JP4956569B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP4956569B2
JP4956569B2 JP2009040947A JP2009040947A JP4956569B2 JP 4956569 B2 JP4956569 B2 JP 4956569B2 JP 2009040947 A JP2009040947 A JP 2009040947A JP 2009040947 A JP2009040947 A JP 2009040947A JP 4956569 B2 JP4956569 B2 JP 4956569B2
Authority
JP
Japan
Prior art keywords
substrate
acoustic wave
surface acoustic
thickness
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009040947A
Other languages
Japanese (ja)
Other versions
JP2009278610A (en
Inventor
健司 鈴木
隆史 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009040947A priority Critical patent/JP4956569B2/en
Priority to DE102009001192.7A priority patent/DE102009001192B4/en
Priority to US12/614,597 priority patent/US8115365B2/en
Publication of JP2009278610A publication Critical patent/JP2009278610A/en
Application granted granted Critical
Publication of JP4956569B2 publication Critical patent/JP4956569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、周波数の温度特性が良い弾性表面波素子に関するものである。   The present invention relates to a surface acoustic wave element having good frequency temperature characteristics.

弾性表面波(Surface Acoustic Wave)素子は、携帯電話機等のような通信機器におけるバンドパスフィルタとして幅広く使用されている。携帯電話機等の高性能化に伴い、弾性表面波素子を利用したフィルタにも、高性能化が求められている。   Surface acoustic wave (Surface Acoustic Wave) elements are widely used as bandpass filters in communication devices such as mobile phones. Along with the improvement in performance of mobile phones and the like, higher performance is also required for filters using surface acoustic wave elements.

しかし、弾性表面波素子は、温度変化によって通過帯域が移動してしまうという問題がある。特に、現在多用されているニオブ酸リチウムやタンタル酸リチウムは、電気機械結合係数が大きく、広帯域のフィルタ特性を実現するのに有利である。しかし、ニオブ酸リチウムやタンタル酸リチウムは温度安定性に劣る。   However, the surface acoustic wave element has a problem that the pass band moves due to a temperature change. In particular, lithium niobate and lithium tantalate, which are widely used at present, have a large electromechanical coupling coefficient, and are advantageous for realizing broadband filter characteristics. However, lithium niobate and lithium tantalate are inferior in temperature stability.

例えば、タンタル酸リチウムの周波数変化の温度係数は−35ppm/℃であり、−30〜+85℃の温度範囲で周波数変動が大きい。このため、周波数変化の温度係数を低減することが必要である。   For example, the temperature coefficient of frequency change of lithium tantalate is −35 ppm / ° C., and the frequency variation is large in the temperature range of −30 to + 85 ° C. For this reason, it is necessary to reduce the temperature coefficient of the frequency change.

特許文献1には、SAW伝搬基板と支持基板とを有機薄膜層によって接着したデバイスが記載されている。伝搬基板は例えば厚さ30μmのタンタル酸リチウム基板であり、これを厚さ300μmのガラス基板と厚さ15μmの有機接着剤によって貼り合わせている。
特開2001-53579
Patent Document 1 describes a device in which a SAW propagation substrate and a support substrate are bonded with an organic thin film layer. The propagation substrate is, for example, a lithium tantalate substrate having a thickness of 30 μm, and this is bonded to a glass substrate having a thickness of 300 μm with an organic adhesive having a thickness of 15 μm.
JP2001-53579

特許文献2には、タンタル酸リチウム基板(厚さ:125μm)と石英ガラス基板(厚さ:125μm)とを接着剤で貼り合せたSAWデバイスが記載されている。
特開2006-42008
Patent Document 2 describes a SAW device in which a lithium tantalate substrate (thickness: 125 μm) and a quartz glass substrate (thickness: 125 μm) are bonded together with an adhesive.
JP2006-42008

特許文献3、4、5にも、SAW伝搬基板と支持基板とを接着したSAWデバイスが記載されている。
特開平6-326553 特許第3774782 米国特許第7105980
Patent Documents 3, 4, and 5 also describe SAW devices in which a SAW propagation substrate and a support substrate are bonded.
JP-A-6-326553 Patent No. 3777482 US Pat. No. 7,105,980

更に、特許文献6では、シリコン支持基板の両表面に厚さ0.1〜40μmの酸化層を形成した後、この支持基板上に圧電基板を接着し、SAWデバイスを製造することが記載されている。Si酸化膜は、複合圧電基板1の反りを低減するために必要である。
特開2005−229455
Furthermore, Patent Document 6 describes that an oxide layer having a thickness of 0.1 to 40 μm is formed on both surfaces of a silicon support substrate, and then a piezoelectric substrate is bonded onto the support substrate to manufacture a SAW device. Yes. The Si oxide film is necessary to reduce the warp of the composite piezoelectric substrate 1.
JP2005-229455

しかし、いずれの文献も、温度変化に伴う通過帯域の移動という問題点を解決するものではなく、むしろその解決から遠ざかっているものである。   However, none of the documents solves the problem of movement of the passband accompanying a change in temperature, but rather moves away from the solution.

特許文献1の(0025)、(0037)には、タンタル酸リチウム基板を支持基板に接着したSAWデバイスの周波数の温度係数が記載されているが、タンタル酸リチウム単体のSAWデバイスと比べて、温度特性の改善はほとんどない。例えば、2GHzのSAWフィルターの場合、−30から+85℃の温度範囲において±MHzのシフトが見られる。これは必要帯域幅の±7%に相当する。従って、タンタル酸リチウム伝搬基板とガラス支持基板との間に接着層を設けると、周波数の温度特性はほとんど改善しないことがわかる。   Patent Document 1 (0025) and (0037) describe the temperature coefficient of the frequency of a SAW device in which a lithium tantalate substrate is bonded to a support substrate. There is almost no improvement in properties. For example, in the case of a 2 GHz SAW filter, a shift of ± MHz is observed in the temperature range of −30 to + 85 ° C. This corresponds to ± 7% of the required bandwidth. Therefore, it can be seen that when the adhesive layer is provided between the lithium tantalate propagation substrate and the glass supporting substrate, the temperature characteristic of the frequency is hardly improved.

Figure 0004956569
Figure 0004956569

特許文献2の(0037)には「弾性表面波素子の周波数温度特性を改善することも可能となる」と記載されているが、改善されたデータは記載されていない。   Patent Document 2 (0037) describes that “the frequency temperature characteristic of the surface acoustic wave element can be improved”, but no improved data is described.

特許文献3の(0062)の記載においても、表面弾性波伝搬基板を支持基板に対して接着することは実用には耐えないことが明記されている。   Even in the description of (0062) of Patent Document 3, it is specified that bonding the surface acoustic wave propagation substrate to the support substrate is not practical.

以上から判断して、例えばタンタル酸リチウム伝搬基板を支持基板に対して接着する構造の弾性表面波基板は実用には絶えず、特に周波数の温度係数を低減することは無理であるというのが常識である。   Judging from the above, it is common sense that a surface acoustic wave substrate having a structure in which, for example, a lithium tantalate propagation substrate is bonded to a support substrate is constantly practical, and it is impossible to reduce the temperature coefficient of frequency in particular. is there.

また、特許文献6では、例えば1000℃程度の高温下に酸素ガスを流し、Si基板を数十時間放置して表面酸化膜を形成する必要がある。しかし、この方法では、Si基板の表面が単に酸化されるだけでなく、Si自体もSiO2中へと溶け出してしまう。このため、SiとSiO2の境界面では、Siの欠陥層が発生し、この部分の接着強度が低下する。その上、Si支持基板と圧電基板との間の接着層の厚さは、実施例ではすべて3μmであり、また1.5μmより薄いと、接着力不足となり、250℃で剥離する(0028)。   In Patent Document 6, it is necessary to flow an oxygen gas at a high temperature of, for example, about 1000 ° C. and leave the Si substrate for several tens of hours to form a surface oxide film. However, this method not only oxidizes the surface of the Si substrate, but also dissolves Si itself into SiO2. For this reason, a Si defect layer is generated at the interface between Si and SiO2, and the adhesive strength of this portion is lowered. In addition, the thickness of the adhesive layer between the Si support substrate and the piezoelectric substrate is all 3 μm in the examples, and when it is thinner than 1.5 μm, the adhesive force is insufficient, and peeling occurs at 250 ° C. (0028).

本発明の課題は,圧電単結晶の伝搬基板を用いた弾性表面波素子の周波数の温度係数を低減することである。   An object of the present invention is to reduce the temperature coefficient of the frequency of a surface acoustic wave device using a piezoelectric single crystal propagation substrate.

本発明は、
シリコンまたはホウ珪酸ガラスからなる厚さ200〜500μmの支持基板、
タンタル酸リチウム単結晶からなる厚さ10〜50μmの回転YカットX伝搬基板、
支持基板と伝搬基板とを接着する厚さ0.1μm〜1.0μmのスピンコートで形成されたアクリル樹脂系接着剤層、および
伝搬基板上に設けられた、アルミニウムまたはアルミニウム合金からなる弾性表面波フィルタまたはレゾネ―ターを備えることを特徴とする、弾性表面波素子に係るものである。
The present invention
A support substrate made of silicon or borosilicate glass and having a thickness of 200 to 500 μm,
A rotating Y-cut X-propagating substrate having a thickness of 10 to 50 μm made of a lithium tantalate single crystal,
Acrylic resin adhesive layer formed by spin coating with a thickness of 0.1 μm to 1.0 μm for bonding the support substrate and the propagation substrate, and a surface acoustic wave made of aluminum or an aluminum alloy provided on the propagation substrate The present invention relates to a surface acoustic wave device including a filter or a resonator.

本発明者は、当業者の常識に反して、タンタル酸リチウム単結晶の伝搬基板を支持基板に対して接着する構造について研究を続けた。ここで、従来見逃されていたアクリル系樹脂接着層の薄層化を試行してみた。このような試行は、例えば特許文献3の(0062)の記述から否定されていたものである。
Contrary to the common knowledge of those skilled in the art, the present inventor has continued research on a structure in which a lithium tantalate single crystal propagation substrate is bonded to a support substrate. Here, it tried trying thinning of the acrylic resin contact bonding layer which was overlooked conventionally. Such a trial has been denied from the description of (0062) of Patent Document 3, for example.

ところが、予想に反して、伝搬基板は支持基板に対して良好に接着し、かつ周波数の温度係数が著しく低下することを発見した。即ち、有機接着剤の厚みが0.1〜1.0μmでは、伝搬基板と支持基板との熱膨張係数の差による温度特性が、かなり改善された。これに対して、接着剤の厚さが1μmより大きくなると、伝搬基板と支持基板との熱膨張係数の差による応力が、有機接着剤に吸収され、かえって温度特性の改善効果が得られなくなった。また、接着層の厚さが0.1μm未満になると、今度はボイドの影響で周波数の温度特性が再び劣化するようであり、接着層を薄くすればするほど温度特性が改善されるわけではないことを確認した。   However, contrary to expectations, it has been found that the propagation substrate adheres well to the support substrate and the temperature coefficient of frequency is significantly reduced. That is, when the thickness of the organic adhesive is 0.1 to 1.0 μm, the temperature characteristics due to the difference in thermal expansion coefficient between the propagation substrate and the support substrate are considerably improved. On the other hand, when the thickness of the adhesive is greater than 1 μm, the stress due to the difference in thermal expansion coefficient between the propagation substrate and the support substrate is absorbed by the organic adhesive, and the effect of improving the temperature characteristics cannot be obtained. . In addition, when the thickness of the adhesive layer is less than 0.1 μm, the frequency characteristic of the frequency seems to deteriorate again due to the influence of the void, and the temperature characteristic is not improved as the adhesive layer becomes thinner. It was confirmed.

本発明の弾性表面波素子は、弾性表面波フィルタまたはレゾネ―ターを備える。弾性表面はフィルタは後述するような帯域通過フィルターである。レゾネーターは、弾性表面波発振素子であり、1ポートタイプと2ポートタイプのいずれも含む。   The surface acoustic wave device of the present invention includes a surface acoustic wave filter or a resonator. The elastic surface is a bandpass filter as described later. The resonator is a surface acoustic wave oscillation element, and includes both a 1-port type and a 2-port type.

本発明においては、支持基板の材質は、シリコンまたはホウ珪酸ガラスである。これらを採用することで、伝搬基板との熱膨張差を少なくし、周波数の温度特性を一層改善することが可能である。
In the present invention, the material of the support substrate is silicon or borosilicate glass. By adopting these, it is possible to reduce the difference in thermal expansion from the propagation substrate and further improve the temperature characteristics of the frequency.

好ましくは、支持基板の表面に酸化膜が形成されておらず、これによって、支持基板と伝搬基板との接着力が高くなり、かつ高温でも支持基板と伝搬基板との剥離や割れを防止できる。この観点からは、支持基板がシリコンからなり、表面に酸化シリコン膜がないことが好ましい。なお、支持基板の表面酸化膜の有無は、透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって断面観測する。 Preferably, an oxide film is not formed on the surface of the support substrate, whereby the adhesive force between the support substrate and the propagation substrate is increased, and peeling and cracking of the support substrate and the propagation substrate can be prevented even at high temperatures. From this point of view, it is preferable that the support substrate is made of silicon, and there is no silicon oxide film on the surface. Note that the presence or absence of the surface oxide film on the support substrate is observed by a transmission electron microscope (TEM).

また、本発明においては、伝搬基板の材質は、電気機械結合定数の大きいタンタルリチウムである
In the present invention, the material of the propagation substrate is a large lithium tantalate of the electromechanical coupling constant.

支持基板と伝搬基板とを接着する有機接着剤層の材質はアクリル系樹脂である
The material of the organic adhesive layer for bonding the support substrate and the propagation substrate is an acrylic resin.

本発明においては、有機接着剤層の厚さtを0.1μm以上、1.0μm以下とする。弾性表面波デバイスの周波数の温度特性を更に向上させるという観点からは、有機接着剤層の厚さは、0.1μm以上が好ましく、また、0.5μm以下が好ましい。   In the present invention, the thickness t of the organic adhesive layer is set to 0.1 μm or more and 1.0 μm or less. From the viewpoint of further improving the temperature characteristics of the frequency of the surface acoustic wave device, the thickness of the organic adhesive layer is preferably 0.1 μm or more, and more preferably 0.5 μm or less.

圧電単結晶からなる伝搬基板は、タンタル酸リチウムであり、弾性表面波伝播方向をXとし、切り出し角を回転Yカット板とする。
Propagating substrate made of a piezoelectric single crystal, a lithium tantalate, a surface acoustic wave propagation direction and X, the cut angle and the rotation Y-cut plate.

図1は、弾性表面波デバイス用接着体の製造プロセスを模式的に示す断面図である。
図1(a)に示すように、支持基板1を準備する。図1(b)に示すように、支持基板1の表面に有機接着剤2を塗布し、図1(c)に示すように、圧電単結晶からなる基板3を接着する。次いで、図1(d)に示すように、基板3を加工して薄板化し、厚さT2の伝搬基板3Aを得る。
FIG. 1 is a cross-sectional view schematically showing a manufacturing process of an adhesive for a surface acoustic wave device.
As shown in FIG. 1A, a support substrate 1 is prepared. As shown in FIG. 1B, an organic adhesive 2 is applied to the surface of the support substrate 1, and a substrate 3 made of a piezoelectric single crystal is bonded as shown in FIG. Next, as shown in FIG. 1D, the substrate 3 is processed and thinned to obtain a propagation substrate 3A having a thickness T2.

次いで、図2(a)、図2(b)に示すように、伝搬基板3A上に、入力電極4および出力電極5を形成し、トランスバーサル型の弾性表面波素子6を得る。入力電極4から出力電極5へと向かって弾性表面波は矢印7のように伝搬される。この部分が弾性表面波フィルタとなる。   Next, as shown in FIGS. 2A and 2B, the input electrode 4 and the output electrode 5 are formed on the propagation substrate 3 </ b> A to obtain the transversal surface acoustic wave element 6. A surface acoustic wave propagates from the input electrode 4 toward the output electrode 5 as indicated by an arrow 7. This portion becomes a surface acoustic wave filter.

また、携帯電話用の弾性表面波フィルタでは、主として共振型の弾性表面波素子を使用する。図3(a)、図3(b)は、この例に係るものである。図3(a)は、共振型の弾性表面波素子の電極パターンを示す平面図であり、図3(b)は、図3(a)のA−A’線断面図である。   In a surface acoustic wave filter for a mobile phone, a resonance type surface acoustic wave element is mainly used. 3A and 3B relate to this example. FIG. 3A is a plan view showing an electrode pattern of a resonance type surface acoustic wave element, and FIG. 3B is a cross-sectional view taken along line A-A ′ of FIG.

伝搬基板10上に電極16、17、18を形成し、共振型の弾性表面波素子を得る。本例では、支持基板12上に有機接着剤層14を介して伝搬基板10が接着されている。支持基板12、接着層14および伝搬基板10は、前述したように、本発明によって構成されている。   Electrodes 16, 17, and 18 are formed on the propagation substrate 10 to obtain a resonant surface acoustic wave device. In this example, the propagation substrate 10 is bonded onto the support substrate 12 via the organic adhesive layer 14. As described above, the support substrate 12, the adhesive layer 14, and the propagation substrate 10 are configured according to the present invention.

有機接着剤層の形成方法はスピンコーティングである

Method of forming an organic adhesive layer is spin coating.

ここで、入力電極、出力電極の材質はアルミニウム、アルミニウム合金である
Here, the material of the input electrode and an output electrode of aluminum, an aluminum alloy.

支持基板1の厚さT1は 温度特性改善という観点からは、100μm以上が好ましく、200μm以上が更に好ましい。また、T1は、製品の小型化という観点からは、500μm以下が好ましい。   The thickness T1 of the support substrate 1 is preferably 100 μm or more, and more preferably 200 μm or more, from the viewpoint of improving temperature characteristics. T1 is preferably 500 μm or less from the viewpoint of product size reduction.

伝搬基板3Aの厚さT2は、周波数の温度特性の改善という観点からは、10〜50μmが好ましく、30〜50μmが特に好ましい。   The thickness T2 of the propagation substrate 3A is preferably 10 to 50 μm, particularly preferably 30 to 50 μm, from the viewpoint of improving the temperature characteristic of the frequency.

(実施例1)
図1に示す製法に従い、図2に示すような弾性表面波素子6を作製した。
ただし、基板3には、SAWの伝播方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬タンタル酸リチウム基板を使用した。SAWの伝搬方向Xの線膨張係数が16ppm/℃である。支持基板1には単結晶シリコン基板を使用した。支持基板1のSAWの伝搬方向Xの線膨張係数が3ppm/℃である。支持基板1の厚さT1を350μmとし、圧電単結晶基板3の厚さを350μmとし、有機接着剤(アクリル系)を用いて180°Cで基板同士を接着した。次いで研削加工によって圧電単結晶基板3の厚さを30μmにまで小さくした。得られた伝搬基板3A上に金属アルミニウム製の入力電極4および出力電極5を形成した。
Example 1
According to the manufacturing method shown in FIG. 1, a surface acoustic wave element 6 as shown in FIG. 2 was produced.
However, the substrate 3 was a 36 ° Y-cut X-propagating lithium tantalate substrate in which the SAW propagation direction was X and the cutting angle was a rotating Y-cut plate. The linear expansion coefficient in the SAW propagation direction X is 16 ppm / ° C. A single crystal silicon substrate was used as the support substrate 1. The linear expansion coefficient in the SAW propagation direction X of the support substrate 1 is 3 ppm / ° C. The thickness T1 of the support substrate 1 was 350 μm, the thickness of the piezoelectric single crystal substrate 3 was 350 μm, and the substrates were bonded to each other at 180 ° C. using an organic adhesive (acrylic). Next, the thickness of the piezoelectric single crystal substrate 3 was reduced to 30 μm by grinding. An input electrode 4 and an output electrode 5 made of metal aluminum were formed on the obtained propagation substrate 3A.

ただし、有機接着剤層2の厚さtを、0.05μm〜15μmで種々変更した。そして,各素子について、弾性表面波素子の熱膨張係数および共振点における周波数温度特性(Temperature Coefficient of Frequency)を測定し、表2および図4に示す。   However, the thickness t of the organic adhesive layer 2 was variously changed from 0.05 μm to 15 μm. For each element, the thermal expansion coefficient of the surface acoustic wave element and the frequency temperature characteristic (Temperature Coefficient of Frequency) at the resonance point were measured and are shown in Table 2 and FIG.

Figure 0004956569
Figure 0004956569

この結果から分かるように、有機接着剤層の厚さを0.1〜1.0μmとすることで、周波数温度特性(Temperature Coefficient of Frequency)が臨界的に著しく向上することがわかった。   As can be seen from this result, it was found that the frequency temperature characteristic (Temperature Coefficient of Frequency) is significantly improved significantly by setting the thickness of the organic adhesive layer to 0.1 to 1.0 μm.

(実施例2)
次に、図3に示す弾性表面波素子を実施例1と同様の方法で作製した。得られた素子について、実施例1と同様の実験を行ったところ、やはり有機接着剤層の厚さを0.1〜1.0μmとすることで、周波数温度特性(Temperature Coefficient of Frequency)が臨界的に著しく向上することを確認した。
(Example 2)
Next, the surface acoustic wave element shown in FIG. 3 was produced in the same manner as in Example 1. When the same experiment as Example 1 was conducted about the obtained element, the temperature-temperature characteristic (Temperature Coefficient of Frequency) was critical by setting the thickness of the organic adhesive layer to 0.1 to 1.0 μm. It was confirmed that it was significantly improved.

(a)、(b)、(c)、(d)は、弾性表面波素子用の接着体の製造プロセスを示す模式的断面図である。(A), (b), (c), (d) is typical sectional drawing which shows the manufacturing process of the adhesive body for surface acoustic wave elements. (a)は、弾性表面波素子6を模式的に示す断面図であり、(b)は、弾性表面波素子6を模式的に示す平面図である。FIG. 2A is a cross-sectional view schematically showing the surface acoustic wave element 6, and FIG. 2B is a plan view schematically showing the surface acoustic wave element 6. (a)は、共振型の弾性表面波素子を示す平面図であり、(b)は、(a)のA−A’線断面図である。(A) is a top view which shows a resonance-type surface acoustic wave element, (b) is the sectional view on the A-A 'line of (a). 接着剤層の厚さと熱膨張係数および周波数の温度特性との関係を示すグラフである。It is a graph which shows the relationship between the thickness of an adhesive bond layer, a thermal expansion coefficient, and the temperature characteristic of a frequency.

1、12 支持基板 2、14 有機接着剤層 3A、10 伝搬基板 4 入力電極 5 出力電極 6 弾性表面波素子 7 弾性表面波 16、17、18 電極 t 有機接着剤層の厚さ T1 支持基板の厚さ T2 伝搬基板の厚さ   DESCRIPTION OF SYMBOLS 1,12 Support substrate 2,14 Organic adhesive layer 3A, 10 Propagation substrate 4 Input electrode 5 Output electrode 6 Surface acoustic wave element 7 Surface acoustic wave 16, 17, 18 Electrode t Thickness of organic adhesive layer T1 of support substrate Thickness T2 Thickness of propagation board

Claims (6)

シリコンまたはホウ珪酸ガラスからなる厚さ200〜500μmの支持基板、
タンタル酸リチウム単結晶からなる厚さ10〜50μmの回転YカットX伝搬基板、
前記支持基板と前記伝搬基板とを接着する厚さ0.1μm〜1.0μmのスピンコートで形成されたアクリル系樹脂接着剤層、および
前記伝搬基板上に設けられた、アルミニウムまたはアルミニウム合金からなる弾性表面波フィルタまたはレゾネ―ターを備えることを特徴とする、弾性表面波素子。
A support substrate made of silicon or borosilicate glass and having a thickness of 200 to 500 μm,
A rotating Y-cut X-propagating substrate having a thickness of 10 to 50 μm made of lithium tantalate single crystal
An acrylic resin adhesive layer formed by spin coating with a thickness of 0.1 μm to 1.0 μm for bonding the support substrate and the propagation substrate, and aluminum or an aluminum alloy provided on the propagation substrate A surface acoustic wave device comprising a surface acoustic wave filter or a resonator.
前記支持基板がシリコンからなることを特徴とする、請求項1記載の素子。   The element according to claim 1, wherein the support substrate is made of silicon. 前記X伝搬基板の厚さが30μm以上であることを特徴とする、請求項1または2記載の素子。   The element according to claim 1, wherein a thickness of the X propagation substrate is 30 μm or more. 前記X伝搬基板が36°YカットX伝搬基板であることを特徴とする、請求項1〜3のいずれか一つの請求項に記載の素子。   The element according to claim 1, wherein the X propagation substrate is a 36 ° Y-cut X propagation substrate. 前記支持基板の表面に酸化膜が形成されていないことを特徴とする、請求項1〜4のいずれか一つの請求項に記載の素子。   The element according to any one of claims 1 to 4, wherein an oxide film is not formed on a surface of the support substrate. 前記弾性表面波フィルタまたはレゾネ―ターがアルミニウムからなることを特徴とする、請求項1〜5のいずれか一つの請求項に記載の素子。
The element according to claim 1, wherein the surface acoustic wave filter or the resonator is made of aluminum.
JP2009040947A 2008-04-15 2009-02-24 Surface acoustic wave device Active JP4956569B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009040947A JP4956569B2 (en) 2008-04-15 2009-02-24 Surface acoustic wave device
DE102009001192.7A DE102009001192B4 (en) 2008-04-15 2009-02-26 Acoustic surface wave devices
US12/614,597 US8115365B2 (en) 2008-04-15 2009-11-09 Surface acoustic wave devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008105407 2008-04-15
JP2008105407 2008-04-15
JP2009040947A JP4956569B2 (en) 2008-04-15 2009-02-24 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2009278610A JP2009278610A (en) 2009-11-26
JP4956569B2 true JP4956569B2 (en) 2012-06-20

Family

ID=41111957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040947A Active JP4956569B2 (en) 2008-04-15 2009-02-24 Surface acoustic wave device

Country Status (2)

Country Link
JP (1) JP4956569B2 (en)
DE (1) DE102009001192B4 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115365B2 (en) 2008-04-15 2012-02-14 Ngk Insulators, Ltd. Surface acoustic wave devices
CN203014754U (en) * 2010-06-15 2013-06-19 日本碍子株式会社 Composite substrate
CN102624352B (en) * 2010-10-06 2015-12-09 日本碍子株式会社 The manufacture method of composite base plate and composite base plate
CN105164919B (en) 2013-03-21 2017-04-26 日本碍子株式会社 Composite substrate for elastic wave element and elastic wave element
JP6226774B2 (en) * 2014-02-25 2017-11-08 日本碍子株式会社 Composite substrate manufacturing method and composite substrate
FR3033462B1 (en) * 2015-03-04 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELASTIC SURFACE WAVE DEVICE COMPRISING A SINGLE CRYSTALLINE PIEZOELECTRIC FILM AND A CRYSTALLINE SUBSTRATE WITH LOW VISCOELASTIC COEFFICIENTS
TWI780103B (en) * 2017-05-02 2022-10-11 日商日本碍子股份有限公司 Elastic wave element and method of manufacturing the same
KR102434081B1 (en) * 2018-01-22 2022-08-18 엔지케이 인슐레이터 엘티디 A bonding body of a piezoelectric material substrate and a supporting substrate and a method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435789B2 (en) 1993-03-15 2003-08-11 松下電器産業株式会社 Surface acoustic wave device
JP3880150B2 (en) * 1997-06-02 2007-02-14 松下電器産業株式会社 Surface acoustic wave device
JP2001053579A (en) * 1999-06-02 2001-02-23 Matsushita Electric Ind Co Ltd Surface acoustic wave element and mobile object communications equipment
US7105980B2 (en) 2002-07-03 2006-09-12 Sawtek, Inc. Saw filter device and method employing normal temperature bonding for producing desirable filter production and performance characteristics
JP3774782B2 (en) 2003-05-14 2006-05-17 富士通メディアデバイス株式会社 Manufacturing method of surface acoustic wave device
JP2005229455A (en) 2004-02-16 2005-08-25 Shin Etsu Chem Co Ltd Compound piezoelectric substrate
JP4587732B2 (en) 2004-07-28 2010-11-24 京セラ株式会社 Surface acoustic wave device
JP4686342B2 (en) * 2005-11-30 2011-05-25 株式会社日立メディアエレクトロニクス Surface acoustic wave device and communication terminal equipped with the same.
JP4804169B2 (en) * 2006-02-24 2011-11-02 日本碍子株式会社 Piezoelectric thin film device

Also Published As

Publication number Publication date
JP2009278610A (en) 2009-11-26
DE102009001192A1 (en) 2009-10-29
DE102009001192B4 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP4956569B2 (en) Surface acoustic wave device
CN109417376B (en) Composite substrate for surface acoustic wave device, method for manufacturing same, and surface acoustic wave device using same
CN107615653B (en) Elastic wave device
EP3490144B1 (en) Method of producing composite substrate for surface acoustic wave device
US8115365B2 (en) Surface acoustic wave devices
KR101636220B1 (en) Composite substrate, piezoelectric device and method of manufacturing composite substrate
JP2011087079A (en) Surface acoustic wave device
JP4686342B2 (en) Surface acoustic wave device and communication terminal equipped with the same.
JP4657002B2 (en) Composite piezoelectric substrate
JP2019526194A (en) Hybrid structure for surface acoustic wave devices
JP3187231U (en) Composite board
US7911111B2 (en) Surface acoustic wave devices
JPWO2017043427A1 (en) Elastic wave device, high-frequency front-end circuit, and communication device
WO2015186661A1 (en) Elastic wave device
JP2015073331A (en) Acoustic wave device
WO2011158636A1 (en) Composite substrate
US12101079B2 (en) Method of producing a bonded body of piezoelectric material substrate
JP2005176152A (en) Surface acoustic wave element and its manufacturing method
JP2004242182A (en) Surface acoustic wave device
JP2000013180A (en) Surface acoustic wave element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120316

R150 Certificate of patent or registration of utility model

Ref document number: 4956569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3