by polishing.

本発明では、圧電基板2は、厚さが5〜100μmであって、圧電基板2の接着面が粗面に加工されたものであってもよい。このように、圧電基板2の厚さが5〜100μm、好ましくは5〜30μmであれば、加熱による反りが少なく割れのないものとなる。圧電基板2の厚さが5μmより薄いと、圧電基板2を上記の厚さに加工する際にクラックが生じることがあるので好ましくない。また、100μmより厚いと、複合圧電基板1を250℃程度に加熱した場合に、圧電基板2が割れてしまうことがあることから好ましくない。圧電基板2の厚さを上記範囲内の所望の値とするには、例えば複合圧電基板1を形成後、圧電基板2を研削もしくはラップ、ポリッシュ(研磨)加工すればよい。   In the present invention, the piezoelectric substrate 2 may have a thickness of 5 to 100 μm and the bonded surface of the piezoelectric substrate 2 may be processed into a rough surface. Thus, if the thickness of the piezoelectric substrate 2 is 5 to 100 μm, preferably 5 to 30 μm, the warp due to heating is small and there is no crack. If the thickness of the piezoelectric substrate 2 is less than 5 μm, cracks may occur when the piezoelectric substrate 2 is processed to the above thickness, which is not preferable. On the other hand, when the thickness is larger than 100 μm, the piezoelectric substrate 2 may be cracked when the composite piezoelectric substrate 1 is heated to about 250 ° C., which is not preferable. In order to set the thickness of the piezoelectric substrate 2 to a desired value within the above range, for example, after the composite piezoelectric substrate 1 is formed, the piezoelectric substrate 2 may be ground, lapped, or polished (polished).

また、圧電基板2は、35°±35°回転YカットLiNbO基板またはLiTaO基板であることが好ましい。これらは電気機械結合係数が大きい結晶材料であるので、周波数選択フィルタとしての帯域幅が広く、挿入損失が小さいSAWデバイスが製造可能な複合圧電基板とできる。また後述するように、伝播ロス特性、周波数温度特性も良好なものとできる。この圧電結晶材料からなる圧電基板は、例えばチョクラルスキー法でこれらの単結晶棒を育成し、これを所望の厚さにスライスすることによって高品質なものが得られる。 The piezoelectric substrate 2 is preferably a 35 ° ± 35 ° rotated Y-cut LiNbO 3 substrate or a LiTaO 3 substrate. Since these are crystal materials having a large electromechanical coupling coefficient, a composite piezoelectric substrate capable of manufacturing a SAW device having a wide bandwidth as a frequency selection filter and a small insertion loss can be obtained. Further, as will be described later, the propagation loss characteristic and the frequency temperature characteristic can also be improved. A piezoelectric substrate made of this piezoelectric crystal material can be obtained with a high quality by growing these single crystal rods by, for example, the Czochralski method and slicing them to a desired thickness.

また、支持基板3はSi基板、石英基板、あるいはセラミックスを主成分とする基板であることが好ましい。これらの基板を用いれば、支持基板3が、圧電基板よりも膨張係数が小さくでき、しかも半導体デバイス作製用として最も実用化されているSi基板、または量産性の高い石英基板、あるいはパッケージ材料として汎用されているセラミックスを主成分とする基板であれば、安価で周波数温度特性が改善された高性能な複合圧電基板とできる。また、支持基板3がSi基板の場合、支持基板3の両表面層を0.1〜40μmの厚さだけ酸化し、Si酸化膜を形成すれば、複合圧電基板1の反りを低減し、かつSi酸化膜及び接着剤層により絶縁性を確保可能とし、電気的特性も向上できる。
また、金属電極4はAl、Cu、及びその合金などからなるものが好ましい。この金属電極は、複合圧電基板の上に蒸着やスパッタ、CVDなどの方法により上記金属材料の膜を形成し、エッチングなどによりパタニングすることにより形成することが出来る。
The support substrate 3 is preferably a Si substrate, a quartz substrate, or a substrate mainly composed of ceramics. If these substrates are used, the support substrate 3 can have a smaller expansion coefficient than the piezoelectric substrate, and is most commonly used as a Si substrate most practically used for manufacturing semiconductor devices, a quartz substrate with high mass productivity, or a packaging material. If it is the board | substrate which has the ceramics as a main component, it can be set as the high performance composite piezoelectric substrate which was cheap and the frequency temperature characteristic was improved. When the support substrate 3 is a Si substrate, both surface layers of the support substrate 3 are oxidized by a thickness of 0.1 to 40 μm to form a Si oxide film, thereby reducing the warp of the composite piezoelectric substrate 1 and The insulating property can be secured by the Si oxide film and the adhesive layer, and the electrical characteristics can be improved.
The metal electrode 4 is preferably made of Al, Cu, an alloy thereof, or the like. This metal electrode can be formed by forming a film of the above metal material on a composite piezoelectric substrate by a method such as vapor deposition, sputtering, or CVD and patterning it by etching or the like.

また、圧電基板2の表面に金属電極4を覆うようにSiO2−x層6(但し0.01<x<0.5)が形成されており、SiO2−x層6の厚さは、漏洩弾性表面波の波長で規格化した値で0.1以下であることが好ましい。
このようにSiO2−x層6が形成されていれば、基板表面の金属電極4の保護と周波数温度特性の調整ができ、また漏洩弾性表面波及び弾性表面波が混在する場合、結合が小さい弾性表面波はこの膜により減衰し不要モードを抑圧する効果がある。
Further, a SiO 2−x N x layer 6 (where 0.01 <x <0.5) is formed on the surface of the piezoelectric substrate 2 so as to cover the metal electrode 4, and the SiO 2−x N x layer 6 The thickness is preferably 0.1 or less as a value normalized by the wavelength of the leaky surface acoustic wave.
If the SiO 2 -xN x layer 6 is formed in this way, the metal electrode 4 on the substrate surface can be protected and the frequency temperature characteristic can be adjusted. The surface acoustic wave having a small value is attenuated by this film and has the effect of suppressing unnecessary modes.

また、SiO2−x層6の厚さが漏洩弾性表面波の波長で規格化した値で0.1以下、特には0.05程度であれば、漏洩弾性表面波の音速の低下と結合係数の低下が発生しないようにできる。また、xが0.01以下では、SiO2−x層6の弾性的性質が経時的に変化してしまい、xが0.5以上では膜質が劣化する可能性がある。xは好ましくは0.1程度であれば、Nを含まない場合に比べ層自身の耐電力性が向上し好ましい。 Further, if the thickness of the SiO 2 -xN x layer 6 is 0.1 or less, particularly about 0.05, as a value normalized by the wavelength of the leaky surface acoustic wave, the sound velocity of the leaky surface acoustic wave is reduced. It is possible to prevent the coupling coefficient from being lowered. If x is 0.01 or less, the elastic properties of the SiO 2 -xN x layer 6 change with time, and if x is 0.5 or more, the film quality may be deteriorated. If x is preferably about 0.1, the power durability of the layer itself is improved as compared with the case where N is not included.

図2は本発明の複合圧電基板の周波数温度特性をシミュレーションにより求めたものを示すグラフである。横軸は圧電基板のYカット回転角、縦軸は周波数温度特性(TCF)である。圧電基板はLiNbO基板で厚みが20μm、支持基板はSi基板であり、複合圧電基板の全厚みは0.2mmの場合である。また、弾性表面波(漏洩弾性表面波)の波長で規格化した電極厚みは0.06である。また、電極材料はAlとCuの合金の場合でAl:Cuの割合が2:1である。比較として同図中にLiNbO基板単体の場合の計算値も示した。周波数温度特性は共振周波数及び反共振周波数について示した。本発明の複合圧電基板では圧電基板単体の場合と比較して広いYカット回転角にわたり周波数温度特性が−20ppm/℃から−40ppm/℃程度へ大きく改善されている。Yカット回転角としては35°±35°が好ましく、20°〜70°であれば特に好ましい。 FIG. 2 is a graph showing a frequency temperature characteristic of the composite piezoelectric substrate of the present invention obtained by simulation. The horizontal axis represents the Y-cut rotation angle of the piezoelectric substrate, and the vertical axis represents the frequency temperature characteristic (TCF). The piezoelectric substrate is a LiNbO 3 substrate having a thickness of 20 μm, the supporting substrate is a Si substrate, and the total thickness of the composite piezoelectric substrate is 0.2 mm. The electrode thickness normalized by the wavelength of the surface acoustic wave (leakage surface acoustic wave) is 0.06. The electrode material is an alloy of Al and Cu, and the ratio of Al: Cu is 2: 1. For comparison, the calculated values in the case of a single LiNbO 3 substrate are also shown in FIG. The frequency-temperature characteristics are shown for the resonant frequency and antiresonant frequency. In the composite piezoelectric substrate of the present invention, the frequency temperature characteristics are greatly improved from −20 ppm / ° C. to about −40 ppm / ° C. over a wide Y-cut rotation angle as compared with the case of the piezoelectric substrate alone. The Y-cut rotation angle is preferably 35 ° ± 35 °, particularly preferably 20 ° to 70 °.

図3は、図2に示した複合圧電基板と同様のものについて、漏洩弾性表面波の波長で規格化した金属電極の厚さをパラメータとした場合の漏洩弾性表面波の伝播ロスの計算値を示すグラフである。横軸はYカット回転角を示し、縦軸は伝播ロス(減衰定数)を示す。
伝播ロスは0.15dB/波長未満が好ましく、0.01dB/波長未満が特に好ましい。この場合、Yカット回転角としては35°±35°が好ましく、20°〜70°であれば特に好ましい。このようなYカット回転角の間で金属電極の厚さが漏洩弾性表面波の波長で規格化した値で0.04以上であれば、伝播ロスを0.15dB/波長未満とすることができる。なお、Yカット回転角によっては金属電極の厚さが厚いと伝播ロスが増加する場合があるので、伝播ロスの点からは、金属電極の厚さは漏洩弾性表面波の波長で規格化した値で0.1以下が好ましい。
FIG. 3 shows the calculated value of the propagation loss of the leaky surface acoustic wave when the thickness of the metal electrode normalized by the wavelength of the leaky surface acoustic wave is used as a parameter for the composite piezoelectric substrate shown in FIG. It is a graph to show. The horizontal axis represents the Y-cut rotation angle, and the vertical axis represents the propagation loss (attenuation constant).
The propagation loss is preferably less than 0.15 dB / wavelength, particularly preferably less than 0.01 dB / wavelength. In this case, the Y-cut rotation angle is preferably 35 ° ± 35 °, particularly preferably 20 ° to 70 °. If the thickness of the metal electrode between these Y cut rotation angles is 0.04 or more as a value normalized by the wavelength of the leaky surface acoustic wave, the propagation loss can be made less than 0.15 dB / wavelength. . Depending on the Y-cut rotation angle, if the metal electrode is thick, the propagation loss may increase. From the point of propagation loss, the thickness of the metal electrode is a value normalized by the wavelength of the leaky surface acoustic wave. And preferably 0.1 or less.

図4は、図2に示した複合圧電基板と同様のものについて、結合係数(k)の計算値を示すグラフである。図4より、LiNbOでのYカット回転角は35°±35°で結合が大きく、さらにYカット回転角は0°〜40°であればより好ましい。
以上の点から、本発明で用いられるLiNbO基板のYカット回転角は35°±35°が好ましく、20°〜40°が特に好ましい。
FIG. 4 is a graph showing the calculated value of the coupling coefficient (k 2 ) for the same composite piezoelectric substrate shown in FIG. From FIG. 4, it is more preferable if the Y-cut rotation angle in LiNbO 3 is 35 ° ± 35 ° and the bond is large, and the Y-cut rotation angle is 0 ° to 40 °.
From the above points, the Y-cut rotation angle of the LiNbO 3 substrate used in the present invention is preferably 35 ° ± 35 °, particularly preferably 20 ° to 40 °.

以下に本発明の実施例および比較例をあげてさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
直径4インチ(100mm)で厚さが180μmである片側が鏡面加工されたSi基板を用意した。なお、Si基板は抵抗率が4500Ω・cmのものを用いた。次に直径4インチ(100mm)の25°回転YカットLiNbO基板を厚さが0.15mm(150μm)となるよう両面研磨により仕上げた。このときLiNbO基板として焦電性が無いものを用いた。前記基板を各々100℃に加熱しながら波長200nm以下の短波UV光及び高濃度オゾンにより前処理した。
次にこのLiNbO基板とSi基板を圧力1×10−4mbarの真空下で室温で貼り合せた。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
Example 1
A Si substrate having a diameter of 4 inches (100 mm) and a thickness of 180 μm and mirror-finished on one side was prepared. The Si substrate having a resistivity of 4500 Ω · cm was used. Next, a 25 ° rotated Y-cut LiNbO 3 substrate having a diameter of 4 inches (100 mm) was finished by double-side polishing so as to have a thickness of 0.15 mm (150 μm). At this time, a LiNbO 3 substrate having no pyroelectricity was used. Each of the substrates was pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C.
Next, the LiNbO 3 substrate and the Si substrate were bonded together at room temperature under a vacuum of 1 × 10 −4 mbar.

次に、このような方法で作製したLiNbO基板とSi基板を貼り合わせた複合圧電基板2枚をLiNbO基板側で対向させエポキシ接着剤を介して接着し、250℃まで加熱した。その後、室温まで冷却し、硫酸にて接着層を剥がし、複合圧電基板母材を形成した。
そして、この複合圧電基板を面取り加工した後、LiNbO基板の表面側を研削及びラップにより110μm削り落とし、さらにポリッシュによりLiNbO基板の厚さが20μmになるようにした。
Next, two composite piezoelectric substrates obtained by bonding the LiNbO 3 substrate and the Si substrate manufactured by such a method were opposed to each other on the LiNbO 3 substrate side, and were bonded via an epoxy adhesive, and heated to 250 ° C. Then, it cooled to room temperature, peeled off the contact bonding layer with the sulfuric acid, and formed the composite piezoelectric substrate base material.
Then, after chamfering the composite piezoelectric substrate, scraping 110μm the surface of the LiNbO 3 substrate by grinding and lap, and as the thickness of the LiNbO 3 substrate is 20μm through further polished.

次に、この複合圧電基板のLiNbO基板の表面側にスパッタ法によりAl、Cuの合金を0.12μmの厚みで堆積させた。このときAl:Cuの比が2:1となるようターゲット組成を選定した。
次に表面の金属材料の一部をプラズマエッチングにより溶かし、パタニングして金属電極とし、1ポートの漏洩弾性表面波共振子(波長2μm)を作製した。すなわち、金属電極の厚さを、漏洩弾性表面波の波長で規格化した値で0.06とした。
Next, an alloy of Al and Cu was deposited to a thickness of 0.12 μm by sputtering on the surface side of the LiNbO 3 substrate of the composite piezoelectric substrate. At this time, the target composition was selected so that the Al: Cu ratio was 2: 1.
Next, a part of the surface metal material was melted by plasma etching and patterned to form a metal electrode, thereby producing a 1-port leaky surface acoustic wave resonator (wavelength: 2 μm). That is, the thickness of the metal electrode was 0.06 as a value normalized by the wavelength of the leaky surface acoustic wave.

この複合圧電基板をウエハプローバにのせ、2GHzでの共振子特性を評価したところ、比帯域幅((fa−fr)/fa、faは反共振周波数、frは共振周波数)は11%と広帯域であった。   When this composite piezoelectric substrate was placed on a wafer prober and the resonator characteristics at 2 GHz were evaluated, the specific bandwidth ((fa−fr) / fa, fa is the antiresonance frequency, and fr is the resonance frequency) is 11%, which is a wide band. there were.

また、この複合圧電基板を真空チャッキングし、プローバステージ温度を変化させて周波数温度特性を求めたところ、反共振周波数については−23ppm/℃、共振周波数は−38ppm/℃という小さい温度係数であった。
さらに、この複合圧電基板からなる共振子に2GHz、1Wの電力を投入し続けたところ2000時間でも共振特性の劣化は無く、耐電力性が高いことが確認された。
Further, when this composite piezoelectric substrate was vacuum chucked and the probe temperature was changed to determine the frequency temperature characteristics, the anti-resonance frequency was −23 ppm / ° C., and the resonance frequency was a low temperature coefficient of −38 ppm / ° C. It was.
Furthermore, when 2 GHz and 1 W of electric power were continuously applied to the resonator composed of the composite piezoelectric substrate, it was confirmed that there was no deterioration of the resonance characteristics even after 2000 hours and that the power durability was high.

実施例2
実施例1のLiNbO基板のカット角を5°回転Yカットとし、支持基板に合成石英基板を用いた以外は実施例1と同じ手順にて複合圧電基板(0.2mm厚)を作製した。
( Example 2 )
A composite piezoelectric substrate (thickness: 0.2 mm) was prepared in the same procedure as in Example 1 except that the LiNbO 3 substrate of Example 1 had a 5 ° rotation Y-cut and a synthetic quartz substrate was used as the support substrate.

次に、この複合圧電基板のLiNbO基板の表面側にスパッタ法によりAl、Cuの合金を0.18μmの厚みで堆積させた。このときAl:Cuの比が2:1となるようターゲット組成を選定した。
次に表面の金属材料の一部をプラズマエッチングにより溶かし、パタニングし金属電極とし、1ポートの漏洩弾性表面波共振子(波長1.8μm)を作製した。すなわち、金属電極の厚さを、漏洩弾性表面波の波長で規格化した値で0.1とした。
Next, an alloy of Al and Cu was deposited to a thickness of 0.18 μm on the surface side of the LiNbO 3 substrate of the composite piezoelectric substrate by sputtering. At this time, the target composition was selected so that the Al: Cu ratio was 2: 1.
Next, a part of the metal material on the surface was melted by plasma etching and patterned to form a metal electrode, thereby producing a 1-port leaky surface acoustic wave resonator (wavelength 1.8 μm). That is, the thickness of the metal electrode was set to 0.1 as a value normalized by the wavelength of the leaky surface acoustic wave.

次にこの金属電極が形成された複合圧電基板にプラズマCVDによりSiO1.80.2の保護膜を0.1μmの厚さで堆積させた。すなわち、保護膜の厚さを、漏洩弾性表面波の波長で規格化した値で0.06とした。 Next, a protective film of SiO 1.8 N 0.2 was deposited to a thickness of 0.1 μm by plasma CVD on the composite piezoelectric substrate on which the metal electrode was formed. That is, the thickness of the protective film was 0.06 as a value normalized by the wavelength of the leaky surface acoustic wave.

この複合圧電基板に形成された共振子の電極取り出し部のSiO1.80.2の保護膜の部分のみをドライエッチングしたのち、この複合圧電基板ウエハプローバにのせ、2GHzでの共振子特性を評価したところ、比帯域幅は12%と広帯域であった。
また、このときスプリアスモードである弾性表面波の応答は観測されなかった。
また、この複合圧電基板を真空チャッキングし、プローバステージ温度を変化させて周波数温度特性を求めたところ、保護膜の効果により、反共振周波数については−2ppm/℃、共振周波数は−15ppm/℃という極めて小さい温度係数であった。
さらに、この複合圧電基板からなる共振子に2GHz、1Wの電力を投入し続けたところ2000時間でも共振特性の劣化は無く、耐電力性が高いことが確認された。
After dry-etching only the SiO 1.8 N 0.2 protective film portion of the resonator electrode extraction portion formed on this composite piezoelectric substrate, it is placed on this composite piezoelectric substrate wafer prober and the resonator characteristics at 2 GHz. As a result, the specific bandwidth was as wide as 12%.
At this time, the response of the surface acoustic wave which is a spurious mode was not observed.
Moreover, when this composite piezoelectric substrate was vacuum chucked and the probe temperature was changed to obtain the frequency temperature characteristics, the anti-resonance frequency was -2 ppm / ° C and the resonance frequency was -15 ppm / ° C due to the effect of the protective film. The temperature coefficient was extremely small.
Furthermore, when 2 GHz and 1 W of electric power were continuously applied to the resonator composed of the composite piezoelectric substrate, it was confirmed that there was no deterioration of the resonance characteristics even after 2000 hours and that the power durability was high.

実施例3
直径4インチ(100mm)で厚さが190μmである低膨張セラミックス基板(膨張係数5.5ppm/℃)を準備し、次に直径4インチ(100mm)で厚さが0.15mm(150μm)の15°回転YカットLiNbO基板を両面ラップにより表面のRaが0.12μmとなる様加工した。
( Example 3 )
A low expansion ceramic substrate (expansion coefficient 5.5 ppm / ° C.) having a diameter of 4 inches (100 mm) and a thickness of 190 μm was prepared, and then 15 inches having a diameter of 4 inches (100 mm) and a thickness of 0.15 mm (150 μm). A rotating Y-cut LiNbO 3 substrate was processed by double-sided lapping so that the surface Ra was 0.12 μm.

次いで、前記セラミックス基板の表面を洗浄し、さらに100℃に加熱しながら波長200nm以下の短波UV光及び高濃度オゾンにより前処理し、片側表面上にエポキシメタクリレートを主成分とする紫外線硬化接着剤をスピンコートし均一に塗布した。次いで、前記LiNbO基板の裏面を洗浄し、前記接着剤を同様に塗布し、前記セラミックス基板の接着剤塗布面と前記LiNbO基板の接着剤塗布面を圧力1×10−3mbarの真空下で貼り合せた。 Next, the surface of the ceramic substrate is washed, pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C., and an ultraviolet curable adhesive mainly composed of epoxy methacrylate is formed on one surface. Spin-coated and applied uniformly. Next, the back surface of the LiNbO 3 substrate is washed, and the adhesive is applied in the same manner. The adhesive-coated surface of the ceramic substrate and the adhesive-coated surface of the LiNbO 3 substrate are subjected to a vacuum of 1 × 10 −3 mbar. We pasted together.

次に、この貼り合わせた複合圧電基板に、照度50mW/cmの紫外線を10分間照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に5μmの厚さだった。そして、この複合圧電基板を面取り加工した後、LiNbO基板の表面側をラップ及び研削により120μm削り落とし、さらにポリッシュによりLiNbO基板の厚さが10μmになるようにした。 Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 μm thick within the substrate surface. Then, after processing chamfering the composite piezoelectric substrate, off 120μm shaving by wrap and grinding the surface of the LiNbO 3 substrate, and as the thickness of the LiNbO 3 substrate is 10μm by further polishing.

次に、この複合圧電基板のLiNbO基板の表面側にスパッタ法によりAl、Cuの合金を0.2μmの厚みで堆積させた。このときAl:Cuの比が2:1となるようターゲット組成を選定した。
次に表面の金属材料の一部をプラズマエッチングにより溶かし、パタニングして金属電極とし、1ポートの漏洩弾性表面波共振子(波長1.8μm)を作製した。すなわち、金属電極の厚さを、漏洩弾性表面波の波長で規格化した値で0.11とした。
Next, an alloy of Al and Cu was deposited to a thickness of 0.2 μm on the surface side of the LiNbO 3 substrate of the composite piezoelectric substrate by sputtering. At this time, the target composition was selected so that the Al: Cu ratio was 2: 1.
Next, a part of the surface metal material was melted by plasma etching and patterned to form a metal electrode, thereby producing a 1-port leaky surface acoustic wave resonator (wavelength: 1.8 μm). That is, the thickness of the metal electrode was set to 0.11 as a value normalized by the wavelength of the leaky surface acoustic wave.

この複合圧電基板をウエハプローバにのせ、2GHzでの共振子特性を評価したところ、比帯域幅は12%と広帯域であった。
また、この複合圧電基板を真空チャッキングし、プローバステージ温度を変化させて周波数温度特性を求めたところ、反共振周波数については−30ppm/℃、共振周波数は−42ppm/℃という小さい温度係数であった。
さらに、この複合圧電基板からなる共振子に2GHz、1Wの電力を投入し続けたところ2000時間でも共振特性の劣化は無く、耐電力性が高いことが確認された。
When this composite piezoelectric substrate was placed on a wafer prober and the resonator characteristics at 2 GHz were evaluated, the specific bandwidth was as wide as 12%.
Further, when this composite piezoelectric substrate was vacuum chucked and the probe temperature was changed to determine the frequency temperature characteristics, the anti-resonance frequency was as low as −30 ppm / ° C., and the resonance frequency was as low as −42 ppm / ° C. It was.
Furthermore, when 2 GHz and 1 W of electric power were continuously applied to the resonator composed of the composite piezoelectric substrate, it was confirmed that there was no deterioration of the resonance characteristics even after 2000 hours and that the power durability was high.

実施例4
直径4インチ(100mm)で厚さが180μmである片側が鏡面加工されたSi基板を用意した。なお、Si基板は抵抗率が4500Ω・cmのものを用いた。次に直径4インチ(100mm)の36°回転YカットLiTaO基板を厚さが0.15mm(150μm)となるよう両面研磨により仕上げた。このときLiTaO基板は焦電性が無いものを用いた。前記基板を各々100℃に加熱しながら波長200nm以下の短波UV光及び高濃度オゾンにより前処理した。
次にLiTaO基板とSi基板を圧力1×10−4mbarの真空下で室温で貼り合せた。
( Example 4 )
A Si substrate having a diameter of 4 inches (100 mm) and a thickness of 180 μm and mirror-finished on one side was prepared. The Si substrate having a resistivity of 4500 Ω · cm was used. Next, a 36-degree rotated Y-cut LiTaO 3 substrate having a diameter of 4 inches (100 mm) was finished by double-side polishing so as to have a thickness of 0.15 mm (150 μm). At this time, a LiTaO 3 substrate having no pyroelectricity was used. Each of the substrates was pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C.
Next, the LiTaO 3 substrate and the Si substrate were bonded at room temperature under a vacuum of 1 × 10 −4 mbar.

次に、このような方法で作製したLiTaO基板とSi基板を貼り合わせた複合圧電基板2枚をLiTaO基板側で対向させエポキシ接着剤を介して接着し、250℃まで加熱した。その後、室温まで冷却し、硫酸にて接着層を剥がし、複合圧電基板母材を形成した。
そして、この複合圧電基板を面取り加工した後、LiTaO基板の表面側を研削及びラップにより110μm削り落とし、さらにポリッシュによりLiTaO基板の厚さが20μmになるようにした。
Next, two composite piezoelectric substrates obtained by bonding the LiTaO 3 substrate and the Si substrate manufactured by such a method were opposed to each other on the LiTaO 3 substrate side, and bonded with an epoxy adhesive, and heated to 250 ° C. Then, it cooled to room temperature, peeled off the contact bonding layer with the sulfuric acid, and formed the composite piezoelectric substrate base material.
Then, after chamfering the composite piezoelectric substrate, scraping 110μm the surface of the LiTaO 3 substrate by grinding and lap, and as the thickness of the LiTaO 3 substrate is 20μm through further polished.

次に、この複合圧電基板のLiTaO基板の表面側にスパッタ法によりAl、Cuの合金を0.2mの厚みで堆積させた。このときAl:Cuの比が2:1となるようターゲット組成を選定した。
次に表面の金属材料の一部をプラズマエッチングにより溶かし、パタニングして金属電極とし、1ポートの漏洩弾性表面波共振子(波長2μm)を作製した。すなわち、金属電極の厚さを、漏洩弾性表面波の波長で規格化した値で0.1とした。
Next, an alloy of Al and Cu was deposited to a thickness of 0.2 m on the surface side of the LiTaO 3 substrate of this composite piezoelectric substrate by sputtering. At this time, the target composition was selected so that the Al: Cu ratio was 2: 1.
Next, a part of the surface metal material was melted by plasma etching and patterned to form a metal electrode, thereby producing a 1-port leaky surface acoustic wave resonator (wavelength: 2 μm). That is, the thickness of the metal electrode was set to 0.1 as a value normalized by the wavelength of the leaky surface acoustic wave.

この複合圧電基板をウエハプローバにのせ、2GHzでの共振子特性を評価したところ、比帯域幅は3%と比較的広帯域であった。   When this composite piezoelectric substrate was placed on a wafer prober and the resonator characteristics at 2 GHz were evaluated, the specific bandwidth was a relatively wide band of 3%.

また、この複合圧電基板を真空チャッキングし、プローバステージ温度を変化させて周波数温度特性を求めたところ、反共振周波数については−22ppm/℃、共振周波数は−12ppm/℃という小さい温度係数であった。
さらに、この複合圧電基板からなる共振子に2GHz、1Wの電力を投入し続けたところ2000時間でも共振特性の劣化は無く、耐電力性が高いことが確認された。
Further, when this composite piezoelectric substrate was vacuum chucked and the frequency temperature characteristic was obtained by changing the prober stage temperature, the anti-resonance frequency had a small temperature coefficient of −22 ppm / ° C. and the resonance frequency was −12 ppm / ° C. It was.
Furthermore, when 2 GHz and 1 W of electric power were continuously applied to the resonator composed of the composite piezoelectric substrate, it was confirmed that there was no deterioration of the resonance characteristics even after 2000 hours and that the power durability was high.

(比較例1)
実施例1と同様な方法で複合圧電基板を作製し、この複合圧電基板のLiNbO基板の表面側にスパッタ法によりAl、Cuの合金を0.06μmの厚みで堆積させた。このときAl:Cuの比が2:1となるようターゲット組成を選定した。
次に表面の金属材料の一部をプラズマエッチングにより溶かし、パタニングして金属電極とし、1ポートの漏洩弾性表面波共振子(波長2μm)を作製した。すなわち、金属電極の厚さを、漏洩弾性表面波の波長で規格化した値で0.03とした。
この複合圧電基板からなる共振子に2GHz、1Wの電力を投入し続けたところ、約10時間で金属電極が劣化した。
(Comparative Example 1)
A composite piezoelectric substrate was produced by the same method as in Example 1, and an alloy of Al and Cu was deposited to a thickness of 0.06 μm on the surface side of the LiNbO 3 substrate of the composite piezoelectric substrate by a sputtering method. At this time, the target composition was selected so that the Al: Cu ratio was 2: 1.
Next, a part of the surface metal material was melted by plasma etching and patterned to form a metal electrode, thereby producing a 1-port leaky surface acoustic wave resonator (wavelength: 2 μm). That is, the thickness of the metal electrode was 0.03 as a value normalized by the wavelength of the leaky surface acoustic wave.
When power of 2 GHz and 1 W was continuously applied to the resonator composed of the composite piezoelectric substrate, the metal electrode deteriorated in about 10 hours.

(比較例2)
直径4インチ(100mm)の25°回転YカットLiNbO基板を厚さが0.15mm(150μm)となるように仕上げた。
このLiNbO基板の表面にスパッタ法によりAl、Cuの合金を0.06μmの厚みで堆積させた。このときAl:Cuの比が2:1となるようターゲット組成を選定した。
次に表面の金属材料の一部をプラズマエッチングにより溶かし、パタニングし金属電極とし、1ポートの漏洩弾性表面波共振子(波長2μm)を作製した。すなわち、金属電極の厚さを、漏洩弾性表面波の波長で規格化した値で0.03とした。
(Comparative Example 2)
A 25-degree rotated Y-cut LiNbO 3 substrate having a diameter of 4 inches (100 mm) was finished to a thickness of 0.15 mm (150 μm).
An alloy of Al and Cu was deposited on the surface of this LiNbO 3 substrate to a thickness of 0.06 μm by sputtering. At this time, the target composition was selected so that the Al: Cu ratio was 2: 1.
Next, a part of the metal material on the surface was melted by plasma etching and patterned to form a metal electrode, thereby producing a 1-port leaky surface acoustic wave resonator (wavelength 2 μm). That is, the thickness of the metal electrode was 0.03 as a value normalized by the wavelength of the leaky surface acoustic wave.

この複合圧電基板を真空チャッキングし、プローバステージ温度を変化させて周波数温度特性を求めたところ、反共振周波数については−60pm/℃、共振周波数は−83ppm/℃という大きい温度係数であった。
さらに、この複合圧電基板からなる共振子に2GHz、1Wの電力を投入し続けたところ、約10時間で金属電極が劣化した。
When this composite piezoelectric substrate was vacuum chucked and the probe temperature was changed to determine the frequency temperature characteristics, the anti-resonance frequency was as high as −60 pm / ° C., and the resonance frequency was −83 ppm / ° C ..
Further, when 2 GHz and 1 W of electric power were continuously applied to the resonator composed of the composite piezoelectric substrate, the metal electrode deteriorated in about 10 hours.

(比較例3)
直径4インチ(100mm)の25°回転YカットLiNbO基板を厚さが0.15mm(150μm)となるように仕上げた。
このLiNbO基板の表面にスパッタ法によりAl、Cuの合金を0.06μmの厚みで堆積させた。このときAl:Cuの比が2:1となるようターゲット組成を選定した。
次に表面の金属材料の一部をプラズマエッチングにより溶かし、パタニングし金属電極とし、1ポートの漏洩弾性表面波共振子(波長2μm)を作製した。すなわち、金属電極の厚さを、漏洩弾性表面波の波長で規格化した値で0.03とした。
次にこの金属電極が形成された複合圧電基板にプラズマCVDによりSiO1.80.2保護膜を0.2μmの厚さで堆積させた。
(Comparative Example 3)
A 25-degree rotated Y-cut LiNbO 3 substrate having a diameter of 4 inches (100 mm) was finished to a thickness of 0.15 mm (150 μm).
An alloy of Al and Cu was deposited on the surface of this LiNbO 3 substrate to a thickness of 0.06 μm by sputtering. At this time, the target composition was selected so that the Al: Cu ratio was 2: 1.
Next, a part of the metal material on the surface was melted by plasma etching and patterned to form a metal electrode, thereby producing a 1-port leaky surface acoustic wave resonator (wavelength 2 μm). That is, the thickness of the metal electrode was 0.03 as a value normalized by the wavelength of the leaky surface acoustic wave.
Next, a SiO 1.8 N 0.2 protective film was deposited to a thickness of 0.2 μm by plasma CVD on the composite piezoelectric substrate on which the metal electrode was formed.

この複合圧電基板を真空チャッキングしてプローバステージ温度を変化させて周波数温度特性を求めたところ、反共振周波数については−50pm/℃、共振周波数は−70ppm/℃という大きい温度係数であった。
さらに、この複合圧電基板からなる共振子に2GHz、1Wの電力を投入し続けたところ、約10時間で金属電極が劣化した。
When this composite piezoelectric substrate was vacuum chucked and the probe temperature was changed to determine the frequency temperature characteristics, the anti-resonance frequency was as high as −50 pm / ° C., and the resonance frequency was as large as −70 ppm / ° C.
Further, when 2 GHz and 1 W of electric power were continuously applied to the resonator composed of the composite piezoelectric substrate, the metal electrode deteriorated in about 10 hours.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単なる例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is merely an example, and the present invention has the same configuration as that of the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

例えば、実施例では圧電基板としてLiNbO基板やLiTaO基板を用いたが、他の圧電基板を用いてもよい。また、これらの圧電基板は、焦電性による表面電荷の蓄積をなくしたものであってもよい。 For example, in the embodiment, a LiNbO 3 substrate or a LiTaO 3 substrate is used as the piezoelectric substrate, but other piezoelectric substrates may be used. In addition, these piezoelectric substrates may be those in which surface charge accumulation due to pyroelectricity is eliminated.

本発明に係る複合圧電基板の実施形態の一例を示す断面概略図である。It is a section schematic diagram showing an example of an embodiment of a compound piezoelectric substrate concerning the present invention. 本発明の複合圧電基板の周波数温度特性をシミュレーションにより求めたものを示すグラフである。It is a graph which shows what calculated | required the frequency temperature characteristic of the composite piezoelectric substrate of this invention by simulation. 図2に示した複合圧電基板と同様のものについて、漏洩弾性表面波の波長で規格化した金属電極の厚さをパラメータとした場合の漏洩弾性表面波の伝播ロスの計算値を示すグラフである。3 is a graph showing a calculated value of a propagation loss of a leaky surface acoustic wave when the thickness of the metal electrode normalized by the wavelength of the leaky surface acoustic wave is used as a parameter for the same composite piezoelectric substrate as shown in FIG. . 図2に示した複合圧電基板と同様のものについて、結合係数(k)の計算値を示すグラフである。About the same as the composite piezoelectric substrate shown in FIG. 2 is a graph showing the calculated value of the coupling coefficient (k 2).

符号の説明Explanation of symbols

1…複合圧電基板、 2…圧電基板、 3…支持基板、 4…金属電極、
5…接着剤、 6…SiO2−x層。
DESCRIPTION OF SYMBOLS 1 ... Composite piezoelectric substrate, 2 ... Piezoelectric substrate, 3 ... Support substrate, 4 ... Metal electrode,
5 ... Adhesive, 6 ... SiO2 - xNx layer.

Claims (1)

圧電基板と支持基板とを貼り合せて形成された複合圧電基板であって、前記圧電基板の表面には弾性表面波を励振するための金属電極が形成されており、該金属電極の厚さは、漏洩弾性表面波の波長で規格化した値で0.04以上であり、前記支持基板と前記圧電基板とは接着剤を介して又は直接的に接合されたものであり、前記支持基板はSi基板、石英基板、あるいはセラミックスを主成分とする基板であり、前記圧電基板は5°〜40°回転YカットLiNbO基板であり、前記圧電基板の表面に前記金属電極を覆うようにSiO 2−x 層(但し0.01<x<0.5)が形成されており、該SiO 2−x 層の厚さは、漏洩弾性表面波の波長で規格化した値で0.05以上且つ0.1以下であることを特徴とする複合圧電基板。 A composite piezoelectric substrate formed by bonding a piezoelectric substrate and a support substrate, and a metal electrode for exciting a surface acoustic wave is formed on the surface of the piezoelectric substrate, and the thickness of the metal electrode is The value normalized by the wavelength of the leaky surface acoustic wave is 0.04 or more, and the support substrate and the piezoelectric substrate are bonded via an adhesive or directly, and the support substrate is Si It is a substrate mainly composed of a substrate, a quartz substrate, or ceramics, and the piezoelectric substrate is a 5 ° to 40 ° rotated Y-cut LiNbO 3 substrate, and SiO 2 2− so as to cover the metal electrode on the surface of the piezoelectric substrate. x N x layer (where 0.01 <x <0.5) is formed, the thickness of the SiO 2-x N x layer is 0.05 the value normalized by the wavelength of LSAW composite pressure, characterized in that more and 0.1 or less Board.
JP2005140378A 2005-05-12 2005-05-12 Composite piezoelectric substrate Active JP4657002B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005140378A JP4657002B2 (en) 2005-05-12 2005-05-12 Composite piezoelectric substrate
PCT/JP2006/309232 WO2006120994A1 (en) 2005-05-12 2006-05-08 Composite piezoelectric substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140378A JP4657002B2 (en) 2005-05-12 2005-05-12 Composite piezoelectric substrate

Publications (2)

Publication Number Publication Date
JP2006319679A JP2006319679A (en) 2006-11-24
JP4657002B2 true JP4657002B2 (en) 2011-03-23

Family

ID=37396502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140378A Active JP4657002B2 (en) 2005-05-12 2005-05-12 Composite piezoelectric substrate

Country Status (2)

Country Link
JP (1) JP4657002B2 (en)
WO (1) WO2006120994A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014002593B4 (en) 2013-05-31 2018-10-18 Ngk Insulators, Ltd. Carrier substrate for composite substrate and composite substrate

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686342B2 (en) * 2005-11-30 2011-05-25 株式会社日立メディアエレクトロニクス Surface acoustic wave device and communication terminal equipped with the same.
JP4984868B2 (en) * 2006-12-13 2012-07-25 パナソニック株式会社 Surface acoustic wave resonator
JP4316632B2 (en) 2007-04-16 2009-08-19 富士通メディアデバイス株式会社 Surface acoustic wave device and duplexer
JP2011087079A (en) * 2009-10-14 2011-04-28 Ngk Insulators Ltd Surface acoustic wave device
US8288918B2 (en) 2008-12-24 2012-10-16 Ngk Insulators, Ltd. Composite substrate and manufacturing method thereof
JP5234780B2 (en) * 2008-12-24 2013-07-10 日本碍子株式会社 Composite substrate manufacturing method and composite substrate
JP5381188B2 (en) * 2009-03-16 2014-01-08 株式会社村田製作所 Surface acoustic wave device
JP2010251978A (en) * 2009-04-14 2010-11-04 Shin-Etsu Chemical Co Ltd Method of manufacturing composite piezoelectric board and composite piezoelectric board
JP2011019043A (en) * 2009-07-08 2011-01-27 Ngk Insulators Ltd Composite substrate and method for manufacturing composite substrate
US8686622B2 (en) 2009-07-30 2014-04-01 Ngk Insulators, Ltd. Composite substrate and method for manufacturing the same
KR20110020741A (en) 2009-08-24 2011-03-03 엔지케이 인슐레이터 엘티디 Method for manufacturing composite substrate
CN102549923B (en) * 2009-09-25 2014-10-22 株式会社村田制作所 Surface acoustic wave device
EP2490333B1 (en) * 2009-10-13 2019-09-04 Murata Manufacturing Co., Ltd. Surface acoustic wave device
JP5301413B2 (en) * 2009-10-22 2013-09-25 日本碍子株式会社 Manufacturing method of composite substrate
JP5392489B2 (en) * 2009-11-26 2014-01-22 セイコーエプソン株式会社 Actuator, liquid ejecting head, and liquid ejecting apparatus
JP5814774B2 (en) * 2010-12-22 2015-11-17 日本碍子株式会社 Composite substrate and method for manufacturing composite substrate
WO2013187410A1 (en) 2012-06-13 2013-12-19 日本碍子株式会社 Composite substrate
KR102256902B1 (en) 2013-07-25 2021-05-28 엔지케이 인슐레이터 엘티디 Composite board and method for making same
JP2015122566A (en) * 2013-12-20 2015-07-02 株式会社村田製作所 Acoustic wave device
CN106416067B (en) 2014-06-26 2019-03-08 株式会社村田制作所 Vertical coupling resonator type sound surface wave filter
WO2016060072A1 (en) * 2014-10-17 2016-04-21 株式会社村田製作所 Piezoelectric device and method for manufacturing piezoelectric device
WO2016084526A1 (en) * 2014-11-28 2016-06-02 株式会社村田製作所 Elastic wave device
JP6481999B2 (en) * 2015-03-09 2019-03-13 日本無線株式会社 Surface acoustic wave sensor and solution property measuring method
US10381998B2 (en) 2015-07-28 2019-08-13 Qorvo Us, Inc. Methods for fabrication of bonded wafers and surface acoustic wave devices using same
US10084427B2 (en) * 2016-01-28 2018-09-25 Qorvo Us, Inc. Surface acoustic wave device having a piezoelectric layer on a quartz substrate and methods of manufacturing thereof
US10128814B2 (en) 2016-01-28 2018-11-13 Qorvo Us, Inc. Guided surface acoustic wave device providing spurious mode rejection
CN109075770B (en) 2016-05-30 2022-09-23 京瓷株式会社 Composite substrate and elastic wave device using same
JP6998650B2 (en) * 2016-08-10 2022-01-18 株式会社日本製鋼所 Manufacturing method of bonded substrate, surface acoustic wave element, surface acoustic wave device and bonded substrate
JP6770106B2 (en) 2017-02-14 2020-10-14 京セラ株式会社 Elastic wave element
JP6963423B2 (en) 2017-06-14 2021-11-10 株式会社日本製鋼所 Manufacturing method of bonded substrate, surface acoustic wave element and bonded substrate
CN110832774B (en) 2017-07-27 2023-07-21 京瓷株式会社 Elastic wave element
US11206007B2 (en) 2017-10-23 2021-12-21 Qorvo Us, Inc. Quartz orientation for guided SAW devices
WO2019142483A1 (en) * 2018-01-22 2019-07-25 日本碍子株式会社 Assembly of piezoelectric material substrate and supporting substrate, and method for manufacturing same
JP7194194B2 (en) * 2018-09-25 2022-12-21 京セラ株式会社 Composite substrate, piezoelectric element, and method for manufacturing composite substrate

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167936A (en) * 1995-10-13 1997-06-24 Fujitsu Ltd Surface acoustic wave device
JPH10303681A (en) * 1997-04-24 1998-11-13 Kyocera Corp Surface acoustic wave device
JPH1155070A (en) * 1997-06-02 1999-02-26 Matsushita Electric Ind Co Ltd Surface acoustic wave element and its producing method
JPH1188100A (en) * 1997-09-03 1999-03-30 Toyo Commun Equip Co Ltd Surface acoustic wave device
JPH11150441A (en) * 1997-11-14 1999-06-02 Nec Corp Mounting structure for surface acoustic wave element and the mount method
JP2000164817A (en) * 1998-11-30 2000-06-16 Nec Corp Ferroelectric storage device and its manufacture
JP2000196410A (en) * 1998-12-31 2000-07-14 Kazuhiko Yamanouchi High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element
JP2001077662A (en) * 1999-09-02 2001-03-23 Murata Mfg Co Ltd Surface wave device and communication device
JP2001217675A (en) * 1999-12-22 2001-08-10 Koninkl Philips Electronics Nv Filter constitution and its manufacturing method, and mobile telephone set, receiver, transmitter, and data transmission system using them
JP2002016468A (en) * 2000-06-30 2002-01-18 Kyocera Corp Surface acoustic wave device
JP2003078388A (en) * 2001-08-30 2003-03-14 Kyocera Corp Acoustic surface wave device and its manufacturing method
JP2003198323A (en) * 2001-12-28 2003-07-11 Murata Mfg Co Ltd Surface acoustic wave device
JP2004112748A (en) * 2002-07-24 2004-04-08 Murata Mfg Co Ltd Surface acoustic wave apparatus and manufacturing method therefor
JP2004325158A (en) * 2003-04-23 2004-11-18 Ushio Inc Joining method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040636A (en) * 2002-07-05 2004-02-05 Murata Mfg Co Ltd Surface wave device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167936A (en) * 1995-10-13 1997-06-24 Fujitsu Ltd Surface acoustic wave device
JPH10303681A (en) * 1997-04-24 1998-11-13 Kyocera Corp Surface acoustic wave device
JPH1155070A (en) * 1997-06-02 1999-02-26 Matsushita Electric Ind Co Ltd Surface acoustic wave element and its producing method
JPH1188100A (en) * 1997-09-03 1999-03-30 Toyo Commun Equip Co Ltd Surface acoustic wave device
JPH11150441A (en) * 1997-11-14 1999-06-02 Nec Corp Mounting structure for surface acoustic wave element and the mount method
JP2000164817A (en) * 1998-11-30 2000-06-16 Nec Corp Ferroelectric storage device and its manufacture
JP2000196410A (en) * 1998-12-31 2000-07-14 Kazuhiko Yamanouchi High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element
JP2001077662A (en) * 1999-09-02 2001-03-23 Murata Mfg Co Ltd Surface wave device and communication device
JP2001217675A (en) * 1999-12-22 2001-08-10 Koninkl Philips Electronics Nv Filter constitution and its manufacturing method, and mobile telephone set, receiver, transmitter, and data transmission system using them
JP2002016468A (en) * 2000-06-30 2002-01-18 Kyocera Corp Surface acoustic wave device
JP2003078388A (en) * 2001-08-30 2003-03-14 Kyocera Corp Acoustic surface wave device and its manufacturing method
JP2003198323A (en) * 2001-12-28 2003-07-11 Murata Mfg Co Ltd Surface acoustic wave device
JP2004112748A (en) * 2002-07-24 2004-04-08 Murata Mfg Co Ltd Surface acoustic wave apparatus and manufacturing method therefor
JP2004325158A (en) * 2003-04-23 2004-11-18 Ushio Inc Joining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014002593B4 (en) 2013-05-31 2018-10-18 Ngk Insulators, Ltd. Carrier substrate for composite substrate and composite substrate
US10332958B2 (en) 2013-05-31 2019-06-25 Ngk Insulators, Ltd. Supporting substrate for composite substrate and composite substrate

Also Published As

Publication number Publication date
WO2006120994A1 (en) 2006-11-16
JP2006319679A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4657002B2 (en) Composite piezoelectric substrate
US11863152B2 (en) Elastic wave device and method for manufacturing the same
JP3774782B2 (en) Manufacturing method of surface acoustic wave device
JP7051690B2 (en) Induced surface acoustic wave device that results in spurious mode removal
JP4723207B2 (en) Composite piezoelectric substrate
JP5850137B2 (en) Elastic wave device and manufacturing method thereof
JP2005229455A (en) Compound piezoelectric substrate
JP6756843B2 (en) Manufacturing method of composite substrate
KR101636220B1 (en) Composite substrate, piezoelectric device and method of manufacturing composite substrate
JP2007134889A (en) Composite piezoelectric substrate
JP2007214902A (en) Surface acoustic wave device
JP2009290914A (en) Acoustic boundary wave device
JP2011071967A (en) Method for manufacturing composite substrate
SG181225A1 (en) Acoustic wave device
TW202044757A (en) High-order mode surface acoustic wave device
JP2023080110A (en) Bonded body of piezoelectric material substrate and support substrate, manufacturing method thereof, and acoustic wave device
JP2006304206A (en) Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JP2007228120A (en) Surface acoustic wave element
JP2021180465A (en) Composite substrate for surface acoustic wave device and method for manufacturing the same
JP2002026684A (en) Surface acoustic wave element
Geshi et al. Wafer bonding of polycrystalline spinel with LiNbO 3/LiTaO 3 for temperature compensation of RF surface acoustic wave devices
JP2020043403A (en) Acoustic wave resonator, filter, and multiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150