JP2011087079A - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP2011087079A
JP2011087079A JP2009237621A JP2009237621A JP2011087079A JP 2011087079 A JP2011087079 A JP 2011087079A JP 2009237621 A JP2009237621 A JP 2009237621A JP 2009237621 A JP2009237621 A JP 2009237621A JP 2011087079 A JP2011087079 A JP 2011087079A
Authority
JP
Japan
Prior art keywords
substrate
thickness
acoustic wave
surface acoustic
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009237621A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健司 鈴木
Takashi Yoshino
隆史 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009237621A priority Critical patent/JP2011087079A/en
Priority to US12/614,597 priority patent/US8115365B2/en
Publication of JP2011087079A publication Critical patent/JP2011087079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a temperature coefficient of a frequency of a surface acoustic wave device using a propagation substrate of a piezoelectric single crystal. <P>SOLUTION: The surface acoustic wave device has a supporting substrate 1, a substrate 3A of a piezoelectric single crystal, an organic adhesive layer 2 having a thickness of 0.1 to 1.0 μm and bonding the supporting substrate 1 and the propagation substrate 3 made of a piezoelectric single crystal, and a surface acoustic wave filter provided on the propagation substrate 3A. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、周波数の温度特性が良い弾性表面波素子に関するものである。   The present invention relates to a surface acoustic wave element having good frequency temperature characteristics.

弾性表面波(Surface Acoustic Wave)素子は、携帯電話機等のような通信機器におけるバンドパスフィルタとして幅広く使用されている。携帯電話機等の高性能化に伴い、弾性表面波素子を利用したフィルタにも、高性能化が求められている。   Surface acoustic wave (Surface Acoustic Wave) elements are widely used as bandpass filters in communication devices such as mobile phones. Along with the improvement in performance of mobile phones and the like, higher performance is also required for filters using surface acoustic wave elements.

しかし、弾性表面波素子は、温度変化によって通過帯域が移動してしまうという問題がある。特に、現在多用されているニオブ酸リチウムやタンタル酸リチウムは、電気機械結合係数が大きく、広帯域のフィルタ特性を実現するのに有利である。しかし、ニオブ酸リチウムやタンタル酸リチウムは温度安定性に劣る。   However, the surface acoustic wave element has a problem that the pass band moves due to a temperature change. In particular, lithium niobate and lithium tantalate, which are widely used at present, have a large electromechanical coupling coefficient, and are advantageous for realizing broadband filter characteristics. However, lithium niobate and lithium tantalate are inferior in temperature stability.

例えば、タンタル酸リチウムの周波数変化の温度係数は−35ppm/℃であり、−30〜+85℃の温度範囲で周波数変動が大きい。このため、周波数変化の温度係数を低減することが必要である。   For example, the temperature coefficient of frequency change of lithium tantalate is −35 ppm / ° C., and the frequency variation is large in the temperature range of −30 to + 85 ° C. For this reason, it is necessary to reduce the temperature coefficient of the frequency change.

特許文献1(特開2001-53579)には、SAW伝搬基板と支持基板とを有機薄膜層によって接着したデバイスが記載されている。伝搬基板は例えば厚さ30μmのタンタル酸リチウム基板であり、これを厚さ300μmのガラス基板と厚さ15μmの有機接着剤によって貼り合わせている。   Patent Document 1 (Japanese Patent Laid-Open No. 2001-53579) describes a device in which a SAW propagation substrate and a support substrate are bonded by an organic thin film layer. The propagation substrate is, for example, a lithium tantalate substrate having a thickness of 30 μm, and this is bonded to a glass substrate having a thickness of 300 μm with an organic adhesive having a thickness of 15 μm.

特許文献2(特開2006-42008)には、タンタル酸リチウム基板(厚さ:125μm)と石英ガラス基板(厚さ:125μm)とを接着剤で貼り合せたSAWデバイスが記載されている。特に、(0030)によると、支持基板と伝搬基板とを直接接合すると剥離やクラックが発生するので接着層が必要であると記載されている。   Patent Document 2 (Japanese Patent Laid-Open No. 2006-42008) describes a SAW device in which a lithium tantalate substrate (thickness: 125 μm) and a quartz glass substrate (thickness: 125 μm) are bonded together with an adhesive. In particular, according to (0030), it is described that an adhesive layer is necessary because peeling or cracking occurs when the support substrate and the propagation substrate are directly bonded.

特許文献3(特開平6-326553)、特許文献4(特許第3774782)、特許文献5(米国特許第7105980)にも、SAW伝搬基板と支持基板とを接着したSAWデバイスが記載されている。   Patent Document 3 (JP-A-6-326553), Patent Document 4 (Patent No. 3774782), and Patent Document 5 (US Pat. No. 7,105,980) also describe SAW devices in which a SAW propagation substrate and a support substrate are bonded.

更に、特許文献6(特開2005−229455)では、シリコン支持基板の両表面に厚さ0.1〜40μmの酸化層を形成した後、この支持基板上に圧電基板を接着し、SAWデバイスを製造することが記載されている。Si酸化膜は、複合圧電基板1の反りを低減するために必要である。   Further, in Patent Document 6 (Japanese Patent Application Laid-Open No. 2005-229455), an oxide layer having a thickness of 0.1 to 40 μm is formed on both surfaces of a silicon support substrate, and then a piezoelectric substrate is bonded onto the support substrate, and a SAW device is formed. Manufacturing is described. The Si oxide film is necessary for reducing the warp of the composite piezoelectric substrate 1.

特許文献7(特開2002-135076)の(0007)(0013)によれば、基板の表面粗さが10μmであり、また接着層の厚さを均一にすることは難しいと記載されている。   According to (0007) (0013) of Patent Document 7 (Japanese Patent Laid-Open No. 2002-135076), the surface roughness of the substrate is 10 μm, and it is difficult to make the thickness of the adhesive layer uniform.

特許文献8(特開平9-167936)の(0018)によれば、伝搬基板の回転角θ、すなわちカット角θが変化しても、例えば36°Y、40°Y、42°Y、及び44°Yのいずれの場合にも、略同一の温度特性を示す。   According to (0018) of Patent Document 8 (Japanese Unexamined Patent Publication No. 9-167936), even if the rotation angle θ of the propagation substrate, that is, the cut angle θ changes, for example, 36 ° Y, 40 ° Y, 42 ° Y, and 44 In any case of ° Y, substantially the same temperature characteristics are exhibited.

特許文献9(特開平2-37815)の第6図に電極の厚みを変えた時の温度特性が記載されている。これによれば、電極厚さによる周波数温度特性への影響はない。   FIG. 6 of Patent Document 9 (Japanese Patent Laid-Open No. 2-37815) describes temperature characteristics when the thickness of the electrode is changed. According to this, there is no influence on the frequency temperature characteristic by the electrode thickness.

特許文献10(特開2005−65160)の図4は、オイラー角(0°、127°、90°)の水晶基板を用い、規格化電極膜厚H/λと基準温度25℃における周波数温度係数TCFの関係を示している。   FIG. 4 of Patent Document 10 (Japanese Patent Application Laid-Open No. 2005-65160) uses a quartz substrate with Euler angles (0 °, 127 °, 90 °), a normalized electrode film thickness H / λ, and a frequency temperature coefficient at a reference temperature of 25 ° C. The relationship of TCF is shown.

タンタル酸リチウムの熱膨張係数、ヤング率は、特許文献11(特開2008−301066)の(0021)に記載されている。   The thermal expansion coefficient and Young's modulus of lithium tantalate are described in (0021) of Patent Document 11 (Japanese Patent Application Laid-Open No. 2008-310666).

非特許文献1(「絵解き 材料力学 基礎のきそ」 井山 裕文 日刊工業新聞社刊 43、44、36、37頁)には、貼り合わせ材料の熱膨張係数、ヤング率などの関係が記載されている。   Non-Patent Document 1 (“Picture Dissolving Material Mechanics Fundamental Kiso” Hirofumi Iyama, Nikkan Kogyo Shimbun, pages 43, 44, 36, 37) describes the relationship between the thermal expansion coefficient and Young's modulus of the bonded material. Yes.

非特許文献2(「シリコンの科学」 USC半導体基盤技術研究会編 1996年6月28日発行)の989頁、991頁には、シリコンの熱膨張係数、ヤング率が記載されている。
非特許文献3(「ガラス光学ハンドブック」 朝倉書店発行 昭和38年2月28日発行 792頁)には、ホウ珪酸ガラスのデータが掲載されている。
Non-Patent Document 2 (“Science of Silicon”, USC Semiconductor Fundamental Technology Research Group, issued on June 28, 1996), pages 989 and 991, describe the thermal expansion coefficient and Young's modulus of silicon.
Non-Patent Document 3 (“Glass Optical Handbook”, published by Asakura Shoten, page 282, issued February 28, 1964) contains data on borosilicate glass.

特許文献12(特願2009−40947)は、本特許出願の関連出願である。   Patent Document 12 (Japanese Patent Application No. 2009-40947) is a related application of this patent application.

「絵解き 材料力学 基礎のきそ」 井山 裕文 日刊工業新聞社刊 43、44、36、37頁"Understanding material mechanics, the fundamental kiso" Hirofumi Iyama, published by Nikkan Kogyo Shimbun, pages 43, 44, 36, 37 「シリコンの科学」 USC半導体基盤技術研究会編 1996年6月28日発行の989頁、991頁"Science of Silicon" USC Semiconductor Technology Research Group edited on June 28, 1996, pages 989, 991 「ガラス光学ハンドブック」 朝倉書店発行 昭和38年2月28日発行 792頁"Glass Optics Handbook", published by Asakura Shoten, issued February 28, 1964, page 792

特開2001-53579JP2001-53579 特開2006-42008JP2006-42008 特開平6-326553JP-A-6-326553 特許第3774782Patent No. 3777482 米国特許第7105980US Pat. No. 7,105,980 特開2005−229455JP2005-229455 特開2002-135076JP2002-135076 特開平9-167936JP-A-9167936 特開平2-37815JP-A-2-37815 特開2005−65160JP 2005-65160 A 特開2008−301066JP2008-301066 特願2009−40947Japanese Patent Application No. 2009-40947

しかし、いずれの文献も、温度変化に伴う通過帯域の移動という問題点を解決するものではなく、むしろその解決から遠ざかっているものである。   However, none of the documents solves the problem of movement of the passband accompanying a change in temperature, but rather moves away from the solution.

特許文献1の(0025)、(0037)には、タンタル酸リチウム基板を支持基板に接着したSAWデバイスの周波数の温度係数が記載されているが、タンタル酸リチウム単体のSAWデバイスと比べて、温度特性の改善はほとんどない。例えば、2GHzのSAWフィルターの場合、−30から+85℃の温度範囲において±4MHzのシフトが見られる。これは必要帯域幅の±7%に相当する。従って、タンタル酸リチウム伝搬基板とガラス支持基板との間に接着層を設けると、周波数の温度特性はほとんど改善しないことがわかる。   Patent Document 1 (0025) and (0037) describe the temperature coefficient of the frequency of a SAW device in which a lithium tantalate substrate is bonded to a support substrate. There is almost no improvement in properties. For example, in the case of a 2 GHz SAW filter, a shift of ± 4 MHz is observed in the temperature range of −30 to + 85 ° C. This corresponds to ± 7% of the required bandwidth. Therefore, it can be seen that when the adhesive layer is provided between the lithium tantalate propagation substrate and the glass supporting substrate, the temperature characteristic of the frequency is hardly improved.

Figure 2011087079
Figure 2011087079

特許文献2の(0037)には「弾性表面波素子の周波数温度特性を改善することも可能となる」と記載されているが、改善されたデータは記載されていない。   Patent Document 2 (0037) describes that “the frequency temperature characteristic of the surface acoustic wave element can be improved”, but no improved data is described.

特許文献3の(0062)の記載においても、表面弾性波伝搬基板を支持基板に対して接着することは実用には耐えないことが明記されている。   Even in the description of (0062) of Patent Document 3, it is specified that bonding the surface acoustic wave propagation substrate to the support substrate is not practical.

以上から判断して、例えばタンタル酸リチウム伝搬基板を支持基板に対して接着する構造の弾性表面波基板は実用には絶えず、特に周波数の温度係数を低減することは無理であるというのが常識である。   Judging from the above, it is common sense that a surface acoustic wave substrate having a structure in which, for example, a lithium tantalate propagation substrate is bonded to a support substrate is constantly practical, and it is impossible to reduce the temperature coefficient of frequency in particular. is there.

また、特許文献6では、例えば1000℃程度の高温下に酸素ガスを流し、Si基板を数十時間放置して表面酸化膜を形成する必要がある。しかし、この方法では、Si基板の表面が単に酸化されるだけでなく、Si自体もSiO2中へと溶け出してしまう。このため、SiとSiO2の境界面では、Siの欠陥層が発生し、この部分の接着強度が低下する。その上、Si支持基板と圧電基板との間の接着層の厚さは、実施例ではすべて3μmであり、また1.5μmより薄いと、接着力不足となり、250℃で剥離する(0028)。   In Patent Document 6, it is necessary to flow an oxygen gas at a high temperature of, for example, about 1000 ° C. and leave the Si substrate for several tens of hours to form a surface oxide film. However, this method not only oxidizes the surface of the Si substrate, but also dissolves Si itself into SiO2. For this reason, a Si defect layer is generated at the interface between Si and SiO2, and the adhesive strength of this portion is lowered. In addition, the thickness of the adhesive layer between the Si support substrate and the piezoelectric substrate is all 3 μm in the examples, and when it is thinner than 1.5 μm, the adhesive force is insufficient, and peeling occurs at 250 ° C. (0028).

本発明の課題は,圧電単結晶の伝搬基板を用いた弾性表面波素子の周波数の温度係数を低減することである。   An object of the present invention is to reduce the temperature coefficient of the frequency of a surface acoustic wave device using a piezoelectric single crystal propagation substrate.

本発明は、
支持基板、
圧電単結晶からなる伝搬基板、
支持基板と伝搬基板とを接着する厚さ0.1μm〜1.0μmの有機接着剤層、および
伝搬基板上に設けられた弾性表面波フィルタまたはレゾネ―ターを備えることを特徴とする、弾性表面波素子に係るものである。
The present invention
Support substrate,
Propagation substrate made of piezoelectric single crystal,
An elastic surface comprising: an organic adhesive layer having a thickness of 0.1 μm to 1.0 μm for bonding the support substrate and the propagation substrate; and a surface acoustic wave filter or a resonator provided on the propagation substrate. This relates to a wave element.

本発明者は、当業者の常識に反して、圧電単結晶、例えばタンタル酸リチウム単結晶の伝搬基板を支持基板に対して接着する構造について研究を続けた。ここで、従来見逃されていた有機接着層の薄層化を試行してみた。このような試行は、例えば特許文献3の(0062)の記述から否定されていたものである。   Contrary to the common knowledge of those skilled in the art, the present inventor has continued research on a structure in which a propagation substrate of a piezoelectric single crystal, for example, a lithium tantalate single crystal, is bonded to a support substrate. Here, an attempt was made to reduce the thickness of the organic adhesive layer, which was conventionally overlooked. Such a trial has been denied from the description of (0062) of Patent Document 3, for example.

ところが、予想に反して、伝搬基板は支持基板に対して良好に接着し、かつ周波数の温度係数が著しく低下することを発見した。即ち、有機接着剤の厚みが0.1〜1.0μmでは、伝搬基板と支持基板との熱膨張係数の差による温度特性が、かなり改善された。これに対して、接着剤の厚さが1μmより大きくなると、伝搬基板と支持基板との熱膨張係数の差による応力が、有機接着剤に吸収され、かえって温度特性の改善効果が得られなくなった。また、接着層の厚さが0.1μm未満になると、今度はボイドの影響で周波数の温度特性が再び劣化するようであり、接着層を薄くすればするほど温度特性が改善されるわけではないことを確認した。   However, contrary to expectations, it has been found that the propagation substrate adheres well to the support substrate and the temperature coefficient of frequency is significantly reduced. That is, when the thickness of the organic adhesive is 0.1 to 1.0 μm, the temperature characteristics due to the difference in thermal expansion coefficient between the propagation substrate and the support substrate are considerably improved. On the other hand, when the thickness of the adhesive is greater than 1 μm, the stress due to the difference in thermal expansion coefficient between the propagation substrate and the support substrate is absorbed by the organic adhesive, and the effect of improving the temperature characteristics cannot be obtained. . In addition, when the thickness of the adhesive layer is less than 0.1 μm, the frequency characteristic of the frequency seems to deteriorate again due to the influence of the void, and the temperature characteristic is not improved as the adhesive layer becomes thinner. It was confirmed.

(a)、(b)、(c)、(d)は、弾性表面波素子用の接着体の製造プロセスを示す模式的断面図である。(A), (b), (c), (d) is typical sectional drawing which shows the manufacturing process of the adhesive body for surface acoustic wave elements. (a)は、弾性表面波素子6を模式的に示す断面図であり、(b)は、弾性表面波素子6を模式的に示す平面図である。FIG. 2A is a cross-sectional view schematically showing the surface acoustic wave element 6, and FIG. 2B is a plan view schematically showing the surface acoustic wave element 6. (a)は、共振型の弾性表面波素子を示す平面図であり、(b)は、(a)のA−A’線断面図である。(A) is a top view which shows a resonance-type surface acoustic wave element, (b) is the sectional view on the A-A 'line of (a). 接着剤層の厚さと熱膨張係数および周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, a thermal expansion coefficient, and the temperature characteristic of a frequency. 接着剤層の厚さと周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, and the temperature characteristic of a frequency. 接着剤層の厚さと周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, and the temperature characteristic of a frequency. 接着剤層の厚さと周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, and the temperature characteristic of a frequency. 接着剤層の厚さと周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, and the temperature characteristic of a frequency. 接着剤層の厚さと周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, and the temperature characteristic of a frequency. 接着剤層の厚さと周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, and the temperature characteristic of a frequency. 接着剤層の厚さと周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, and the temperature characteristic of a frequency. 接着剤層の厚さと周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, and the temperature characteristic of a frequency. 支持基板をシリコン、ホウ珪酸ガラスで作製し、支持基板の厚さと圧電基板の厚さの比を変化させたときの周波数の温度特性の変化を示すグラフである。It is a graph which shows the change of the temperature characteristic of a frequency when producing a support substrate with silicon and borosilicate glass and changing the ratio of the thickness of a support substrate and the thickness of a piezoelectric substrate.

本発明の弾性表面波素子は、弾性表面波フィルタまたはレゾネ―ターを備える。弾性表面波フィルタは後述するような帯域通過フィルターである。レゾネーターは、弾性表面波発振素子であり、1ポートタイプと2ポートタイプのいずれも含む。   The surface acoustic wave device of the present invention includes a surface acoustic wave filter or a resonator. The surface acoustic wave filter is a band pass filter as described later. The resonator is a surface acoustic wave oscillation element, and includes both a 1-port type and a 2-port type.

本発明においては、支持基板の材質は、シリコン、サファイア、窒化アルミニウム、アルミナ、ホウ珪酸ガラスおよび石英ガラスからなる群より選ばれた材料が好ましい。好ましくは、支持基板が、シリコンまたはホウ珪酸ガラスからなり、特に好ましくはシリコンからなる。これらを採用することで、伝搬基板との熱膨張差を少なくし、周波数の温度特性を一層改善することが可能である。 In the present invention, the material of the support substrate is preferably a material selected from the group consisting of silicon, sapphire, aluminum nitride, alumina, borosilicate glass, and quartz glass. Preferably, the support substrate is made of silicon or borosilicate glass, particularly preferably silicon. By adopting these, it is possible to reduce the difference in thermal expansion from the propagation substrate and further improve the temperature characteristics of the frequency.

好ましくは、支持基板の表面に酸化膜が形成されておらず、これによって、支持基板と伝搬基板との接着力が高くなり、かつ高温でも支持基板と伝搬基板との剥離や割れを防止できる。この観点からは、支持基板がシリコンからなり、表面に酸化シリコン膜がないことが好ましい。なお、支持基板の表面酸化膜の有無は、透過型電子顕微鏡(TEM:Transmission
Electron Microscope)によって断面観測する。
Preferably, an oxide film is not formed on the surface of the support substrate, whereby the adhesive force between the support substrate and the propagation substrate is increased, and peeling and cracking of the support substrate and the propagation substrate can be prevented even at high temperatures. From this point of view, it is preferable that the support substrate is made of silicon, and there is no silicon oxide film on the surface. In addition, the presence or absence of the surface oxide film on the support substrate is determined using a transmission electron microscope (TEM: Transmission).
The cross section is observed with an Electron Microscope.

また、本発明においては、伝搬基板の材質は、電気機械結合定数の大きいニオブ酸リチウム、タンタル産リチウムおよびニオブ酸リチウム−タンタル酸リチウム固溶体単結晶からなる群より選ばれることが好ましい。好ましくは、圧電単結晶がタンタル酸リチウムからなる。   In the present invention, the material of the propagation substrate is preferably selected from the group consisting of lithium niobate having a large electromechanical coupling constant, lithium tantalum, and lithium niobate-lithium tantalate solid solution single crystal. Preferably, the piezoelectric single crystal is made of lithium tantalate.

また、好ましくは、伝搬基板における弾性表面波伝播方向がX方向であり、切り出し角を回転Yカット板とする。特に好ましくは、伝搬基板が36〜47°Yカット板である。   Preferably, the surface acoustic wave propagation direction in the propagation substrate is the X direction, and the cutting angle is a rotated Y-cut plate. Particularly preferably, the propagation substrate is a 36-47 ° Y-cut plate.

支持基板と伝搬基板とを接着する有機接着剤層の材質は限定されないが、アクリル系樹脂、あるいはエポキシ系樹脂が好ましい。   The material of the organic adhesive layer that bonds the support substrate and the propagation substrate is not limited, but an acrylic resin or an epoxy resin is preferable.

本発明においては、有機接着剤層の厚さtを0.1μm以上、1.0μm以下とする。弾性表面波デバイスの周波数の温度特性を更に向上させるという観点からは、有機接着剤層の厚さは、0.1μm以上が好ましく、また、0.8μm以下が好ましい。   In the present invention, the thickness t of the organic adhesive layer is set to 0.1 μm or more and 1.0 μm or less. From the viewpoint of further improving the temperature characteristics of the frequency of the surface acoustic wave device, the thickness of the organic adhesive layer is preferably 0.1 μm or more, and preferably 0.8 μm or less.

図1は、弾性表面波デバイス用接着体の製造プロセスを模式的に示す断面図である。
図1(a)に示すように、支持基板1を準備する。図1(b)に示すように、支持基板1の表面に有機接着剤2を塗布し、図1(c)に示すように、圧電単結晶からなる基板3を接着する。次いで、図1(d)に示すように、基板3を加工して薄板化し、厚さT2の伝搬基板3Aを得る。
FIG. 1 is a cross-sectional view schematically showing a manufacturing process of an adhesive for a surface acoustic wave device.
As shown in FIG. 1A, a support substrate 1 is prepared. As shown in FIG. 1B, an organic adhesive 2 is applied to the surface of the support substrate 1, and a substrate 3 made of a piezoelectric single crystal is bonded as shown in FIG. Next, as shown in FIG. 1D, the substrate 3 is processed and thinned to obtain a propagation substrate 3A having a thickness T2.

次いで、図2(a)、図2(b)に示すように、伝搬基板3A上に、入力電極4および出力電極5を形成し、トランスバーサル型の弾性表面波素子6を得る。入力電極4から出力電極5へと向かって弾性表面波は矢印7のように伝搬される。この部分が弾性表面波フィルタとなる。   Next, as shown in FIGS. 2A and 2B, the input electrode 4 and the output electrode 5 are formed on the propagation substrate 3 </ b> A to obtain the transversal surface acoustic wave element 6. A surface acoustic wave propagates from the input electrode 4 toward the output electrode 5 as indicated by an arrow 7. This portion becomes a surface acoustic wave filter.

また、携帯電話用の弾性表面波フィルタでは、主として共振型の弾性表面波素子を使用する。図3(a)、図3(b)は、この例に係るものである。図3(a)は、共振型の弾性表面波素子の電極パターンを示す平面図であり、図3(b)は、図3(a)のA−A’線断面図である。   In a surface acoustic wave filter for a mobile phone, a resonance type surface acoustic wave element is mainly used. 3A and 3B relate to this example. FIG. 3A is a plan view showing an electrode pattern of a resonance type surface acoustic wave element, and FIG. 3B is a cross-sectional view taken along line A-A ′ of FIG.

伝搬基板10上に電極16、17、18を形成し、共振型の弾性表面波素子を得る。本例では、支持基板12上に有機接着剤層14を介して伝搬基板10が接着されている。支持基板12、接着層14および伝搬基板10は、前述したように、本発明によって構成されている。   Electrodes 16, 17, and 18 are formed on the propagation substrate 10 to obtain a resonant surface acoustic wave device. In this example, the propagation substrate 10 is bonded onto the support substrate 12 via the organic adhesive layer 14. As described above, the support substrate 12, the adhesive layer 14, and the propagation substrate 10 are configured according to the present invention.

有機接着剤層の形成方法は限定されないが、印刷、スピンコーティングを例示できる。   Although the formation method of an organic adhesive layer is not limited, Printing and spin coating can be illustrated.

弾性表面波フィルタまたはレゾネ―ターを構成する材質は、アルミニウム、アルミニウム合金、銅、金が好ましく、アルミニウムまたはアルミニウム合金がさらに好ましい。アルミニウム合金は、Alに0.3から5重量%のCuを混ぜたものを使用するのが好ましい。
この場合、CuのかわりにTi、Mg、Ni、Mo、Taを使用しても良い。
The material constituting the surface acoustic wave filter or the resonator is preferably aluminum, an aluminum alloy, copper, or gold, and more preferably aluminum or an aluminum alloy. As the aluminum alloy, it is preferable to use Al mixed with 0.3 to 5% by weight of Cu.
In this case, Ti, Mg, Ni, Mo, Ta may be used instead of Cu.

弾性表面波フィルタまたはレゾネ―ターの厚さtの弾性表面波波長λに対する比率(t/λ)は、3〜15%であることが好ましく、5%以上であることが更に好ましく、また15%以下であることが更に好ましい。   The ratio (t / λ) of the thickness t of the surface acoustic wave filter or resonator to the surface acoustic wave wavelength λ is preferably 3 to 15%, more preferably 5% or more, and 15%. More preferably, it is as follows.

支持基板1の厚さT1は 温度特性改善という観点からは、100μm以上が好ましく、150μm以上がさらに好ましく、200μm以上が一層好ましい。また、T1は、製品の小型化という観点からは、500μm以下が好ましい。   The thickness T1 of the support substrate 1 is preferably 100 μm or more, more preferably 150 μm or more, and even more preferably 200 μm or more from the viewpoint of improving temperature characteristics. T1 is preferably 500 μm or less from the viewpoint of product size reduction.

伝搬基板3Aの厚さT2は、周波数の温度特性の改善という観点からは、10〜50μmが好ましく、10〜40μmがさらに好ましく、10〜30μmが特に好ましい。   The thickness T2 of the propagation substrate 3A is preferably 10 to 50 μm, more preferably 10 to 40 μm, and particularly preferably 10 to 30 μm from the viewpoint of improving the frequency temperature characteristics.

(実施例1)
図1に示す製法に従い、図2に示すような弾性表面波素子6を作製した。
ただし、基板3には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬タンタル酸リチウム基板を使用した。SAWの伝搬方向Xの線膨張係数が16ppm/℃である。支持基板1には単結晶シリコン基板を使用した。支持基板1のSAWの伝搬方向Xの線膨張係数が3ppm/℃である。支持基板1の厚さT1を350μmとし、圧電単結晶基板3の厚さを350μmとし、有機接着剤(アクリル系)を用いて180°Cで基板同士を接着した。次いで研削加工によって圧電単結晶基板3の厚さを30μmにまで小さくした。得られた伝搬基板3A上に、厚さ0.14μmの金属アルミニウム製の入力電極4および出力電極5を形成した。電極厚さt/弾性表面波波長λ=7%である。
Example 1
According to the manufacturing method shown in FIG. 1, a surface acoustic wave element 6 as shown in FIG. 2 was produced.
However, the substrate 3 was a 36 ° Y-cut X-propagating lithium tantalate substrate in which the SAW propagation direction was X and the cutting angle was a rotating Y-cut plate. The linear expansion coefficient in the SAW propagation direction X is 16 ppm / ° C. A single crystal silicon substrate was used as the support substrate 1. The linear expansion coefficient in the SAW propagation direction X of the support substrate 1 is 3 ppm / ° C. The thickness T1 of the support substrate 1 was 350 μm, the thickness of the piezoelectric single crystal substrate 3 was 350 μm, and the substrates were bonded to each other at 180 ° C. using an organic adhesive (acrylic). Next, the thickness of the piezoelectric single crystal substrate 3 was reduced to 30 μm by grinding. An input electrode 4 and an output electrode 5 made of metal aluminum having a thickness of 0.14 μm were formed on the obtained propagation substrate 3A. Electrode thickness t / surface acoustic wave wavelength λ = 7%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の熱膨張係数および共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、表2および図4に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the thermal expansion coefficient of the surface acoustic wave element and the frequency temperature characteristic (Temperature Coefficient of Frequency) at the resonance point were measured and are shown in Table 2 and FIG.

Figure 2011087079
Figure 2011087079

この結果から分かるように、有機接着剤層の厚さを0.1〜1.0μmとすることで、周波数温度特性(Temperature Coefficient of Frequency)が臨界的に著しく向上することがわかった。   As can be seen from this result, it was found that the frequency temperature characteristic (Temperature Coefficient of Frequency) is significantly improved significantly by setting the thickness of the organic adhesive layer to 0.1 to 1.0 μm.

(実施例2)
次に、図3に示す弾性表面波素子を実施例1と同様の方法で作製した。得られた素子について、実施例1と同様の実験を行ったところ、やはり有機接着剤層の厚さを0.1〜1.0μmとすることで、周波数温度特性(Temperature Coefficient of Frequency)が臨界的に著しく向上することを確認した。
(Example 2)
Next, the surface acoustic wave element shown in FIG. 3 was produced in the same manner as in Example 1. When the same experiment as Example 1 was conducted about the obtained element, the temperature-temperature characteristic (Temperature Coefficient of Frequency) was critical by setting the thickness of the organic adhesive layer to 0.1 to 1.0 μm. It was confirmed that it was significantly improved.

(実施例3)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板12には単結晶シリコン基板を使用した。支持基板12の厚さT1を200μmとした。伝搬基板10の厚さを30μmとした。伝搬基板10上に、厚さ0.14μmの金属アルミニウム製の電極16、17、18を形成した。電極厚さt/弾性表面波波長λ=7%である。
(Example 3)
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, as the propagation substrate 10, a SAW propagation direction is X, and a 36 ° Y-cut X-propagation lithium tantalate substrate whose cutting angle is a rotating Y-cut plate is used. A single crystal silicon substrate was used as the support substrate 12. The thickness T1 of the support substrate 12 was 200 μm. The thickness of the propagation substrate 10 was 30 μm. On the propagation substrate 10, electrodes 16, 17 and 18 made of metal aluminum having a thickness of 0.14 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 7%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図5、表3に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the temperature temperature characteristic (Temperature Coefficient of Frequency) at the resonance point of the surface acoustic wave element was measured and shown in Table 3 in FIG.

Figure 2011087079
Figure 2011087079

(実施例4)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である47°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板12には単結晶シリコン基板を使用した。支持基板12の厚さT1を350μmとし、伝搬基板10の厚さを30μmとした。得られた伝搬基板10上に、厚さ0.14μmの金属アルミニウム製の電極16,17,18を形成した。電極厚さt/弾性表面波波長λ=7%である。
Example 4
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, the propagation substrate 10 was a 47 ° Y-cut X-propagation lithium tantalate substrate in which the SAW propagation direction was X and the cutting angle was a rotating Y-cut plate. A single crystal silicon substrate was used as the support substrate 12. The thickness T1 of the support substrate 12 was 350 μm, and the thickness of the propagation substrate 10 was 30 μm. On the obtained propagation substrate 10, electrodes 16, 17, and 18 made of metal aluminum having a thickness of 0.14 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 7%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図6、表4に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the frequency temperature characteristic (Temperature Coefficient of Frequency) at the resonance point of the surface acoustic wave element was measured and shown in FIG.

Figure 2011087079
Figure 2011087079

(実施例5)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である47°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板12には単結晶シリコン基板を使用した。支持基板12の厚さT1を350μmとし、伝搬基板の厚さを30μmとした。得られた伝搬基板10上に、厚さ0.14μmのアルミニウム合金(Al−1%Cu)製の電極16,17,18を形成した。電極厚さt/弾性表面波波長λ=7%である。
(Example 5)
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, the propagation substrate 10 was a 47 ° Y-cut X-propagation lithium tantalate substrate in which the SAW propagation direction was X and the cutting angle was a rotating Y-cut plate. A single crystal silicon substrate was used as the support substrate 12. The thickness T1 of the support substrate 12 was 350 μm, and the thickness of the propagation substrate was 30 μm. On the obtained propagation substrate 10, electrodes 16, 17, and 18 made of aluminum alloy (Al-1% Cu) having a thickness of 0.14 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 7%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図7、表5に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the frequency temperature characteristic (Temperature Coefficient of Frequency) at the resonance point of the surface acoustic wave element was measured and is shown in FIG.

Figure 2011087079
Figure 2011087079

(実施例6)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である47°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板12には単結晶シリコン基板を使用した。支持基板12の厚さT1を350μmとし、伝搬基板の厚さを30μmとした。得られた伝搬基板10上に、厚さ0.06μmの金属アルミニウム製の電極16,17,18を形成した。電極厚さt/弾性表面波波長λ=3%である。
(Example 6)
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, the propagation substrate 10 was a 47 ° Y-cut X-propagation lithium tantalate substrate in which the SAW propagation direction was X and the cutting angle was a rotating Y-cut plate. A single crystal silicon substrate was used as the support substrate 12. The thickness T1 of the support substrate 12 was 350 μm, and the thickness of the propagation substrate was 30 μm. On the obtained propagation substrate 10, metal aluminum electrodes 16, 17, and 18 having a thickness of 0.06 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 3%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図8、表6に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the frequency temperature characteristic (Temperature Coefficient of Frequency) at the resonance point of the surface acoustic wave element was measured and shown in FIG.

Figure 2011087079
Figure 2011087079

(実施例7)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である47°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板12には単結晶シリコン基板を使用した。支持基板12の厚さT1を350μmとし、伝搬基板の厚さを30μmとした。得られた伝搬基板10上に、厚さ0.3μmの金属アルミニウム製の電極16,17,18を形成した。電極厚さt/弾性表面波波長λ=15%である。
(Example 7)
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, the propagation substrate 10 was a 47 ° Y-cut X-propagation lithium tantalate substrate in which the SAW propagation direction was X and the cutting angle was a rotating Y-cut plate. A single crystal silicon substrate was used as the support substrate 12. The thickness T1 of the support substrate 12 was 350 μm, and the thickness of the propagation substrate was 30 μm. On the obtained propagation substrate 10, metal aluminum electrodes 16, 17 and 18 having a thickness of 0.3 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 15%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図9、表7に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the frequency temperature characteristic (Temperature Coefficient of Frequency) at the resonance point of the surface acoustic wave element was measured and shown in FIG.

Figure 2011087079
Figure 2011087079

(実施例8)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板12には単結晶シリコン基板を使用した。支持基板12の厚さT1を500μmとし、伝搬基板の厚さを10μmとした。得られた伝搬基板10上に、厚さ0.14μmの金属アルミニウム製の電極16,17,18を形成した。電極厚さt/弾性表面波波長λ=7%である。
(Example 8)
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, as the propagation substrate 10, a SAW propagation direction is X, and a 36 ° Y-cut X-propagation lithium tantalate substrate whose cutting angle is a rotating Y-cut plate is used. A single crystal silicon substrate was used as the support substrate 12. The thickness T1 of the support substrate 12 was 500 μm, and the thickness of the propagation substrate was 10 μm. On the obtained propagation substrate 10, electrodes 16, 17, and 18 made of metal aluminum having a thickness of 0.14 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 7%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図10、表8に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the frequency temperature characteristic (Temperature Coefficient of Frequency) at the resonance point of the surface acoustic wave element was measured and shown in FIG.

Figure 2011087079
Figure 2011087079

(実施例9)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板1には単結晶シリコン基板を使用した。支持基板12の厚さT1を150μmとし、伝搬基板の厚さを25μmとした。得られた伝搬基板10上に、厚さ0.14μmの金属アルミニウム製の電極16,17,18を形成した。電極厚さt/弾性表面波波長λ=7%である。
Example 9
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, as the propagation substrate 10, a SAW propagation direction is X, and a 36 ° Y-cut X-propagation lithium tantalate substrate whose cutting angle is a rotating Y-cut plate is used. A single crystal silicon substrate was used as the support substrate 1. The thickness T1 of the support substrate 12 was 150 μm, and the thickness of the propagation substrate was 25 μm. On the obtained propagation substrate 10, electrodes 16, 17, and 18 made of metal aluminum having a thickness of 0.14 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 7%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図11、表9に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. And about each element, the frequency temperature characteristic (Temperature Coefficient of Frequency) in the resonance point of a surface acoustic wave element was measured, and it shows in FIG.

Figure 2011087079
Figure 2011087079

(実施例10)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板12には単結晶シリコン基板を使用した。支持基板12の厚さT1を300μmとし、伝搬基板の厚さを40μmとした。得られた伝搬基板10上に、厚さ0.14μmの金属アルミニウム製の電極16,17,18を形成した。電極厚さt/弾性表面波波長λ=7%である。
(Example 10)
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, as the propagation substrate 10, a SAW propagation direction is X, and a 36 ° Y-cut X-propagation lithium tantalate substrate whose cutting angle is a rotating Y-cut plate is used. A single crystal silicon substrate was used as the support substrate 12. The thickness T1 of the support substrate 12 was 300 μm, and the thickness of the propagation substrate was 40 μm. On the obtained propagation substrate 10, electrodes 16, 17, and 18 made of metal aluminum having a thickness of 0.14 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 7%.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図12、表10に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the frequency temperature characteristic (Temperature Coefficient of Frequency) at the resonance point of the surface acoustic wave element was measured and shown in FIG.

Figure 2011087079
Figure 2011087079

(実施例11)
実施例1と同様にして、図1に示す製法に従い、図3に示すような弾性表面波素子を作製した。
ただし、伝搬基板10には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬タンタル酸リチウム基板を使用した。支持基板12には、単結晶シリコン基板またはホウ珪酸ガラス基板を使用した。伝搬基板の厚さを30μmとし、接着剤層の厚さを0.3μmとした。得られた伝搬基板10上に、厚さ0.14μmの金属アルミニウム製の電極16,17,18を形成した。電極厚さt/弾性表面波波長λ=7%である。
(Example 11)
In the same manner as in Example 1, a surface acoustic wave device as shown in FIG. 3 was produced according to the manufacturing method shown in FIG.
However, as the propagation substrate 10, a SAW propagation direction is X, and a 36 ° Y-cut X-propagation lithium tantalate substrate whose cutting angle is a rotating Y-cut plate is used. As the support substrate 12, a single crystal silicon substrate or a borosilicate glass substrate was used. The thickness of the propagation substrate was 30 μm, and the thickness of the adhesive layer was 0.3 μm. On the obtained propagation substrate 10, electrodes 16, 17, and 18 made of metal aluminum having a thickness of 0.14 μm were formed. Electrode thickness t / surface acoustic wave wavelength λ = 7%.

ただし、支持基板1の厚さT1を100〜500μmで変化させた。そして,各素子について、弾性表面波素子の共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、図13、表11に示す。   However, the thickness T1 of the support substrate 1 was varied from 100 to 500 μm. And about each element, the frequency temperature characteristic (Temperature Coefficient of Frequency) in the resonance point of a surface acoustic wave element was measured, and it shows in FIG.

Figure 2011087079
Figure 2011087079

この結果からわかるように、シリコン基板を用いた場合も、ホウ珪酸ガラスを用いた場合も、支持基板の厚さ100〜500μmにわたって周波数の温度特性は支持基板と圧電基板の比にほぼ比例して、非常に低い値になっていた。   As can be seen from this result, the temperature characteristic of the frequency is almost proportional to the ratio of the support substrate to the piezoelectric substrate over the thickness of the support substrate of 100 to 500 μm, regardless of whether the silicon substrate or the borosilicate glass is used. , It was very low value.

(実施例12)
実施例1と同様にして、図2に示すような弾性表面波素子6を作製した。
ただし、有機接着剤層をエポキシ系接着剤とした。それ以外は実施例1と同じ条件で試験を行った。有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更し、各素子について、弾性表面波素子の熱膨張係数および共振点における周波数温度特性Temperature Coefficient of Frequency)を測定したところ、実施例と同様の結果を得た。
(Example 12)
A surface acoustic wave element 6 as shown in FIG.
However, the organic adhesive layer was an epoxy adhesive. Otherwise, the test was performed under the same conditions as in Example 1. The thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm, and the thermal expansion coefficient of the surface acoustic wave element and the frequency temperature characteristic at the resonance point (Temperature Coefficient of Frequency) were measured for each element. The same result as in the example was obtained.

(実施例13)
36°YカットX伝搬タンタル酸リチウム基板とシリコン基板の接着強度(圧縮せん断)を有機接着剤層の厚みをかえて関係を調べた。タンタル酸リチウム基板とシリコン基板の形状は、5×5×1mmである。
有機接着剤層厚み:0.02μm―――――接着強度(kgf/cm2):25
有機接着剤層厚み:0.05μm―――――接着強度(kgf/cm2):40
有機接着剤層厚み:0.1μm―――――接着強度(kgf/cm2) :100
有機接着剤層厚み:0.2μm―――――接着強度(kgf/cm2) :200
(Example 13)
The relationship between the adhesive strength (compression shear) between the 36 ° Y-cut X-propagating lithium tantalate substrate and the silicon substrate was examined by changing the thickness of the organic adhesive layer. The shape of the lithium tantalate substrate and the silicon substrate is 5 × 5 × 1 mm.
Organic adhesive layer thickness: 0.02μm ―――――― Adhesive strength (kgf / cm2): 25
Organic adhesive layer thickness: 0.05μm ----- Adhesive strength (kgf / cm2): 40
Organic adhesive layer thickness: 0.1 μm ------------------------- Adhesive strength (kgf / cm2)
Organic adhesive layer thickness: 0.2μm ----- Adhesive strength (kgf / cm2): 200

この結果から有機接着剤層の厚みが、0,1μm以上であれば、目標とする60kgf/cm2以上の接着強度を達成できるため好ましいことがわかる。またタンタル酸リチウム基板とシリコン基板の接着面の表面粗さは、0.1μm以下であることが好ましい。   From this result, it can be seen that it is preferable that the thickness of the organic adhesive layer is 0, 1 μm or more because a target adhesive strength of 60 kgf / cm 2 or more can be achieved. The surface roughness of the bonding surface between the lithium tantalate substrate and the silicon substrate is preferably 0.1 μm or less.

Claims (12)

支持基板、
圧電単結晶からなる伝搬基板、
前記支持基板と前記伝搬基板とを接着する厚さ0.1μm〜1.0μmの有機接着剤層、および
前記伝搬基板上に設けられた弾性表面波フィルタまたはレゾネ―ターを備えることを特徴とする、弾性表面波素子。
Support substrate,
Propagation substrate made of piezoelectric single crystal,
An organic adhesive layer having a thickness of 0.1 μm to 1.0 μm for bonding the support substrate and the propagation substrate, and a surface acoustic wave filter or a resonator provided on the propagation substrate. , Surface acoustic wave element.
前記圧電単結晶が、ニオブ酸リチウム、タンタル酸リチウムおよびニオブ酸リチウム−タンタル酸リチウム固溶体単結晶からなる群より選ばれることを特徴とする、請求項1記載の素子。   2. The element according to claim 1, wherein the piezoelectric single crystal is selected from the group consisting of lithium niobate, lithium tantalate, and lithium niobate-lithium tantalate solid solution single crystal. 前記圧電単結晶がタンタル酸リチウムからなることを特徴とする、請求項2記載の素子。   The element according to claim 2, wherein the piezoelectric single crystal is made of lithium tantalate. 前記伝搬基板における弾性表面波伝播方向がX方向であり、前記伝搬基板が36〜47°Yカット板であることを特徴とする、請求項2または3記載の素子。   4. The element according to claim 2, wherein the surface acoustic wave propagation direction in the propagation substrate is an X direction, and the propagation substrate is a 36-47 [deg.] Y cut plate. 前記弾性表面波フィルタまたはレゾネ―ターがアルミニウムまたはアルミニウム合金からなることを特徴とする、請求項4記載の素子。   5. The element according to claim 4, wherein the surface acoustic wave filter or resonator is made of aluminum or an aluminum alloy. 前記弾性表面波フィルタまたはレゾネ―ターの厚さtの弾性表面波波長λに対する比率(t/λ)が3〜15%であることを特徴とする、請求項1〜5のいずれか一つの請求項に記載の素子。   The ratio (t / λ) of the thickness t of the surface acoustic wave filter or the resonator to the surface acoustic wave wavelength λ is 3 to 15%. The element according to item. 前記伝搬基板の厚さが10〜40μmであることを特徴とする、請求項1〜6のいずれか一つの請求項に記載の素子。   The device according to claim 1, wherein the propagation substrate has a thickness of 10 to 40 μm. 前記支持基板の厚さが150〜500μmであることを特徴とする、請求項1〜7のいずれか一つの請求項に記載の素子。   The element according to claim 1, wherein the support substrate has a thickness of 150 to 500 μm. 前記支持基板が、シリコン、サファイア、窒化アルミニウム、アルミナ、ホウ珪酸ガラスおよび石英ガラスからなる群より選ばれた材料からなることを特徴とする、請求項1〜8のいずれか一つの請求項に記載の素子。   The said support substrate consists of material chosen from the group which consists of a silicon | silicone, a sapphire, an aluminum nitride, an alumina, a borosilicate glass, and quartz glass, The claim any one of Claims 1-8 characterized by the above-mentioned. Elements. 前記支持基板が、シリコンまたはホウ珪酸ガラスからなることを特徴とする、請求項9記載の素子。   The device according to claim 9, wherein the support substrate is made of silicon or borosilicate glass. 前記支持基板がシリコンからなることを特徴とする、請求項10記載の素子。   The device according to claim 10, wherein the support substrate is made of silicon. 前記支持基板の表面に酸化膜が形成されていないことを特徴とする、請求項1〜11のいずれか一つの請求項に記載の素子。
The element according to claim 1, wherein an oxide film is not formed on a surface of the support substrate.
JP2009237621A 2008-04-15 2009-10-14 Surface acoustic wave device Pending JP2011087079A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009237621A JP2011087079A (en) 2009-10-14 2009-10-14 Surface acoustic wave device
US12/614,597 US8115365B2 (en) 2008-04-15 2009-11-09 Surface acoustic wave devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009237621A JP2011087079A (en) 2009-10-14 2009-10-14 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2011087079A true JP2011087079A (en) 2011-04-28

Family

ID=44079716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009237621A Pending JP2011087079A (en) 2008-04-15 2009-10-14 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2011087079A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081099A (en) * 2011-10-04 2013-05-02 Japan Radio Co Ltd Elastic surface wave device
WO2013146374A1 (en) * 2012-03-26 2013-10-03 株式会社村田製作所 Elastic wave apparatus and method for manufacturing same
EP2982942A4 (en) * 2013-03-25 2016-12-07 Woojin Inc High temperature ultrasonic sensor and manufacturing method therefor
US10340881B2 (en) 2016-08-10 2019-07-02 The Japan Steel Works, Ltd. Bonded substrate, surface acoustic wave element, surface acoustic wave device, and method of manufacturing bonded substrate
JP6599595B1 (en) * 2018-05-16 2019-10-30 日本碍子株式会社 Bonded body of piezoelectric material substrate and support substrate
WO2019220724A1 (en) * 2018-05-16 2019-11-21 日本碍子株式会社 Joined body of piezoelectric material substrate and support substrate
KR20200014760A (en) 2017-06-14 2020-02-11 가부시끼가이샤 니혼 세이꼬쇼 Method of manufacturing bonded substrate, surface acoustic wave element, surface acoustic wave element device, and bonded substrate
CN110945787A (en) * 2017-08-25 2020-03-31 日本碍子株式会社 Bonded body and elastic wave device
CN111602337A (en) * 2018-01-12 2020-08-28 株式会社村田制作所 Elastic wave device, multiplexer, high-frequency front-end circuit, and communication device
KR20200121282A (en) 2018-02-16 2020-10-23 가부시끼가이샤 니혼 세이꼬쇼 Bonded substrate, surface acoustic wave element, surface acoustic wave element device, and manufacturing method of bonded substrate
JP2021532655A (en) * 2018-07-27 2021-11-25 フレクエンシスFrec’N’Sys Resonant cavity surface acoustic wave (SAW) filter

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237815A (en) * 1988-07-27 1990-02-07 Fujitsu Ltd Surface acoustic wave element
JPH07193294A (en) * 1993-11-01 1995-07-28 Matsushita Electric Ind Co Ltd Electronic component and its manufacture
JPH09107268A (en) * 1995-10-06 1997-04-22 Toyo Commun Equip Co Ltd Ladder type surface acoustic wave filter
JPH09153757A (en) * 1995-11-30 1997-06-10 Kyocera Corp Saw(surface accoustic wave) device
JPH09167936A (en) * 1995-10-13 1997-06-24 Fujitsu Ltd Surface acoustic wave device
JP2000312126A (en) * 1999-04-28 2000-11-07 Kyocera Corp Surface acoustic wave unit
JP2001053579A (en) * 1999-06-02 2001-02-23 Matsushita Electric Ind Co Ltd Surface acoustic wave element and mobile object communications equipment
JP2002009583A (en) * 2000-06-26 2002-01-11 Matsushita Electric Ind Co Ltd Piezoelectric device and its manufacturing method
JP2002026684A (en) * 2000-07-04 2002-01-25 Matsushita Electric Ind Co Ltd Surface acoustic wave element
JP2002135076A (en) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacturing method
JP2002337274A (en) * 2001-03-16 2002-11-27 Ngk Insulators Ltd Bonded object and method for manufacturing the same
JP2004295089A (en) * 2003-03-11 2004-10-21 Ngk Insulators Ltd Compound substrate and method for manufacturing the same
JP2006094567A (en) * 2005-12-21 2006-04-06 Murata Mfg Co Ltd Surface acoustic wave device
JP2006319679A (en) * 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd Compound piezoelectric substrate
JP2007150931A (en) * 2005-11-30 2007-06-14 Hitachi Media Electoronics Co Ltd Surface acoustic wave device and telecommunication terminal mounting it
JP2008042877A (en) * 2006-07-13 2008-02-21 Ngk Insulators Ltd Piezoelectric thin film device
JP2010259000A (en) * 2009-04-28 2010-11-11 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237815A (en) * 1988-07-27 1990-02-07 Fujitsu Ltd Surface acoustic wave element
JPH07193294A (en) * 1993-11-01 1995-07-28 Matsushita Electric Ind Co Ltd Electronic component and its manufacture
JPH09107268A (en) * 1995-10-06 1997-04-22 Toyo Commun Equip Co Ltd Ladder type surface acoustic wave filter
JPH09167936A (en) * 1995-10-13 1997-06-24 Fujitsu Ltd Surface acoustic wave device
JPH09153757A (en) * 1995-11-30 1997-06-10 Kyocera Corp Saw(surface accoustic wave) device
JP2000312126A (en) * 1999-04-28 2000-11-07 Kyocera Corp Surface acoustic wave unit
JP2001053579A (en) * 1999-06-02 2001-02-23 Matsushita Electric Ind Co Ltd Surface acoustic wave element and mobile object communications equipment
JP2002009583A (en) * 2000-06-26 2002-01-11 Matsushita Electric Ind Co Ltd Piezoelectric device and its manufacturing method
JP2002026684A (en) * 2000-07-04 2002-01-25 Matsushita Electric Ind Co Ltd Surface acoustic wave element
JP2002135076A (en) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacturing method
JP2002337274A (en) * 2001-03-16 2002-11-27 Ngk Insulators Ltd Bonded object and method for manufacturing the same
JP2004295089A (en) * 2003-03-11 2004-10-21 Ngk Insulators Ltd Compound substrate and method for manufacturing the same
JP2006319679A (en) * 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd Compound piezoelectric substrate
JP2007150931A (en) * 2005-11-30 2007-06-14 Hitachi Media Electoronics Co Ltd Surface acoustic wave device and telecommunication terminal mounting it
JP2006094567A (en) * 2005-12-21 2006-04-06 Murata Mfg Co Ltd Surface acoustic wave device
JP2008042877A (en) * 2006-07-13 2008-02-21 Ngk Insulators Ltd Piezoelectric thin film device
JP2010259000A (en) * 2009-04-28 2010-11-11 Murata Mfg Co Ltd Method for manufacturing surface acoustic wave device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081099A (en) * 2011-10-04 2013-05-02 Japan Radio Co Ltd Elastic surface wave device
WO2013146374A1 (en) * 2012-03-26 2013-10-03 株式会社村田製作所 Elastic wave apparatus and method for manufacturing same
CN104205631A (en) * 2012-03-26 2014-12-10 株式会社村田制作所 Elastic wave apparatus and method for manufacturing same
JPWO2013146374A1 (en) * 2012-03-26 2015-12-10 株式会社村田製作所 Elastic wave device and manufacturing method thereof
US10096763B2 (en) 2012-03-26 2018-10-09 Murata Manufacturing Co., Ltd. Elastic wave device and method for manufacturing same
EP2982942A4 (en) * 2013-03-25 2016-12-07 Woojin Inc High temperature ultrasonic sensor and manufacturing method therefor
US10340881B2 (en) 2016-08-10 2019-07-02 The Japan Steel Works, Ltd. Bonded substrate, surface acoustic wave element, surface acoustic wave device, and method of manufacturing bonded substrate
US11502665B2 (en) 2016-08-10 2022-11-15 The Japan Steel Works, Ltd. Method of manufacturing bonded substrate
US11777469B2 (en) 2017-06-14 2023-10-03 The Japan Steel Works, Ltd. Bonded substrate, surface acoustic wave element, surface acoustic wave element device, and bonded substrate manufacturing method
KR20200014760A (en) 2017-06-14 2020-02-11 가부시끼가이샤 니혼 세이꼬쇼 Method of manufacturing bonded substrate, surface acoustic wave element, surface acoustic wave element device, and bonded substrate
CN110945787A (en) * 2017-08-25 2020-03-31 日本碍子株式会社 Bonded body and elastic wave device
CN110945787B (en) * 2017-08-25 2023-06-02 日本碍子株式会社 Bonded body and elastic wave element
CN111602337A (en) * 2018-01-12 2020-08-28 株式会社村田制作所 Elastic wave device, multiplexer, high-frequency front-end circuit, and communication device
CN111602337B (en) * 2018-01-12 2023-09-12 株式会社村田制作所 Elastic wave device, multiplexer, high frequency front-end circuit and communication device
KR20200121282A (en) 2018-02-16 2020-10-23 가부시끼가이샤 니혼 세이꼬쇼 Bonded substrate, surface acoustic wave element, surface acoustic wave element device, and manufacturing method of bonded substrate
KR20210002734A (en) * 2018-05-16 2021-01-08 엔지케이 인슐레이터 엘티디 Assembly of piezoelectric material substrate and support substrate
US11082026B2 (en) 2018-05-16 2021-08-03 Ngk Insulators, Ltd. Joined body of piezoelectric material substrate and support substrate
KR102312795B1 (en) 2018-05-16 2021-10-15 엔지케이 인슐레이터 엘티디 Bonding body of piezoelectric material substrate and support substrate
WO2019220724A1 (en) * 2018-05-16 2019-11-21 日本碍子株式会社 Joined body of piezoelectric material substrate and support substrate
TWI790367B (en) * 2018-05-16 2023-01-21 日商日本碍子股份有限公司 Bonded Piezoelectric Material Substrate and Support Substrate
JP6599595B1 (en) * 2018-05-16 2019-10-30 日本碍子株式会社 Bonded body of piezoelectric material substrate and support substrate
JP2021532655A (en) * 2018-07-27 2021-11-25 フレクエンシスFrec’N’Sys Resonant cavity surface acoustic wave (SAW) filter
JP7408896B2 (en) 2018-07-27 2024-01-09 ソイテック Resonant cavity surface acoustic wave (SAW) filter

Similar Documents

Publication Publication Date Title
JP2011087079A (en) Surface acoustic wave device
US8115365B2 (en) Surface acoustic wave devices
JP6250856B1 (en) Composite substrate for surface acoustic wave device, manufacturing method thereof, and surface acoustic wave device using the composite substrate
JP5910763B2 (en) Elastic wave device
WO2017013968A1 (en) Elastic wave device
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
JP5833239B2 (en) Composite substrate, piezoelectric device, and composite substrate manufacturing method
JP4657002B2 (en) Composite piezoelectric substrate
JP3187231U (en) Composite board
JP3929983B2 (en) Bonding substrate, surface acoustic wave element, surface acoustic wave device, and manufacturing method thereof
US10270420B2 (en) Surface elastic wave device comprising a single-crystal piezoelectric film and a crystalline substrate with low visoelastic coefficients
TWI635632B (en) Composite substrate, elastic wave device, and method for manufacturing elastic wave device
JP2019114986A (en) Acoustic wave device
US7911111B2 (en) Surface acoustic wave devices
WO2010004741A1 (en) Plate wave element and electronic equipment using same
JP2019526194A (en) Hybrid structure for surface acoustic wave devices
JP4956569B2 (en) Surface acoustic wave device
JP2007214902A (en) Surface acoustic wave device
JP7163249B2 (en) Composite substrate for surface acoustic wave device and manufacturing method thereof
WO2007037457A9 (en) Elastic surface wave device, module device, oscillation circuit, and elastic surface wave device fabrication method
JP2010088109A (en) Acoustic wave element, and electronic equipment using the same
US6437479B1 (en) Surface acoustic wave device
JPH10335974A (en) Elastic boundary wave element
JP2020057850A (en) Composite substrate for surface acoustic wave element and manufacturing method of the same
CN107171653A (en) A kind of SAW device with high electromechanical coupling factor and high center frequency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140409