WO2019082806A1 - Acoustic wave element - Google Patents

Acoustic wave element

Info

Publication number
WO2019082806A1
WO2019082806A1 PCT/JP2018/038985 JP2018038985W WO2019082806A1 WO 2019082806 A1 WO2019082806 A1 WO 2019082806A1 JP 2018038985 W JP2018038985 W JP 2018038985W WO 2019082806 A1 WO2019082806 A1 WO 2019082806A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thickness
piezoelectric layer
elastic wave
electrode
Prior art date
Application number
PCT/JP2018/038985
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 岸野
伊藤 幹
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019551094A priority Critical patent/JP7073392B2/en
Publication of WO2019082806A1 publication Critical patent/WO2019082806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device.
  • WO 2012/073871 proposes an elastic wave device including a support layer provided with a recess, a piezoelectric thin film disposed so as to extend onto the recess, and an IDT electrode formed on the piezoelectric thin film. ing.
  • the elastic wave device of the present disclosure comprises an IDT electrode, a piezoelectric layer, and a substrate.
  • the IDT electrode includes a plurality of electrode fingers.
  • the piezoelectric layer is made of lithium tantalate single crystal having a thickness of less than 0.5 ⁇ , where ⁇ is a wavelength defined by twice the repetition interval of the plurality of electrode fingers, and the IDT electrode is located on the top surface.
  • the substrate has a first surface which has a shear wave velocity V (m / s) of 5800 m / s or more and is bonded to the lower surface of the piezoelectric layer.
  • FIGS. 3A and 3B are diagrams showing frequency characteristics of the acoustic wave device according to the present disclosure, respectively.
  • FIGS. 4 (a) and 4 (b) are diagrams showing the frequency characteristics of the elastic wave element when the Euler angle of the piezoelectric layer is changed.
  • FIGS. 5 (a) and 5 (b) are diagrams showing frequency characteristics of the acoustic wave device according to the reference example.
  • FIGS. 6 (a) and 6 (b) are diagrams showing frequency characteristics of the acoustic wave device according to the reference example.
  • FIGS. 8 (a) and 8 (b) are diagrams showing frequency characteristics of the acoustic wave device, respectively.
  • 9 (a) and 9 (b) are diagrams showing frequency characteristics of the acoustic wave device.
  • FIGS. 11 (a) to 11 (d) are diagrams showing the frequency characteristics of the modification of the acoustic wave device shown in FIG. 1, respectively.
  • FIGS. 17 (a) to 7 (c) are exploded top views showing each configuration of a modification of the acoustic wave device shown in FIG. It is a diagram which shows the relationship between the thickness of a piezoelectric layer, and a resonant frequency. It is a diagram which shows the relationship between the thickness of a piezoelectric layer, and a resonant frequency. It is a diagram which shows the relationship between the thickness of a piezoelectric layer, and a resonant frequency.
  • the elastic wave device 1 (SAW device 1) according to the present embodiment includes a support substrate 10, a substrate 20, a piezoelectric layer 30, and an IDT electrode 4 as shown in FIG.
  • the support substrate 10, the substrate 20, and the piezoelectric layer 30 are stacked in this order.
  • the supporting substrate 10 supports the substrate 20 and the piezoelectric layer 30 located on the upper side, and the material is not limited as long as the strength is provided.
  • a ceramic substrate, an organic substrate, a dielectric substrate such as quartz crystal or sapphire, a piezoelectric substrate, a semiconductor substrate, etc. can be exemplified, and it may be a substrate made of the same material system as the piezoelectric layer 30 described later. In this example, a single crystal silicon substrate is used.
  • the thermal expansion coefficient is smaller than the material of the piezoelectric layer 30 described later. Therefore, when a temperature change occurs, a thermal stress is generated in the piezoelectric layer 30. At this time, the temperature dependency and the stress dependency of the elastic constant cancel each other, and the temperature change of the electrical characteristics of the SAW element 1 is reduced (temperature Special compensation).
  • the thickness of the support substrate 10 is not particularly limited, but may be, for example, about 100 ⁇ m to 250 ⁇ m. The thickness decreases in the order of the support substrate 10, the substrate 20, the piezoelectric layer 30, and the IDT electrode 4 described later.
  • the substrate 20 includes a first surface 20A and a second surface 20B opposite to the first surface 20A. Then, the second surface 20B is bonded to the upper surface of the support substrate 10, and the first surface 20A is bonded to the lower surface of the piezoelectric layer 30. In this example, the first surface 20A and the piezoelectric layer 30, and the second surface 20B and the support substrate 10 are directly bonded together, but the present invention is not limited to this. In particular, when the substrate 20 has a thickness equal to or greater than the wavelength ⁇ defined by twice the repetition interval Pt1 of the electrode finger 41 of the IDT electrode 4 described later, a bonding layer or the like is formed between the substrate 20 and the support substrate 10. It may be joined via
  • the substrate 20 is made of a material having a shear wave velocity of 5800 m / s or more.
  • a material having a shear wave velocity of 5800 m / s or more aluminum nitride (AlN), titanium nitride (TiN), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), sapphire, alumina, boron nitride (BN), diamond, diamond like carbon ( DLC) etc. can be illustrated.
  • the thickness of the substrate 20 is, for example, 0.8 ⁇ or more. More preferably, it is 1 ⁇ or more. Although the upper limit of the thickness of the substrate 20 is not particularly limited, in the case of forming the substrate 20 by a thin film process or the like, it may be 10 ⁇ or less in consideration of film forming property and the like.
  • the piezoelectric layer 30 is located on the first surface 20 ⁇ / b> A of the substrate 20. In other words, the substrate 20 and the piezoelectric layer 30 are bonded directly or indirectly.
  • the piezoelectric layer 30 is made of lithium tantalate single crystal (LiTaO 3 : sometimes abbreviated as LT below) having a thickness of less than 0.35 ⁇ .
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) are (90 ° ⁇ 0.5 °, 90 ° ⁇ 1 °, 20 ° to 50 °).
  • the IDT electrode 4 is located on the top surface of the piezoelectric layer 30.
  • the IDT electrode excites a surface acoustic wave, and as shown in FIG. 2, for example, constitutes a resonator composed of a pair of comb-like electrodes 40A and 40B.
  • the comb-like electrode includes a plurality of electrode fingers 41.
  • the electrode finger 41A connected to one potential and the electrode finger 41B connected to the other potential are alternately arranged so as to cross each other, and the SAW propagates along the arrangement direction of the electrode finger 41. .
  • An interval between centers of widths of the electrode fingers 41A and 41B is referred to as a pitch Pt1.
  • the width of the electrode finger 41 is w1 and the thickness thereof is s.
  • an Al—Cu alloy As a material constituting such an IDT electrode 4, an Al—Cu alloy can be exemplified. The thickness is determined in consideration of the excitation efficiency of the SAW, the electromechanical coupling coefficient with the LT substrate, and the like. Further, the IDT electrode 4 may be a laminate of a plurality of electrode layers.
  • the protective layer 6 is located on the top surface of the IDT electrode 4 in order to reduce its oxidation.
  • Examples of the material of the protective layer 6 include inorganic insulating materials such as silicon oxide and silicon nitride.
  • FIG. 3 (a) shows impedance characteristics with respect to frequency
  • FIG. 3 (b) shows phase characteristics
  • the horizontal axis represents frequency (unit: MHz)
  • the vertical axis represents impedance (unit: ⁇ )
  • the horizontal axis represents frequency (unit: MHz)
  • the vertical axis represents impedance phase (unit: °).
  • the basic configuration of the simulation model 1 is as follows.
  • the most common SAW element in the prior art uses a 42 ° rotated YX propagation LT substrate having a thickness of 1 ⁇ or more as the piezoelectric layer 30 with an Euler angle of (0, -48, 0) There is.
  • the pitch of the electrode fingers 41 is 1 ⁇ m
  • the resonance frequency is about 2 GHz.
  • the pitch of the electrode fingers 41 is 1 ⁇ m in the model 1 as shown in FIG. 3 by changing the thickness of the conventional SAW element and the piezoelectric layer 30 and the Euler angle. It was also confirmed that the resonance frequency could be 3.05 GHz.
  • the value (sound velocity) obtained by multiplying the resonant frequency by ⁇ is 6000 m / s. From this, it can be confirmed that the resonator functions as a resonator using an elastic wave of a mode faster than the elastic wave of the mode used in the conventional SAW element.
  • ⁇ f is as large as or larger than that of the conventional SAW element, and there is no bulk wave spurious between the resonant frequency and the antiresonant frequency. It was confirmed that a SAW device 1 with low loss and excellent in characteristics could be provided.
  • the model 1 can provide the SAW element 1 with high frequency and less loss compared to the conventional SAW element even if the above-mentioned Euler angles are changed in the angle range of ⁇ 1 ° and ⁇ of ⁇ 2 °. It was confirmed.
  • FIG. 4 shows changes in the impedance waveform of the resonator when the Euler angles ⁇ and ⁇ of the piezoelectric body are changed in the model 1.
  • the horizontal axis is frequency (unit: MHz), and the vertical axis is impedance (unit: ⁇ ).
  • the horizontal axis frequency of each impedance waveform is appropriately shifted (in fact, all the resonance frequencies are almost the same) for easy viewing.
  • spurious noise occurs in the vicinity of resonance and antiresonance.
  • occurrence of a small spurious is confirmed in the vicinity of the antiresonance frequency when ⁇ is ⁇ 1 ° and ⁇ is ⁇ 2 °.
  • the influence of the spurious increases.
  • generation of spurious was not confirmed when the range of ⁇ was ⁇ 0.5 ° and ⁇ was ⁇ 1 ° from the above Euler angle. From the above, high frequency characteristics can be provided by setting the range of ⁇ 0.5 ° and ⁇ to ⁇ 1 ° from the above-mentioned Euler angles.
  • the SAW element 1 having a high frequency and less loss in the range of 20 ° to 50 ° compared to the conventional SAW element, but more specifically, the thickness of the electrode There is an appropriate range in relation to the thickness of the and the piezoelectric layer. This range will be described later.
  • the substrate 20 is located on the entire lower surface of the piezoelectric layer 30, the handling is easy and the reliability can be high.
  • the substrate 20 By making the substrate 20 a material having a cutoff frequency higher than the resonance frequency band of the resonator realized by the SAW element 1, leakage to the substrate 20 side is reduced, and the SAW element 1 with less loss is provided. can do.
  • the cutoff frequency of AlN used as the substrate 20 in this example is 3.3 GHz.
  • the thickness of AlN is reduced, part of the acoustic wave reaches the support substrate 10 and leaks. Therefore, the thickness of the substrate 20 needs to be at least 0.8 ⁇ or more, preferably 1 ⁇ or more.
  • an adhesion layer or an adjustment layer for adjusting the characteristics may be inserted between the substrate 20 and the piezoelectric layer 30.
  • the substrate 20 is 1 ⁇ , and the supporting substrate 10 made of Si is provided on the lower surface thereof.
  • the thermal stress due to Si having a small thermal expansion coefficient is applied to the piezoelectric layer 30, so that it is possible to obtain the SAW element 1 in which the characteristic change due to the temperature change is reduced.
  • FIG. 5A is a graph showing impedance characteristics with respect to frequency.
  • the vertical axis represents impedance (unit: ⁇ ), and the horizontal axis represents frequency (unit: MHz).
  • 5B is a diagram showing phase characteristics with respect to frequency, in which the vertical axis is phase (unit: °) and the horizontal axis is frequency (unit: MHz).
  • the impedance phase characteristic in the vicinity of the antiresonance rises more than -90 °. This indicates that a large loss occurs in this frequency range.
  • FIG. 6 (a) and 6 (b) correspond to FIGS. 5 (a) and 5 (b). In this case, a large spurious vibration is generated on the high frequency side than the antiresonance.
  • the thickness of the piezoelectric layer 30 has an appropriate range, and the range is related to the Euler angle of the piezoelectric layer 30 and the thickness of the electrode 4.
  • FIG. 7 is a result of simulating a change in impedance characteristics with respect to the thickness of the piezoelectric layer 30 and the thickness of the electrode 4 when the Euler angle of the piezoelectric layer 30 is changed.
  • the horizontal axis represents the thickness of the electrode 4 and the vertical axis represents the thickness of the piezoelectric layer 30, and the region (R1) with a good parameter of the impedance waveform is filled for each ridge.
  • a region indicated as SP in FIG. 7 is a region where a large spurious vibration occurs as shown in FIG.
  • a region indicated by LS is a region where a large loss occurs in the impedance characteristic as shown in FIG.
  • the filled area R1 excluding this area is a range in which good impedance characteristics are obtained.
  • a dark color portion and a light color portion exist in the region R1.
  • the thickness of the electrode 4, the thickness of the electrode 4 and the thickness of the piezoelectric layer 30 are adjusted so as to be the area of the dark color part of the area R1 in consideration of the manufacturing variation and the like. It is also good.
  • FIG. 7 will be described in detail.
  • the combination of the electrode thickness and the thickness of the piezoelectric layer 30 which is in the region R1 but outside the range of the region R1 in the case of the next level angle is adjacent It is assumed that it is outside the region R1 between the angles of the eyebrows.
  • the combination of the electrode thickness of model 1: 0.07 ⁇ and the thickness of piezoelectric layer 30: 0.25 ⁇ it is located within the R1 region regardless of whether ⁇ is -10 ° to 60 °. .
  • the impedance characteristics of the SAW element 1 appear spurious with a slight change with respect to the Euler angles ⁇ and ⁇ , but as can be seen from FIG. does not change. However, when ⁇ changes significantly, the resonance frequency fr and the frequency difference df (anti-resonance frequency fa ⁇ resonance frequency fr) change.
  • the thickness of the piezoelectric layer 30 is fixed at 0.25 ⁇ with the parameters of the model 1, and the changes in fr and df when the thickness of the electrode 4 is changed are shown for each ridge. It shows what was plotted.
  • the horizontal axis is frequency (unit: MHz), and the vertical axis is impedance (unit: ⁇ ).
  • FIG. 9 (a) and 9 (b) when the thickness of the electrode 4 is fixed to 0.07 ⁇ by the parameter of the model 1 and the thickness of the piezoelectric layer 30 is changed, the changes between fr and df are shown in FIG. It shows what was plotted about.
  • the horizontal axis is frequency (unit: MHz), and the vertical axis is impedance (unit: ⁇ ).
  • fr increases while df decreases slightly.
  • the thickness of the piezoelectric layer 30 is 0.225 ⁇ . It is desirable that ⁇ 0.3 ⁇ .
  • the SAW element 1 having the support substrate 10 has been described.
  • the substrate 20 since the thickness of the substrate 20 has no upper limit in electrical characteristics, the substrate 20 can be thickened to have the function as the support substrate 10
  • the support substrate 10 may be omitted.
  • an AlN substrate, a sapphire substrate or the like in which the substrate 20 has a thickness of about 50 ⁇ m to 250 ⁇ m may be used.
  • an adhesion layer or an adjustment layer for adjusting the characteristics may be inserted between the substrate 20 and the piezoelectric layer 30.
  • the support substrate 10 may be made of sapphire single crystal and the substrate 20 may be made of AlN.
  • both the support substrate 10 and the substrate 2 become an Al-based material. Therefore, when the support substrate 10 and the substrate 20 are bonded and bonded, the mismatch of the bonding interface can be reduced, so the loss of elastic waves can be reduced. Further, since strong bonding can be realized, reliability can be improved.
  • the interface mismatch can be reduced, and the quality of the film to be formed can be enhanced, and the loss of elastic waves It can be reduced.
  • the piezoelectric layer 30 has two thicknesses of 0.3 ⁇ and 0.5 ⁇ , and an Euler angle of (86 ° to 94 °, 86 ° to 94 °, ⁇ 10 ° to 70 °).
  • the frequency characteristics were simulated by setting the thickness of V to 0.04 ⁇ to 0.08 ⁇ .
  • the thickness of the electrode 4 was changed to check the position and the magnitude of fr and spurious. As a result, the influence of the thickness of the electrode 4 was not confirmed for the magnitude of fr and spurious. However, it was confirmed that the position of the spurious shifts to the higher frequency side as the thickness of the electrode 4 is thinner. From the result, the thickness of the electrode 4 may be 0.04 ⁇ to 0.08 ⁇ . When it is 0.04 ⁇ or more, resonance characteristics can be obtained without deterioration of the resistance as an electrode. When the wavelength is 0.08 ⁇ or less, the position of the spurious is about 3500 MHz, and the resonance characteristics can be obtained without deterioration of the loss on the side higher than the antiresonance frequency.
  • the positions of fr, df and spurious are also used when using a ceramic SiC substrate And there was no difference in strength, loss, etc. Further, in both of the single crystal SiC substrate and the ceramic SiC substrate, no change in the characteristics was observed even when rotated in the plane direction with respect to the propagation direction of the SAW (when the crucible of the SiC substrate was rotated). . That is, in the case where SiC is used as the substrate 20 in the SAW element 1, it is possible to provide the SAW element 1 having stable characteristics without being strongly affected by various parameters including the crystallinity of the substrate.
  • SiC is a semiconductor and generally has conductivity. As the conductivity increases, the SAW characteristics are affected, so the conductivity of the SiC substrate should be high. Specifically, the conductivity of the SiC substrate may be 1 k ⁇ cm or more.
  • the piezoelectric layer 30 has two thicknesses of 0.3 ⁇ and 0.5 ⁇ , and an Euler angle of (86 ° to 94 °, 86 ° to 94 °, ⁇ 10 ° to 70 °).
  • the thickness of each was 0.04 ⁇ to 0.08 ⁇ , and the frequency characteristics were simulated by combining the respective conditions.
  • FIGS. 11A and 11B show frequency characteristics when the substrate 20 is made of sapphire. Further, as reference examples, frequency characteristics when the substrate 20 is made of alumina are shown in FIGS. 11 (c) and 11 (d).
  • the horizontal axis represents frequency
  • the vertical axis represents impedance.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the phase.
  • the thickness of the piezoelectric layer 30 is 0.3 ⁇ , the Euler angles (90 °, 90 °, 30 °), and the Euler angles of the substrate 20 are changed to (90 °, 90 °, 120 ° to 170 °). It shows the frequency characteristics in the case of The upper stage shows impedance characteristics, and the lower stage shows phase characteristics.
  • middle layer 50 may be made to intervene.
  • the intermediate layer 50 is made of a material in which the acoustic velocity of the elastic wave propagating through the piezoelectric layer 30 is smaller than that of the piezoelectric layer 30 and the substrate 20.
  • a material is, for example, SiO 2 .
  • the thickness thereof is thinner than that of the piezoelectric layer 30, and may be, for example, 0.08 ⁇ to 0.1 ⁇ .
  • the intermediate layer 50 having a low sound velocity
  • the vibration of the elastic wave propagating in the piezoelectric layer 30 is moved to the intermediate layer 50 in a large amount.
  • the acoustic velocity of the elastic wave is reduced.
  • the resonance frequency shifts to the high frequency side.
  • the elastic wave moves to the intermediate layer 50 as the thickness of the piezoelectric layer 30 becomes thinner, and as a result, the speed of sound becomes slower and the resonance frequency becomes lower.
  • the effect of increasing the resonant frequency by thinning the piezoelectric layer 30 and the effect of decreasing the resonant frequency by thinning the piezoelectric layer 30 cancel each other.
  • the elastic wave element 1 with high robustness can be provided in which the resonance frequency does not change.
  • FIG. 18 shows the same result when the substrate 20 is SiC when the substrate 20 is sapphire single crystal, but the result is almost similar to the case of AlN shown in FIG.
  • the SAW element 1 may include a capacitance unit 60 connected in parallel to the IDT electrode 4. Since the capacitance portion 60 can reduce df, it can be adjusted to have a desired df.
  • a capacitive portion 60 is formed of an interdigital electrode similar to the IDT electrode 4, the repetitive arrangement direction D1 of the electrode fingers 43 (capacitive portion electrode fingers 43) of the capacitive portion functions as a resonator.
  • the arrangement direction D 2 of the electrode fingers 41 of the IDT electrode 4 may be different. With such a configuration, the influence of the resonance by the capacitive section 60 can be reduced.
  • the arrangement direction D1 is -60 ° ⁇ 5 °, 60 ° ⁇ 5 °, the frequency is higher than fr. The maximum intensity of the located spurs can be lowered.
  • the (111) plane of Si is (-45 °, -54.7 °, ⁇ ) in Euler angles.
  • the maximum intensity of the spurious was simulated when ⁇ was changed. The results are shown in FIG. In FIG. 16, the horizontal axis is the arrangement direction D 1 and the vertical axis is ⁇ , and the maximum intensity of the spurious is indicated by contour lines. As apparent from FIG. 16, the spurious intensity can be reduced when the wedge of the support substrate 10 is set to 0 ° to 20 °, 40 ° to 140 °, and 160 ° to 180 °.
  • FIG. 17A is a view of the piezoelectric layer 30 from the top
  • FIG. 17B is a view of the substrate 20 from the top
  • FIG. 17C is a view of the support substrate 10 from the top.
  • FIG. 17A also shows a schematic view showing the arrangement relationship between the IDT electrode 4 and the capacitor portion 60 disposed on the piezoelectric layer 30. As shown in FIG.
  • the cutoff frequency of the substrate 20 is increased to reduce the loss on the high frequency side relative to the antiresonance frequency, and the intensity of the spurious generated on the high frequency side relative to the antiresonance frequency is also obtained. It can be reduced.
  • Elastic wave element 20 Substrate 30: Piezoelectric layer 4: IDT electrode 41: Electrode finger

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An acoustic wave element 1 is provided with: an IDT electrode 4 that includes a plurality of electrode fingers 41; a piezoelectric layer 30 which has the IDT electrode 4 positioned on the upper surface thereof, which has a thickness less than 0.35 λ, where λ denotes a wavelength defined by two-fold of the repeating interval of the electrode fingers 41, which is made of a lithium tantalite single crystal, and which has Euler angles of 90±1, 90±2, 20 to 50; and a substrate 20 in which a transverse wave acoustic velocity V(m/s) is 5800 m/s or higher and which has a first surface joined to the lower surface of the piezoelectric layer 30.

Description

弾性波素子Acoustic wave element
 本発明は、弾性波素子に関する。 The present invention relates to an elastic wave device.
 従来より、共振子や帯域フィルタとして弾性波素子が用いられており、近年はより高周波数の周波数帯に対応することが求められている。このような状況の中、圧電薄膜を用いた弾性波装置が提案されている。例えば、国際公開2012/073871号では、凹部を設けた支持層と、この凹部上に至るように配置された圧電薄膜と、圧電薄膜上に形成されたIDT電極とを備える弾性波装置が提案されている。 Heretofore, elastic wave elements have been used as resonators and band filters, and in recent years, it has been required to cope with higher frequency bands. Under such circumstances, an elastic wave device using a piezoelectric thin film has been proposed. For example, WO 2012/073871 proposes an elastic wave device including a support layer provided with a recess, a piezoelectric thin film disposed so as to extend onto the recess, and an IDT electrode formed on the piezoelectric thin film. ing.
 近年、通信機器の高周波化への要求はさらに高まり、別の手法により高周波化を実現できる弾性波素子の提供が求められている。 In recent years, the demand for higher frequencies of communication devices has further increased, and the provision of elastic wave elements capable of achieving higher frequencies by another method is required.
 本開示の弾性波素子は、IDT電極と圧電層と基板とを備える。IDT電極は、複数の電極指を含む。圧電層は、上面に前記IDT電極が位置しており、前記複数の電極指の繰り返し間隔の2倍で定義される波長をλとすると0.5λ未満の厚みであるタンタル酸リチウム単結晶からなり、そのオイラー角が(φ,θ,ψ)=(90±0.5,90±1,20~50)である。基板は、横波音速V(m/s)が5800m/s以上であり、前記圧電層の下面に接合された第1面を備える。 The elastic wave device of the present disclosure comprises an IDT electrode, a piezoelectric layer, and a substrate. The IDT electrode includes a plurality of electrode fingers. The piezoelectric layer is made of lithium tantalate single crystal having a thickness of less than 0.5 λ, where λ is a wavelength defined by twice the repetition interval of the plurality of electrode fingers, and the IDT electrode is located on the top surface. The Euler angles are (φ, θ, ψ) = (90 ± 0.5, 90 ± 1, 20 to 50). The substrate has a first surface which has a shear wave velocity V (m / s) of 5800 m / s or more and is bonded to the lower surface of the piezoelectric layer.
 上記構成によれば、高周波数化に対応した弾性波素子を提供することができる。 According to the above configuration, it is possible to provide an elastic wave element compatible with the increase in frequency.
本開示にかかる弾性波素子の断面図である。It is a sectional view of an elastic wave element concerning this indication. IDT電極の構造を示す上面図である。It is a top view which shows the structure of an IDT electrode. 図3(a),図3(b)はそれぞれ、本開示に係る弾性波素子の周波数特性を示す線図である。FIGS. 3A and 3B are diagrams showing frequency characteristics of the acoustic wave device according to the present disclosure, respectively. 図4(a),図4(b)はそれぞれ、圧電層のオイラー角を変化させたときの弾性波素子の周波数特性を示す線図である。FIGS. 4 (a) and 4 (b) are diagrams showing the frequency characteristics of the elastic wave element when the Euler angle of the piezoelectric layer is changed. 図5(a),図5(b)はそれぞれ、参考例に係る弾性波素子の周波数特性を示す線図である。FIGS. 5 (a) and 5 (b) are diagrams showing frequency characteristics of the acoustic wave device according to the reference example. 図6(a),図6(b)はそれぞれ、参考例に係る弾性波素子の周波数特性を示す線図である。FIGS. 6 (a) and 6 (b) are diagrams showing frequency characteristics of the acoustic wave device according to the reference example. 圧電層のオイラー角と厚みと電極厚みとを変化させたときの弾性波素子の周波数特性が良好な領域を示す等高線図である。It is a contour map which shows the area | region where the frequency characteristic of the elastic wave element when the Euler angle, thickness, and electrode thickness of a piezoelectric layer are changed is favorable. 図8(a),図8(b)はそれぞれ、弾性波素子の周波数特性を示す線図である。FIGS. 8 (a) and 8 (b) are diagrams showing frequency characteristics of the acoustic wave device, respectively. 図9(a),図9(b)はそれぞれ、弾性波素子の周波数特性を示す線図である。9 (a) and 9 (b) are diagrams showing frequency characteristics of the acoustic wave device. 図1に示す弾性波素子の変形例の断面図である。It is sectional drawing of the modification of the elastic wave element shown in FIG. 図11(a)~図11(d)はそれぞれ、図1に示す弾性波素子の変形例にかかる周波数特性を示す線図である。FIGS. 11 (a) to 11 (d) are diagrams showing the frequency characteristics of the modification of the acoustic wave device shown in FIG. 1, respectively. 図1に示す弾性波素子の変形例にかかる周波数特性を示す線図である。It is a diagram which shows the frequency characteristic concerning the modification of the elastic wave element shown in FIG. 図1に示す弾性波素子の変形例を示す断面図である。It is sectional drawing which shows the modification of the elastic wave element shown in FIG. 圧電層の厚みと共振周波数との関係を示す線図である。It is a diagram which shows the relationship between the thickness of a piezoelectric layer, and a resonant frequency. 容量部の配列方向とスプリアスの最大強度との関係を示す線図である。It is a diagram showing the relation between the arrangement direction of a capacity part, and the maximum intensity of a spurious. 支持基板のオイラー角および容量部の配列方向とスプリアスの最大強度との関係を示す等高線図である。It is a contour map which shows the relationship between the Euler angle of a support substrate, the arrangement direction of a capacity part, and the maximum intensity of a spurious. 図17(a)~図7(c)は、図1に示す弾性波素子の変形例の各構成を示す分解上面図である。FIGS. 17 (a) to 7 (c) are exploded top views showing each configuration of a modification of the acoustic wave device shown in FIG. 圧電層の厚みと共振周波数との関係を示す線図である。It is a diagram which shows the relationship between the thickness of a piezoelectric layer, and a resonant frequency. 圧電層の厚みと共振周波数との関係を示す線図である。It is a diagram which shows the relationship between the thickness of a piezoelectric layer, and a resonant frequency.
 以下、本開示の弾性波素子の一例を図面を用いて詳細に説明する。 Hereinafter, an example of the elastic wave element of this indication is explained in detail using a drawing.
 本実施形態の弾性波素子1(SAW素子1)は、図1に示すように、支持基板10と基板20と圧電層30とIDT電極4とを備える。支持基板10、基板20、圧電層30はこの順に積層されている。 The elastic wave device 1 (SAW device 1) according to the present embodiment includes a support substrate 10, a substrate 20, a piezoelectric layer 30, and an IDT electrode 4 as shown in FIG. The support substrate 10, the substrate 20, and the piezoelectric layer 30 are stacked in this order.
 支持基板10は、その上部に位置する基板20と圧電層30とを支持するものであり、その強度があれば材料は限定されない。例えば、セラミック基板や有機基板、水晶やサファイアなどの誘電体基板、圧電基板、半導体基板等を例示でき、後述の圧電層30と同じ材料系からなる基板としてもよいし、多層基板としてもよい。この例では、単結晶のシリコン基板を用いている。 The supporting substrate 10 supports the substrate 20 and the piezoelectric layer 30 located on the upper side, and the material is not limited as long as the strength is provided. For example, a ceramic substrate, an organic substrate, a dielectric substrate such as quartz crystal or sapphire, a piezoelectric substrate, a semiconductor substrate, etc. can be exemplified, and it may be a substrate made of the same material system as the piezoelectric layer 30 described later. In this example, a single crystal silicon substrate is used.
 支持基板10としてシリコン基板を用いる場合には、後述する圧電層30の材料よりも熱膨張係数が小さい。このため、温度変化が生じると圧電層30に熱応力が生じ、この際、弾性定数の温度依存性と応力依存性とが打ち消し合い、ひいては、SAW素子1の電気特性の温度変化が低減(温特補償)される。 When a silicon substrate is used as the support substrate 10, the thermal expansion coefficient is smaller than the material of the piezoelectric layer 30 described later. Therefore, when a temperature change occurs, a thermal stress is generated in the piezoelectric layer 30. At this time, the temperature dependency and the stress dependency of the elastic constant cancel each other, and the temperature change of the electrical characteristics of the SAW element 1 is reduced (temperature Special compensation).
 支持基板10の厚みは特に限定されないが、例えば100μm~250μm程度としてもよい。支持基板10から後述の基板20,圧電層30,IDT電極4の順に厚みが小さくなっている。 The thickness of the support substrate 10 is not particularly limited, but may be, for example, about 100 μm to 250 μm. The thickness decreases in the order of the support substrate 10, the substrate 20, the piezoelectric layer 30, and the IDT electrode 4 described later.
 基板20は、第1面20Aと第1面20Aに対向する第2面20Bとを備える。そして、第2面20Bを支持基板10の上面に接合し、第1面20Aを圧電層30の下面に接合している。この例では、第1面20Aと圧電層30とおよび第2面20Bと支持基板10とは共に直接接合されているがこの限りではない。特に、基板20が後述のIDT電極4の電極指41の繰り返し間隔Pt1の2倍で定義される波長λ以上の厚みを備える場合には、基板20と支持基板10との間には接合層等を介して接合されていてもよい。 The substrate 20 includes a first surface 20A and a second surface 20B opposite to the first surface 20A. Then, the second surface 20B is bonded to the upper surface of the support substrate 10, and the first surface 20A is bonded to the lower surface of the piezoelectric layer 30. In this example, the first surface 20A and the piezoelectric layer 30, and the second surface 20B and the support substrate 10 are directly bonded together, but the present invention is not limited to this. In particular, when the substrate 20 has a thickness equal to or greater than the wavelength λ defined by twice the repetition interval Pt1 of the electrode finger 41 of the IDT electrode 4 described later, a bonding layer or the like is formed between the substrate 20 and the support substrate 10. It may be joined via
 基板20は、横波音速が5800m/s以上の材料で構成される。このような材料としては、窒化アルミ(AlN),窒化チタン(TiN),窒化珪素(Si)、炭化珪素(SiC)、サファイア、アルミナ、窒化ホウ素(BN)、ダイアモンド、ダイアモンドライクカーボン(DLC)等を例示できる。 The substrate 20 is made of a material having a shear wave velocity of 5800 m / s or more. As such materials, aluminum nitride (AlN), titanium nitride (TiN), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), sapphire, alumina, boron nitride (BN), diamond, diamond like carbon ( DLC) etc. can be illustrated.
 基板20の厚みは例えば0.8λ以上とする。より好ましくは1λ以上とする。基板20の厚みの上限は特にないが、基板20を薄膜プロセス等で形成する場合には、成膜性等を考慮して10λ以下としてもよい。 The thickness of the substrate 20 is, for example, 0.8 λ or more. More preferably, it is 1 λ or more. Although the upper limit of the thickness of the substrate 20 is not particularly limited, in the case of forming the substrate 20 by a thin film process or the like, it may be 10 λ or less in consideration of film forming property and the like.
 基板20の第1面20Aには圧電層30が位置している。言い換えると、基板20と圧電層30とは、直接的または間接的に接合されている。圧電層30は0.35λ未満の厚みのタンタル酸リチウム単結晶(LiTaO:以下LTと略することがある)からなる。そして、そのオイラー角(φ,θ,ψ)が(90°±0.5°,90°±1°,20°~50°)となっている。 The piezoelectric layer 30 is located on the first surface 20 </ b> A of the substrate 20. In other words, the substrate 20 and the piezoelectric layer 30 are bonded directly or indirectly. The piezoelectric layer 30 is made of lithium tantalate single crystal (LiTaO 3 : sometimes abbreviated as LT below) having a thickness of less than 0.35λ. And, the Euler angles (φ, θ, ψ) are (90 ° ± 0.5 °, 90 ° ± 1 °, 20 ° to 50 °).
 そして、圧電層30の上面には、IDT電極4が位置している。IDT電極は弾性表面波を励振するものであり、図2に示すように、例えば、一対の櫛歯状電極40A,40Bからなる共振子を構成している。櫛歯状電極は、複数の電極指41を備えている。そして、一方の電位に接続された電極指41Aと他方の電位に接続された電極指41Bとを互い違いに交差するように配列されており、この電極指41の配列方向に沿ってSAWが伝播する。この電極指41A・41Bの幅の中心間の間隔をピッチPt1とする。なお電極指41の幅はw1とし、その厚みはsとする。 The IDT electrode 4 is located on the top surface of the piezoelectric layer 30. The IDT electrode excites a surface acoustic wave, and as shown in FIG. 2, for example, constitutes a resonator composed of a pair of comb- like electrodes 40A and 40B. The comb-like electrode includes a plurality of electrode fingers 41. The electrode finger 41A connected to one potential and the electrode finger 41B connected to the other potential are alternately arranged so as to cross each other, and the SAW propagates along the arrangement direction of the electrode finger 41. . An interval between centers of widths of the electrode fingers 41A and 41B is referred to as a pitch Pt1. The width of the electrode finger 41 is w1 and the thickness thereof is s.
 このようなIDT電極4を構成する材料としては、Al-Cu合金等を例示できる。厚みは、SAWの励振効率や、LT基板との電気機械結合係数等を考慮して決定される。また、IDT電極4は、複数の電極層の積層体としてもよい。 As a material constituting such an IDT electrode 4, an Al—Cu alloy can be exemplified. The thickness is determined in consideration of the excitation efficiency of the SAW, the electromechanical coupling coefficient with the LT substrate, and the like. Further, the IDT electrode 4 may be a laminate of a plurality of electrode layers.
 IDT電極4はその酸化を低減するためにその上面に保護層6が位置している。保護層6の材料としては、酸化シリコン、窒化シリコン等の無機絶縁材料を例示できる。 The protective layer 6 is located on the top surface of the IDT electrode 4 in order to reduce its oxidation. Examples of the material of the protective layer 6 include inorganic insulating materials such as silicon oxide and silicon nitride.
 上述の構成を備えるSAW素子1について、共振特性をシミュレーションした結果を図3に示す。図3(a)は周波数に対するインピーダンス特性であり、図3(b)は位相特性を示している。図3(a)において、横軸は周波数(単位:MHz)、縦軸はインピーダンス(単位:Ω)を示している。図3(b)において、横軸は周波数(単位:MHz)、縦軸はインピーダンス位相(単位:°)を示している。 The results of simulating the resonance characteristics of the SAW element 1 having the above-described configuration are shown in FIG. FIG. 3 (a) shows impedance characteristics with respect to frequency, and FIG. 3 (b) shows phase characteristics. In FIG. 3A, the horizontal axis represents frequency (unit: MHz), and the vertical axis represents impedance (unit: Ω). In FIG. 3B, the horizontal axis represents frequency (unit: MHz), and the vertical axis represents impedance phase (unit: °).
 シミュレーションのモデル1の基本構成は以下の通りとした。 The basic configuration of the simulation model 1 is as follows.
 <モデル1>
電極指41の材料:Al-Cu1%添加合金
電極指41の厚み:0.07λ
電極指41のピッチ:1μm(λ=2μm)
電極指41の本数:100本
電極指41の交差幅:10λ
圧電層30の材料:LiTaO
圧電層30のオイラー角:(φ,θ,ψ)=(90°,90°,30°) (Xカット基板/30°Y伝播に相当)
圧電層30の厚み:0.25λ
基板20の材料:AlN
基板20の厚み:2λ
支持基板10の材料:Si
支持基板10の厚み:250μm
 なお、圧電層には適当な伝播ロスを仮定しており、若干のロスがある状態の共振子特性が示されている。
<Model 1>
Material of electrode finger 41: Thickness of Al-Cu 1% -added alloy electrode finger 41: 0.07 λ
Pitch of electrode finger 41: 1 μm (λ = 2 μm)
Number of electrode fingers 41: Cross width of 100 electrode fingers 41: 10λ
Material of piezoelectric layer 30: LiTaO 3
Euler angles of the piezoelectric layer 30: (φ, θ, ψ) = (90 °, 90 °, 30 °) (corresponding to X cut substrate / 30 ° Y propagation)
Thickness of piezoelectric layer 30: 0.25 λ
Material of substrate 20: AlN
Thickness of substrate 20: 2λ
Material of support substrate 10: Si
Thickness of support substrate 10: 250 μm
In addition, in the piezoelectric layer, an appropriate propagation loss is assumed, and resonator characteristics in a state where there is a slight loss are shown.
 従来の最も一般的なSAW素子は、圧電層30として、1λ以上の厚みを有する42°回転Y-X伝播のLT基板を、そのオイラー角が(0,-48,0)の状態で用いている。この場合には、電極指41のピッチが1μmの場合には共振周波数は2GHz程度である。これに対して、SAW素子1によれば、従来のSAW素子と圧電層30の厚み、オイラー角を変更することで、図3に示す通り、モデル1では、電極指41のピッチが1μmであっても共振周波数を3.05GHzとすることができることが確認された。 The most common SAW element in the prior art uses a 42 ° rotated YX propagation LT substrate having a thickness of 1λ or more as the piezoelectric layer 30 with an Euler angle of (0, -48, 0) There is. In this case, when the pitch of the electrode fingers 41 is 1 μm, the resonance frequency is about 2 GHz. On the other hand, according to the SAW element 1, the pitch of the electrode fingers 41 is 1 μm in the model 1 as shown in FIG. 3 by changing the thickness of the conventional SAW element and the piezoelectric layer 30 and the Euler angle. It was also confirmed that the resonance frequency could be 3.05 GHz.
 なお、モデル1は、共振周波数にλを乗じた値(音速)は、6000m/sである。このことから、従来のSAW素子に用いられているモードの弾性波よりも速いモードの弾性波を用いて共振子として機能していることが確認できる。 In Model 1, the value (sound velocity) obtained by multiplying the resonant frequency by λ is 6000 m / s. From this, it can be confirmed that the resonator functions as a resonator using an elastic wave of a mode faster than the elastic wave of the mode used in the conventional SAW element.
 さらに、図3の波形より、Δfが従来のSAW素子に比べ同等以上の広さを有しており、かつ、共振周波数と反共振周波数との間にバルク波スプリアスも存在しておらず、周波数特性に優れた、損失の少ないSAW素子1を提供できることを確認した。 Furthermore, according to the waveform of FIG. 3, Δf is as large as or larger than that of the conventional SAW element, and there is no bulk wave spurious between the resonant frequency and the antiresonant frequency. It was confirmed that a SAW device 1 with low loss and excellent in characteristics could be provided.
 モデル1は、上述のオイラー角からφは±1°,θは±2°の角度範囲で変更しても従来のSAW素子に比べ、高周波数で、かつ、ロスの少ないSAW素子1を提供できることを確認した。 The model 1 can provide the SAW element 1 with high frequency and less loss compared to the conventional SAW element even if the above-mentioned Euler angles are changed in the angle range of ± 1 ° and θ of ± 2 °. It was confirmed.
 図4に、モデル1において、圧電体のオイラー角φ、θを変化させた場合の共振子のインピーダンス波形の変化を示す。横軸は周波数(単位:MHz)、縦軸はインピーダンス(単位:Ω)である。なお、図4では、見やすいように各インピーダンス波形の横軸周波数を適宜シフトさせている(実際は、共振周波数は全てほぼ同じになる)。 FIG. 4 shows changes in the impedance waveform of the resonator when the Euler angles φ and θ of the piezoelectric body are changed in the model 1. The horizontal axis is frequency (unit: MHz), and the vertical axis is impedance (unit: Ω). In FIG. 4, the horizontal axis frequency of each impedance waveform is appropriately shifted (in fact, all the resonance frequencies are almost the same) for easy viewing.
 図4から分かるように、φ、θが上記範囲から外れた場合には、共振~反共振の近傍にスプリアスが発生してしまう。具体的には、上記のオイラー角から、φは±1°、θは±2°ずらしたときに反共振周波数の近傍に小さなスプリアスの発生を確認している。このことから、上記のオイラー角から、φは±1°、θは±2°を超えて変化させた場合にはスプリアスの影響が大きくなる。一方で、上記のオイラー角からφは±0.5°、θは±1°の範囲ずらしたときにはスプリアスの発生は確認されなかった。以上より、上述のオイラー角からφは±0.5°,θは±1°の範囲とすることで高い周波数特性を備えることができる。 As can be seen from FIG. 4, when φ and θ deviate from the above ranges, spurious noise occurs in the vicinity of resonance and antiresonance. Specifically, from the above-mentioned Euler angle, occurrence of a small spurious is confirmed in the vicinity of the antiresonance frequency when φ is ± 1 ° and θ is ± 2 °. From this, from the above-mentioned Euler angles, when .phi. Is. +-. 1.degree. And .theta. Is. +-. 2.degree., The influence of the spurious increases. On the other hand, generation of spurious was not confirmed when the range of φ was ± 0.5 ° and θ was ± 1 ° from the above Euler angle. From the above, high frequency characteristics can be provided by setting the range of ± 0.5 ° and θ to ± 1 ° from the above-mentioned Euler angles.
 また、上述のオイラー角のうちψは20°~50°の範囲で従来のSAW素子に比べ、高周波数で、かつ、ロスの少ないSAW素子1を提供できるが、より詳細には、電極の厚みと圧電層の厚みと関係して適切な範囲がある。この範囲に関しては後述する。 Further, among the above-mentioned Euler angles, it is possible to provide the SAW element 1 having a high frequency and less loss in the range of 20 ° to 50 ° compared to the conventional SAW element, but more specifically, the thickness of the electrode There is an appropriate range in relation to the thickness of the and the piezoelectric layer. This range will be described later.
 また、SAW素子1によれば、圧電層30の下面全体に基板20が位置していることにより、取扱いが容易であり、かつ、信頼性の高いものとすることができる。 Further, according to the SAW element 1, since the substrate 20 is located on the entire lower surface of the piezoelectric layer 30, the handling is easy and the reliability can be high.
 なお、基板20をSAW素子1で実現する共振子の共振週数帯よりも高いカットオフ周波数を有する材料とすることで、基板20側への漏洩を低減し、ロスの少ないSAW素子1を提供することができる。具体的には、この例で基板20として用いるAlNのカットオフ周波数は3.3GHzである。このため、図3(b)に示すように、3.3GHz未満の領域においてはロスの少ない共振子とすることができる。なお、AlNの厚みが薄くなった場合には、一部の音響波が支持基板10へ到達し、漏洩する。このため、基板20の厚みは少なくとも0.8λ以上、好ましくは1λ以上が必要である。また、基板20と圧電層30の間には、密着層や、特性を調整するための調整層が挿入されていても良い。 By making the substrate 20 a material having a cutoff frequency higher than the resonance frequency band of the resonator realized by the SAW element 1, leakage to the substrate 20 side is reduced, and the SAW element 1 with less loss is provided. can do. Specifically, the cutoff frequency of AlN used as the substrate 20 in this example is 3.3 GHz. For this reason, as shown in FIG. 3B, it is possible to make a resonator with less loss in the region of less than 3.3 GHz. When the thickness of AlN is reduced, part of the acoustic wave reaches the support substrate 10 and leaks. Therefore, the thickness of the substrate 20 needs to be at least 0.8 λ or more, preferably 1 λ or more. In addition, an adhesion layer or an adjustment layer for adjusting the characteristics may be inserted between the substrate 20 and the piezoelectric layer 30.
 また、モデル1の圧電層30のオイラー角(φ,θ、ψ)=(90°,90°,30°)は、XカットLT-30°Y伝播の基板を用いていることとなる。このため、基板20の材料等により縦方向の漏洩を低減することはできるが、横方向の漏洩が生じる虞がある。このため、IDT電極4にダミー電極を設けたり、ダミー電極と電極指41との交差領域とにおいて音速を異ならせたりしてもよい。また、パワーフローの方向にIDTを傾けて配置しても良い。また、電極指41の交差幅を徐々に変化させる「アポタイズ型」としてもよい。 Further, the Euler angles (φ, θ, ψ) = (90 °, 90 °, 30 °) of the piezoelectric layer 30 of the model 1 means that a substrate of X-cut LT-30 ° Y propagation is used. Therefore, although the leakage in the vertical direction can be reduced by the material of the substrate 20 or the like, the leakage in the lateral direction may occur. Therefore, the IDT electrode 4 may be provided with a dummy electrode, or the speed of sound may be made different in the intersection region of the dummy electrode and the electrode finger 41. Also, the IDT may be inclined and disposed in the direction of the power flow. Further, the “apodized type” may be used in which the crossing width of the electrode finger 41 is gradually changed.
 なお、この例では、基板20を1λとし、その下面にSiからなる支持基板10を設けている。このような構成とすることで、熱膨張係数の小さいSiによる熱応力が圧電層30にかかるため、温度変化によっての特性変化を低減したSAW素子1とすることができる。 In this example, the substrate 20 is 1λ, and the supporting substrate 10 made of Si is provided on the lower surface thereof. With such a configuration, the thermal stress due to Si having a small thermal expansion coefficient is applied to the piezoelectric layer 30, so that it is possible to obtain the SAW element 1 in which the characteristic change due to the temperature change is reduced.
 <インピーダンス特性と圧電層30のオイラー角、厚み、電極4の厚みとの相関> 
 SAW素子1のインピーダンス特性は、圧電層30のオイラー角、厚み、電極4の厚みによって変化する。例えば、モデル1について、圧電層30のオイラー角を(90°,90°,30°)固定とし、圧電層30の厚みを0.2λまで薄くした場合のインピーダンス特性を図5に示す。図5(a)は周波数に対するインピーダンス特性を示す線図であり、縦軸はインピーダンス(単位:Ω),横軸は周波数(単位:MHz)を示している。また、図5(b)は周波数に対する位相特性を示す線図であり、縦軸は位相(単位:°)、横軸は周波数(単位:MHz)である。この場合、反共振付近のインピーダンス位相特性が、-90°よりも盛り上がっている。これは、この周波数領域で大きなロスが発生していることを示している。
<Correlation between impedance characteristics and Euler angle and thickness of piezoelectric layer 30, thickness of electrode 4>
The impedance characteristics of the SAW element 1 change according to the Euler angle and thickness of the piezoelectric layer 30 and the thickness of the electrode 4. For example, with respect to the model 1, impedance characteristics when the Euler angles of the piezoelectric layer 30 are fixed (90 °, 90 °, 30 °) and the thickness of the piezoelectric layer 30 is reduced to 0.2λ are shown in FIG. FIG. 5A is a graph showing impedance characteristics with respect to frequency. The vertical axis represents impedance (unit: Ω), and the horizontal axis represents frequency (unit: MHz). FIG. 5B is a diagram showing phase characteristics with respect to frequency, in which the vertical axis is phase (unit: °) and the horizontal axis is frequency (unit: MHz). In this case, the impedance phase characteristic in the vicinity of the antiresonance rises more than -90 °. This indicates that a large loss occurs in this frequency range.
 また、圧電層30の厚みを0.35λまで厚くした場合のインピーダンス特性を図6に示す。図6(a),図6(b)は図5(a),図5(b)に相当する図面である。この場合には、反共振よりも高周波側に、大きなスプリアス振動が発生している。 The impedance characteristics when the thickness of the piezoelectric layer 30 is increased to 0.35 λ are shown in FIG. 6 (a) and 6 (b) correspond to FIGS. 5 (a) and 5 (b). In this case, a large spurious vibration is generated on the high frequency side than the antiresonance.
 このように、圧電層30の厚みには適切な範囲があり、かつ、その範囲は圧電層30のオイラー角、電極4の厚みと関係している。 Thus, the thickness of the piezoelectric layer 30 has an appropriate range, and the range is related to the Euler angle of the piezoelectric layer 30 and the thickness of the electrode 4.
 図7は、圧電層30のオイラー角のψを変化させたときに、圧電層30の厚みと電極4の厚みに対するインピーダンス特性変化をシミュレーションした結果である。図7の各グラフにおいて、横軸は電極4の厚み、縦軸は圧電層30の厚みであり、ψごとにインピーダンス波形の良いパラメーターの領域(R1)を塗りつぶしたものである。 FIG. 7 is a result of simulating a change in impedance characteristics with respect to the thickness of the piezoelectric layer 30 and the thickness of the electrode 4 when the Euler angle of the piezoelectric layer 30 is changed. In each graph of FIG. 7, the horizontal axis represents the thickness of the electrode 4 and the vertical axis represents the thickness of the piezoelectric layer 30, and the region (R1) with a good parameter of the impedance waveform is filled for each ridge.
 また、図7でSPと示された領域は図6に示すように大きなスプリアス振動が発生する領域である。また、LSと示された領域は図5に示すようにインピーダンス特性に大きなロスが発生する領域である。この領域を除いた、塗りつぶし領域R1が、良好なインピーダンス特性となる範囲である。 Further, a region indicated as SP in FIG. 7 is a region where a large spurious vibration occurs as shown in FIG. Further, a region indicated by LS is a region where a large loss occurs in the impedance characteristic as shown in FIG. The filled area R1 excluding this area is a range in which good impedance characteristics are obtained.
 なお、図7において領域R1は、濃色部と淡色部とが存在する。いずれも良好なインピーダンス特性を示しているが、製造のばらつき等を考慮して領域R1のうち濃色部の領域となるように、ψ,電極4の厚み,圧電層30の厚みを調整してもよい。 In FIG. 7, a dark color portion and a light color portion exist in the region R1. Although all show good impedance characteristics, the thickness of the electrode 4, the thickness of the electrode 4 and the thickness of the piezoelectric layer 30 are adjusted so as to be the area of the dark color part of the area R1 in consideration of the manufacturing variation and the like. It is also good.
 ここで、図7について詳述する。図7において、ψが±2°変動してもR1領域は同様であることを確認している。また、図7において、ψは10°刻みで表示しているが、その中間の角度の場合には以下の通り判断する。すなわち、1つの角度と、その次の水準の角度と(例えばψ=20°のときと、ψ=30°のとき)の両方において、領域R1内にある電極厚みと圧電層30の厚みとの組み合わせは、隣り合う水準のψの角度間(例えば20°≦ψ≦30°)のいずれの角度の場合もR1領域にあるものとする。逆に、一方の角度の場合には領域R1内であるが、次の水準の角度の場合には領域R1の範囲外にあるような電極厚みと圧電層30の厚みとの組み合わせは、隣り合うψの角度間においては領域R1外にあるものとする。具体例として、モデル1の電極厚み:0.07λ、圧電層30厚み:0.25λの組み合わせの場合には、ψが-10°~60°のいずれ場合であってもR1領域内に位置する。また、電極厚み:0.07λ、圧電層厚み:0.2λの組み合わせの場合には、ψ=20°±2°のときは領域R1内であるが、ψ=30°±2°の場合には領域R1外であるため、23°≦ψ≦27°においても領域R1外であるものと推定する。 Here, FIG. 7 will be described in detail. In FIG. 7, it is confirmed that the R1 region is the same even if ψ fluctuates by ± 2 °. Further, in FIG. 7, ψ is displayed in increments of 10 °, but in the case of an intermediate angle, it is determined as follows. That is, the electrode thickness in the region R1 and the thickness of the piezoelectric layer 30 both at one angle, at the next level, and at (for example, ψ = 20 ° and ψ = 30 °) The combination is assumed to be in the R1 region in the case of any angle between the angles of the wedges of adjacent levels (for example, 20 ° ≦) ≦ 30 °). On the contrary, in the case of one angle, the combination of the electrode thickness and the thickness of the piezoelectric layer 30 which is in the region R1 but outside the range of the region R1 in the case of the next level angle is adjacent It is assumed that it is outside the region R1 between the angles of the eyebrows. As a specific example, in the case of the combination of the electrode thickness of model 1: 0.07 λ and the thickness of piezoelectric layer 30: 0.25 λ, it is located within the R1 region regardless of whether ψ is -10 ° to 60 °. . In the case of the combination of electrode thickness: 0.07 λ and piezoelectric layer thickness: 0.2 λ, the region R1 is in the case of ψ = 20 ° ± 2 °, but in the case of ψ = 30 ° ± 2 °. Since it is outside the region R1, it is estimated that it is outside the region R1 also at 23 ° ≦ ψ ≦ 27 °.
 上述したように、SAW素子1のインピーダンス特性は、オイラー角のφやθに対しては少しの変化でスプリアスが現れてしまうが、図7からわかるように、ψを変化させてもそれほど大きくは変わらない。しかし、ψが大きく変わると、共振周波数fr、周波数差df(反共振周波数fa-共振周波数fr)が変化する。 As described above, the impedance characteristics of the SAW element 1 appear spurious with a slight change with respect to the Euler angles φ and θ, but as can be seen from FIG. does not change. However, when ψ changes significantly, the resonance frequency fr and the frequency difference df (anti-resonance frequency fa−resonance frequency fr) change.
 図8(a),図8(b)に、モデル1のパラメーターで圧電層30の厚みを0.25λに固定し、電極4の厚みを変えたときのfrとdfの変化を、各ψについてプロットしたものを示す。図8において、横軸は周波数(単位:MHz)、縦軸はインピーダンス(単位:Ω)である。 8 (a) and 8 (b), the thickness of the piezoelectric layer 30 is fixed at 0.25 λ with the parameters of the model 1, and the changes in fr and df when the thickness of the electrode 4 is changed are shown for each ridge. It shows what was plotted. In FIG. 8, the horizontal axis is frequency (unit: MHz), and the vertical axis is impedance (unit: Ω).
 図8から、fr、dfともにψ=30°~40°付近で最大値になることが分かる。ψがそれよりも小さいか、大きくなると、fr、dfともに小さくなる。fr、dfともに大きいほうが特性では有利になるため、ψは20°から50°が望ましい。特に望ましい範囲は25°~40°である。また、電極4の厚みを薄くしたほうが、fr、dfともに大きくなるが、電極4の厚みを薄くしすぎると電気抵抗が大きくなってロスが大きくなる。このため、電極4の厚みは0.05λ~0.08λが望ましい。 It can be seen from FIG. 8 that both fr and df have maximum values near ψ = 30 ° to 40 °. If ψ becomes smaller or larger than that, both fr and df become smaller. It is desirable that ψ be 20 ° to 50 °, since it is advantageous for the characteristics to be larger if both fr and df are larger. A particularly desirable range is 25 ° to 40 °. In addition, both the fr and df become larger as the thickness of the electrode 4 is made thinner, but if the thickness of the electrode 4 is made too thin, the electrical resistance becomes larger and the loss becomes larger. Therefore, the thickness of the electrode 4 is preferably 0.05λ to 0.08λ.
 図9(a),図9(b)に、モデル1のパラメーターで電極4の厚みを0.07λに固定し、圧電層30の厚みを変えたときのfrとdfとの変化を、各ψについてプロットしたものを示す。図9において、横軸は周波数(単位:MHz)、縦軸はインピーダンス(単位:Ω)である。 9 (a) and 9 (b), when the thickness of the electrode 4 is fixed to 0.07 λ by the parameter of the model 1 and the thickness of the piezoelectric layer 30 is changed, the changes between fr and df are shown in FIG. It shows what was plotted about. In FIG. 9, the horizontal axis is frequency (unit: MHz), and the vertical axis is impedance (unit: Ω).
 図8と同様に、fr、dfともにψ=30°~40°付近で最大値になることが分かる。また、圧電層30の厚みを薄くしたほうがfrは大きくなる一方で、dfはわずかに小さくなる。また、圧電層30の厚みを薄くしすぎると強度が低下して信頼性が劣化したり、要求される加工精度が高くったりする等の問題が発生するため、圧電層30の厚みは0.225λ~0.3λが望ましい。 Similar to FIG. 8, it can be seen that both fr and df have maximum values near ψ = 30 ° to 40 °. In addition, when the thickness of the piezoelectric layer 30 is reduced, fr increases while df decreases slightly. In addition, if the thickness of the piezoelectric layer 30 is too thin, the strength is reduced and the reliability is degraded, and the required processing accuracy is increased. Therefore, the thickness of the piezoelectric layer 30 is 0.225λ. It is desirable that ~ 0.3 λ.
 <変形例>
 上述の例では、支持基板10を有するSAW素子1について説明したが、基板20の厚みには電気特性上の上限は無いため、基板20を厚くして支持基板10としての機能をもたせることで、支持基板10は省略されても良い。
<Modification>
In the above example, the SAW element 1 having the support substrate 10 has been described. However, since the thickness of the substrate 20 has no upper limit in electrical characteristics, the substrate 20 can be thickened to have the function as the support substrate 10 The support substrate 10 may be omitted.
 例えば、図10に示すように基板20が50μm~250μm程度の厚みを有するAlN基板、サファイア基板等を用いてもよい。また、基板20と圧電層30の間には、密着層や、特性を調整するための調整層が挿入されていても良い。 For example, as shown in FIG. 10, an AlN substrate, a sapphire substrate or the like in which the substrate 20 has a thickness of about 50 μm to 250 μm may be used. In addition, an adhesion layer or an adjustment layer for adjusting the characteristics may be inserted between the substrate 20 and the piezoelectric layer 30.
 <変形例2>
 上述の例では、支持基板10と基板20との組み合わせ例については言及していないが、支持基板10をサファイア単結晶として、基板20をAlNとしてもよい。この場合には、支持基板10と基板2とが共にAl系材料となる。従って、支持基板10と基板20とを貼り合せて接合するときには、接合界面のミスマッチを低減することができるので、弾性波の損失を低減することができる。また、強固な接合を実現することができるので信頼性を高めることができる。また、支持基板10上に基板20を成膜して形成する場合には、同じ材料系のため、界面のミスマッチを低減するとともに、成膜する膜品質を高めることができ、弾性波の損失を低減することができる。
<Modification 2>
Although the above example does not mention the combination example of the support substrate 10 and the substrate 20, the support substrate 10 may be made of sapphire single crystal and the substrate 20 may be made of AlN. In this case, both the support substrate 10 and the substrate 2 become an Al-based material. Therefore, when the support substrate 10 and the substrate 20 are bonded and bonded, the mismatch of the bonding interface can be reduced, so the loss of elastic waves can be reduced. Further, since strong bonding can be realized, reliability can be improved. In the case of forming the substrate 20 on the supporting substrate 10 by film forming, because of the same material system, the interface mismatch can be reduced, and the quality of the film to be formed can be enhanced, and the loss of elastic waves It can be reduced.
 <変形例3>
 上述の例では、基板20をAlNとした例を説明したが、基板20をSiCとしてもよい。SiCはカットオフ周波数が高いため、図3,図5等で確認された反共振周波数よりも高周波数側におけるロスの発生を低減することができる。具体的には3000MHzの共振に対して3800MHz近傍までフロアレベルの上昇は確認されなかった。
<Modification 3>
In the above-mentioned example, although the example which made substrate 20 AlN was explained, it is good also as substrate 20 as SiC. Since the cut-off frequency of SiC is high, it is possible to reduce the occurrence of loss on the higher frequency side than the antiresonance frequency confirmed in FIGS. Specifically, no rise in the floor level was confirmed up to around 3800 MHz with respect to the resonance of 3000 MHz.
 基板20としてSiCを用いた場合のSAW素子1のインピーダンス特性と圧電層30のオイラー角、電極4の厚みとの相関をシミュレーションした。具体的には、圧電層30は、厚みを0.3λ,0.5λの2水準、オイラー角を(86°~94°,86°~94°,-10°~70°)とし、電極4の厚みを、0.04λ~0.08λとし、周波数特性をシミュレーションした。 The correlation between the impedance characteristic of the SAW element 1 when using SiC as the substrate 20, the Euler angle of the piezoelectric layer 30, and the thickness of the electrode 4 was simulated. Specifically, the piezoelectric layer 30 has two thicknesses of 0.3 λ and 0.5 λ, and an Euler angle of (86 ° to 94 °, 86 ° to 94 °, −10 ° to 70 °). The frequency characteristics were simulated by setting the thickness of V to 0.04λ to 0.08λ.
 その結果、圧電層30のオイラー角のうち、φとθとについては図4と同様にφ=90°±0.5°,θ=90°±1°とすることで共振点近傍にスプリアスのない波形を得ることができる。 As a result, among the Euler angles of the piezoelectric layer 30, with respect to φ and θ, by setting φ = 90 ° ± 0.5 ° and θ = 90 ° ± 1 ° as in the case of FIG. Can get no waveform.
 圧電層30のオイラー角のうちψは、変化させた場合もスプリアスの位置,強度等に大きな特性の変化はなかった。ただし、ψ=20°以上30°以下の場合に他の伝播角に比べdfが大きくなっていた。 Among the Euler angles of the piezoelectric layer 30, ψ was not changed significantly in the position, intensity, etc. of the spurious even when changed. However, in the case of ψ = 20 ° or more and 30 ° or less, df was larger than other propagation angles.
 次に、電極4の厚みを変化させてfr,スプリアスの位置と大きさを確認した結果、frとスプリアスの大きさについては電極4の厚みの影響は確認されなかった。ただし、スプリアスの位置は電極4の厚みが薄い程高周波数側にシフトしていく様子を確認した。その結果より、電極4の厚みは0.04λ~0.08λとしてもよい。0.04λ以上とすると電極としての抵抗が悪化することなく共振特性を得ることができる。0.08λ以下とすると、スプリアスの位置が約3500MHzとなり反共振周波数よりも高周波側においてロスが悪化することなく共振特性を得ることができる。 Next, the thickness of the electrode 4 was changed to check the position and the magnitude of fr and spurious. As a result, the influence of the thickness of the electrode 4 was not confirmed for the magnitude of fr and spurious. However, it was confirmed that the position of the spurious shifts to the higher frequency side as the thickness of the electrode 4 is thinner. From the result, the thickness of the electrode 4 may be 0.04λ to 0.08λ. When it is 0.04 λ or more, resonance characteristics can be obtained without deterioration of the resistance as an electrode. When the wavelength is 0.08 λ or less, the position of the spurious is about 3500 MHz, and the resonance characteristics can be obtained without deterioration of the loss on the side higher than the antiresonance frequency.
 上述のシミュレーションは、SiCとして単結晶基板を用い、第1面20Aが(0001)面となっている場合を例に説明したが、セラミックのSiC基板を用いても、fr、df、スプリアスの位置および強度、ロス等に違いは見られなかった。また、この単結晶SiC基板およびセラミックのSiC基板双方において、SAWの伝播方向に対して面方向に回転させた場合(SiC基板のψを回転させた場合)においても特性の変化は確認されなかった。すなわち、SAW素子1において、基板20としてSiCを用いる場合には、基板の結晶性を含む各種パラメータに強く影響されることなく安定した特性のSAW素子1を提供することができる。 Although the above simulation has been described taking the case where the single crystal substrate is used as SiC and the first surface 20A is the (0001) surface as an example, the positions of fr, df and spurious are also used when using a ceramic SiC substrate And there was no difference in strength, loss, etc. Further, in both of the single crystal SiC substrate and the ceramic SiC substrate, no change in the characteristics was observed even when rotated in the plane direction with respect to the propagation direction of the SAW (when the crucible of the SiC substrate was rotated). . That is, in the case where SiC is used as the substrate 20 in the SAW element 1, it is possible to provide the SAW element 1 having stable characteristics without being strongly affected by various parameters including the crystallinity of the substrate.
 なお、SiCは半導体であり、一般的には導電性を持つ。導電性が大きくなると、SAW特性に影響が出るため、SiC基板の導電率は高いほうが良い。具体的にはSiC基板の導電率は1kΩcm以上としてもよい。 SiC is a semiconductor and generally has conductivity. As the conductivity increases, the SAW characteristics are affected, so the conductivity of the SiC substrate should be high. Specifically, the conductivity of the SiC substrate may be 1 kΩcm or more.
 <変形例4>
 上述の例では、基板20をAlNとした例を説明したが、基板20をサファイアとしてもよい。基板としてサファイアを用いた場合のSAW素子1のインピーダンス特性と圧電層30のオイラー角、電極4の厚みとの相関をシミュレーションした。具体的には、圧電層30は、厚みを0.3λ,0.5λの2水準、オイラー角を(86°~94°,86°~94°,-10°~70°)とし、電極4の厚みは、0.04λ~0.08λとし、それぞれの条件を組み合わせて周波数特性をシミュレーションした。その結果、AlN,SiCと同様に、スプリアス、ロスを低減して3GHzの共振を得ることを確認し、さらに、φ,θに対する特性変化も同様の傾向であることを確認した。
<Modification 4>
In the above-mentioned example, although the example which made substrate 20 AlN was explained, it is good also as substrate 20 as sapphire. The correlation between the impedance characteristic of the SAW element 1 and the Euler angle of the piezoelectric layer 30 and the thickness of the electrode 4 when sapphire was used as the substrate was simulated. Specifically, the piezoelectric layer 30 has two thicknesses of 0.3 λ and 0.5 λ, and an Euler angle of (86 ° to 94 °, 86 ° to 94 °, −10 ° to 70 °). The thickness of each was 0.04 λ to 0.08 λ, and the frequency characteristics were simulated by combining the respective conditions. As a result, as in the case of AlN and SiC, it was confirmed that the spurious and loss were reduced to obtain a resonance of 3 GHz, and it was further confirmed that the characteristic change with respect to φ and θ had the same tendency.
 図11(a),(b)に、基板20をサファイアとした場合の周波数特性を示す。また、参考例として図11(c),(d)に基板20をアルミナとした場合の周波数特性を示す。図11(a),(c)において、横軸は周波数を、縦軸はインピーダンスを示している。図11(b)、(d)において、横軸は周波数を、縦軸は位相を示している。この図からも明らかなように、基板20をサファイアとした場合には、アルミナに比べてカットオフ周波数が高くなり、反共振周波数よりも高周波数側において(具体的には、3300MHz付近)もロスの発生を低減できていることを確認した。 FIGS. 11A and 11B show frequency characteristics when the substrate 20 is made of sapphire. Further, as reference examples, frequency characteristics when the substrate 20 is made of alumina are shown in FIGS. 11 (c) and 11 (d). In FIGS. 11 (a) and 11 (c), the horizontal axis represents frequency, and the vertical axis represents impedance. In FIGS. 11B and 11D, the horizontal axis indicates the frequency and the vertical axis indicates the phase. As apparent from this figure, when the substrate 20 is made of sapphire, the cutoff frequency is higher than that of alumina, and the loss is also in the high frequency side (specifically, around 3300 MHz) than the antiresonance frequency. Was confirmed to be able to reduce the occurrence of
 このように、同じ材料系であってもサファイアとアルミナとで周波数特性に差が生じた。これは、サファイアの異方性が原因である可能性がある。このため、サファイアのオイラー角を変化させて周波数特性を確認した。その結果、サファイアのオイラー角を(90°,90°,140°~160°)としたときにスプリアスの発生を低減するとともに、カットオフ周波数を十分高周波数側に位置させることができることを見出した。 Thus, even in the same material system, differences in frequency characteristics occurred between sapphire and alumina. This may be due to the anisotropy of the sapphire. Therefore, the Euler angle of sapphire was changed to confirm the frequency characteristics. As a result, it has been found that when the Euler angle of sapphire is (90 °, 90 °, 140 ° to 160 °), generation of spurious can be reduced and the cutoff frequency can be positioned on a sufficiently high frequency side .
 図12に、圧電層30を、厚みを0.3λ,オイラー角(90°,90°,30°)とし、基板20のオイラー角を(90°,90°,120°~170°)と変化させた場合の周波数特性を示す。上段はインピーダンス特性を示し、下段は位相特性を示す。 In FIG. 12, the thickness of the piezoelectric layer 30 is 0.3λ, the Euler angles (90 °, 90 °, 30 °), and the Euler angles of the substrate 20 are changed to (90 °, 90 °, 120 ° to 170 °). It shows the frequency characteristics in the case of The upper stage shows impedance characteristics, and the lower stage shows phase characteristics.
 図12からも明らかなように、サファイアのオイラー角においてψが140°未満もしくは160°を超える場合には、カットオフ周波数が低周波数側にシフトし反共振周波数の高周波数側におけるロスが悪化する。また、ψが130°以下となるとスプリアスが大きくなりロスを生じる虞がある。以上より、基板20としてサファイア基板を用いる場合には、(90°,90°,140°~160°)やそれと等価な面(例えば、(90°,90°,-20°~-40°))とすることで、反共振周波数の高周波数側においてもロスを低減したSAW素子1を提供することができることが分かった。なお、サファイアにおいて、ψ,θ,ψともに±1°の誤差は許容するものとする。 As apparent from FIG. 12, when ψ is less than 140 ° or exceeds 160 ° at the Euler angle of sapphire, the cutoff frequency shifts to the low frequency side and the loss on the high frequency side of the antiresonance frequency is aggravated. . In addition, when the angle ψ becomes 130 ° or less, there is a possibility that the spurious increases and a loss occurs. From the above, when a sapphire substrate is used as the substrate 20, (90 °, 90 °, 140 ° to 160 °) or a plane equivalent thereto (for example, (90 °, 90 °, -20 ° to -40 °) It has been found that, by setting it as in the above, it is possible to provide the SAW element 1 in which the loss is reduced even on the high frequency side of the antiresonance frequency. In sapphire, an error of ± 1 ° is allowed for ψ, θ, and ψ.
 次に、圧電層30のオイラー角とサファイアのオイラー角との相対角度を変化させたときの周波数特性をシミュレーションした。具体的にはサファイアのオイラー角のψを140°,150°,160°とし、圧電層30のオイラー角のψを20°,30°,40°としてシミュレーションを行なった。その結果、圧電層30のオイラー角によらず、ロスの小さいSAW素子1を提供することのできるサファイアのオイラー角は(90°,90°,150°)であることを確認した。その中でも、圧電層30のオイラー角のψを30°としたときにはスプリアスの発生を低減できることを確認した。 Next, frequency characteristics were simulated when the relative angle between the Euler angle of the piezoelectric layer 30 and the Euler angle of sapphire was changed. Specifically, the simulation was performed with the Euler angles of sapphire set to 140 °, 150 °, and 160 °, and the Euler angles of the piezoelectric layer 30 set to 20 °, 30 °, and 40 °. As a result, regardless of the Euler angle of the piezoelectric layer 30, it was confirmed that the Euler angles of sapphire capable of providing the SAW device 1 with small loss are (90 °, 90 °, 150 °). Among them, it was confirmed that generation of spurious can be reduced when the Euler angle of the piezoelectric layer 30 is set to 30 °.
 <変形例5>
 上述の例では、圧電層30と基板20とが直接接合された場合を例に説明したが、図13に示すように、中間層50を介在させてもよい。中間層50は、圧電層30を伝播する弾性波の音速が圧電層30および基板20よりも小さい材料からなる。このような材料は、例えば、SiOである。また、その厚みは圧電層30に比べ薄く、例えば、0.08λ~0.1λとしてもよい。
<Modification 5>
In the above-mentioned example, although the case where piezoelectric layer 30 and substrate 20 were directly joined was explained to an example, as shown in Drawing 13, middle layer 50 may be made to intervene. The intermediate layer 50 is made of a material in which the acoustic velocity of the elastic wave propagating through the piezoelectric layer 30 is smaller than that of the piezoelectric layer 30 and the substrate 20. Such a material is, for example, SiO 2 . Further, the thickness thereof is thinner than that of the piezoelectric layer 30, and may be, for example, 0.08λ to 0.1λ.
 音速の遅い中間層50を設けることで、圧電層30を伝播する弾性波の振動が中間層50に多く移動する。その結果、弾性波の音速が低くなる。ここで、圧電層30は厚みが薄くなるほど共振周波数が高周波数側にシフトする。これに対して、中間層50がある場合には、圧電層30の厚みが薄くなるほど中間層50に弾性波が移動し、その結果、音速が遅くなり共振周波数が低くなる。このように、圧電層30が薄くなることで共振周波数が高周波数化する効果と、圧電層30が薄くなることで共振周波数が低周波数化する効果とが互いに相殺しあう。その結果、圧電層30の膜厚が変化しても共振周波数が変動しない、ロバスト性の高い弾性波素子1を提供できるものとなる。 By providing the intermediate layer 50 having a low sound velocity, the vibration of the elastic wave propagating in the piezoelectric layer 30 is moved to the intermediate layer 50 in a large amount. As a result, the acoustic velocity of the elastic wave is reduced. Here, as the thickness of the piezoelectric layer 30 decreases, the resonance frequency shifts to the high frequency side. On the other hand, when the intermediate layer 50 is present, the elastic wave moves to the intermediate layer 50 as the thickness of the piezoelectric layer 30 becomes thinner, and as a result, the speed of sound becomes slower and the resonance frequency becomes lower. Thus, the effect of increasing the resonant frequency by thinning the piezoelectric layer 30 and the effect of decreasing the resonant frequency by thinning the piezoelectric layer 30 cancel each other. As a result, even if the film thickness of the piezoelectric layer 30 changes, the elastic wave element 1 with high robustness can be provided in which the resonance frequency does not change.
 図14に、基板20がAlN、中間層50の厚みが0.025λ,0.05λ,0.075λ,0.1λ,0.125λ,0.15λ,0.175λのときに、各圧電層30の厚みと共振周波数(a)と反共振周波数(b)の値との相関をシミレーションした結果を示す。なお、周波数は圧電層30の厚みが0.35λ(0.7p)、中間層50の厚み0.025λ(0.05p)の時の値で規格化されている。また、膜厚はIDT電極のピッチp(=0.5λ)で規格化されている。圧電層30の厚みが0.2λ~0.35λの範囲においては、中間層50の厚みを0.075λ~0.125λとすることで圧電層30の厚みが変化してもfrの値を一定とすることができることを確認した。また、図18に基板20がサファイア単結晶の時、図19に基板20がSiCの時の同様の結果を示したが、図14に示したAlNの場合とほぼ同様の結果となった。 In FIG. 14, when the substrate 20 is made of AlN and the thickness of the intermediate layer 50 is 0.025λ, 0.05λ, 0.075λ, 0.1λ, 0.125λ, 0.15λ, 0.175λ, the respective piezoelectric layers 30 are formed. It shows the result of simulating the correlation between the thickness and the value of the resonant frequency (a) and the antiresonant frequency (b). The frequency is normalized to the value when the thickness of the piezoelectric layer 30 is 0.35λ (0.7 p) and the thickness of the intermediate layer 50 is 0.025 λ (0.05 p). Further, the film thickness is standardized by the pitch p (= 0.5 λ) of the IDT electrode. When the thickness of the piezoelectric layer 30 is in the range of 0.2λ to 0.35λ, setting the thickness of the intermediate layer 50 to 0.075λ to 0.125λ makes the value of fr constant even if the thickness of the piezoelectric layer 30 changes. And confirmed that it can. Further, FIG. 18 shows the same result when the substrate 20 is SiC when the substrate 20 is sapphire single crystal, but the result is almost similar to the case of AlN shown in FIG.
 <変形例6>
 SAW素子1は、IDT電極4に並列に接続される容量部60を備えていてもよい。容量部60により、dfを小さくすることができるので、所望のdfを備えるよう調整することができる。このような容量部60をIDT電極4と同様のインターディジタル型の電極で形成する場合には、容量部の電極指43(容量部電極指43)の繰り返し配列方向D1を、共振子として機能するIDT電極4の電極指41の配列方向D2と異ならせてもよい。このような構成とすることで、容量部60による共振の影響を低減することができる。さらに、支持基板10としてSi(111)面を用いる場合には、図15に示すように、配列方向D1を-60°±5°,60°±5°とすると、frよりも高周波数側に位置するスプリアスの最大強度を低くすることができる。
<Modification 6>
The SAW element 1 may include a capacitance unit 60 connected in parallel to the IDT electrode 4. Since the capacitance portion 60 can reduce df, it can be adjusted to have a desired df. When such a capacitive portion 60 is formed of an interdigital electrode similar to the IDT electrode 4, the repetitive arrangement direction D1 of the electrode fingers 43 (capacitive portion electrode fingers 43) of the capacitive portion functions as a resonator. The arrangement direction D 2 of the electrode fingers 41 of the IDT electrode 4 may be different. With such a configuration, the influence of the resonance by the capacitive section 60 can be reduced. Furthermore, when using a Si (111) plane as the support substrate 10, as shown in FIG. 15, if the arrangement direction D1 is -60 ° ± 5 °, 60 ° ± 5 °, the frequency is higher than fr. The maximum intensity of the located spurs can be lowered.
 ここで、Siの(111)面はオイラー角で表わすと(-45°,-54.7°,ψ)となる。ここで、ψを変化させたときの、スプリアスの最大強度をシミュレーションした。その結果を図16に示す。図16において、横軸は配列方向D1,縦軸はψであり、スプリアスの最大強度を等高線で示している。図16からも明らかなように、支持基板10のψを0°~20°、40°~140°、160°~180°とした場合にスプリアス強度を小さくすることができる。 Here, the (111) plane of Si is (-45 °, -54.7 °, ψ) in Euler angles. Here, the maximum intensity of the spurious was simulated when ψ was changed. The results are shown in FIG. In FIG. 16, the horizontal axis is the arrangement direction D 1 and the vertical axis is ψ, and the maximum intensity of the spurious is indicated by contour lines. As apparent from FIG. 16, the spurious intensity can be reduced when the wedge of the support substrate 10 is set to 0 ° to 20 °, 40 ° to 140 °, and 160 ° to 180 °.
 図17に変形例5の構成において、変形例6の支持基板10および容量部60を設けたときの、配列方向D2(SAW伝播方向)と、圧電層30,基板20,支持基板10のオイラー角との関係および容量部60の配列方向D2との関係を示す図である。図17(a)は圧電層30を上面からみた図であり、図17(b)は基板20を上面からみた図であり、図17(c)は支持基板10を上面からみた図である。図17(a)には、圧電層30上に配置されるIDT電極4および容量部60の配置関係を示す模式図も図示している。 17, the arrangement direction D2 (SAW propagation direction) and the Euler angles of the piezoelectric layer 30, the substrate 20, and the support substrate 10 when the support substrate 10 and the capacitance portion 60 of the modification 6 are provided in the configuration of the modification 5 in FIG. And the arrangement direction D2 of the capacitive portion 60. FIG. FIG. 17A is a view of the piezoelectric layer 30 from the top, FIG. 17B is a view of the substrate 20 from the top, and FIG. 17C is a view of the support substrate 10 from the top. FIG. 17A also shows a schematic view showing the arrangement relationship between the IDT electrode 4 and the capacitor portion 60 disposed on the piezoelectric layer 30. As shown in FIG.
 このような関係とすることで、基板20のカットオフ周波数を高くして、反共振周波数よりも高周波数側において損失を少なくするとともに、反共振周波数よりも高周波数側に発生するスプリアスの強度も低減することができる。 With such a relationship, the cutoff frequency of the substrate 20 is increased to reduce the loss on the high frequency side relative to the antiresonance frequency, and the intensity of the spurious generated on the high frequency side relative to the antiresonance frequency is also obtained. It can be reduced.
 なお、このような容量部60の配列方向D1と支持基板10のオイラー角との関係は、圧電層30と支持基板10との間に基板20がある場合もない場合も同様であることを確認している。 In addition, it is confirmed that the relationship between the arrangement direction D1 of the capacitive portions 60 and the Euler angle of the support substrate 10 is the same even when there is no substrate 20 between the piezoelectric layer 30 and the support substrate 10. doing.
1:弾性波素子
20:基板
30:圧電層
4:IDT電極
41:電極指
1: Elastic wave element 20: Substrate 30: Piezoelectric layer 4: IDT electrode 41: Electrode finger

Claims (14)

  1.  複数の電極指を含むIDT電極と、
     上面に前記IDT電極が位置しており、前記複数の電極指の繰り返し間隔の2倍で定義される波長をλとすると0.35λ未満の厚みである、タンタル酸リチウム単結晶からなり、そのオイラー角が(90±0.5,90±1,20~50)である圧電層と、
     横波音速V(m/s)が5800m/s以上であり、前記圧電層の下面に直接または間接的に接合された第1面を備える基板と、を備える弾性波素子。
    An IDT electrode comprising a plurality of electrode fingers,
    Said IDT electrode is located on the upper surface, and it is made of lithium tantalate single crystal having a thickness of less than 0.35.lamda., Where .lambda. Is a wavelength defined by twice the repetition interval of the plurality of electrode fingers, and its Euler A piezoelectric layer having an angle of (90 ± 0.5, 90 ± 1, 20 to 50),
    A substrate comprising a first surface having a shear wave velocity V (m / s) of 5800 m / s or more and directly or indirectly bonded to the lower surface of the piezoelectric layer.
  2.  前記基板は、窒化アルミ、窒化チタン、窒化珪素、炭化珪素、サファイア、ダイアモンド、窒化ホウ素、ダイアモンドライクカーボンのいずれかからなり、その厚みが1λ以上である、請求項1に記載の弾性波素子。 The elastic wave device according to claim 1, wherein the substrate is made of any of aluminum nitride, titanium nitride, silicon nitride, silicon carbide, sapphire, diamond, boron nitride and diamond like carbon, and the thickness thereof is 1 λ or more.
  3.  前記基板は、前記第1面と対向する第2面を備え、
     前記第2面に直接または間接的に接合された厚み1λを超える支持基板をさらに備える、請求項1または2に記載の弾性波素子。
    The substrate includes a second surface facing the first surface,
    The acoustic wave device according to claim 1, further comprising a support substrate having a thickness of more than 1 λ bonded directly or indirectly to the second surface.
  4.  前記圧電層の厚みと、前記IDT電極の厚みとの関係が、図7に塗りつぶしで示す範囲R1にある請求項1乃至3のいずれかに記載の弾性波素子。 The elastic wave device according to any one of claims 1 to 3, wherein the relationship between the thickness of the piezoelectric layer and the thickness of the IDT electrode is in a range R1 shown by solid lines in Fig. 7.
  5.  前記基板はサファイアであり、そのオイラー角が(90±1,90±1,-20~―40)である、請求項1または2に記載の弾性波素子。 The elastic wave device according to claim 1 or 2, wherein the substrate is sapphire, and the Euler angles thereof are (90 ± 1, 90 ± 1, -20 to -40).
  6.  前記基板は単結晶SiC基板からなり、その導電率が1kΩcm以上であることを特徴とする請求項1または2に記載の弾性波素子。 The elastic wave device according to claim 1 or 2, wherein the substrate is made of a single crystal SiC substrate and the conductivity is 1 kΩcm or more.
  7.  前記圧電層の厚みが、0.225λ~0.3λである請求項1乃至6のいずれかに記載の弾性波素子。 The elastic wave device according to any one of claims 1 to 6, wherein the thickness of the piezoelectric layer is 0.225 λ to 0.3 λ.
  8.  前記IDT電極の厚みが、0.05λ~0.08λである請求項1乃至7のいずれかに記載の弾性波素子。 The elastic wave device according to any one of claims 1 to 7, wherein the thickness of the IDT electrode is 0.05 λ to 0.08 λ.
  9.  前記支持基板はシリコンであり、前記圧電層、前記基板、前記支持基板の順に厚みが厚くなる、請求項3に記載の弾性波素子。 The elastic wave device according to claim 3, wherein the support substrate is silicon, and the thickness becomes thicker in the order of the piezoelectric layer, the substrate, and the support substrate.
  10.  前記IDT電極により生じる弾性波の共振周波数とλをかけた値が5800m/s以上である、請求項1乃至9のいずれかに記載の弾性波素子。 The elastic wave device according to any one of claims 1 to 9, wherein a value obtained by multiplying the resonance frequency of the elastic wave generated by the IDT electrode by λ is 5800 m / s or more.
  11.  前記圧電層と前記基板との間に、前記圧電層および前記基板に比べ前記横波音速が小さい材料からなり、厚み0.075λ以上0.125λ以下の中間層を含む、請求項1乃至10のいずれかに記載の弾性波素子。 11. The intermediate layer according to any one of claims 1 to 10, comprising an intermediate layer made of a material having a smaller shear velocity than the piezoelectric layer and the substrate and having a thickness of not less than 0.075λ and not more than 0.125λ between the piezoelectric layer and the substrate. Acoustic wave element described in.
  12.  前記中間層は、二酸化ケイ素膜である請求項11記載の弾性波素子。 The elastic wave device according to claim 11, wherein the intermediate layer is a silicon dioxide film.
  13.  前記基板は、前記第1面と対向する第2面を備え、
     前記第2面に直接または間接的に接合された厚み1λを超えるシリコンである支持基板を備え、
    前記IDT電極に並列に接続された、複数の容量部電極指を含むインターディジタル型の容量部を含み、前記容量部電極指の配列方向は、前記IDT電極の前記電極指の配列方向に対して60°±5°もしくは-60°±5°の角度をなしている、請求項1に記載の弾性波素子。
    The substrate includes a second surface facing the first surface,
    A supporting substrate which is silicon having a thickness of more than 1 λ bonded directly or indirectly to the second surface;
    It includes an interdigital capacitance unit including a plurality of capacitance unit electrode fingers connected in parallel to the IDT electrode, and the arrangement direction of the capacitance unit electrode fingers is with respect to the arrangement direction of the electrode fingers of the IDT electrode The elastic wave device according to claim 1, which forms an angle of 60 ° ± 5 ° or -60 ° ± 5 °.
  14.  前記支持基板のオイラー角は、(-45,-54.7,ψ)であり、ψは0~20°、40~140°および160~180°のいずれかである、請求項13に記載の弾性波素子。 The Euler angle of the support substrate is (-45, -54.7, ψ), and ψ is any of 0 to 20, 40 to 140 and 160 to 180. Acoustic wave element.
PCT/JP2018/038985 2017-10-23 2018-10-19 Acoustic wave element WO2019082806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019551094A JP7073392B2 (en) 2017-10-23 2018-10-19 Elastic wave element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017204478 2017-10-23
JP2017-204478 2017-10-23

Publications (1)

Publication Number Publication Date
WO2019082806A1 true WO2019082806A1 (en) 2019-05-02

Family

ID=66246485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038985 WO2019082806A1 (en) 2017-10-23 2018-10-19 Acoustic wave element

Country Status (2)

Country Link
JP (1) JP7073392B2 (en)
WO (1) WO2019082806A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050401A1 (en) * 2018-09-07 2020-03-12 株式会社村田製作所 Elastic wave device, high-frequency front end circuit, and communication device
JP2021044738A (en) * 2019-09-12 2021-03-18 京セラ株式会社 Acoustic wave element
WO2021090775A1 (en) * 2019-11-06 2021-05-14 株式会社村田製作所 Elastic wave device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316781A (en) * 1995-05-17 1996-11-29 Yasutaka Shimizu Surface acoustic wave element
JPH10178331A (en) * 1996-12-19 1998-06-30 Matsushita Electric Ind Co Ltd Surface acoustic wave element
JP2006025396A (en) * 2004-06-09 2006-01-26 Seiko Epson Corp Surface acoustic wave device, method of manufacturing the same, and electronic equipment
JP2006524016A (en) * 2003-03-03 2006-10-19 クリー インコーポレイテッド Nitride-based integrated acoustic wave device and method for manufacturing nitride-based integrated acoustic wave device
WO2011037145A1 (en) * 2009-09-25 2011-03-31 株式会社村田製作所 Surface acoustic wave device
WO2012086441A1 (en) * 2010-12-24 2012-06-28 株式会社村田製作所 Elastic wave device and production method thereof
JP3187231U (en) * 2013-09-05 2013-11-14 日本碍子株式会社 Composite board
WO2016104598A1 (en) * 2014-12-26 2016-06-30 京セラ株式会社 Acoustic wave device
WO2018097016A1 (en) * 2016-11-25 2018-05-31 国立大学法人東北大学 Elastic wave device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046236A1 (en) * 2005-10-19 2007-04-26 Murata Manufacturing Co., Ltd. Lamb wave device
CN105993129A (en) * 2014-03-14 2016-10-05 株式会社村田制作所 Acoustic wave device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316781A (en) * 1995-05-17 1996-11-29 Yasutaka Shimizu Surface acoustic wave element
JPH10178331A (en) * 1996-12-19 1998-06-30 Matsushita Electric Ind Co Ltd Surface acoustic wave element
JP2006524016A (en) * 2003-03-03 2006-10-19 クリー インコーポレイテッド Nitride-based integrated acoustic wave device and method for manufacturing nitride-based integrated acoustic wave device
JP2006025396A (en) * 2004-06-09 2006-01-26 Seiko Epson Corp Surface acoustic wave device, method of manufacturing the same, and electronic equipment
WO2011037145A1 (en) * 2009-09-25 2011-03-31 株式会社村田製作所 Surface acoustic wave device
WO2012086441A1 (en) * 2010-12-24 2012-06-28 株式会社村田製作所 Elastic wave device and production method thereof
JP3187231U (en) * 2013-09-05 2013-11-14 日本碍子株式会社 Composite board
WO2016104598A1 (en) * 2014-12-26 2016-06-30 京セラ株式会社 Acoustic wave device
WO2018097016A1 (en) * 2016-11-25 2018-05-31 国立大学法人東北大学 Elastic wave device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050401A1 (en) * 2018-09-07 2020-03-12 株式会社村田製作所 Elastic wave device, high-frequency front end circuit, and communication device
US11855609B2 (en) 2018-09-07 2023-12-26 Murata Manufacturing Co., Ltd. Acoustic wave device, radio-frequency front end circuit, and communication device
JP2021044738A (en) * 2019-09-12 2021-03-18 京セラ株式会社 Acoustic wave element
JP7401999B2 (en) 2019-09-12 2023-12-20 京セラ株式会社 elastic wave element
WO2021090775A1 (en) * 2019-11-06 2021-05-14 株式会社村田製作所 Elastic wave device
JPWO2021090775A1 (en) * 2019-11-06 2021-05-14
JP7392734B2 (en) 2019-11-06 2023-12-06 株式会社村田製作所 elastic wave device

Also Published As

Publication number Publication date
JP7073392B2 (en) 2022-05-23
JPWO2019082806A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6856825B2 (en) Elastic wave device, demultiplexer and communication device
US9276558B2 (en) Surface acoustic wave device including a confinement layer
CN104702239B (en) Ladder-type acoustic wave filter and the antenna diplexer using the acoustic wave filter
CN109075770B (en) Composite substrate and elastic wave device using same
JP5099151B2 (en) Method for manufacturing boundary acoustic wave device
JP4419961B2 (en) Boundary acoustic wave device
JP4337816B2 (en) Boundary acoustic wave device
JP7517701B2 (en) Devices using higher mode surface acoustic waves
US8476984B2 (en) Vibration device, oscillator, and electronic apparatus
JP6530494B2 (en) Surface acoustic wave device
JPWO2005086345A1 (en) Boundary acoustic wave device
JP7278305B2 (en) Acoustic wave device, branching filter and communication device
JP7433873B2 (en) Acoustic wave resonators, filters, and multiplexers
JP6854891B2 (en) Elastic wave device, demultiplexer and communication device
JP7466562B2 (en) Elastic Wave Device
JP6915076B2 (en) Composite substrate and elastic wave element using it
WO2019082806A1 (en) Acoustic wave element
JP2020182130A (en) Filter and multiplexer
JP7493306B2 (en) Elastic Wave Device
WO2023106334A1 (en) Acoustic wave device
WO2022230723A1 (en) Elastic wave device
JP7401999B2 (en) elastic wave element
US20240014793A1 (en) Acoustic wave device and method for manufacturing acoustic wave device
WO2024043343A1 (en) Acoustic wave device
WO2024154491A1 (en) Elastic wave device and composite filter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871174

Country of ref document: EP

Kind code of ref document: A1