JP2003198323A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JP2003198323A
JP2003198323A JP2001400736A JP2001400736A JP2003198323A JP 2003198323 A JP2003198323 A JP 2003198323A JP 2001400736 A JP2001400736 A JP 2001400736A JP 2001400736 A JP2001400736 A JP 2001400736A JP 2003198323 A JP2003198323 A JP 2003198323A
Authority
JP
Japan
Prior art keywords
film
substrate
litao
sio
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001400736A
Other languages
Japanese (ja)
Inventor
Michio Kadota
道雄 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001400736A priority Critical patent/JP2003198323A/en
Publication of JP2003198323A publication Critical patent/JP2003198323A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave device using a leakage surface acoustic wave that the frequency temperature characteristic is satisfactory, the electromechanical coupling coefficient K<SP>2</SP>is large, and the damping constant αis small. <P>SOLUTION: In a surface acoustic wave device 11, at least one of the IDTs 13a, 13b composed of AI that a film thickness H/λ standardized by the wavelength of the surface wave is within the range from 0.04 to 0.12 is formed on an LiTaO<SB>3</SB>substrate 12 of 20° to 40° rotation Y board, i.e., Euler's angles (0°±3°, 110° to 132°, 0°±3°). SiO<SB>2</SB>film 15 is formed on the LiTaO<SB>3</SB>substrate so as to cover the IDTs 13a, 13b. The film thickness H/λ standardized by the wavelength of the surface wave of the SiO<SB>2</SB>film 15 is within the range from 0.15 to 0.40. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、共振子や帯域フィ
ルタなどに用いられる弾性表面波装置に関し、より詳細
には、回転Y板X伝搬LiTaO3基板を用いた弾性表
面波装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device used for a resonator, a bandpass filter and the like, and more specifically, a surface acoustic wave device using a rotating Y plate X propagating LiTaO 3 substrate and a method for manufacturing the same. Regarding

【0002】[0002]

【従来の技術】携帯電話などの移動体通信機において、
RF段の帯域フィルタやデュプレクサとして、弾性表面
波フィルタが用いられている。この種の弾性表面波フィ
ルタとして、30°〜50°回転Y板X伝搬のLiTa
3基板上に、AlからなるIDT(インターデジタル
トランスデューサー)が形成されており、漏洩弾性波を
利用した弾性表面波フィルタが実用化されている。
2. Description of the Related Art In mobile communication devices such as mobile phones,
Surface acoustic wave filters are used as bandpass filters and duplexers in the RF stage. As this kind of surface acoustic wave filter, LiTa of 30 ° to 50 ° rotating Y plate X propagation is used.
An IDT (interdigital transducer) made of Al is formed on an O 3 substrate, and a surface acoustic wave filter utilizing leaky acoustic waves has been put into practical use.

【0003】しかしながら、この弾性表面波フィルタで
は、周波数温度特性が−30〜−40ppm/℃と悪
く、その改善が求められていた。そこで、周波数温度特
性を改善するために、30°〜50°回転Y板X伝搬L
iTaO3基板上にAlからなるIDTを形成した後
に、さらにSiO2膜を積層した構造が提案されてい
る。SiO2膜を形成することにより、周波数温度特性
が改善される。
However, in this surface acoustic wave filter, the frequency temperature characteristic is as bad as -30 to -40 ppm / ° C., and improvement thereof has been demanded. Therefore, in order to improve the frequency-temperature characteristic, a rotation of 30 ° to 50 ° Y plate X propagation L
A structure has been proposed in which an IDT made of Al is formed on an iTaO 3 substrate and then a SiO 2 film is further laminated. The frequency-temperature characteristic is improved by forming the SiO 2 film.

【0004】漏洩弾性表面波は、レイリー波に比べて音
速が早く、大きな電気機械結合係数K2を有する。しか
しながら、漏洩弾性表面波は、エネルギーを基板内部に
放射しつつ伝搬するため、伝搬損失の原因となる減衰定
数を有する。
The leaky surface acoustic wave has a higher sound velocity than the Rayleigh wave and has a large electromechanical coupling coefficient K 2 . However, the leaky surface acoustic wave propagates while radiating energy inside the substrate, and thus has a damping constant that causes a propagation loss.

【0005】従って、周波数温度特性が良好であるだけ
でなく、電気機械結合係数K2が大きく、かつ減衰定数
αが小さいことも求められる。特開平9−167903
6号公報には、カット角39.5°〜46°のLiTa
3基板上に、Al、CuまたはAuなどからなるID
Tを形成した場合、減衰定数αを抑制し得ることが示さ
れている。
Therefore, it is required not only that the frequency-temperature characteristic is good, but that the electromechanical coupling coefficient K 2 is large and the damping constant α is small. JP-A-9-167903
No. 6 publication discloses that LiTa having a cut angle of 39.5 ° to 46 °.
ID consisting of Al, Cu or Au on O 3 substrate
It has been shown that when T is formed, the damping constant α can be suppressed.

【0006】[0006]

【発明が解決しようとする課題】上記のように、30°
〜50°回転Y板X伝搬のLiTaO3基板上に、Al
からなるIDTを形成し、さらに、SiO2膜を積層し
た場合に、周波数温度特性が改善されるとされている。
As described above, 30 °
˜50 ° rotation Y plate X propagation on LiTaO 3 substrate, Al
It is said that the frequency temperature characteristic is improved when an IDT made of is formed and a SiO 2 film is further laminated.

【0007】従って、特開平9−1679036号公報
に記載の弾性表面波装置においても、IDTを覆うよう
にSiO2膜を積層すれば、周波数温度特性の改善及び
減衰定数αの抑制を果たし得ると考えられる。
Therefore, even in the surface acoustic wave device disclosed in Japanese Unexamined Patent Publication No. 9-1679036, if the SiO 2 film is laminated so as to cover the IDT, the frequency temperature characteristic can be improved and the damping constant α can be suppressed. Conceivable.

【0008】しかしながら、特開平8−167936号
公報に記載のように、39.5°〜46°LiTaO3
基板上にAlからなるIDTを形成した場合には減衰定
数αは小さくなるものの、その上にさらにSiO2膜を
積層した場合、減衰定数αは小さくならずに大きくなっ
た。
However, as described in JP-A-8-167936, 39.5 ° to 46 ° LiTaO 3
When the IDT made of Al was formed on the substrate, the attenuation constant α was small, but when an SiO 2 film was further stacked on the IDT, the attenuation constant α was not small but was large.

【0009】本発明の目的は、上述した現状に鑑み、回
転Y板X伝搬のLiTaO3基板を用いた弾性表面波装
置であって、SiO2膜の形成により周波数温度特性を
改善することができ、さらに減衰定数αが小さく、ID
Tにおける電気機械結合係数が十分な大きさとされる、
弾性表面波装置及びその製造方法を提供することにあ
る。
In view of the above situation, an object of the present invention is a surface acoustic wave device using a rotating Y-plate X-propagating LiTaO 3 substrate, which can improve frequency-temperature characteristics by forming a SiO 2 film. , The damping constant α is smaller, and ID
The electromechanical coupling coefficient at T is sufficiently large,
An object is to provide a surface acoustic wave device and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明の広い局面によれ
ば、オイラー角(0±3°,110°〜132°,0±
3°)のLiTaO3基板と、前記LiTaO3基板上に
形成されており、かつAlからなる少なくとも1つのI
DTと、前記IDTを覆うように前記LiTaO3基板
上に形成されており、表面波の波長で規格化された膜厚
H/λが0.15〜040の範囲にあるSiO2膜とを
備えることを特徴とする、弾性表面波装置が提供され
る。
According to a broad aspect of the present invention, an Euler angle (0 ± 3 °, 110 ° to 132 °, 0 ±).
3 °) LiTaO 3 substrate and at least one I formed of Al and formed on the LiTaO 3 substrate.
DT and a SiO 2 film formed on the LiTaO 3 substrate so as to cover the IDT and having a film thickness H / λ normalized by the wavelength of the surface wave in the range of 0.15 to 040. A surface acoustic wave device is provided.

【0011】本発明においては、好ましくは、上記Al
からなるIDTの表面波の波長で規格化された膜厚H/
λは、0.04〜0.12の範囲とされ、それによって
電気機械結合係数が効果的に高められる。
In the present invention, preferably the above Al
Film thickness H / standardized by the wavelength of surface wave of IDT
λ is in the range of 0.04 to 0.12, whereby the electromechanical coupling coefficient is effectively increased.

【0012】好ましくは、上記LiTaO3基板のオイ
ラー角とSiO2膜の規格化膜厚は、下記の表2に示す
(a)〜(f)で表わされる組合せのいずかとされる。
[0012] Preferably, the Euler angle of the LiTaO 3 substrate and the normalized film thickness of the SiO 2 film are any one of the combinations represented by (a) to (f) shown in Table 2 below.

【0013】[0013]

【表2】 [Table 2]

【0014】本発明の他の特定の局面では、上記弾性表
面波として、SH波を主成分とする漏洩弾性表面波が用
いられる。
In another specific aspect of the present invention, a leaky surface acoustic wave whose main component is SH wave is used as the surface acoustic wave.

【0015】[0015]

【発明の実施の形態】以下、図面を参照しつつ、本発明
の具体的な実施例を説明することにより本発明を明らか
にする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.

【0016】図1は、本発明の一実施例に係る弾性表面
波装置としての縦結合共振子フィルタを説明するための
平面図である。弾性表面波装置11では、LiTaO3
基板12の上面に、IDT13a、13b及び反射器1
4a,14bが形成されている。IDT13a,13b
及び反射器14a,14bを覆うように、SiO2膜1
5が形成されている。
FIG. 1 is a plan view for explaining a longitudinally coupled resonator filter as a surface acoustic wave device according to an embodiment of the present invention. In the surface acoustic wave device 11, LiTaO 3 is used.
On the upper surface of the substrate 12, the IDTs 13a and 13b and the reflector 1
4a and 14b are formed. IDT 13a, 13b
And the SiO 2 film 1 so as to cover the reflectors 14a and 14b.
5 is formed.

【0017】なお、LiTaO3基板12としては、2
0°〜42°回転Y板、すなわちオイラー角が(0°,
110°〜132°,0°)のLiTaO3基板が用い
られる。この範囲外のカット角の回転Y板X伝搬LiT
aO3基板では、減衰定数αが大きくなる。好ましく
は、23°〜39°回転Y板、すなわちオイラー角が
(0°,113°〜129°,0°)のLiTaO3
板が用いられる。
As the LiTaO 3 substrate 12, 2
0 ° to 42 ° rotated Y plate, that is, Euler angle is (0 °,
A 110 ° to 132 °, 0 °) LiTaO 3 substrate is used. Rotating Y plate X propagation LiT with a cut angle outside this range
In the aO 3 substrate, the damping constant α becomes large. Preferably, a 23 ° to 39 ° rotated Y plate, that is, a LiTaO 3 substrate having an Euler angle of (0 °, 113 ° to 129 °, 0 °) is used.

【0018】IDT13a,13b及び反射器14a,
14bは、Alにより構成される。IDT13a,13
bの表面波の波長で規格化された膜厚H/λは、0.0
4〜0.12の範囲とされる。後述の実験例から明らか
なように、この範囲の膜厚とすることにより、漏洩弾性
表面波の電気機械結合係数K2が大きくされる。
The IDTs 13a and 13b and the reflector 14a,
14b is composed of Al. IDT 13a, 13
The film thickness H / λ normalized by the wavelength of the surface wave of b is 0.0
The range is from 4 to 0.12. As will be apparent from an experimental example described later, the electromechanical coupling coefficient K 2 of the leaky surface acoustic wave is increased by setting the film thickness in this range.

【0019】また、SiO2膜15は、表面波の波長λ
で規格化された膜厚が0.15〜0.40の範囲とされ
る。このような膜厚範囲とすることにより、周波数温度
特性が改善される。
Further, the SiO 2 film 15 has a wavelength λ of the surface wave.
The film thickness normalized by is set in the range of 0.15 to 0.40. With such a film thickness range, the frequency-temperature characteristic is improved.

【0020】本実施例の弾性表面波装置では、上記のよ
うに、SiO2膜の膜厚が上記特定の範囲とされている
ため、周波数温度特性が改善され、かつAlからなるI
DTの膜厚が上記特定の範囲とされているため、電気機
械結合係数K2が十分な大きさとされる。さらに、Si
2膜が積層されていたとしても、上記特定のカット角
のLiTaO3基板が用いられるため、減衰定数αが大
幅に小さくされて、低損失化を果たすことができる。こ
れを、具体的な実験例に基づき説明する。
In the surface acoustic wave device of this embodiment, as described above, since the thickness of the SiO 2 film is within the above specified range, the frequency temperature characteristic is improved and the I
Since the film thickness of DT is within the above specific range, the electromechanical coupling coefficient K 2 is sufficiently large. Furthermore, Si
Even if the O 2 film is laminated, since the LiTaO 3 substrate having the above-mentioned specific cut angle is used, the attenuation constant α can be greatly reduced and the loss can be reduced. This will be described based on a concrete experimental example.

【0021】図2は、回転Y板X伝搬LiTaO3基板
におけるオイラー角(0°,θ,0°)のθと、基板表
面が電気的に短絡された場合の減衰定数との関係を示
す。なお、カット角とθとの間には、カット角=θ−9
0°の関係がある。
FIG. 2 shows the relationship between the Euler angles (0 °, θ, 0 °) θ in the rotating Y-plate X-propagating LiTaO 3 substrate and the damping constant when the substrate surface is electrically short-circuited. In addition, between the cut angle and θ, the cut angle = θ−9
There is a relationship of 0 °.

【0022】図2から明らかなように、角度θが124
°〜126°の範囲において、減衰定数αが小さくなる
ことがわかり、この範囲外では、減衰定数αが大きくな
ることがわかる。
As is apparent from FIG. 2, the angle θ is 124
It can be seen that the damping constant α decreases in the range of ° to 126 °, and that the damping constant α increases outside this range.

【0023】また、AlからなるIDTの膜厚を10%
程度と厚くした場合には、θ=129°〜136°で減
衰定数αが小さくなることが知られている。従って、従
来、AlからなるIDTと、LiTaO3基板とを用い
る場合、θが129°〜136°のLiTaO3基板が
用いられていた。
The thickness of the IDT made of Al is 10%.
It is known that the damping constant α decreases when θ = 129 ° to 136 ° when the thickness is made relatively thick. Therefore, conventionally, the IDT composed of Al, when using a LiTaO 3 substrate, theta is LiTaO 3 substrate of 129 ° ~136 ° has been used.

【0024】図3は、角度θを変化させた場合の電気機
械結合係数K2の変化を示す図である。θが100°〜
120°の範囲で大きな電気機械結合係数K2が得られ
る。しかしながら、θ=100°〜120°の範囲で
は、図2の結果から明らかなように、減衰定数αが大き
く、利用することができない。
FIG. 3 is a diagram showing changes in the electromechanical coupling coefficient K 2 when the angle θ is changed. θ is 100 ° ~
A large electromechanical coupling coefficient K 2 is obtained in the range of 120 °. However, in the range of θ = 100 ° to 120 °, as is apparent from the result of FIG. 2, the damping constant α is large and it cannot be used.

【0025】図4は、36°回転Y板X伝搬LiTaO
3基板に、すなわちオイラー角(0°,126°,0
°)のLiTaO3基板における、AlからなるIDT
の規格化された膜厚H/λと、電気機械結合係数K2
の関係を示す図。なお、表面波の波長λは、弾性表面波
フィルタの中心周波数における波長をいうものとする。
FIG. 4 shows a 36 ° rotated Y plate X propagating LiTaO.
3 substrates, namely Euler angles (0 °, 126 °, 0
°) LiTaO 3 substrate on the IDT made of Al
FIG. 5 is a diagram showing the relationship between the normalized film thickness H / λ and the electromechanical coupling coefficient K 2 . The wavelength λ of the surface acoustic wave means the wavelength at the center frequency of the surface acoustic wave filter.

【0026】図4から明らかなように、Alの膜厚H/
λが0.04以上では、H/λ=0すなわちAl膜を形
成しない場合に比べて、電気機械結合係数K2は1.3
倍以上の値とされる。また、Al膜の膜厚H/λが0.
12を超えると、現実には、Al膜からなるIDTの作
製が困難となる。従って、大きな電気機械結合係数を得
るには、Al膜の膜厚H/λは0.04〜0.12の範
囲とすることが望ましい。
As is apparent from FIG. 4, the thickness H of Al is H /
When λ is 0.04 or more, H / λ = 0, that is, the electromechanical coupling coefficient K 2 is 1.3 as compared with the case where the Al film is not formed.
It is a value more than double. Further, the thickness H / λ of the Al film is 0.
If it exceeds 12, in reality, it becomes difficult to manufacture an IDT made of an Al film. Therefore, in order to obtain a large electromechanical coupling coefficient, the film thickness H / λ of the Al film is preferably set in the range of 0.04 to 0.12.

【0027】次に、LiTaO3基板上にIDTを形成
せずにSiO2膜を積層した場合の周波数温度係数TC
Fの変化を図5に示す。図5は、θ=113°、126
°及び129°の各LiTaO3基板上に、SiO2膜を
様々な厚みで成膜した場合の周波数温度係数TCFの変
化を示す。
Next, the temperature coefficient of frequency TC when a SiO 2 film is laminated without forming an IDT on a LiTaO 3 substrate
The change in F is shown in FIG. In FIG. 5, θ = 113 °, 126
9 shows changes in the frequency temperature coefficient TCF when a SiO 2 film was formed with various thicknesses on each LiTaO 3 substrate of 90 ° and 129 °.

【0028】図5から明らかなように、θ=113°、
126°及び129°のいずれの場合においても、Si
2膜の規格化膜厚H/λが0.15〜0.45の範囲
では、TCFは−20〜+17ppm/℃の範囲に入る
ことがわかる。もっとも、より好ましくは、SiO2
の成膜には時間がかかるため、SiO2膜の膜厚H/λ
は、0.15〜0.40の範囲とすることが望ましい。
As is apparent from FIG. 5, θ = 113 °,
In both cases of 126 ° and 129 °, Si
It is understood that the TCF falls within the range of −20 to +17 ppm / ° C. when the normalized film thickness H / λ of the O 2 film is within the range of 0.15 to 0.45. However, more preferably, it takes time to deposit the SiO 2 film, a SiO 2 film thickness H / lambda
Is preferably in the range of 0.15 to 0.40.

【0029】従来、LiTaO3基板上にSiO2膜を成
膜することにより、TCFが改善されることは知られて
いる。しかしながら、LiTaO3基板上にAlからな
るIDTを形成し、さらにSiO2膜を積層した構造に
おいて、Al膜の膜厚H/λ、SiO2膜厚、基板のカ
ット角、及び漏洩弾性表面波の減衰定数αを考慮した実
験は報告されていない。
It has been conventionally known that TCF is improved by forming a SiO 2 film on a LiTaO 3 substrate. However, in a structure in which an IDT made of Al is formed on a LiTaO 3 substrate and a SiO 2 film is further laminated, the Al film thickness H / λ, the SiO 2 film thickness, the substrate cut angle, and the leakage surface acoustic wave No experiments have been reported considering the damping constant α.

【0030】図6及び図7は、オイラー角(0°,12
2°,0°)のLiTaO3基板上に、AlからなるI
DTを様々な膜厚で形成した弾性表面波装置において、
さらに様々な膜厚のSiO2膜を積層した場合の減衰定
数αの変化を示す図である。なお、図7は図6の要部を
拡大して示す図である。
6 and 7 show Euler angles (0 °, 12
2 °, 0 °) on a LiTaO 3 substrate with Al
In a surface acoustic wave device in which DT is formed with various film thicknesses,
Is a graph showing changes in attenuation constant α in the case of further laminating a SiO 2 film of various thickness. Note that FIG. 7 is an enlarged view of a main part of FIG.

【0031】図6及び図7から明らかなように、θ=1
22°のLiTaO3基板を用いた場合、SiO2の膜厚
H/λが0〜0.3の範囲、及びAl電極の膜厚H/λ
が0〜0.10の範囲において、減衰定数αが小さいこ
とがわかる。
As is apparent from FIGS. 6 and 7, θ = 1
When a 22 ° LiTaO 3 substrate is used, the thickness H / λ of SiO 2 is in the range of 0 to 0.3, and the thickness H / λ of the Al electrode is H / λ.
It can be seen that the damping constant α is small in the range of 0 to 0.10.

【0032】図8は、オイラー角(0°,136°,0
°)のLiTaO3基板上に、規格化膜厚H/λが0〜
0.12の範囲とされたAl膜からなるIDTを形成
し、さらに、規格化膜厚H/λが0〜0.12の範囲に
あるSiO2膜を形成した場合の減衰定数αの変化を示
す。
FIG. 8 shows Euler angles (0 °, 136 °, 0
°) LiTaO 3 substrate, the normalized film thickness H / λ is 0
A change in the attenuation constant α when an IDT made of an Al film having a range of 0.12 is formed and further a SiO 2 film having a normalized film thickness H / λ in the range of 0 to 0.12 is formed. Show.

【0033】図8から明らかなように、θ=136°の
LiTaO3基板を用いた場合には、Al膜の膜厚及び
SiO2膜の膜厚を上記範囲で変化させたとしても、減
衰定数αが大きくなることがわかる。
As is apparent from FIG. 8, when the LiTaO 3 substrate with θ = 136 ° is used, even if the thickness of the Al film and the thickness of the SiO 2 film are changed within the above range, the damping constant It can be seen that α becomes large.

【0034】すなわち、周波数温度係数TCFの改善、
電気機械結合係数K2の十分な大きさ及び減衰定数αの
低減を実現するには、LiTaO3基板のオイラー角を
選択する必要のあることがわかる。
That is, the frequency temperature coefficient TCF is improved,
It can be seen that it is necessary to select the Euler angle of the LiTaO 3 substrate in order to realize a sufficient magnitude of the electromechanical coupling coefficient K 2 and a reduction of the damping constant α.

【0035】図9から図16は、それぞれ、(0°,
θ,0°)においてθが110°〜140°の範囲にあ
るLiTaO3基板上に、規格化膜厚H/λが0〜0.
12の範囲であるAl膜からなるIDTを形成し、さら
に種々の規格化膜厚のSiO2を積層した場合の減衰定
数αの変化を示す図である。
FIGS. 9 to 16 show (0 °,
theta, theta is the LiTaO 3 substrate in the range of 110 ° to 140 ° in 0 °), the normalized thickness H / lambda is 0-0.
FIG. 9 is a diagram showing changes in the attenuation constant α when an IDT made of an Al film in the range of 12 is formed and SiO 2 having various normalized film thicknesses are stacked.

【0036】図9〜図16から明らかなように、Al膜
の膜厚H/λが0.12以下であり、かつSiO2膜の
膜厚を種々変化させた場合、SiO2膜の膜厚に応じ
て、θを特定の範囲に選択すれば、減衰定数αを効果的
に低め得る範囲があることがわかる。この結果を表に示
すと、下記の表3に示す通りとなる。
As is apparent from FIGS. 9 16, the film thickness H / lambda of the Al film is 0.12 or less, and when the film thickness of the SiO 2 film while varying the thickness of the SiO 2 film It is understood that there is a range in which the damping constant α can be effectively lowered by selecting θ in a specific range according to the above. The results are shown in the table as shown in Table 3 below.

【0037】[0037]

【表3】 [Table 3]

【0038】従って、オイラー角(0°,θ,0°)に
おけるθが110°〜132°の範囲のLiTaO3
板を用い、SiO2膜の膜厚H/λを0.15〜0.4
0とすれば、減衰定数αの抑制と、周波数温度特性の改
善を図り得ることがわかる。また、好ましくは、Alか
らなるIDTの膜厚H/λが0.12以下の場合、上記
表3に示す条件(a)〜(f)を満たすように、SiO
2膜の規格化膜厚H/λと、LiTaO3基板のオイラー
角のθを選択すれば、電気機械結合係数の向上、周波数
温度係数TCFの改善及び減衰定数αの低減を果たし得
ることがわかる。なお、より好ましくは、表3から明ら
かなように(a)〜(f)のSiO2膜厚において、そ
れぞれ、表3の右側に示されているオイラー角の範囲が
望ましい。
Therefore, using a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °) of θ in the range of 110 ° to 132 °, the SiO 2 film thickness H / λ is 0.15 to 0.4.
It can be seen that when the value is 0, the damping constant α can be suppressed and the frequency temperature characteristic can be improved. Further, preferably, when the film thickness H / λ of the IDT made of Al is 0.12 or less, SiO is satisfied so as to satisfy the conditions (a) to (f) shown in Table 3 above.
By selecting the normalized film thickness H / λ of the two films and the Euler angle θ of the LiTaO 3 substrate, it can be seen that the electromechanical coupling coefficient can be improved, the frequency temperature coefficient TCF can be improved, and the damping constant α can be reduced. . It is more preferable that the ranges of Euler angles shown on the right side of Table 3 are more preferable in the SiO 2 film thicknesses of (a) to (f) as is clear from Table 3.

【0039】上記実験例では、AlからなるIDTを形
成したが、IDTの形成に際し、Al膜の下に、電極の
密着強度を高めるために、ごく薄いTi膜やCr膜を成
膜してもよい。すなわち、IDTはAlを主体とする材
料で構成されればよく、IDTの80重量%以上がAl
から構成されればよい。
In the above experimental example, the IDT made of Al was formed. However, when forming the IDT, a very thin Ti film or Cr film may be formed under the Al film in order to enhance the adhesion strength of the electrode. Good. That is, the IDT may be made of a material mainly composed of Al, and 80% by weight or more of the IDT is Al.
It may be composed of.

【0040】上記実験では、オイラー角(0°,θ,0
°)のLiTaO3基板が用いられたが、基板材料のオ
イラー角において、0±3°のばらつきが通常発生す
る。このようなばらつきの範囲内、すなわち(0±3
°,110°〜132°,0±3°)のLiTaO3
板においても、本発明の効果は得られる。
In the above experiment, Euler angles (0 °, θ, 0
Although the LiTaO 3 substrate of (°) was used, the Euler angle of the substrate material usually has a variation of 0 ± 3 °. Within the range of such variation, that is, (0 ± 3
The effect of the present invention can be obtained even with a LiTaO 3 substrate having a temperature of 110 °, 110 ° to 132 °, 0 ± 3 °.

【0041】なお、本発明は、図1に示した縦結合共振
子型弾性表面波フィルタだけでなく、弾性表面波共振
子、横結合型表面波フィルタ、ラダー型フィルタ、ラチ
ス型フィルタなどの様々な表面波装置に適用することが
できる。
The present invention is not limited to the longitudinally coupled resonator type surface acoustic wave filter shown in FIG. 1, but may be a surface acoustic wave resonator, a laterally coupled surface acoustic wave filter, a ladder type filter, a lattice type filter or the like. It can be applied to various surface wave devices.

【0042】[0042]

【発明の効果】本発明に係る弾性表面波装置では、オイ
ラー角(0±3°,110°〜132°,0±3°)の
LiTaO3基板上にAlからなる少なくとも1つのI
DTが形成されており、かつIDTを覆うようにLiT
aO3基板上に表面波の波長で規格化された膜厚H/λ
が0.15〜0.40の範囲にあるSiO2膜が形成さ
れている。従って、SiO2膜が上記特定の膜厚範囲と
されているため、周波数温度特性が効果的に改善され、
かつ減衰定数αが低減される。
According to the surface acoustic wave device of the present invention, at least one I made of Al is formed on a LiTaO 3 substrate having Euler angles (0 ± 3 °, 110 ° to 132 °, 0 ± 3 °).
DT is formed and LiT covers the IDT
Film thickness H / λ standardized by wavelength of surface wave on aO 3 substrate
There SiO 2 film in the range of 0.15 to 0.40 is formed. Therefore, since the SiO 2 film is in the above specific thickness range, the frequency-temperature characteristic is effectively improved,
And the damping constant α is reduced.

【0043】また、本発明においては、IDTの表面波
の波長で規格化された膜厚が0.04〜0.12の範囲
とされていることにより、大きな電気機械結合係数を得
ることができる。
Further, in the present invention, since the film thickness standardized by the wavelength of the surface wave of the IDT is set in the range of 0.04 to 0.12, a large electromechanical coupling coefficient can be obtained. .

【0044】さらに、好ましくは、IDTの膜厚を0.
12以上とし、上記(a)〜(f)で示すように、オイ
ラー角及びSiO2膜の膜厚を選択すれば、電気機械結
合係数が大きく、周波数温度特性が優れており、減衰定
数αがより一層小さい弾性表面波装置を得ることができ
る。
Further, preferably, the film thickness of the IDT is set to 0.
When the Euler angle and the film thickness of the SiO 2 film are selected to be 12 or more and as shown in (a) to (f) above, the electromechanical coupling coefficient is large, the frequency temperature characteristic is excellent, and the attenuation constant α is An even smaller surface acoustic wave device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る弾性表面波装置を示す
平面図。
FIG. 1 is a plan view showing a surface acoustic wave device according to an embodiment of the present invention.

【図2】オイラー角(0°,θ,0°)のLiTaO3
基板におけるθと減衰定数αとの関係を示す図。
FIG. 2: LiTaO 3 with Euler angles (0 °, θ, 0 °)
The figure which shows the relationship between (theta) in a board | substrate, and the damping constant (alpha).

【図3】オイラー角(0°,θ,0°)のLiTaO3
基板におけるθと電気機械結合係数K2との関係を示す
図。
FIG. 3: LiTaO 3 with Euler angles (0 °, θ, 0 °)
Diagram showing the relationship between θ and the electromechanical coupling coefficient K 2 of the substrate.

【図4】オイラー角(0°,126°,0°)のLiT
aO3基板上に、規格化膜厚H/λが0.0〜0.12
の範囲のAl膜を形成した場合の電気機械結合係数K2
の変化を示す図。
Fig. 4 LiT with Euler angles (0 °, 126 °, 0 °)
The normalized film thickness H / λ is 0.0 to 0.12 on the aO 3 substrate.
Electromechanical coupling coefficient K 2 when an Al film in the range of
FIG.

【図5】オイラー角(0°,113°,0°)、(0
°,126°,0°)及び(0°,129°0°)の3
種類のLiTaO3基板において、SiO2膜の規格化膜
厚H/λが0.0〜0.5の範囲である場合の周波数温
度特性TCFの変化を示す図。
FIG. 5 Euler angles (0 °, 113 °, 0 °), (0
°, 126 °, 0 °) and (0 °, 129 ° 0 °) 3
In the type of LiTaO 3 substrate, shows the change in the frequency-temperature characteristic TCF in the case normalized thickness H / lambda of the SiO 2 film is in the range of 0.0 to 0.5.

【図6】オイラー角(0°,122°,0°)のLiT
aO3基板に、AlからなるIDTが規格化膜厚が0.
0〜0.12の範囲で形成されている構成において、さ
らに規格化膜厚0.0〜0.5のSiO2膜を積層した
場合の減衰定数αの変化を示す図。
FIG. 6 LiT with Euler angles (0 °, 122 °, 0 °)
On the aO 3 substrate, the IDT made of Al has a standardized film thickness of 0.
In the configuration that is formed in the range of 0 to 0.12, shows the change of the attenuation constant α in the case of further laminating a SiO 2 film of the normalized thickness 0.0 to 0.5.

【図7】オイラー角(0°,122°,0°)のLiT
aO3基板に、AlからなるIDTが規格化膜厚が0.
0〜0.12の範囲で形成されている構成において、さ
らに規格化膜厚0.0〜0.5のSiO2膜を積層した
場合の減衰定数αの変化を示す図であり、図6に示した
結果を拡大して示す図である。
FIG. 7: LiT with Euler angles (0 °, 122 °, 0 °)
On the aO 3 substrate, the IDT made of Al has a standardized film thickness of 0.
FIG. 7 is a diagram showing changes in the attenuation constant α when a SiO 2 film having a normalized film thickness of 0.0 to 0.5 is further stacked in a structure formed in the range of 0 to 0.12. It is a figure which expands and shows the result shown.

【図8】オイラー角(0°,136°,0°)のLiT
aO3基板に、AlからなるIDTが規格化膜厚が0.
0〜0.12の範囲で形成されている構成において、さ
らに規格化膜厚0.0〜0.5のSiO2膜を積層した
場合の減衰定数αの変化を示す図。
FIG. 8: LiT with Euler angles (0 °, 136 °, 0 °)
On the aO 3 substrate, the IDT made of Al has a standardized film thickness of 0.
In the configuration that is formed in the range of 0 to 0.12, shows the change of the attenuation constant α in the case of further laminating a SiO 2 film of the normalized thickness 0.0 to 0.5.

【図9】オイラー角(0°,θ,0°)のLiTaO3
基板上に、規格化膜厚H/λが0.0〜0.12の範囲
にあるAlからなるIDTを形成し、規格化膜厚0.1
のSiO2膜を積層した場合の、θと減衰定数αとの関
係を示す図。
FIG. 9: LiTaO 3 with Euler angles (0 °, θ, 0 °)
An IDT made of Al having a normalized film thickness H / λ in the range of 0.0 to 0.12.
FIG. 6 is a diagram showing the relationship between θ and the attenuation constant α in the case where the SiO 2 film of 1 is laminated.

【図10】オイラー角(0°,θ,0°)のLiTaO
3基板上に、規格化膜厚H/λが0.0〜0.12の範
囲にあるAlからなるIDTを形成し、規格化膜厚0.
15のSiO2膜を積層した場合の、θと減衰定数αと
の関係を示す図。
FIG. 10: LiTaO with Euler angles (0 °, θ, 0 °)
3 An IDT made of Al having a normalized film thickness H / λ in the range of 0.0 to 0.12.
In the case of laminating the 15 SiO 2 film, diagram showing the relationship between θ and the attenuation constant alpha.

【図11】オイラー角(0°,θ,0°)のLiTaO
3基板上に、規格化膜厚H/λが0.0〜0.12の範
囲にあるAlからなるIDTを形成し、規格化膜厚0.
2のSiO2膜を積層した場合の、θと減衰定数αとの
関係を示す図。
FIG. 11: LiTaO with Euler angles (0 °, θ, 0 °)
3 An IDT made of Al having a normalized film thickness H / λ in the range of 0.0 to 0.12.
The figure which shows the relationship between (theta) and damping constant (alpha) at the time of laminating | stacking the SiO2 film of No. 2 .

【図12】オイラー角(0°,θ,0°)のLiTaO
3基板上に、規格化膜厚H/λが0.0〜0.12の範
囲にあるAlからなるIDTを形成し、規格化膜厚0.
25のSiO2膜を積層した場合の、θと減衰定数αと
の関係を示す図。
FIG. 12: LiTaO with Euler angles (0 °, θ, 0 °)
3 An IDT made of Al having a normalized film thickness H / λ in the range of 0.0 to 0.12.
In the case of stacking a SiO 2 film 25, shows the relationship between θ and the attenuation constant alpha.

【図13】オイラー角(0°,θ,0°)のLiTaO
3基板上に、規格化膜厚H/λが0.0〜0.12の範
囲にあるAlからなるIDTを形成し、規格化膜厚0.
3のSiO2膜を積層した場合の、θと減衰定数αとの
関係を示す図。
FIG. 13: LiTaO with Euler angles (0 °, θ, 0 °)
3 An IDT made of Al having a normalized film thickness H / λ in the range of 0.0 to 0.12.
In the case of stacking three of the SiO 2 film, diagram showing the relationship between θ and the attenuation constant alpha.

【図14】オイラー角(0°,θ,0°)のLiTaO
3基板上に、規格化膜厚H/λが0.0〜0.12の範
囲にあるAlからなるIDTを形成し、規格化膜厚0.
35のSiO2膜を積層した場合の、θと減衰定数αと
の関係を示す図。
FIG. 14: LiTaO with Euler angles (0 °, θ, 0 °)
3 An IDT made of Al having a normalized film thickness H / λ in the range of 0.0 to 0.12.
In the case of laminating the 35 SiO 2 film, diagram showing the relationship between θ and the attenuation constant alpha.

【図15】オイラー角(0°,θ,0°)のLiTaO
3基板上に、規格化膜厚H/λが0.0〜0.12の範
囲にあるAlからなるIDTを形成し、規格化膜厚0.
4のSiO2膜を積層した場合の、θと減衰定数αとの
関係を示す図。
FIG. 15: LiTaO with Euler angles (0 °, θ, 0 °)
3 An IDT made of Al having a normalized film thickness H / λ in the range of 0.0 to 0.12.
4 is a diagram showing the relationship between θ and the attenuation constant α when the SiO 2 films of No. 4 are laminated.

【図16】オイラー角(0°,θ,0°)のLiTaO
3基板上に、規格化膜厚H/λが0.0〜0.12の範
囲にあるAlからなるIDTを形成し、規格化膜厚0.
45のSiO2膜を積層した場合の、θと減衰定数αと
の関係を示す図。
FIG. 16: LiTaO with Euler angles (0 °, θ, 0 °)
3 An IDT made of Al having a normalized film thickness H / λ in the range of 0.0 to 0.12.
In the case of stacking a SiO 2 film 45, shows the relationship between θ and the attenuation constant alpha.

【符号の説明】[Explanation of symbols]

11…弾性表面波装置 12…LiTaO3基板 13a,13b…IDT 15…SiO211 ... Surface acoustic wave device 12 ... LiTaO 3 substrates 13a, 13b ... IDT 15 ... SiO 2 film

【手続補正書】[Procedure amendment]

【提出日】平成14年1月28日(2002.1.2
8)
[Submission date] January 28, 2002 (2002.1.2
8)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】好ましくは、上記LiTaO3基板のオイ
ラー角とSiO2膜の規格化膜厚は、下記の表2に表
される組合せのいずかとされる。
[0012] Preferably, the normalized thickness of the Euler angles and the SiO 2 film of the LiTaO 3 substrate is a either the combination being <br/> I Table in Table 2 below.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0038】従って、オイラー角(0°,θ,0°)に
おけるθが110°〜132°の範囲のLiTaO3
板を用い、SiO2膜の膜厚H/λを0.15〜0.4
0とすれば、減衰定数αの抑制と、周波数温度特性の改
善を図り得ることがわかる。また、好ましくは、Alか
らなるIDTの膜厚H/λが0.12以下の場合、上記
表3に示す条件を満たすように、SiO2膜の規格化膜
厚H/λと、LiTaO3基板のオイラー角のθを選択
すれば、電気機械結合係数の向上、周波数温度係数TC
Fの改善及び減衰定数αの低減を果たし得ることがわか
る。なお、より好ましくは、表3から明らかなようにS
iO2膜厚において、それぞれ、表3の右側に示されて
いるオイラー角の範囲が望ましい。
Therefore, using a LiTaO 3 substrate having Euler angles (0 °, θ, 0 °) of θ in the range of 110 ° to 132 °, the SiO 2 film thickness H / λ is 0.15 to 0.4.
It can be seen that when the value is 0, the damping constant α can be suppressed and the frequency temperature characteristic can be improved. Also preferably, if the IDT film thickness H / lambda of Al is 0.12 or less, so as to satisfy the conditions shown in Table 3, and the normalized thickness H / lambda of the SiO 2 film, LiTaO 3 If the Euler angle θ of the substrate is selected, the electromechanical coupling coefficient can be improved and the frequency temperature coefficient TC can be improved.
It can be seen that F can be improved and the damping constant α can be reduced. In addition, more preferably, as is clear from Table 3 , S
For the iO 2 film thickness, the Euler angle range shown on the right side of Table 3 is desirable.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0044[Correction target item name] 0044

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0044】さらに、好ましくは、IDTの膜厚を0.
12以上とし、上記に示すように、オイラー角及びSi
2膜の膜厚を選択すれば、電気機械結合係数が大き
く、周波数温度特性が優れており、減衰定数αがより一
層小さい弾性表面波装置を得ることができる。
Further, preferably, the film thickness of the IDT is set to 0.
And 12 or more, as shown above SL, Euler angles and Si
By selecting the film thickness of the O 2 film, it is possible to obtain a surface acoustic wave device having a large electromechanical coupling coefficient, excellent frequency-temperature characteristics, and a smaller attenuation constant α.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 オイラー角(0±3°,110°〜13
2°,0±3°)のLiTaO3基板と、 前記LiTaO3基板上に形成されており、かつAlを
主成分とする材料からなる少なくとも1つのIDTと、 前記IDTを覆うように前記LiTaO3基板上に形成
されており、表面波の波長λで規格化された膜厚H/λ
が0.15〜040の範囲にあるSiO2膜とを備える
ことを特徴とする、弾性表面波装置。
1. Euler angles (0 ± 3 °, 110 ° -13
2 °, 0 ± 3 and LiTaO 3 substrate °), the LiTaO 3 is formed on the substrate, and at least one IDT made of a material whose main component is Al, said LiTaO 3 so as to cover the IDT The film thickness H / λ formed on the substrate and normalized by the wavelength λ of the surface wave
Is a range of 0.15 to 040 and a SiO 2 film.
【請求項2】 前記IDTの表面波の波長で規格化され
た膜厚が、0.04〜0.12である、請求項1に記載
の弾性表面波装置。
2. The surface acoustic wave device according to claim 1, wherein the film thickness normalized by the wavelength of the surface wave of the IDT is 0.04 to 0.12.
【請求項3】 前記LiTaO3基板のオイラー角及び
SiO2膜の規格化膜厚が下記の(a)〜(f)で表わ
される組合せのいずれかである、請求項1または2に記
載の弾性表面波装置。 【表1】
3. The elasticity according to claim 1, wherein the Euler angle of the LiTaO 3 substrate and the normalized film thickness of the SiO 2 film are any of the combinations represented by the following (a) to (f). Surface wave device. [Table 1]
【請求項4】 弾性表面波として、SH波を主成分とす
る漏洩弾性表面波を用いることを特徴とする、請求項1
〜3のいずれかに記載の弾性表面波装置。
4. A leaky surface acoustic wave whose main component is SH wave is used as the surface acoustic wave.
The surface acoustic wave device according to any one of 1 to 3.
JP2001400736A 2001-12-28 2001-12-28 Surface acoustic wave device Pending JP2003198323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400736A JP2003198323A (en) 2001-12-28 2001-12-28 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400736A JP2003198323A (en) 2001-12-28 2001-12-28 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2003198323A true JP2003198323A (en) 2003-07-11

Family

ID=27605144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400736A Pending JP2003198323A (en) 2001-12-28 2001-12-28 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2003198323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203839A (en) * 2005-01-23 2006-08-03 Kazuhiko Yamanouchi Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate
JP2006319679A (en) * 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd Compound piezoelectric substrate
US7209018B2 (en) 2003-01-27 2007-04-24 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7425788B2 (en) 2004-07-26 2008-09-16 Murata Manufacturing Co., Ltd. Surface acoustic wave device
JP2020043386A (en) * 2018-09-06 2020-03-19 太陽誘電株式会社 Ladder type filter and multiplexer
JP7364197B2 (en) 2022-02-01 2023-10-18 三安ジャパンテクノロジー株式会社 Acoustic wave device and module comprising the elastic wave device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209018B2 (en) 2003-01-27 2007-04-24 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7345400B2 (en) 2003-01-27 2008-03-18 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7425788B2 (en) 2004-07-26 2008-09-16 Murata Manufacturing Co., Ltd. Surface acoustic wave device
JP2006203839A (en) * 2005-01-23 2006-08-03 Kazuhiko Yamanouchi Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate
JP2006319679A (en) * 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd Compound piezoelectric substrate
JP4657002B2 (en) * 2005-05-12 2011-03-23 信越化学工業株式会社 Composite piezoelectric substrate
JP2020043386A (en) * 2018-09-06 2020-03-19 太陽誘電株式会社 Ladder type filter and multiplexer
JP7068974B2 (en) 2018-09-06 2022-05-17 太陽誘電株式会社 Ladder type filter and multiplexer
JP7364197B2 (en) 2022-02-01 2023-10-18 三安ジャパンテクノロジー株式会社 Acoustic wave device and module comprising the elastic wave device

Similar Documents

Publication Publication Date Title
CN104702239B (en) Ladder-type acoustic wave filter and the antenna diplexer using the acoustic wave filter
JP4497159B2 (en) Boundary acoustic wave filter
US7800464B2 (en) Surface acoustic wave device and duplexer
KR101098692B1 (en) Elastic boundary-wave device
WO2020130128A1 (en) Elastic wave device, splitter, and communication device
WO2012086441A1 (en) Elastic wave device and production method thereof
US8680744B2 (en) Surface acoustic wave device
JP2003188679A (en) Surface acoustic wave device
US7701114B2 (en) Surface acoustic wave device
JPH10224172A (en) Surface-wave device
JP3979279B2 (en) Surface acoustic wave device
JP3780947B2 (en) Surface acoustic wave device
WO2019082806A1 (en) Acoustic wave element
JP4967393B2 (en) Surface acoustic wave device
JP2003198323A (en) Surface acoustic wave device
JP2002076835A (en) Surface acoustic wave element
JP7464062B2 (en) Elastic Wave Device
CN114070257A (en) Acoustic wave device, filter and multiplexer
JP2006094567A (en) Surface acoustic wave device
JP2004172990A (en) Surface acoustic wave device
US7187101B2 (en) Surface acoustic wave filter
JP4363443B2 (en) Surface acoustic wave device
JP3975924B2 (en) Surface wave device and manufacturing method thereof
US6972508B2 (en) Surface acoustic wave device
JP2004228985A (en) Surface wave device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070302

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070928