WO2006114922A1 - Surface acoustic wave element, composite piezoelectric chip and method for manufacturing such surface acoustic wave element - Google Patents

Surface acoustic wave element, composite piezoelectric chip and method for manufacturing such surface acoustic wave element Download PDF

Info

Publication number
WO2006114922A1
WO2006114922A1 PCT/JP2006/301514 JP2006301514W WO2006114922A1 WO 2006114922 A1 WO2006114922 A1 WO 2006114922A1 JP 2006301514 W JP2006301514 W JP 2006301514W WO 2006114922 A1 WO2006114922 A1 WO 2006114922A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chip
surface acoustic
acoustic wave
composite piezoelectric
Prior art date
Application number
PCT/JP2006/301514
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Tanno
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2006114922A1 publication Critical patent/WO2006114922A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02897Means for compensation or elimination of undesirable effects of strain or mechanical damage, e.g. strain due to bending influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence

Definitions

  • a surface acoustic wave device using a composite piezoelectric substrate in which a piezoelectric material and a substrate having a smaller expansion coefficient are bonded together has improved frequency-temperature characteristics, uses an adhesive, and uses a rigid plate and a piezoelectric plate. It is a known technique to bond plates together to form an integrated substrate.
  • a surface acoustic wave filter mounted on a mounting board by means of flip-chip bonding using alumina (expansion coefficient 7ppm / ° C) as a base material has a frequency fluctuation of l lkHz at an operating frequency of 1.9GHz. It is disclosed that it has been improved by / ° C.
  • a composite piezoelectric chip that is mounted so as to satisfy the following relationship.
  • the composite piezoelectric chip is preferably mounted via bumps.
  • an electrode for exciting and detecting a surface acoustic wave is formed on the piezoelectric substrate, and mounted on the mounting substrate by flip chip bonding. If it is mounted so that the expansion coefficient ac in a specific direction satisfies the above relationship with the expansion coefficient as of the mounting board, it is a composite that can produce a surface acoustic wave device with high productivity and high frequency temperature characteristics improvement effect. Can be a piezoelectric chip.
  • FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a surface acoustic wave element according to the present invention.
  • the composite piezoelectric chip 1 is obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate 2 and a support substrate 3 are bonded into a chip shape.
  • the electrode 9 excites and detects surface acoustic waves on the piezoelectric substrate 2 9. And is mounted on the mounting substrate via flip-chip bonding via bumps.
  • the expansion coefficient ac (ppmZ ° C) of the piezoelectric substrate surface in a specific direction is the expansion coefficient of the mounting substrate (s) (ppm / ° C) and H s ⁇ H c ⁇ H s +6.
  • the composite piezoelectric chip 1 is obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate 2 and a support substrate 3 having an expansion coefficient smaller than the piezoelectric substrate 2 are bonded directly or via an adhesive layer 4 into a chip shape. Even if it was formed.
  • the adhesion may be increased by heating the substrate to 100 ° C and pre-treating it with short-wave UV light with a wavelength of 200 nm or less and high-concentration ozone.
  • the size of the composite piezoelectric substrate that is the base material of the composite piezoelectric chip is not particularly limited.
  • the support substrate 3 may be made of, for example, synthetic quartz, but is made of Si. Preferably, both surface layers of the support substrate 3 have a thickness of 0.:! To 20 zm.
  • the silicon oxide film 6 may be formed by being oxidized by the above.
  • the composite piezoelectric substrate 1 warps even at room temperature and peels off from the outer periphery when the piezoelectric substrate 2 is processed to the above thickness. Or, it is preferable because cracks occur from the outer periphery. Also, if the thickness of the Si oxide film 6 is less than 0.1 zm, the effect of reducing warpage of the composite piezoelectric substrate 1 is small. If it is thicker than 20 zm, for example, the composite piezoelectric substrate 1 is about 300 ° C in an N atmosphere. Cracks may occur in the piezoelectric substrate 2 when heated to
  • the thickness of the Si oxide film 6 does not necessarily have to be the same on both surfaces as long as it is within the above range, but it is preferable that the thickness be the same.
  • the support substrate 3 made of Si for example, grows a single crystal rod of Si by the floating zone method and slices it to a desired thickness, so that it has a very high resistance of 2000 ⁇ 'cm or more. Quality product is obtained.
  • a high pressure oxidation method can be used, and the Si oxide film 6 can be easily made to have the desired thickness with high productivity.
  • an adhesive constituting the adhesive layer 4 for example, if it is a photo-curing adhesive mainly composed of epoxy metal talate, a heat resistance of 250 ° C or more can be obtained, and a viscosity before photo-curing can be obtained. Since it is as low as 10 Ocps or less, a uniform adhesive layer can be easily formed by spin coating or other application methods. If the adhesive layer can be made uniform in this way, the composite piezoelectric chip 1 becomes a high-quality one that is uniformly bonded, and is more difficult to peel. And since it is photo-curable, the piezoelectric substrate 2 and the support substrate 3 can be firmly bonded and bonded by light irradiation at room temperature.
  • tan 5 is a quantity representing the dielectric loss tangent.
  • an electrode 9 for exciting and detecting a surface acoustic wave is formed on a piezoelectric substrate 2.
  • the electrode 9 can be formed by using a conventional photolithography method or the like.
  • a pair of comb electrodes composed of a plurality of electrode fingers and a bus bar that commonly connects the electrode fingers face each other so that the electrode fingers intersect.
  • One or more electrodes are formed depending on the desired function of the surface acoustic wave device.
  • reflectors may be formed on both sides of the electrode 9.
  • such a composite piezoelectric chip 1 is mounted on the mounting substrate 8 by conventional flip chip bonding via bumps 7 made of, for example, Au or Sn.
  • the mounting substrate 8 is made of anorenomina (expansion coefficient 8 ppm / ° C) or low expansion ceramic (expansion coefficient 5.5 ppm / ° C)
  • the expansion coefficient is an appropriate value. It is easy to adjust and mount so that the above relationship is satisfied, but a mounting board made of other materials can be used.
  • the thickness of the piezoelectric substrate, the piezoelectric substrate and the supporting substrate Manufacturability can be achieved by adjusting the thickness of the adhesive layer to be bonded, the chip size, etc., and mounting.
  • an electrode having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves is provided on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz.
  • a 1-port surface acoustic wave resonator was fabricated by forming reflectors on both sides.
  • Packaging was performed by flip-chip connection to a mounting board made of 5ppmZ ° C) via solder bumps made of Ag and Sn.
  • the surface of the Si substrate is cleaned, and the substrate is pre-treated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while heating the substrate to 100 ° C, with epoxy metatalylate as the main component.
  • a UV curable adhesive was spin coated and applied uniformly on one side of the substrate.
  • the back surface of the LiTaO substrate is washed, and the adhesive is applied in the same manner,
  • the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive.
  • the adhesive layer was uniformly 5 ⁇ thick within the substrate surface.
  • the chip is _40. C-125. Even after 1000 heat cycles of C, there was no change from before the heat cycle.
  • an electrode having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves is provided on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz.
  • a 1-port surface acoustic wave resonator was fabricated by forming reflectors on both sides.
  • Packaging was performed by flip-chip connection to a mounting substrate consisting of 5ppm / ° C) via solder bumps made of Sn.
  • a synthetic quartz substrate having a diameter of 4 inches (100 mm) and a thickness of 150 zm was prepared.
  • a 4 inch (100 mm) diameter 36 ° rotated Y-cut lithium tantalate (LiTaO) substrate is
  • the surface Ra was 0 ⁇ 12 ⁇ m by double-sided wrapping at 0.2 mm (200 / im).
  • the surface of the synthetic quartz substrate was cleaned, and further, this substrate was pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C, and the epoxy metal talate was the main component.
  • a UV curable adhesive was spin-coated and uniformly applied on one surface of the substrate.
  • the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive.
  • the adhesive layer was uniformly 5 xm thick within the substrate surface.
  • LiTaO substrate thickness 20 ⁇ by polishing.
  • X is the leakage surface acoustic wave propagation direction of the surface on which the electrode of the LiTaO substrate is formed.
  • Packaging was performed by flip-chip connection to a mounting board consisting of 5ppm / ° C) via solder bumps made of Sn.
  • the temperature coefficient of ° C and antiresonance frequency was 23ppm / ° C.
  • Each of the substrates was pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C.
  • the composite piezoelectric substrate After chamfering this composite piezoelectric substrate, the surface side of the LiTaO substrate is ground and Lj is removed by lapping, and the thickness of LiTaO substrate is reduced to 30 / im by polishing.
  • an electrode having an electrode width of about 0.5 microns for exciting and detecting a surface acoustic wave is provided on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz.
  • a 1-port surface acoustic wave resonator was fabricated by forming reflectors on both sides.
  • Packaging was performed by flip-chip connection to a mounting board consisting of 5ppm / ° C) via solder bumps made of Sn.
  • the temperature coefficient of ° C and antiresonance frequency was 23ppm / ° C.
  • the temperature coefficient is small for both the resonance frequency and the anti-resonance frequency.
  • LiTaO lithium tantalate
  • this piezoelectric substrate was processed into a 1 ⁇ 1.2 mm piezoelectric chip.
  • the expansion coefficient ac of the surface of the LiTa03 substrate on which the electrode is formed is X-direction ⁇ 0.5 ° which is the direction of propagation of the leaky surface acoustic wave, and the piezoelectric chip is heated and cooled to change the temperature of the electrode width.
  • ac 16 ppm / ° C.
  • Nitrogen plasma was irradiated to the surface on the side.
  • LiTaO substrate and Si substrate are bonded together at room temperature under a vacuum of 1 X 10 _4 mbar.
  • the LiTaO substrate thickness is 25 / i m by polishing.
  • the composite piezoelectric substrate is cut into a 1 x 1.2 mm composite piezoelectric substrate chip, and surface acoustic waves are excited and detected on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz.
  • An electrode with an electrode width of about 0.5 microns was provided, and reflectors were formed on both sides to produce a 1-port surface acoustic wave resonator.
  • X is the direction of leakage surface acoustic wave propagation on the surface of the LiTaO substrate where the electrodes are formed.
  • the temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is mounted in a chip-and-wire connection is set to 40 ° C force 85 ° C. until examined by changing the temperature coefficient of the result the resonance frequency of examining the temperature coefficient of each _ 12ppmZ ° C, the temperature coefficient of the anti-resonance frequency _ 22 PP m / ° was the C and good temperature characteristics, The mounting work is complicated and the productivity is not high.
  • G GG gadolinium gallium garnet
  • the surface of the GGG substrate is cleaned, and the substrate is pretreated with short-wave UV light having a wavelength of 2 OOnm or less and high-concentration ozone while being heated to 100 ° C, and the epoxy metal talate is the main component.
  • a UV curable adhesive was spin-coated and applied uniformly on one surface.
  • the back surface of the LiTaO substrate is cleaned, the adhesive is applied in the same manner, and the GGG substrate is applied.
  • the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive.
  • the adhesive layer was uniformly 5 xm thick within the substrate surface.
  • LiTaO substrate thickness 20 ⁇ by polishing.
  • this composite piezoelectric substrate is cut into a 1 ⁇ 1.2 mm composite piezoelectric substrate chip, and surface acoustic waves are excited to the composite piezoelectric chip so that the operating frequency is about 1.9 GHz.
  • An electrode with a width of 0.5 microns was provided, and reflectors were formed on both sides to produce a 1-port surface acoustic wave resonator.
  • the temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is mounted in a chip-and-wire connection is as follows.
  • the temperature coefficient of the resonance frequency was -30 ppm / ° C
  • the temperature coefficient of the anti-resonance frequency was -40 ppm / ° C, and there was no effect of improving temperature characteristics.
  • a force Li using a 36 ° rotated Y-cut LiTaO substrate as a piezoelectric substrate is a force Li using a 36 ° rotated Y-cut LiTaO substrate as a piezoelectric substrate.
  • An NbO substrate or another piezoelectric substrate may be used. These piezoelectric substrates are also pyroelectric.
  • the surface charge accumulation may be eliminated.

Abstract

A surface acoustic wave element wherein an electrode for exciting and detecting surface acoustic waves is formed on a piezoelectric substrate is characterized in that the element is provided with at least a composite piezoelectric chip, which is formed by machining a composite piezoelectric substrate, having the piezoelectric substrate bonded to a supporting substrate, into a chip shape, and a mounting board for mounting the composite piezoelectric chip by flip chip bonding. The surface acoustic wave element is also characterized in that mounting is performed to have an expansion coefficient αc(ppm/°C) of the surface of the piezoelectric substrate in a specific direction and an expansion coefficient αs(ppm/°C ) of the mounting board satisfy the relationship of αs<αc<αs+6. Thus, the surface acoustic wave element having high productivity and high frequency temperature characteristic improving effects, the composite piezoelectric chip and a method for manufacturing such surface acoustic wave element are provided.

Description

明 細 書  Specification
弾性表面波素子及び複合圧電チップ並びにその製造方法  Surface acoustic wave device, composite piezoelectric chip, and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、弾性表面波素子及び弾性表面波素子等に用いられる複合圧電チップ 並びにその製造方法に関するものである。 背景技術  The present invention relates to a surface acoustic wave device, a composite piezoelectric chip used for a surface acoustic wave device, and the like, and a method for manufacturing the same. Background art
[0002] 携帯電話等の高周波通信において周波数選択用の部品として、例えば圧電基板 上に弾性表面波を励起するための櫛形電極が形成された弾性表面波(Surface A coustic Wave, SAW)素子が用いられる。これに用いられる圧電基板材料は、電 気信号から機械的振動への変換効率 (以下電気機械結合係数と記す)が大きいこと 、また櫛形電極の電極間隔と弾性波の音速により決まるフィルタ等の中心周波数が 温度により変動しないことが求められる(以下、周波数温度特性と記す)。  [0002] For example, a surface acoustic wave (SAW) element in which a comb-shaped electrode for exciting a surface acoustic wave is formed on a piezoelectric substrate is used as a frequency selection component in high-frequency communication such as a cellular phone. It is done. The piezoelectric substrate material used for this has a high conversion efficiency (hereinafter referred to as an electromechanical coupling coefficient) from an electric signal to mechanical vibration, and the center of a filter or the like determined by the electrode interval of the comb electrodes and the acoustic velocity of the elastic wave. It is required that the frequency does not vary with temperature (hereinafter referred to as frequency-temperature characteristics).
すなわち、大きな電気機械結合係数と小さな周波数温度係数を兼ね備えた圧電基 板が有れば好ましい。  That is, it is preferable to have a piezoelectric substrate having both a large electromechanical coupling coefficient and a small frequency temperature coefficient.
こうした特性を実現する圧電基板の一例として、圧電基板と他の基板を接合した複 合圧電基板がある。  An example of a piezoelectric substrate that realizes such characteristics is a composite piezoelectric substrate in which a piezoelectric substrate and another substrate are bonded.
[0003] このような複合圧電基板の一例として、圧電材料の表面に弾性波を励振'検出する ための電極が設けられており、前記圧電材料裏面に複合積層体を接合したことを特 徴とする温度安定化表面波装置が開示されている。この表面波装置は、制御された 応力変化を前記圧電材料に誘起させることにより、前記圧電材料において温度補正 がなされるというものである(特開昭 51— 25951号公報参照)。  [0003] As an example of such a composite piezoelectric substrate, an electrode for exciting and detecting an elastic wave is provided on the surface of the piezoelectric material, and the composite laminate is bonded to the back surface of the piezoelectric material. A temperature stabilized surface acoustic wave device is disclosed. In this surface wave device, temperature is corrected in the piezoelectric material by inducing a controlled stress change in the piezoelectric material (see Japanese Patent Application Laid-Open No. 51-25951).
この例では、「複合積層体に LiNbO (ニオブ酸リチウム)基板を強固に結合するこ  In this example, “a LiNbO (lithium niobate) substrate is firmly bonded to the composite laminate.
3  Three
とにより、前述したように基板上に圧縮力が生じ、この圧縮力は温度が増大するに従 つて増大する。力べして、遅延時間およびフィルタ中心周波数に対する温度の影響を 補正する手段を得ることができる。」とされている。これは、支持基板となる複合積層 体の膨張係数は圧電材料である LiNbO基板の弾性表面波伝播方向のそれよりも 小さいことを意味し、これにより温度変化に応じて圧電基板に応力が発生して SAW デバイスの遅延時間およびフィルタ中心周波数に対する温度の影響を補正できると レ、うことを意味する。 As described above, a compressive force is generated on the substrate as described above, and this compressive force increases as the temperature increases. By force, a means for correcting the influence of temperature on the delay time and the filter center frequency can be obtained. It is said that. This is because the expansion coefficient of the composite laminate as the support substrate is higher than that of the surface acoustic wave propagation direction of the LiNbO substrate, which is a piezoelectric material. This means that the stress is generated in the piezoelectric substrate according to the temperature change, and the influence of the temperature on the delay time and the filter center frequency of the SAW device can be corrected.
[0004] また、接着剤を使用して剛板と圧電板とを貼り合せて一体の基板とし、前記圧電板 表面に電極を設けた機能素子を、パッケージに収納した電気部品が開示されている (特開平 02— 62108号公報参照)。  [0004] Further, there is disclosed an electrical component in which a functional element having an electrode on the surface of the piezoelectric plate is housed in a package by bonding a rigid plate and a piezoelectric plate using an adhesive. (See JP-A-02-62108).
すなわち、圧電材料とこれより小さな膨張係数を有する基板とを貼り合せた複合圧 電基板を用いた弾性表面波素子は周波数温度特性が改善されること、接着剤を用 レ、て剛板と圧電板を貼り合せて一体の基板とすることは公知の技術である。  That is, a surface acoustic wave device using a composite piezoelectric substrate in which a piezoelectric material and a substrate having a smaller expansion coefficient are bonded together has improved frequency-temperature characteristics, uses an adhesive, and uses a rigid plate and a piezoelectric plate. It is a known technique to bond plates together to form an integrated substrate.
[0005] また、圧電性基板と、該圧電性基板上にそれぞれ形成された、複数の電極指およ びこれら電極指を共通に接続するバスバーを有するインタディジタルトランスデュー サ(IDT)ならびにバンプとを備える、弾性表面波素子が、前記バンプを介したフリツ プチップボンディングによって実装基板上に実装された、弾性表面波素子の実装構 造であって、前記実装基板は、前記圧電性基板より小さい線膨張係数を有し、かつ、 前記バンプは、温度変化による前記圧電性基板の熱膨張および熱収縮が前記実装 基板によって抑えられるように配置されていることを特徴とする、弾性表面波素子の 実装構造が開示されている(特開 2003— 324334号公報参照)。  [0005] Further, a piezoelectric substrate, an interdigital transducer (IDT) and a bump each having a plurality of electrode fingers and a bus bar that connects these electrode fingers in common are formed on the piezoelectric substrate. The surface acoustic wave device is mounted on a mounting substrate by flip chip bonding via the bump, and the mounting substrate is smaller than the piezoelectric substrate. A surface acoustic wave device having a linear expansion coefficient, wherein the bump is arranged so that thermal expansion and contraction of the piezoelectric substrate due to temperature change are suppressed by the mounting substrate. A mounting structure is disclosed (see JP 2003-324334 A).
この例の実施例においては、圧電体として LiTaO (膨張係数 16ppm/°C)、実装  In this example, LiTaO (expansion coefficient 16ppm / ° C) is used as the piezoelectric body.
3  Three
基材としてアルミナ (膨張係数 7ppm/°C)を使用しバンプを介してフリップチップボ ンデイングによって実装基板上に実装された弾性表面波フィルタが、動作周波数 1. 9GHzにおいて温度による周波数変動が l lkHz/°Cだけ改善されたことが開示さ れている。  A surface acoustic wave filter mounted on a mounting board by means of flip-chip bonding using alumina (expansion coefficient 7ppm / ° C) as a base material has a frequency fluctuation of l lkHz at an operating frequency of 1.9GHz. It is disclosed that it has been improved by / ° C.
この改善効果は、温度係数にして約 6ppmZ°Cだけ改善されるものであり好ましレ、 とされる。  This improvement effect is preferably improved by about 6ppmZ ° C in terms of temperature coefficient.
[0006] 一方、 B.P.Abbot, J.Caron, J.Chocola, K.Lin , S.Malocha, N.Naumenko and P.Wei sh, "Advances in Rf SAW Substrates", 2nd International Symposium on Acoustic Wav e Devices for Future Mobile Communication Systems, pp.233-243,2003では、圧電体 として 48° 回転 Yカット LiTaOを用い、この圧電体にその支持基板である Si基板が SiO層を介して直接接合された複合圧電基板を用いた弾性表面波デバイスが開示[0006] On the other hand, BPAbbot, J.Caron, J.Chocola, K.Lin , S.Malocha, N.Naumenko and P.Wei sh, "Advances in Rf SAW Substrates", 2 nd International Symposium on Acoustic Wav e Devices for In Future Mobile Communication Systems, pp.233-243, 2003, 48 ° rotated Y-cut LiTaO is used as the piezoelectric material, and the Si substrate that is the supporting substrate is used for this piezoelectric material. A surface acoustic wave device using a composite piezoelectric substrate directly bonded via an SiO layer is disclosed.
2 2
されている。この弾性表面波デバイスの動作周波数の温度特性は、複合圧電チップ をボンディングワイヤー法で接続すると動作周波数の温度特性が— 12ppm/°Cで あるのに対し、フリップチップボンディング法では _ 22ppm/°C (乃至 _ 35ppm/°C )と温度特性が劣化してしまうことが記載されてレ、る。  Has been. The operating frequency temperature characteristics of this surface acoustic wave device are -12 ppm / ° C when the composite piezoelectric chip is connected by the bonding wire method. (Or _35ppm / ° C) and it is described that the temperature characteristics deteriorate.
発明の開示 Disclosure of the invention
[0007] 本発明は、上記の問題に鑑みてなされたものであり、本発明の目的は、生産性が 高ぐ周波数温度特性改善効果が高い弾性表面波素子及び複合圧電チップ並びに その製造方法を提供することにある。  [0007] The present invention has been made in view of the above problems, and an object of the present invention is to provide a surface acoustic wave device and a composite piezoelectric chip that have high productivity and high effect of improving frequency temperature characteristics, and a method for manufacturing the same. It is to provide.
[0008] 上記課題を解決するために、本発明は、圧電基板上に弾性表面波を励振 '検出す る電極が形成された弾性表面波素子であって、少なくとも、圧電基板と支持基板とを 貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップと、該複合圧電 チップをフリップチップボンディングによって実装する実装基板とを具備し、前記圧電 基板表面の特定方向の膨張係数 a c (ppm/°C)と、前記実装基板の膨張係数 a s ( ppm °C)とが、  In order to solve the above problems, the present invention provides a surface acoustic wave element in which an electrode for exciting and detecting a surface acoustic wave is formed on a piezoelectric substrate, and includes at least a piezoelectric substrate and a support substrate. A composite piezoelectric chip obtained by processing the bonded composite piezoelectric substrate into a chip shape, and a mounting substrate on which the composite piezoelectric chip is mounted by flip chip bonding, and an expansion coefficient ac (ppm / ° in a specific direction on the surface of the piezoelectric substrate) C) and the expansion coefficient as (ppm ° C) of the mounting board,
ひ S、 ひ ひ S + Ό  ひ S 、 ひ ひ S + Ό
なる関係を満たすように実装されたものであることを特徴とする弾性表面波素子を提 供する。  Provided is a surface acoustic wave device that is mounted so as to satisfy the following relationship.
[0009] このように、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加 ェした複合圧電チップと、該複合圧電チップをフリップチップボンディングによって実 装する実装基板とを具備し、圧電基板表面の特定方向の膨張係数 a cと実装基板の 膨張係数ひ sとが上記関係を満たすように実装されたものであれば、生産性が高ぐ 周波数温度特性改善効果が高い弾性表面波素子とできる。  [0009] As described above, a composite piezoelectric chip in which a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate is added to a chip shape, and a mounting substrate on which the composite piezoelectric chip is mounted by flip chip bonding are provided. If the piezoelectric substrate surface is mounted so that the expansion coefficient ac in a specific direction and the expansion coefficient s of the mounting board satisfy the above relationship, the productivity will be high. Can be an element.
[0010] この場合、前記特定方向は、前記電極により励振される弾性表面波の伝播方向か ら ± 0. 5度以内のものであることが好ましい。  [0010] In this case, the specific direction is preferably within ± 0.5 degrees from the propagation direction of the surface acoustic wave excited by the electrode.
このように、前記特定方向が弾性表面波の伝播方向から ± 0. 5度以内のものであ れば、周波数温度特性改善効果を確実に得ることができ、また弾性表面波の伝播口 スが少なくなり、挿入損失の少なレ、弾性表面波素子とできる。 As described above, if the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave, the effect of improving the frequency-temperature characteristics can be obtained with certainty, and the propagation opening of the surface acoustic wave can be obtained. Therefore, the surface acoustic wave element can be obtained with less insertion loss and less insertion loss.
[0011] また、前記実装基板は、アルミナ又は低膨張セラミックからなるものであることが好ま しい。  [0011] The mounting substrate is preferably made of alumina or a low expansion ceramic.
このように、実装基板がアルミナ又は低膨張セラミックからなるものであれば、圧電 基板の厚み等を調整することにより、複合圧電チップが膨張係数ひ cとひ sとが上記 関係を満たすように実装された弾性表面波素子とできる。  Thus, if the mounting board is made of alumina or low expansion ceramic, the composite piezoelectric chip can be mounted so that the expansion coefficient Hc and Hs satisfy the above relationship by adjusting the thickness of the piezoelectric board. The surface acoustic wave device can be made.
[0012] また、前記圧電基板は、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのい ずれか 1つからなるものであることが好ましい。 [0012] Preferably, the piezoelectric substrate is made of one of lithium tantalate, lithium niobate, and lithium borate.
このように、圧電基板が上記の電気機械結合係数が大きい結晶材料からなるもの であれば、周波数選択フィルタとしての帯域幅が広ぐ揷入損失が小さい弾性表面 波素子となる。  Thus, if the piezoelectric substrate is made of a crystalline material having a large electromechanical coupling coefficient, a surface acoustic wave element with a wide bandwidth as a frequency selective filter and a small insertion loss can be obtained.
[0013] また、前記複合圧電チップは、バンプを介して実装されるものであるのが好ましい。  [0013] The composite piezoelectric chip is preferably mounted via bumps.
このように、複合圧電チップがバンプを介して実装されるものであれば、電気的'機 械的に効果的に接続される弾性表面波素子となる。  As described above, if the composite piezoelectric chip is mounted via the bumps, the surface acoustic wave element can be effectively electrically and mechanically connected.
[0014] また、本発明は、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状 に加工した複合圧電チップであって、該複合圧電チップは前記圧電基板上に弾性 表面波を励振'検出する電極が形成され、かつフリップチップボンディングによって実 装基板に実装されるものであり、前記圧電基板表面の特定方向の膨張係数ひ c (pp m/°C)が、前記実装基板の膨張係数 a s (ppm/°C)と、 Further, the present invention is a composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape, and the composite piezoelectric chip excites a surface acoustic wave on the piezoelectric substrate. 'The electrode to be detected is formed and mounted on the mounting board by flip chip bonding, and the expansion coefficient Hc (pp m / ° C) in the specific direction of the surface of the piezoelectric substrate is the expansion of the mounting board. Coefficient as (ppm / ° C),
a s < a c、 α S + Ό  a s <a c, α S + Ό
なる関係を満たすように実装されるものであることを特徴とする複合圧電チップを提供 する。  Provided is a composite piezoelectric chip that is mounted so as to satisfy the following relationship.
[0015] このように、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加 ェした複合圧電チップであって、圧電基板上に弾性表面波を励振 ·検出する電極が 形成され、かつフリップチップボンディングによって実装基板に実装されるものであり 、さらに圧電基板表面の特定方向の膨張係数ひ cが実装基板の膨張係数ひ sと上記 関係を満たすように実装されるものであれば、生産性が高ぐ周波数温度特性改善 効果が高い弾性表面波素子を作製できる複合圧電チップとできる。 [0016] この場合、前記特定方向は、前記電極により励振される弾性表面波の伝播方向か ら ± 0. 5度以内のものであることが好ましい。 [0015] Thus, a composite piezoelectric chip in which a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate is added to a chip shape, and an electrode for exciting and detecting a surface acoustic wave is formed on the piezoelectric substrate. And mounted on the mounting board by flip-chip bonding, and further mounted so that the expansion coefficient in a specific direction of the piezoelectric substrate surface satisfies the above relationship with the expansion coefficient of the mounting board. Thus, a composite piezoelectric chip capable of producing a surface acoustic wave device with high productivity and high frequency temperature characteristic improvement effect can be obtained. In this case, the specific direction is preferably within ± 0.5 degrees from the propagation direction of the surface acoustic wave excited by the electrode.
このように、特定方向が弾性表面波の伝播方向から ± 0. 5度以内のものであれば 、周波数温度特性改善効果を確実に得ることができ、また弾性表面波の伝播ロスが 少なくなり、揷入損失の少ない弾性表面波素子を作製できる複合圧電チップとできる  As described above, if the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave, the effect of improving the frequency-temperature characteristics can be surely obtained, and the propagation loss of the surface acoustic wave is reduced. Can be a composite piezoelectric chip that can produce surface acoustic wave elements with low insertion loss
[0017] また、前記実装基板は、アルミナ又は低膨張セラミックからなるものであることが好ま しい。 [0017] Preferably, the mounting substrate is made of alumina or a low expansion ceramic.
このように、複合圧電基板が実装される実装基板がアルミナ又は低膨張セラミックか らなるものであれば、圧電基板の厚み等を調整することにより、膨張係数ひ cとひ sと が上記関係を満たすように実装することが可能な複合圧電チップとできる。  As described above, if the mounting substrate on which the composite piezoelectric substrate is mounted is made of alumina or low expansion ceramic, the relationship between the expansion coefficient Hc and Hs can be obtained by adjusting the thickness of the piezoelectric substrate. It can be a composite piezoelectric chip that can be mounted so as to satisfy.
[0018] また、前記圧電基板は、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのい ずれか 1つからなるものであることが好ましい。  [0018] The piezoelectric substrate is preferably made of one of lithium tantalate, lithium niobate, and lithium borate.
このように、圧電基板が上記の電気機械結合係数が大きい結晶材料からなるもの であれば、周波数選択フィルタとしての帯域幅が広ぐ挿入損失が小さい弾性表面 波素子を作製できる複合圧電チップとできる。  Thus, if the piezoelectric substrate is made of a crystal material having a large electromechanical coupling coefficient, a composite piezoelectric chip capable of producing a surface acoustic wave element with a wide bandwidth as a frequency selective filter and a small insertion loss can be obtained. .
[0019] また、前記複合圧電チップは、バンプを介して実装されるものであるのが好ましい。  [0019] The composite piezoelectric chip is preferably mounted via bumps.
このように、複合圧電チップがバンプを介して実装されるものであれば、電気的'機 械的に効果的に接続される複合圧電チップとなる。  As described above, if the composite piezoelectric chip is mounted via the bumps, the composite piezoelectric chip can be effectively electrically and mechanically connected.
[0020] また、本発明は、弾性表面波素子の製造方法であって、少なくとも、圧電基板と支 持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合圧電チップの該 圧電基板上に弾性表面波を励振 ·検出する電極を形成し、該複合圧電チップをフリ ップチップボンディングによって実装基板に実装する際に、前記圧電基板表面の特 定方向の膨張係数ひ c (ppm/°C)と、前記実装基板の膨張係数ひ s (ppm/°C)と が、  [0020] The present invention also relates to a method for manufacturing a surface acoustic wave element, wherein at least a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate to each other in a chip shape is processed on the piezoelectric substrate. When an electrode for exciting and detecting surface acoustic waves is formed and the composite piezoelectric chip is mounted on a mounting substrate by flip chip bonding, the expansion coefficient Hc (ppm / ° C) of the piezoelectric substrate surface in a specific direction is formed. C) and the expansion coefficient of the mounting board (s) (ppm / ° C)
a cく s + o  a c s + o
なる関係を満たすように実装することを特徴とする弾性表面波素子の製造方法を提 供する。 [0021] このように、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加 ェした複合圧電チップの圧電基板上に弾性表面波を励振'検出する電極を形成し、 該複合圧電チップをフリップチップボンディングによって実装基板に実装する際に、 圧電基板表面の特定方向の膨張係数 a c (ppm/°C)と、前記実装基板の膨張係数 a s (ppm/°C)とが上記関係を満たすように実装すれば、周波数温度特性改善効果 が高い弾性表面波素子を高生産性で製造できる。 Provided is a method for manufacturing a surface acoustic wave device that is mounted so as to satisfy the following relationship. In this way, an electrode for detecting and detecting a surface acoustic wave is formed on a piezoelectric substrate of a composite piezoelectric chip obtained by adding a composite piezoelectric substrate in which a piezoelectric substrate and a support substrate are bonded together to a chip shape. When a piezoelectric chip is mounted on a mounting board by flip chip bonding, the expansion coefficient ac (ppm / ° C) in a specific direction on the surface of the piezoelectric board and the expansion coefficient as (ppm / ° C) of the mounting board If it is mounted so as to satisfy the above, a surface acoustic wave device having a high effect of improving the frequency temperature characteristic can be manufactured with high productivity.
[0022] このとき、前記複合圧電チップを、バンプを介して実装するのが好ましい。  At this time, it is preferable that the composite piezoelectric chip is mounted via bumps.
このように、複合圧電チップをバンプを介して実装すれば、電気的'機械的に効果 的に接続することができる。  As described above, if the composite piezoelectric chip is mounted via the bumps, it can be electrically and mechanically effectively connected.
[0023] 本発明に従う弾性表面波素子であって、圧電基板と支持基板とを貼り合わせた複 合圧電基板をチップ形状に加工した複合圧電チップと、複合圧電チップをフリツプチ ップボンディングによって実装する実装基板とを具備し、圧電基板表面の特定方向 の膨張係数 a cと実装基板の膨張係数 a sとが a sく a cく a s + 6なる関係を満たす ように実装された弾性表面波素子であれば、生産性が高ぐ周波数温度特性改善効 果が高レ、弾性表面波素子とできる。  [0023] A surface acoustic wave device according to the present invention, a composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape, and a mounting substrate on which the composite piezoelectric chip is mounted by flip-chip bonding If the surface acoustic wave element is mounted so that the expansion coefficient ac of the piezoelectric substrate surface in a specific direction and the expansion coefficient as of the mounting board as satisfy the relationship: ac + as + 6 Therefore, the effect of improving the frequency temperature characteristics is high, and a surface acoustic wave device can be obtained.
[0024] また本発明に従う複合圧電チップであって、圧電基板上に弾性表面波を励振 '検 出する電極が形成され、かつフリップチップボンディングによって実装基板に実装さ れるものであり、圧電基板表面の特定方向の膨張係数 a cが実装基板の膨張係数 a sと上記関係を満たすように実装されるものであれば、生産性が高ぐ周波数温度特 性改善効果が高い弾性表面波素子を作製できる複合圧電チップとできる。  [0024] Further, in the composite piezoelectric chip according to the present invention, an electrode for exciting and detecting a surface acoustic wave is formed on the piezoelectric substrate, and mounted on the mounting substrate by flip chip bonding. If it is mounted so that the expansion coefficient ac in a specific direction satisfies the above relationship with the expansion coefficient as of the mounting board, it is a composite that can produce a surface acoustic wave device with high productivity and high frequency temperature characteristics improvement effect. Can be a piezoelectric chip.
[0025] さらに本発明に従い、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ 形状に加工した複合圧電チップの圧電基板上に弾性表面波を励振 ·検出する電極 を形成し、該複合圧電チップをフリップチップボンディングによって実装基板に実装 する際に、圧電基板表面の特定方向の膨張係数ひ c (ppmZ°C)と、前記実装基板 の膨張係数 a s (ppm/°C)とが上記関係を満たすように実装すれば、周波数温度特 性改善効果が高い弾性表面波素子を高生産性で製造できる。 図面の簡単な説明 [0026] [図 1]本発明に係る弾性表面波素子の実施形態の一例を示す断面概略図である。 発明を実施するための最良の形態 Furthermore, according to the present invention, an electrode for exciting and detecting a surface acoustic wave is formed on the piezoelectric substrate of a composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape. When mounting a piezoelectric chip on a mounting board by flip chip bonding, the expansion coefficient H (ppmZ ° C) in a specific direction on the surface of the piezoelectric board and the expansion coefficient as (ppm / ° C) of the mounting board are as described above. If it is mounted so as to satisfy the above conditions, a surface acoustic wave device having a high effect of improving frequency temperature characteristics can be manufactured with high productivity. Brief Description of Drawings FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a surface acoustic wave element according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下では、本発明の実施形態について具体的に説明するが、本発明はこれらに限 定されるものではない。 [0027] Embodiments of the present invention will be specifically described below, but the present invention is not limited to these.
図 1は本発明に係る弾性表面波素子の実施形態の一例を示す断面概略図である この弾性表面波素子 10は、少なくとも、圧電基板 2と支持基板 3とを貼り合わせた複 合圧電基板をチップ形状に加工した複合圧電チップ 1と、複合圧電チップ 1をバンプ 7を介してフリップチップボンディングによって実装する実装基板 8とを具備する。また 、圧電基板 1上に弾性表面波を励振 ·検出する電極 9が形成されたものである。  FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of a surface acoustic wave device according to the present invention. This surface acoustic wave device 10 includes at least a composite piezoelectric substrate in which a piezoelectric substrate 2 and a support substrate 3 are bonded together. A composite piezoelectric chip 1 processed into a chip shape, and a mounting substrate 8 on which the composite piezoelectric chip 1 is mounted by flip chip bonding via bumps 7 are provided. In addition, an electrode 9 for exciting and detecting a surface acoustic wave is formed on the piezoelectric substrate 1.
そして、圧電基板 1の表面の特定方向の膨張係数 et c (ppm/°C)と、実装基板の 膨張係数 a s (ppm/°C)と力 a sく a cく a s + 6なる関係を満たすように実装され たものであることを特徴とする。  The expansion coefficient et c (ppm / ° C) in the specific direction of the surface of the piezoelectric substrate 1 and the expansion coefficient as (ppm / ° C) of the mounting board and the force as It is implemented.
[0028] 弾性表面波素子 10は、このような構成を有することにより、生産性が高ぐ周波数温 度特性改善効果が高レ、ものとできる。 [0028] By having such a configuration, the surface acoustic wave element 10 can achieve a high frequency temperature characteristic improvement effect with high productivity.
すなわち、本発明のようにフリップチップボンディングにより複合圧電基板を実装し た弾性表面波素子は、例えばチップアンドワイヤー法により実装した場合に比べて、 周波数温度係数が数 ppmZ°C〜10数 PpmZ°C程度改善するだけでなぐフリップ チップボンディングにより実装するので、生産性を高くできる。 That is, the surface acoustic wave device in which the composite piezoelectric substrate is mounted by flip chip bonding as in the present invention has a frequency temperature coefficient of several ppm Z ° C to several tens P pmZ as compared with the case of mounting by the chip and wire method, for example. Productivity can be increased because it is mounted by flip chip bonding that only improves by about ° C.
[0029] また、 ひ cがひ sよりも小さい場合は、 B.P.Abbot, J.Caron, J.Chocola, K.Lin , S.Malo cha , N.Naumenko and P.Welsh, Advances in Rf SAW Substrates", 2nd International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, p p.233-243,2003と同様に、フリップチップボンディングにより実装した場合の周波数温 度特性がチップアンドワイヤー法により実装した場合に比べ劣化してしまうという結果 をもたらし、周波数温度特性改善効果と高生産性の両方を達成することができない。 また、 a cが α s + 6 (ppm/°C)より大きな場合は、周波数温度係数の改善効果は小 さレ、。すなわち、 a sく a cく a s + 6なる関係を満たすように実装することにより、高い 周波数改善効果と高生産性の両方を達成できる。膨張係数が上記関係を満たすよう にするには、例えば圧電基板の厚み、圧電基板と支持基板とを接着する接着層の厚 み、チップサイズ等を調整して実装すればよい。 [0029] If c is smaller than s, BPAbbot, J. Caron, J. Chocola, K. Lin, S. Malo cha, N. Naumenko and P. Welsh, Advances in Rf SAW Substrates ", 2 nd International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, like the p p.233-243,2003, deterioration compared with the case where the frequency temperature characteristic when mounted by flip chip bonding is implemented by a chip-and-wire method As a result, it is impossible to achieve both the frequency temperature characteristics improvement effect and high productivity, and if ac is greater than α s + 6 (ppm / ° C), the frequency temperature coefficient is improved. The effect is small, that is, it can achieve both high frequency improvement effect and high productivity by implementing it so as to satisfy the relationship of as ac ac as + 6. The expansion coefficient satisfies the above relationship. For example, the mounting may be performed by adjusting the thickness of the piezoelectric substrate, the thickness of the adhesive layer for bonding the piezoelectric substrate and the support substrate, the chip size, and the like.
[0030] また、前記特定方向が弾性表面波の伝播方向から ± 0. 5度以内のものであれば、 膨張係数の影響は弾性表面波の伝播方向において最も顕著に現れるから、周波数 温度特性改善効果を確実に得ることができる。また弾性表面波の伝播ロスが少なくな り、挿入損失の少ない弾性表面波素子とできる。  [0030] If the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave, the effect of the expansion coefficient appears most prominently in the propagation direction of the surface acoustic wave. An effect can be obtained reliably. In addition, the surface acoustic wave device can be obtained with less propagation loss of surface acoustic waves and less insertion loss.
[0031] 以下、弾性表面波素子 10について具体的に説明する。  Hereinafter, the surface acoustic wave element 10 will be specifically described.
複合圧電チップ 1は、圧電基板 2と支持基板 3とを貼り合わせた複合圧電基板をチ ップ形状に加工したものであって、圧電基板 2上に弾性表面波を励振 ·検出する電 極 9が形成され、かつバンプを介してフリップチップボンディングによって実装基板に 実装されるものであり、圧電基板表面の特定方向の膨張係数 a c (ppmZ°C)が、実 装基板の膨張係数ひ s (ppm/°C)とひ s < ひ c< ひ s + 6なる関係を満たすように実 装されるものであることを特 ί数とする。  The composite piezoelectric chip 1 is obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate 2 and a support substrate 3 are bonded into a chip shape. The electrode 9 excites and detects surface acoustic waves on the piezoelectric substrate 2 9. And is mounted on the mounting substrate via flip-chip bonding via bumps.The expansion coefficient ac (ppmZ ° C) of the piezoelectric substrate surface in a specific direction is the expansion coefficient of the mounting substrate (s) (ppm / ° C) and H s <H c <H s +6.
複合圧電チップ 1は、このような構成を有することにより、生産性が高ぐ周波数温 度特性改善効果が高い弾性表面波素子を作製できる複合圧電チップとできる。  By having such a configuration, the composite piezoelectric chip 1 can be a composite piezoelectric chip capable of producing a surface acoustic wave element with high productivity and high frequency temperature characteristic improvement effect.
[0032] また、複合圧電チップ 1は、圧電基板 2とこれよりも小さい膨張係数を有する支持基 板 3とを直接又は接着層 4を介して貼り合せた複合圧電基板をチップ形状に加工し て形成したものであってもよレ、。  In addition, the composite piezoelectric chip 1 is obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate 2 and a support substrate 3 having an expansion coefficient smaller than the piezoelectric substrate 2 are bonded directly or via an adhesive layer 4 into a chip shape. Even if it was formed.
このような構成であれば、温度変化に応じて圧電基板 2に応力が発生し、膨張係数 a ct a sとが上記関係を満たすことによる効果に加えて、より周波数温度特性を改善 すること力 Sできる。また、接着層 4を介して貼り合わせたものであれば、比較的安価な ものとできる。このような複合圧電チップ 1は、例えば圧電基板 2及び支持基板 3の一 方又は両方に接着剤を塗布し、真空下で貼り合わせ強固に接合し (複合圧電基板 部 11が作製される)、それをカ卩ェすることにより作製することができる。このとき、接着 面に異物が混入しないように貼り合わせ前に各基板の表面を洗浄することが好ましく 、また、表面をアンモニア—過酸化水素水溶液等で親水化処理をしたり、またはブラ ズマ処理をしたり基板を 100°Cに加熱し波長 200nm以下の短波 UV光及び高濃度 オゾンにより前処理することにより接着力を高めてもよい。 複合圧電チップの元材である複合圧電基板の大きさは特に限られず、例えば直径With such a configuration, stress is generated in the piezoelectric substrate 2 in response to temperature changes, and in addition to the effect of satisfying the above relationship with the expansion coefficient act as it can. In addition, if bonded together through the adhesive layer 4, it can be made relatively inexpensive. Such a composite piezoelectric chip 1 is prepared by, for example, applying an adhesive to one or both of the piezoelectric substrate 2 and the support substrate 3 and bonding them firmly under vacuum (composite piezoelectric substrate portion 11 is produced) It can be produced by covering it. At this time, it is preferable to clean the surface of each substrate before bonding so that no foreign matter is mixed into the adhesive surface, and the surface is hydrophilized with an ammonia-hydrogen peroxide solution or the like, or a plasma treatment is performed. The adhesion may be increased by heating the substrate to 100 ° C and pre-treating it with short-wave UV light with a wavelength of 200 nm or less and high-concentration ozone. The size of the composite piezoelectric substrate that is the base material of the composite piezoelectric chip is not particularly limited.
100mmのものとできるがそれ以上でもそれ以下でもよい。 It can be 100mm, but it can be more or less.
[0033] また、圧電基板 2は、厚さ力 ¾〜: 100 μ mであって、圧電基板 2の接着面 5が粗面に 加工されたものであることが好ましい。接着面 5が粗面に加工されたものであれば、バ ルク波の裏面反射が抑制され、圧電基板の接着力をより高めることができる。また圧 電基板 2の厚さが 5〜: 100 μ m、特に好ましくは 15〜30 μ mであれば、加熱による反 りが少なく割れのないものとなるので好ましい。圧電基板 2の厚さが 5 z mより薄いと、 例えば研肖 ij、ラップ工程等により生じる加工歪みが圧電基板内部に残存した場合に 、圧電基板 2を所望の厚さに加工する際にクラックが生じることがある。また、 100 z m より厚いと、複合圧電チップ 1を 250°C程度に加熱した場合に、圧電基板 2が割れて しまうことがある。圧電基板 2の厚さを上記範囲内の所望の値とするには、例えば複 合圧電基板を形成後、圧電基板を研削、ラップ、ポリッシュ (研磨)加工すればよい。  The piezoelectric substrate 2 preferably has a thickness force of ˜˜: 100 μm, and the bonding surface 5 of the piezoelectric substrate 2 is processed into a rough surface. If the adhesive surface 5 is processed into a rough surface, the back reflection of the bulk wave is suppressed, and the adhesive force of the piezoelectric substrate can be further increased. Further, if the thickness of the piezoelectric substrate 2 is 5 to 100 μm, particularly preferably 15 to 30 μm, it is preferable because warpage due to heating is small and there is no crack. If the thickness of the piezoelectric substrate 2 is less than 5 zm, cracks will occur when processing the piezoelectric substrate 2 to a desired thickness if, for example, processing strain caused by polishing ij, lapping process, etc. remains inside the piezoelectric substrate. May occur. If it is thicker than 100 zm, the piezoelectric substrate 2 may be cracked when the composite piezoelectric chip 1 is heated to about 250 ° C. In order to set the thickness of the piezoelectric substrate 2 to a desired value within the above range, for example, after forming a composite piezoelectric substrate, the piezoelectric substrate may be ground, lapped, and polished (polished).
[0034] また、圧電基板 2は、水晶等圧電性結晶材料からなるものであればいずれのもので もよいが、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか 1つから なるものであれば、これらは電気機械結合係数が大きい結晶材料なので、周波数選 択フィルタとしての帯域幅が広ぐ挿入損失が小さい弾性表面波素子とでき、またこ のような弾性表面波素子を作製できる複合圧電チップとできる。これらの圧電結晶材 料からなる圧電基板は、例えばチヨクラルスキー法でこれらの単結晶棒を育成し、こ れを所望の厚さにスライスすることによって高品質なものが得られる。  [0034] The piezoelectric substrate 2 may be any material as long as it is made of a piezoelectric crystal material such as quartz, but is made of any one of lithium tantalate, lithium niobate, and lithium borate. If so, these are crystalline materials having a large electromechanical coupling coefficient, so that a surface acoustic wave device with a wide bandwidth as a frequency selection filter and a low insertion loss can be formed, and a composite material capable of producing such a surface acoustic wave device. Can be a piezoelectric chip. A piezoelectric substrate made of these piezoelectric crystal materials can be obtained with a high quality by growing these single crystal rods by, for example, the Chiyoklarsky method and slicing them to a desired thickness.
また、基板方位についても、 36° 回転 Yカット、41° 回転 Yカット、 45° 回転 Yカツ ト等、圧電性結晶材料の種類や弾性表面波素子の用途、所望特性等に応じて適宜 選択すること力 Sできる。  The substrate orientation is also selected appropriately according to the type of piezoelectric crystal material, application of the surface acoustic wave device, desired characteristics, etc., such as 36 ° rotation Y-cut, 41 ° rotation Y-cut, 45 ° rotation Y-cut, etc. That power S.
[0035] また、支持基板 3は、例えば合成石英からなるものでもよレ、が、 Siからなるものであ つて、好ましくは支持基板 3の両表面層が 0.:!〜 20 z mの厚さで酸化され、 Si酸化 膜 6が形成されたものでもよい。  [0035] The support substrate 3 may be made of, for example, synthetic quartz, but is made of Si. Preferably, both surface layers of the support substrate 3 have a thickness of 0.:! To 20 zm. The silicon oxide film 6 may be formed by being oxidized by the above.
このように、支持基板 3が半導体デバイス作製用として最も実用化されている Siから なるものであれば、弾性表面波素子と半導体デバイスを複合化しやすくなる。通常、 Si基板と圧電基板を貼り合わせて形成した複合圧電基板は、両基板の膨張係数が 異なるため加熱すると反りが生じる場合がある。そこで、支持基板 3の両表面層を 0. :!〜 20 /i mの厚さだけ酸化し、 Si酸化膜 6を形成すれば、複合圧電チップ 1の反りを 低減できる。さらに接着層 4がある場合は、その表面抵抗値が I X 1015 Ω以上であり 、且つ Siの支持基板 3の抵抗値が 2000 Ω ' cm以上であり、かつ Si酸化膜 6が形成さ れたものであれば、絶縁性を十分確保可能とし、電気的特性も向上できる。このよう に接着層 4及び Siの支持基板 3の抵抗が極めて大きければ、支持基板 3の両表面の Si酸化膜がある程度薄くても電気的絶縁性を飛躍的に向上させることができる。 Thus, if the support substrate 3 is made of Si, which is most practically used for manufacturing semiconductor devices, the surface acoustic wave element and the semiconductor device can be easily combined. Normally, a composite piezoelectric substrate formed by bonding a Si substrate and a piezoelectric substrate has an expansion coefficient of both substrates. Since they are different, warping may occur when heated. Therefore, warping of the composite piezoelectric chip 1 can be reduced by oxidizing both surface layers of the support substrate 3 to a thickness of 0.:! To 20 / im and forming the Si oxide film 6. Further, when the adhesive layer 4 is present, the surface resistance value is IX 10 15 Ω or more, the resistance value of the Si support substrate 3 is 2000 Ω′cm or more, and the Si oxide film 6 is formed. If it is a thing, insulation can fully be ensured and an electrical property can also be improved. Thus, if the resistance of the adhesive layer 4 and the Si support substrate 3 is extremely large, even if the Si oxide films on both surfaces of the support substrate 3 are thin to some extent, the electrical insulation can be dramatically improved.
[0036] もし支持基板 3の一方の表面のみに Si酸化膜 6がある場合には、複合圧電基板 1 に室温でも反りが生じ、圧電基板 2を前記の厚さに加工する際に外周から剥がれたり 、外周からクラックが生じるので好ましくなレ、。また Si酸化膜 6の厚さが 0. 1 z mより薄 いと、複合圧電基板 1の反りの低減効果が少なぐ 20 z mより厚いと、例えば複合圧 電基板 1を N雰囲気下、 300°C程度に加熱した時に圧電基板 2にクラックが生じるこ [0036] If the Si oxide film 6 is present only on one surface of the support substrate 3, the composite piezoelectric substrate 1 warps even at room temperature and peels off from the outer periphery when the piezoelectric substrate 2 is processed to the above thickness. Or, it is preferable because cracks occur from the outer periphery. Also, if the thickness of the Si oxide film 6 is less than 0.1 zm, the effect of reducing warpage of the composite piezoelectric substrate 1 is small. If it is thicker than 20 zm, for example, the composite piezoelectric substrate 1 is about 300 ° C in an N atmosphere. Cracks may occur in the piezoelectric substrate 2 when heated to
2  2
とがあるので好ましくない。  This is not preferable.
[0037] なお、 Si酸化膜 6の厚さは、上記範囲内であれば必ずしも両表面が同じである必要 はないが、同程度であることが好ましい。また、このような Siからなる支持基板 3は、例 えばフローティングゾーン法で Siの単結晶棒を育成し、これを所望の厚さにスライス することによって 2000 Ω ' cm以上の極めて高抵抗の高品質なものが得られる。また 、支持基板 3の両表面層を酸化するには、例えば高圧酸化法を用いることができ、生 産性よく Si酸化膜 6を容易に前記の所望の厚さとできる。  [0037] The thickness of the Si oxide film 6 does not necessarily have to be the same on both surfaces as long as it is within the above range, but it is preferable that the thickness be the same. In addition, the support substrate 3 made of Si, for example, grows a single crystal rod of Si by the floating zone method and slices it to a desired thickness, so that it has a very high resistance of 2000 Ω'cm or more. Quality product is obtained. Further, in order to oxidize both surface layers of the support substrate 3, for example, a high pressure oxidation method can be used, and the Si oxide film 6 can be easily made to have the desired thickness with high productivity.
[0038] 接着層 4を構成する接着剤としては、例えばエポキシメタタリレートを主成分とする 光硬化接着剤であれば、 250°C以上の耐熱性が得られ、かつ光硬化前の粘度が 10 Ocps以下と低いので、スピンコーティングやその他の塗布方法で容易に均一な接着 層とできる。このように接着層が均一とできれば、複合圧電チップ 1は均一に接着され た高品質なものとなり、より剥離しにくいものとなる。そして、光硬化性であるから、室 温で光照射により圧電基板 2と支持基板 3を強固に貼り合わせ接合することができ、 高温にしなくてもよいので貼り合わせ時に圧電基板 2が高温で変形せず室温でフラッ トな形状を保つことができるので好ましい。また、この接着剤は表面抵抗値が 1 X 101 5 Ωと大きく、なおかつ 1GHzにおける tan Sが 0. 1以下と小さいので高周波領域で の損失が小さく好ましい。ここで tan 5とは誘電正接を表す量である。 [0038] As an adhesive constituting the adhesive layer 4, for example, if it is a photo-curing adhesive mainly composed of epoxy metal talate, a heat resistance of 250 ° C or more can be obtained, and a viscosity before photo-curing can be obtained. Since it is as low as 10 Ocps or less, a uniform adhesive layer can be easily formed by spin coating or other application methods. If the adhesive layer can be made uniform in this way, the composite piezoelectric chip 1 becomes a high-quality one that is uniformly bonded, and is more difficult to peel. And since it is photo-curable, the piezoelectric substrate 2 and the support substrate 3 can be firmly bonded and bonded by light irradiation at room temperature. Therefore, it is preferable because it can maintain a flat shape at room temperature. Furthermore, the adhesive surface resistance as large as 1 X 10 1 5 Ω, yet since tan S at 1GHz is 0.1 or less and small in a high frequency region Loss is small and preferable. Here, tan 5 is a quantity representing the dielectric loss tangent.
[0039] このような複合圧電チップ 1は、圧電基板 2上に弾性表面波を励振'検出する電極 9 が形成されたものである。電極 9は、従来のフォトリソグラフィ法等を用いて形成でき、 例えば複数の電極指と該電極指を共通に接続するバスバーとからなる 1対の櫛型電 極が電極指が交差するように対向配置された IDTであり、弾性表面波素子の所望の 機能'用途に応じて 1又は複数の電極が形成される。また、電極 9の両側には反射器 が形成されてもよい。 In such a composite piezoelectric chip 1, an electrode 9 for exciting and detecting a surface acoustic wave is formed on a piezoelectric substrate 2. The electrode 9 can be formed by using a conventional photolithography method or the like. For example, a pair of comb electrodes composed of a plurality of electrode fingers and a bus bar that commonly connects the electrode fingers face each other so that the electrode fingers intersect. One or more electrodes are formed depending on the desired function of the surface acoustic wave device. In addition, reflectors may be formed on both sides of the electrode 9.
[0040] そして、このような複合圧電チップ 1は、例えば Auや Snからなるバンプ 7を介して従 来のフリップチップボンディングによって実装基板 8に実装される。実装基板 8は、ァ ノレミナ (膨張係数 8ppm/°C)や低膨張セラミック (膨張係数 5. 5ppm/°C)からなる ものであれば、膨張係数が適当な値であり、膨張係数ひ cとひ sとが前述の関係を満 たすように調整して実装することが容易であるが、他の材料からなる実装基板でもよ レ、。  Then, such a composite piezoelectric chip 1 is mounted on the mounting substrate 8 by conventional flip chip bonding via bumps 7 made of, for example, Au or Sn. If the mounting substrate 8 is made of anorenomina (expansion coefficient 8 ppm / ° C) or low expansion ceramic (expansion coefficient 5.5 ppm / ° C), the expansion coefficient is an appropriate value. It is easy to adjust and mount so that the above relationship is satisfied, but a mounting board made of other materials can be used.
[0041] このような弾性表面波素子 10は、本発明に従い、圧電基板 2と支持基板 3とを貼り 合わせた複合圧電基板をチップ形状に加工した複合圧電チップ 1の圧電基板上に 弾性表面波を励振'検出する電極 9を形成し、複合圧電チップ 1をバンプ 7を介して フリップチップボンディングによって実装基板 8に実装する際に、圧電基板 2の表面の 特定方向の膨張係数 ct c (ppm/°C)と実装基板 8の膨張係数 α s (ppm/°C)とが、 a s < ct c < a s + 6なる関係を満たすように、例えば圧電基板の厚み、圧電基板と支 持基板とを接着する接着層の厚み、チップサイズ等を調整して実装することにより、 製造すること力 Sできる。 According to the present invention, such a surface acoustic wave element 10 is provided with a surface acoustic wave on the piezoelectric substrate of the composite piezoelectric chip 1 obtained by processing a composite piezoelectric substrate in which the piezoelectric substrate 2 and the support substrate 3 are bonded into a chip shape. When the composite piezoelectric chip 1 is mounted on the mounting substrate 8 via the bump 7 by flip chip bonding, an expansion coefficient ct c (ppm / ppm) of the surface of the piezoelectric substrate 2 is formed. ° C) and the expansion coefficient α s (ppm / ° C) of the mounting substrate 8 satisfy the relationship of as <ct c <as + 6, for example, the thickness of the piezoelectric substrate, the piezoelectric substrate and the supporting substrate Manufacturability can be achieved by adjusting the thickness of the adhesive layer to be bonded, the chip size, etc., and mounting.
[0042] 以下に本発明の実施例および比較例をあげてさらに具体的に説明するが、本発明 はこれらに限定されるものではない。 [0042] Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited thereto.
(実施例 1)  (Example 1)
直径 4インチ(100mm)で厚さが 200 z mであり、抵抗値が 5000 Ω ' cmの Si基板 の両面の表面層を高圧酸化法により 6 β mの厚さで酸化した。次に直径 4インチ(10 Omm)の 36° 回転 Yカットタンタル酸リチウム(LiTaO )基板を厚さが 0. 2mm (200 μ m)で両面ラップにより表面の Ra (平均表面粗さ)が 0. 12 μ mとなる様加工した。 The surface layers on both sides of a Si substrate with a diameter of 4 inches (100 mm), a thickness of 200 zm, and a resistance of 5000 Ω 'cm were oxidized to a thickness of 6 β m by high-pressure oxidation. Next, a 4 inch (10 Omm) 36 ° rotated Y-cut lithium tantalate (LiTaO) substrate with a thickness of 0.2 mm (200 The surface Ra (average surface roughness) was 0.12 μm by double-sided lapping.
[0043] 次いで、この酸化膜付き Si基板の表面を洗浄し、さらにこの基板を 100°Cに加熱し ながら波長 200nm以下の短波 UV光及び高濃度オゾンにより前処理し、次にェポキ シメタタリレートを主成分とする紫外線硬化接着剤をスピンコートしこの基板の片側表 面上に均一に塗布した。次いで、前記 LiTaO基板の裏面を洗浄し、前記接着剤を [0043] Next, the surface of the Si substrate with an oxide film is cleaned, and the substrate is further pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while heating to 100 ° C, and then epoxy metatalarate. A UV-curing adhesive mainly composed of was spin-coated and applied uniformly on one surface of this substrate. Next, the back surface of the LiTaO substrate is cleaned, and the adhesive is removed.
3  Three
同様に塗布し、前記酸化膜付き Si基板の接着剤塗布面と前記 LiTaO基板の接着  Apply in the same way, and adhere the adhesive-coated surface of the Si substrate with oxide film to the LiTaO substrate
3  Three
剤塗布面を圧力 1 X 10— 3mbarの真空下で貼り合せた。 The agent-coated surface was bonded under vacuum at a pressure 1 X 10- 3 mbar.
[0044] 次に、この貼り合わせた複合圧電基板に、照度 50mW/cm2の紫外線を 10分間 照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に 5 x mの厚さだつ た。そして、この複合圧電基板を面取り加工した後、 LiTaO基板の表面側をラップ Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 xm thick within the substrate surface. After chamfering this composite piezoelectric substrate, wrap the surface side of the LiTaO substrate.
3  Three
及び研肖 IJにより 160 x m肖 IJり落とし、さらにポリッシュにより LiTaO基板の厚さが 15  And I removed 160 x m IJ by polishing IJ, and further polished the LiTaO substrate thickness to 15
3  Three
μ mになるよつにした。  It was set to μm.
[0045] このようにして作製した複合圧電基板を 150°Cに加熱したところその反り量は最大 で 2mmと小さかった。次に、この複合圧電基板を 1 X 1. 2mmの複合圧電基板チッ プに切断し、このチップを N雰囲気下、 300°Cまで加熱したところチップは割れなか  [0045] When the composite piezoelectric substrate produced in this way was heated to 150 ° C, the amount of warpage was as small as 2 mm at the maximum. Next, this composite piezoelectric substrate was cut into a 1 × 1.2 mm composite piezoelectric substrate chip, and when this chip was heated to 300 ° C in an N atmosphere, the chip did not crack.
2  2
つた。また、前記チップを一 40°C〜125°Cのヒートサイクルに 1000サイクルかけても I got it. In addition, even if the chip is subjected to a heat cycle of 40 ° C to 125 ° C for 1000 cycles
、ヒートサイクル前と変化が無かった。 There was no change from before the heat cycle.
[0046] 次に、上記の複合圧電チップに、動作周波数が約 1. 9GHzとなるように、弾性表面 波を励振'検出するための電極幅が約 0. 5ミクロンである電極を設け、その両側に反 射器を形成して 1ポートの弾性表面波共振子を作製した。 [0046] Next, an electrode having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves is provided on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz. A 1-port surface acoustic wave resonator was fabricated by forming reflectors on both sides.
[0047] このとき、 LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向である X [0047] At this time, X is the leakage surface acoustic wave propagation direction of the surface on which the electrode of the LiTaO substrate is formed.
3  Three
方向 ± 0. 5° の膨張係数ひ cを、前記複合圧電チップを加熱及び冷却し電極幅の 温度変化をその場観察により求めたところ、 ひ c = 10ppm/°Cであった。  The coefficient of expansion in the direction ± 0.5 ° was obtained by heating and cooling the composite piezoelectric chip and the temperature change of the electrode width was determined by in-situ observation, and was found to be c = 10 ppm / ° C.
[0048] 次に電極が形成された前記複合圧電チップを、低膨張セラミック (膨張係数ひ s = 5[0048] Next, the composite piezoelectric chip on which the electrode is formed is made into a low expansion ceramic (expansion coefficient s = 5
. 5ppmZ°C)からなる実装基板に Ag、 Snからなるハンダバンプを介してフリップチッ プ接続して、パッケージングをおこなった。 Packaging was performed by flip-chip connection to a mounting board made of 5ppmZ ° C) via solder bumps made of Ag and Sn.
[0049] 前記複合圧電チップをフリップチップ接続した 1ポート弾性表面波共振子の共振周 波数、及び反共振周波数の温度依存性を周囲温度を _ 40°Cから 85°Cまで変化さ せて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は lOppm/ °C、反共振周波数の温度係数は 20ppm/°Cであった。 [0049] The temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is changed from _40 ° C to 85 ° C. As a result, the temperature coefficient of the resonance frequency was 10 ppm / ° C, and the temperature coefficient of the anti-resonance frequency was 20 ppm / ° C.
[0050] (実施例 2) [0050] (Example 2)
直径 4インチ(100mm)で厚さが 200 z mであり、抵抗値が 5000 Ω ' cmの Si基板 を用意した。次に直径 4インチ(100mm)の 36° 回転 Yカットタンタル酸リチウム(Li TaO )基板を厚さが 0. Smm ^OO z m)で両面ラップにより表面の Raが 0. 12 x mと A Si substrate having a diameter of 4 inches (100 mm), a thickness of 200 zm, and a resistance value of 5000 Ω 'cm was prepared. Next, a 36 ° rotating Y-cut lithium tantalate (Li TaO) substrate with a diameter of 4 inches (100 mm) is 0. Smm ^ OO z m), and Ra on the surface is 0.12 x m by double-sided wrapping.
3 Three
なる様カ卩ェした。  I was like that.
[0051] 次いで、 Si基板の表面を洗浄し、さらにこの基板を 100°Cに加熱しながら波長 200 nm以下の短波 UV光及び高濃度オゾンにより前処理し、エポキシメタタリレートを主 成分とする紫外線硬化接着剤をスピンコートしこの基板の片側表面上に均一に塗布 した。次いで、前記 LiTaO基板の裏面を洗浄し、前記接着剤を同様に塗布し、前記  [0051] Next, the surface of the Si substrate is cleaned, and the substrate is pre-treated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while heating the substrate to 100 ° C, with epoxy metatalylate as the main component. A UV curable adhesive was spin coated and applied uniformly on one side of the substrate. Next, the back surface of the LiTaO substrate is washed, and the adhesive is applied in the same manner,
3  Three
Si基板の接着剤塗布面と前記 LiTaO基板の接着剤塗布面を圧力 1 X 10"3mbar Pressure between the adhesive surface of the Si substrate and the adhesive surface of the LiTaO substrate is 1 X 10 " 3 mbar
3  Three
の真空下で貼り合せた。  Were bonded together under vacuum.
[0052] 次に、この貼り合わせた複合圧電基板に、照度 50mW/cm2の紫外線を 10分間 照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に 5 μ ΐηの厚さだつ た。そして、この複合圧電基板を面取り加工した後、 LiTaO基板の表面側を研削及 Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 μΐη thick within the substrate surface. After chamfering this composite piezoelectric substrate, the surface side of the LiTaO substrate is ground and ground.
3  Three
びラップにより 155 /i m肖 IJり落とし、さらにポリッシュにより LiTaO基板の厚さが 20 /i  155 / i m IJ removed by wrapping and further LiTaO substrate thickness of 20 / i by polishing
3  Three
mになるよつにした。  I became m.
[0053] このようにして作製した複合圧電基板を 150°Cに加熱したところその反り量は最大 で 4mmと小さかった。また、この複合圧電基板を 1 X 1. 2mmの複合圧電基板チップ に切断し、このチップを N雰囲気下、 300°Cまで加熱したところチップは割れなかつ  [0053] When the composite piezoelectric substrate fabricated in this way was heated to 150 ° C, the amount of warpage was as small as 4 mm at maximum. In addition, when this composite piezoelectric substrate was cut into 1 x 1.2 mm composite piezoelectric substrate chips and heated to 300 ° C in an N atmosphere, the chips were not cracked.
2  2
た。また、前記チップを _40。C〜125。Cのヒートサイクルに 1000サイクルかけても、ヒ ートサイクル前と変化が無かった。  It was. Also, the chip is _40. C-125. Even after 1000 heat cycles of C, there was no change from before the heat cycle.
[0054] 次に、上記の複合圧電チップに、動作周波数が約 1. 9GHzとなるように、弾性表面 波を励振'検出するための電極幅が約 0. 5ミクロンである電極を設け、その両側に反 射器を形成して 1ポートの弾性表面波共振子を作製した。 [0054] Next, an electrode having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves is provided on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz. A 1-port surface acoustic wave resonator was fabricated by forming reflectors on both sides.
[0055] このとき、 LiTa〇3基板の電極が形成された面の漏洩弾性表面波伝播方向である X方向 ± 0. 5° の膨張係数 a cを、前記複合圧電チップを加熱及び冷却し電極幅の 温度変化をその場観察により求めたところ、 a c = l lppm/°Cであった。 [0055] At this time, the surface acoustic wave propagation direction of the surface on which the electrode of the LiTa03 substrate is formed The expansion coefficient ac in the X direction ± 0.5 ° was obtained by heating and cooling the composite piezoelectric chip and the temperature change of the electrode width was determined by in-situ observation, and was ac = 11 ppm / ° C.
[0056] 次に電極が形成された前記複合圧電チップを、低膨張セラミック (膨張係数 a s = 5[0056] Next, the composite piezoelectric chip on which the electrode is formed is made into a low expansion ceramic (expansion coefficient a s = 5
. 5ppm/°C)からなる実装基板に Snからなるハンダバンプを介してフリップチップ接 続して、パッケージングをおこなった。 Packaging was performed by flip-chip connection to a mounting substrate consisting of 5ppm / ° C) via solder bumps made of Sn.
[0057] 前記複合圧電チップをフリップチップ接続した 1ポート弾性表面波共振子の共振周 波数、及び反共振周波数の温度依存性を周囲温度を _40°Cから 85°Cまで変化さ せて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は一 14PPm/[0057] The temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is investigated by changing the ambient temperature from _40 ° C to 85 ° C. As a result of examining each temperature coefficient, the temperature coefficient of the resonance frequency is 14 PP m /
°C、反共振周波数の温度係数は一 24ppm/°Cであった。 The temperature coefficient of ° C and antiresonance frequency was 124ppm / ° C.
[0058] (実施例 3) [Example 3]
直径 4インチ(100mm)で厚さが 150 z mである合成石英基板を用意した。次に直 径 4インチ(100mm)の 36° 回転 Yカットタンタル酸リチウム(LiTaO )基板を厚さが  A synthetic quartz substrate having a diameter of 4 inches (100 mm) and a thickness of 150 zm was prepared. Next, a 4 inch (100 mm) diameter 36 ° rotated Y-cut lithium tantalate (LiTaO) substrate is
3  Three
0. 2mm (200 /i m)で両面ラップにより表面の Raが 0· 12 μ mとなる様カ卩ェした。  The surface Ra was 0 · 12 μm by double-sided wrapping at 0.2 mm (200 / im).
[0059] 次いで、合成石英基板の表面を洗浄し、さらにこの基板を 100°Cに加熱しながら波 長 200nm以下の短波 UV光及び高濃度オゾンにより前処理し、エポキシメタタリレー トを主成分とする紫外線硬化接着剤をスピンコートしこの基板の片側表面上に均一 に塗布した。次いで、前記 LiTaO基板の裏面を洗浄し、前記接着剤を同様に塗布 [0059] Next, the surface of the synthetic quartz substrate was cleaned, and further, this substrate was pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C, and the epoxy metal talate was the main component. A UV curable adhesive was spin-coated and uniformly applied on one surface of the substrate. Next, clean the back of the LiTaO substrate and apply the adhesive in the same way
3  Three
し、前記合成石英基板の接着剤塗布面と前記 LiTaO基板の接着剤塗布面を圧力 1  Pressure between the adhesive-coated surface of the synthetic quartz substrate and the adhesive-coated surface of the LiTaO substrate 1
3  Three
X 10— 3mbarの真空下で貼り合せた。 X 10—bonded under vacuum of 3 mbar.
[0060] 次に、この貼り合わせた複合圧電基板に、照度 50mW/cm2の紫外線を 10分間 照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に 5 x mの厚さだつ た。そして、この複合圧電基板を面取り加工した後、 LiTaO基板の表面側を研削及 Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 xm thick within the substrate surface. After chamfering this composite piezoelectric substrate, the surface side of the LiTaO substrate is ground and ground.
3  Three
びラップにより 155 μ πι肖 ijり落とし、さらにポリッシュにより LiTaO基板の厚さが 20 μ  155 μ πι ij is removed by wrapping, and the LiTaO substrate thickness is 20 μ by polishing.
3  Three
mになるようにした。  I tried to become m.
[0061] このようにして作製した複合圧電基板を 150°Cに加熱したところその反り量は最大 で 4mmと小さかった。また、この複合圧電基板を 1 X 1. 2mmの複合圧電基板チップ に切断し、このチップを N雰囲気下、 300°Cまで加熱したところチップは割れなかつ た。また、前記チップを一 40°C〜125°Cのヒートサイクルに 1000サイクルかけても、ヒ ートサイクル前と変化が無かった。 [0061] When the composite piezoelectric substrate thus fabricated was heated to 150 ° C, the amount of warpage was as small as 4 mm at maximum. In addition, when this composite piezoelectric substrate was cut into 1 x 1.2 mm composite piezoelectric substrate chips and heated to 300 ° C in an N atmosphere, the chips were not cracked. It was. Even when the chip was subjected to a heat cycle of 140 ° C to 125 ° C for 1000 cycles, there was no change from before the heat cycle.
[0062] 次に、上記の複合圧電チップに、動作周波数が約 1. 9GHzとなるように、弾性表面 波を励振'検出するための電極幅が約 0. 5ミクロンである電極を設け、その両側に反 射器を形成して 1ポートの弾性表面波共振子を作製した。 [0062] Next, an electrode having an electrode width of about 0.5 microns for exciting and detecting surface acoustic waves is provided on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz. A 1-port surface acoustic wave resonator was fabricated by forming reflectors on both sides.
[0063] このとき、 LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向である X [0063] At this time, X is the leakage surface acoustic wave propagation direction of the surface on which the electrode of the LiTaO substrate is formed.
3  Three
方向 ± 0. 5° の膨張係数ひ cを、前記複合圧電チップを加熱及び冷却し電極幅の 温度変化をその場観察により求めたところ、 ひ c = 8ppm/°Cであった。  The coefficient of expansion in the direction ± 0.5 ° was obtained by heating and cooling the composite piezoelectric chip and the temperature change of the electrode width was determined by in-situ observation, and was found to be c = 8 ppm / ° C.
[0064] 次に電極が形成された前記複合圧電チップを、低膨張セラミック (膨張係数ひ s = 5[0064] Next, the composite piezoelectric chip on which the electrode is formed is made into a low expansion ceramic (expansion coefficient s = 5
. 5ppm/°C)からなる実装基板に Snからなるハンダバンプを介してフリップチップ接 続して、パッケージングをおこなった。 Packaging was performed by flip-chip connection to a mounting board consisting of 5ppm / ° C) via solder bumps made of Sn.
[0065] 前記複合圧電チップをフリップチップ接続した 1ポート弾性表面波共振子の共振周 波数、及び反共振周波数の温度依存性を周囲温度を— 40°Cから 85°Cまで変化さ せて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は 13ppm/[0065] The temperature dependence of the resonance frequency and anti-resonance frequency of a 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is investigated by changing the ambient temperature from -40 ° C to 85 ° C. As a result of examining each temperature coefficient, the temperature coefficient of resonance frequency is 13ppm /
°C、反共振周波数の温度係数は 23ppm/°Cであった。 The temperature coefficient of ° C and antiresonance frequency was 23ppm / ° C.
[0066] (実施例 4) [0066] (Example 4)
直径 4インチ(100mm)で厚さが 200 /i mであり、抵抗値が 5000 Ω ' cmの片側が 鏡面加工された Si基板を用意した。次に直径 4インチ(100mm)の 36° 回転 Yカット タンタル酸リチウム(LiTaO )基板を厚さが 0· 15mm (150 i m)となるよう両面研磨  We prepared a Si substrate with a diameter of 4 inches (100 mm), a thickness of 200 / im, and a resistance value of 5000 Ω 'cm with one side mirrored. Next, double-side polishing of a 36-degree rotated Y-cut lithium tantalate (LiTaO) substrate with a diameter of 4 inches (100mm) to a thickness of 0 · 15mm (150im)
3  Three
により仕上げた。前記基板を各々 100°Cに加熱しながら波長 200nm以下の短波 UV 光及び高濃度オゾンにより前処理した。  Finished by. Each of the substrates was pretreated with short-wave UV light having a wavelength of 200 nm or less and high-concentration ozone while being heated to 100 ° C.
そして、前記 LiTaO基板と Si基板を圧力 l X 10_4mbarの真空下で室温で貼り合 Then, if stuck at room temperature the LiTaO substrate and the Si substrate under vacuum at a pressure l X 10_ 4 mbar
3  Three
せた。  Let
[0067] 次に、同様な方法で作製した LiTaO基板と Si基板の貼り合わせ基板 2枚を、 LiTa  [0067] Next, two bonded substrates of the LiTaO substrate and the Si substrate manufactured by the same method
3  Three
O基板側で対向させエポキシ接着剤を介して接着し、 250°Cまで加熱した。  It was made to oppose on the O board | substrate side, it bonded through the epoxy adhesive, and it heated to 250 degreeC.
3  Three
その後、室温まで冷却し、硫酸にて接着層を剥がし、複合圧電基板を作製した。 そして、この複合圧電基板を面取り加工した後、 LiTaO基板の表面側を研削及び ラップにより 95 /i m肖 ljり落とし、さらにポリッシュにより LiTaO基板の厚さが 30 /i mに Then, it cooled to room temperature, peeled off the contact bonding layer with the sulfuric acid, and produced the composite piezoelectric substrate. Then, after chamfering this composite piezoelectric substrate, the surface side of the LiTaO substrate is ground and Lj is removed by lapping, and the thickness of LiTaO substrate is reduced to 30 / im by polishing.
3  Three
なるようにした。  It was made to become.
[0068] また、この複合圧電基板を 1 X 1. 2mmの複合圧電基板チップに切断し、このチッ プを N雰囲気下、 300°Cまで加熱したところチップは割れな力、つた。また、前記チッ [0068] Further, when this composite piezoelectric substrate was cut into a 1 x 1.2 mm composite piezoelectric substrate chip and this chip was heated to 300 ° C in an N atmosphere, the chip had a cracking force. In addition, the chip
2 2
プを _40°C〜125°Cのヒートサイクルに 1000サイクルかけても、ヒートサイクル前と 変化が無かった。  Even when the heat cycle of _40 ° C to 125 ° C was applied for 1000 cycles, there was no change from before the heat cycle.
[0069] 次に、上記の複合圧電チップに、動作周波数が約 1. 9GHzとなるように、弾性表面 波を励振'検出するための電極幅が約 0. 5ミクロンである電極を設け、その両側に反 射器を形成して 1ポートの弾性表面波共振子を作製した。  [0069] Next, an electrode having an electrode width of about 0.5 microns for exciting and detecting a surface acoustic wave is provided on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz. A 1-port surface acoustic wave resonator was fabricated by forming reflectors on both sides.
[0070] このとき、 LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向である X  [0070] At this time, X is the leakage surface acoustic wave propagation direction of the surface on which the electrode of the LiTaO substrate is formed.
3  Three
方向 ± 0. 5° の膨張係数ひ cを、前記複合圧電チップを加熱及び冷却し電極幅の 温度変化をその場観察により求めたところ、 ひ c = 7ppm/°Cであった。  The coefficient of expansion in the direction ± 0.5 ° was determined by in-situ observation of the temperature change of the electrode width by heating and cooling the composite piezoelectric chip and found to be c = 7 ppm / ° C.
[0071] 次に電極が形成された前記複合圧電チップを、低膨張セラミック (膨張係数 a s = 5[0071] Next, the composite piezoelectric chip on which the electrode is formed is made into a low expansion ceramic (expansion coefficient a s = 5
. 5ppm/°C)からなる実装基板に Snからなるハンダバンプを介してフリップチップ接 続して、パッケージングをおこなった。 Packaging was performed by flip-chip connection to a mounting board consisting of 5ppm / ° C) via solder bumps made of Sn.
[0072] 前記複合圧電チップをフリップチップ接続した 1ポート弾性表面波共振子の共振周 波数、及び反共振周波数の温度依存性を周囲温度を— 40°Cから 85°Cまで変化さ せて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は 13ppm/[0072] The temperature dependence of the resonance frequency and anti-resonance frequency of a 1-port surface acoustic wave resonator with flip-chip connection of the composite piezoelectric chip was investigated by changing the ambient temperature from -40 ° C to 85 ° C. As a result of examining each temperature coefficient, the temperature coefficient of resonance frequency is 13ppm /
°C、反共振周波数の温度係数は 23ppm/°Cであった。 The temperature coefficient of ° C and antiresonance frequency was 23ppm / ° C.
上記いずれの実施例においても共振周波数、反共振周波数とも温度係数が小さく In any of the above embodiments, the temperature coefficient is small for both the resonance frequency and the anti-resonance frequency.
、周波数温度特性改善効果が高レ、ことが確認された。 It was confirmed that the effect of improving frequency temperature characteristics was high.
[0073] (比較例:!〜 4) [0073] (Comparative example:! ~ 4)
比較例 1〜4として、それぞれ実施例 1〜4と全く同様な方法にて作製した複合圧電 チップをチップアンドワイヤー法にて実装して作製した 1ポート弾性表面波共振子の 共振周波数、及び反共振周波数の温度依存性を、周囲温度を一 40°Cから 85°Cまで 変化させ手調べ、各々の温度係数を調べた。その結果、比較例 1においては、共振 周波数の温度係数は一 20ppm/°C、反共振周波数の温度係数は一 30ppm/°C であった。また比較例 2においては、共振周波数の温度係数は— 24ppm/°C、反共 振周波数の温度係数は— 34ppm/°Cであった。また比較例 3においては、共振周 波数の温度係数は 23ppm/°C、反共振周波数の温度係数は 33ppm/°Cであ つた。また比較例 4においては、共振周波数の温度係数は _ 19ppmZ°C、反共振 周波数の温度係数は _ 29ppm/°Cであった。すなわち、比較例:!〜 4においては、 実施例 1〜4と比較して各温度係数が 6〜: 10ppm/°Cだけ大きかった。 As Comparative Examples 1 to 4, the resonance frequency and anti-resonance of a 1-port surface acoustic wave resonator produced by mounting a composite piezoelectric chip produced in exactly the same manner as in Examples 1 to 4 by the chip-and-wire method, respectively. The temperature dependence of the resonance frequency was manually examined by changing the ambient temperature from 140 ° C to 85 ° C, and the temperature coefficient of each was investigated. As a result, in Comparative Example 1, the temperature coefficient of the resonance frequency is 120 ppm / ° C, and the temperature coefficient of the anti-resonance frequency is 30 ppm / ° C. Met. In Comparative Example 2, the temperature coefficient of the resonance frequency was −24 ppm / ° C., and the temperature coefficient of the anti-resonance frequency was −34 ppm / ° C. In Comparative Example 3, the temperature coefficient of the resonance frequency was 23 ppm / ° C, and the temperature coefficient of the antiresonance frequency was 33 ppm / ° C. In Comparative Example 4, the temperature coefficient of the resonance frequency was _19ppmZ ° C, and the temperature coefficient of the antiresonance frequency was _29ppm / ° C. That is, in Comparative Examples:! To 4, each temperature coefficient was larger by 6 to 10 ppm / ° C than Examples 1 to 4.
[0074] (比較例 5、 6) [0074] (Comparative Examples 5 and 6)
直径 4インチ(100mm)の 36° 回転 Yカットタンタル酸リチウム(LiTaO )基板を厚  4 inch (100mm) diameter 36 ° rotation Y-cut lithium tantalate (LiTaO) substrate thick
3 さが 0. 2mm (200 z m)で表面は鏡面仕上げ、裏面はラップにより Raが 0. 12 z mと なる様カ卩ェした。次いで、この圧電基板を 1 X 1. 2mmの圧電チップに加工した。  3 was 0.2 mm (200 z m), the surface was mirror-finished, and the back was lapped so that Ra would be 0.12 z m. Next, this piezoelectric substrate was processed into a 1 × 1.2 mm piezoelectric chip.
[0075] 次に、上記の圧電チップに、動作周波数が約 1. 9GHzとなるように、弾性表面波を 励振 ·検出するための電極幅が約 0. 5ミクロンである電極を設け、その両側に反射器 を形成して 1ポートの弾性表面波共振子を作製した。  [0075] Next, an electrode having an electrode width of about 0.5 microns for exciting and detecting a surface acoustic wave is provided on the above-described piezoelectric chip so that the operating frequency is about 1.9 GHz. A 1-port surface acoustic wave resonator was fabricated by forming a reflector.
[0076] このとき、 LiTa03基板の電極が形成された面の漏洩弾性表面波伝播方向である X方向 ± 0. 5° の膨張係数 a cを、前記圧電チップを加熱及び冷却し電極幅の温度 変化をその場観察により求めたところ、 a c = 16ppm/°Cであった。  At this time, the expansion coefficient ac of the surface of the LiTa03 substrate on which the electrode is formed is X-direction ± 0.5 ° which is the direction of propagation of the leaky surface acoustic wave, and the piezoelectric chip is heated and cooled to change the temperature of the electrode width. Was obtained by in-situ observation, and was ac = 16 ppm / ° C.
[0077] 次に電極が形成された前記圧電チップを、低膨張セラミック (膨張係数 a s = 5. 5p pm/°C)からなる実装基板に Ag、 Snからなるハンダバンプを介してフリップチップ接 続して、パッケージングをおこなった。  Next, the piezoelectric chip on which the electrode is formed is flip-chip connected to a mounting substrate made of low expansion ceramic (expansion coefficient as = 5.5 ppm / ° C.) via solder bumps made of Ag and Sn. And packaging.
[0078] 前記圧電チップをフリップチップ接続した 1ポート弾性表面波共振子の共振周波数 、及び反共振周波数の温度依存性を周囲温度を一 40°Cから 85°Cまで変化させて調 ベ、各々の温度係数を調べた結果、共振周波数の温度係数は一 26PPm/°C、反共 振周波数の温度係数は _ 36ppm/°Cと大きい値であった。 [0078] The temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the piezoelectric chip is flip-chip connected is examined by changing the ambient temperature from 40 ° C to 85 ° C. As a result of examining the temperature coefficient, the temperature coefficient of the resonance frequency was 1 26 PP m / ° C, and the temperature coefficient of the anti-resonance frequency was as large as _36 ppm / ° C.
[0079] また、前記と同様の圧電チップをチップアンドワイヤー法にて実装して作製した 1ポ ート弾性表面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温 度を _40°Cから 85°Cまで変化させて調べ、各々の温度係数を調べた結果、共振周 波数の温度係数は― 30ppm/°C、反共振周波数の温度係数は― 40ppm/°Cと大 きい値であった。 [0079] In addition, the temperature dependence of the resonance frequency and anti-resonance frequency of a 1-port surface acoustic wave resonator manufactured by mounting a piezoelectric chip similar to that described above by the chip-and-wire method is _40. As a result of examining each temperature coefficient by changing from ° C to 85 ° C, the temperature coefficient of the resonance frequency is -30ppm / ° C, and the temperature coefficient of the anti-resonance frequency is -40ppm / ° C. It was a threshold.
[0080] (比較例 7) [0080] (Comparative Example 7)
直径 4インチ(100mm)で厚さが 200 z mであり、抵抗値が 5000 Ω ' cmの片側が 鏡面加工された Si基板を用意した。そして、鏡面加工された Si表面にプラズマ CVD 法により Si〇を 6 z m堆積した。  We prepared a Si substrate with a diameter of 4 inches (100 mm), a thickness of 200 zm, and a resistance of 5000 Ω 'cm with one side mirrored. Then, 6 mm of SiO was deposited on the mirror-finished Si surface by plasma CVD.
2  2
次に直径 4インチ(100mm)の 36° 回転 Yカットタンタル酸リチウム(LiTaO )基板  Next, a 4 inch (100 mm) diameter, 36 ° rotated Y-cut lithium tantalate (LiTaO) substrate
3 を厚さが 0. 15mm (150 μ m)となるよう両面研磨により仕上げた。  3 was finished by double-side polishing to a thickness of 0.15 mm (150 μm).
[0081] この SiO付き Si基板の SiOを堆積した側の面とタンタル酸リチウム基板の接合す [0081] The surface of the Si substrate with SiO on which the SiO is deposited is bonded to the lithium tantalate substrate.
2 2  twenty two
る側の面に窒素プラズマを照射した。  Nitrogen plasma was irradiated to the surface on the side.
次に前記 LiTaO基板と Si基板を圧力 1 X 10_4mbarの真空下で室温で貼り合せ Next, the LiTaO substrate and Si substrate are bonded together at room temperature under a vacuum of 1 X 10 _4 mbar.
3  Three
た。  It was.
[0082] 次に、同様な方法で作製した LiTaO基板と Si基板の貼り合わせ基板 2枚を、 LiTa  [0082] Next, two bonded substrates of the LiTaO substrate and the Si substrate manufactured by the same method were combined with LiTaO.
3  Three
O基板側で対向させエポキシ接着剤を介して接着し、 250°Cまで加熱した。  It was made to oppose on the O board | substrate side, it bonded through the epoxy adhesive, and it heated to 250 degreeC.
3  Three
その後、室温まで冷却し、硫酸にて接着層を剥がし、複合圧電基板を作製した。 そして、この複合圧電基板を面取り加工した後、 LiTaO基板の表面側を研削及び  Then, it cooled to room temperature, peeled off the contact bonding layer with the sulfuric acid, and produced the composite piezoelectric substrate. Then, after chamfering this composite piezoelectric substrate, the surface side of the LiTaO substrate is ground and
3  Three
ラップにより 110 /i m肖 IJり落とし、さらにポリッシュにより LiTaO基板の厚さが 25 /i m  110 / i m IJ is removed by lapping, and the LiTaO substrate thickness is 25 / i m by polishing.
3  Three
になるようにした。  I tried to become.
[0083] 次に、この複合圧電基板を 1 X 1. 2mmの複合圧電基板チップに切断し、この複合 圧電チップに、動作周波数が約 1. 9GHzとなるように、弾性表面波を励振'検出する ための電極幅が約 0. 5ミクロンである電極を設け、その両側に反射器を形成して 1ポ ートの弾性表面波共振子を作製した。  [0083] Next, the composite piezoelectric substrate is cut into a 1 x 1.2 mm composite piezoelectric substrate chip, and surface acoustic waves are excited and detected on the composite piezoelectric chip so that the operating frequency is about 1.9 GHz. An electrode with an electrode width of about 0.5 microns was provided, and reflectors were formed on both sides to produce a 1-port surface acoustic wave resonator.
[0084] このとき、 LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向である X  [0084] At this time, X is the direction of leakage surface acoustic wave propagation on the surface of the LiTaO substrate where the electrodes are formed.
3  Three
方向 ± 0. 5° の膨張係数ひ cを、前記複合圧電チップを加熱及び冷却し電極幅の 温度変化をその場観察により求めたところ、 ひ c=4ppm/°Cであった。  The coefficient of expansion in the direction ± 0.5 ° was obtained by heating and cooling the composite piezoelectric chip and the temperature change of the electrode width was determined by in-situ observation, and c = 4 ppm / ° C.
[0085] 次に電極が形成された前記複合圧電チップを、アルミナセラミック(膨張係数ひ s = 8ppm/°C)からなる実装基板に Ag、 Snからなるハンダバンプを介してフリップチッ プ接続してパッケージングをおこなった。 [0086] 前記複合圧電チップをフリップチップ接続した 1ポート弾性表面波共振子の共振周 波数、及び反共振周波数の温度依存性を周囲温度を— 40°Cから 85°Cまで変化さ せて調べ、各々の温度係数を調べた結果共振周波数の温度係数は 23ppm/°C 、反共振周波数の温度係数は一 35ppm/°Cと温度特性改善効果が小さかった。 [0085] Next, the composite piezoelectric chip with electrodes formed thereon is flip-chip connected to a mounting substrate made of alumina ceramic (expansion coefficient s = 8ppm / ° C) via solder bumps made of Ag and Sn and packaged. I did. [0086] The temperature dependence of the resonance frequency and anti-resonance frequency of a 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is investigated by changing the ambient temperature from -40 ° C to 85 ° C. As a result of examining each temperature coefficient, the temperature coefficient of the resonance frequency was 23 ppm / ° C, and the temperature coefficient of the anti-resonance frequency was 135 ppm / ° C, and the temperature characteristic improvement effect was small.
[0087] また、前記複合圧電チップをチップアンドワイヤー接続して実装した 1ポート弾性表 面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を一 40°C 力 85°Cまで変化させて調べ、各々の温度係数を調べた結果共振周波数の温度係 数は _ 12ppmZ°C、反共振周波数の温度係数は _ 22PPm/°Cと良好な温度特性 であったが、実装作業が煩雑であり、生産性が高いものではない。 [0087] Further, the temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is mounted in a chip-and-wire connection is set to 40 ° C force 85 ° C. until examined by changing the temperature coefficient of the result the resonance frequency of examining the temperature coefficient of each _ 12ppmZ ° C, the temperature coefficient of the anti-resonance frequency _ 22 PP m / ° was the C and good temperature characteristics, The mounting work is complicated and the productivity is not high.
[0088] (比較例 8) [0088] (Comparative Example 8)
直径 4インチ(100mm)で厚さが 200 μ mであるガドリニウム.ガリウム.ガーネット (G GG)基板を用意した。次に直径 4インチ(100mm)の 36° 回転 Yカットタンタル酸リ チウム(LiTaO )基板を厚さが 0· 2mm (200 μ ΐη)で両面ラップにより表面の Raが 0  A gadolinium gallium garnet (G GG) substrate having a diameter of 4 inches (100 mm) and a thickness of 200 μm was prepared. Next, a 4 ° (100mm) 36 ° rotated Y-cut lithium tantalate (LiTaO) substrate with a thickness of 0.2mm (200 μΐη) and double-sided wrapping with a surface Ra of 0
3  Three
. 12 /i mとなる様カロェした。  12 / i Caro's to be m.
[0089] 次いで、 GGG基板の表面を洗浄し、さらにこの基板を 100°Cに加熱しながら波長 2 OOnm以下の短波 UV光及び高濃度オゾンにより前処理し、エポキシメタタリレートを 主成分とする紫外線硬化接着剤をスピンコートし片側表面上に均一に塗布した。次 いで、前記 LiTaO基板の裏面を洗浄し、前記接着剤を同様に塗布し、前記 GGG基 [0089] Next, the surface of the GGG substrate is cleaned, and the substrate is pretreated with short-wave UV light having a wavelength of 2 OOnm or less and high-concentration ozone while being heated to 100 ° C, and the epoxy metal talate is the main component. A UV curable adhesive was spin-coated and applied uniformly on one surface. Next, the back surface of the LiTaO substrate is cleaned, the adhesive is applied in the same manner, and the GGG substrate is applied.
3  Three
板の接着剤塗布面と前記 LiTaO基板の接着剤塗布面を圧力 1 X 10_3mbarの真 True adhesive coated surface of the LiTaO substrate and the adhesive coated surface of the plate of the pressure 1 X 10_ 3 mbar
3  Three
空下で貼り合せた。  Bonded in the air.
[0090] 次に、この貼り合わせた複合圧電基板に、照度 50mW/cm2の紫外線を 10分間 照射し、接着剤を硬化させた。このとき基板面内で接着層は一様に 5 x mの厚さだつ た。そして、この複合圧電基板を面取り加工した後、 LiTaO基板の表面側を研削及 Next, the bonded composite piezoelectric substrate was irradiated with ultraviolet rays having an illuminance of 50 mW / cm 2 for 10 minutes to cure the adhesive. At this time, the adhesive layer was uniformly 5 xm thick within the substrate surface. After chamfering this composite piezoelectric substrate, the surface side of the LiTaO substrate is ground and ground.
3  Three
びラップにより 155 μ πι肖 ijり落とし、さらにポリッシュにより LiTaO基板の厚さが 20 μ  155 μ πι ij is removed by wrapping, and the LiTaO substrate thickness is 20 μ by polishing.
3  Three
mになるようにした。  I tried to become m.
[0091] 次に、この複合圧電基板を 1 X 1. 2mmの複合圧電基板チップに切断し、この複合 圧電チップに、動作周波数が約 1. 9GHzとなるように、弾性表面波を励振 '検出する ための電極幅が 0. 5ミクロンである電極を設け、その両側に反射器を形成して 1ポー トの弾性表面波共振子を作製した。 Next, this composite piezoelectric substrate is cut into a 1 × 1.2 mm composite piezoelectric substrate chip, and surface acoustic waves are excited to the composite piezoelectric chip so that the operating frequency is about 1.9 GHz. Do An electrode with a width of 0.5 microns was provided, and reflectors were formed on both sides to produce a 1-port surface acoustic wave resonator.
[0092] このとき、 LiTaO基板の電極が形成された面の漏洩弾性表面波伝播方向である X [0092] At this time, X is the leakage surface acoustic wave propagation direction of the surface on which the electrode of the LiTaO substrate is formed.
3  Three
方向 ± 0. 5° の膨張係数ひ cを、前記複合圧電チップを加熱及び冷却し電極幅の 温度変化をその場観察により求めたところ、 ひ c = 15ppm/°Cであった。  The coefficient of expansion of direction ± 0.5 ° was determined by heating and cooling the composite piezoelectric chip and measuring the temperature change of the electrode width by in-situ observation, and c = 15 ppm / ° C.
[0093] 次に電極が形成された前記複合圧電チップを、アルミナセラミック基板 (膨張係数 ひ s = 8ppm/°C)からなる実装基板に Ag、 Snからなるハンダバンプを介してフリップ チップ接続して、パッケージングをおこなった。  Next, the composite piezoelectric chip on which the electrode is formed is flip-chip connected to a mounting substrate made of an alumina ceramic substrate (expansion coefficient s = 8 ppm / ° C) via solder bumps made of Ag and Sn. I did packaging.
[0094] 前記複合圧電チップをフリップチップ接続した 1ポート弾性表面波共振子の共振周 波数、及び反共振周波数の温度依存性を周囲温度を _40°Cから 85°Cまで変化さ せて調べ、各々の温度係数を調べた結果、共振周波数の温度係数は一 29PPm/ °C、反共振周波数の温度係数は一 39ppm/°Cと温度特性改善はほとんど無かった [0094] The temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is flip-chip connected is investigated by changing the ambient temperature from _40 ° C to 85 ° C. As a result of examining each temperature coefficient, the temperature coefficient of the resonance frequency was 1 29 PP m / ° C, and the temperature coefficient of the anti-resonance frequency was 1 39 ppm / ° C.
[0095] また、前記複合圧電チップをチップアンドワイヤー接続して実装した 1ポート弾性表 面波共振子の共振周波数、及び反共振周波数の温度依存性を周囲温度を 40°C 力 85°Cまで変化させて調べ、各々の温度係数を調べた結果、共振周波数の温度 係数は— 30ppm/°C、反共振周波数の温度係数は— 40ppm/°Cと温度特性改善 効果は無かった。 [0095] Further, the temperature dependence of the resonance frequency and anti-resonance frequency of the 1-port surface acoustic wave resonator in which the composite piezoelectric chip is mounted in a chip-and-wire connection is as follows. As a result of examining each temperature coefficient, the temperature coefficient of the resonance frequency was -30 ppm / ° C, and the temperature coefficient of the anti-resonance frequency was -40 ppm / ° C, and there was no effect of improving temperature characteristics.
[0096] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は単な る例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一 な構成を有し、同様な作用効果を奏するものは、レ、かなるものであっても本発明の技 術的範囲に包含される。 Note that the present invention is not limited to the above-described embodiment. The above-described embodiments are merely examples, and those having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same functions and effects will be recognized. However, it is included in the technical scope of the present invention.
[0097] 例えば、実施例では圧電基板として 36° 回転 Yカット LiTaO基板を用いた力 Li  [0097] For example, in the embodiment, a force Li using a 36 ° rotated Y-cut LiTaO substrate as a piezoelectric substrate.
3  Three
Nb〇基板や他の圧電基板を用いてもよい。また、これらの圧電基板は、焦電性によ An NbO substrate or another piezoelectric substrate may be used. These piezoelectric substrates are also pyroelectric.
3 Three
る表面電荷の蓄積をなくしたものであってもよい。  The surface charge accumulation may be eliminated.

Claims

請求の範囲 The scope of the claims
[1] 圧電基板上に弾性表面波を励振 ·検出する電極が形成された弾性表面波素子で あって、少なくとも、圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形 状に加工した複合圧電チップと、該複合圧電チップをフリップチップボンディングによ つて実装する実装基板とを具備し、前記圧電基板表面の特定方向の膨張係数 a c ( ppm/°C)と、前記実装基板の膨張係数ひ s (ppm/°C)とが、  [1] A surface acoustic wave device in which an electrode for exciting and detecting surface acoustic waves is formed on a piezoelectric substrate, and at least a composite piezoelectric substrate in which a piezoelectric substrate and a support substrate are bonded together is processed into a chip shape A composite piezoelectric chip; and a mounting substrate on which the composite piezoelectric chip is mounted by flip chip bonding. An expansion coefficient ac (ppm / ° C) in a specific direction of the surface of the piezoelectric substrate, and an expansion coefficient of the mounting substrate S (ppm / ° C)
a s < a c、 α S + Ό  a s <a c, α S + Ό
なる関係を満たすように実装されたものであることを特徴とする弾性表面波素子。  The surface acoustic wave device is mounted so as to satisfy the following relationship.
[2] 請求項 1に記載の弾性表面波素子において、前記特定方向は、前記電極により励 振される弾性表面波の伝播方向から ±0. 5度以内のものであることを特徴とする弾 性表面波素子。 [2] The surface acoustic wave device according to claim 1, wherein the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave excited by the electrode. Surface wave element.
[3] 請求項 1又は請求項 2に記載の弾性表面波素子において、前記実装基板は、アル ミナ又は低膨張セラミックからなるものであることを特徴とする弾性表面波素子。 [3] The surface acoustic wave device according to claim 1 or 2, wherein the mounting substrate is made of alumina or low expansion ceramic.
[4] 請求項 1乃至請求項 3のいずれか一項に記載の弾性表面波素子において、前記 圧電基板は、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか 1つか らなるものであることを特徴とする弾性表面波素子。 [4] In the surface acoustic wave device according to any one of claims 1 to 3, the piezoelectric substrate is made of any one of lithium tantalate, lithium niobate, and lithium borate. A surface acoustic wave device.
[5] 請求項 1乃至請求項 4のいずれか一項に記載の弾性表面波素子において、前記 複合圧電チップは、バンプを介して実装されるものであることを特徴とする弾性表面 波素子。 [5] The surface acoustic wave device according to any one of claims 1 to 4, wherein the composite piezoelectric chip is mounted via a bump.
[6] 圧電基板と支持基板とを貼り合わせた複合圧電基板をチップ形状に加工した複合 圧電チップであって、該複合圧電チップは前記圧電基板上に弾性表面波を励振 ·検 出する電極が形成され、かつフリップチップボンディングによって実装基板に実装さ れるものであり、前記圧電基板表面の特定方向の膨張係数 a c (ppm/°C)が、前記 実装基板の膨張係数 a s (ppm/°C)と、 [6] A composite piezoelectric chip obtained by processing a composite piezoelectric substrate obtained by bonding a piezoelectric substrate and a support substrate into a chip shape, and the composite piezoelectric chip has electrodes for exciting and detecting surface acoustic waves on the piezoelectric substrate. Formed and mounted on a mounting substrate by flip-chip bonding, and the expansion coefficient ac (ppm / ° C) in a specific direction of the surface of the piezoelectric substrate is Mounting board expansion coefficient as (ppm / ° C),
a a c< α s + 6  a a c <α s + 6
なる関係を満たすように実装されるものであることを特徴とする複合圧電チップ。  A composite piezoelectric chip that is mounted so as to satisfy the following relationship.
[7] 請求項 6に記載の複合圧電チップにおいて、前記特定方向は、前記電極により励 振される弾性表面波の伝播方向から ± 0. 5度以内のものであることを特徴とする複 合圧電チップ。 [7] The composite piezoelectric chip according to [6], wherein the specific direction is within ± 0.5 degrees from the propagation direction of the surface acoustic wave excited by the electrode. Piezoelectric chip.
[8] 請求項 6又は請求項 7に記載の複合圧電チップにおいて、前記実装基板は、アル ミナ又は低膨張セラミックからなるものであることを特徴とする複合圧電チップ。 [8] The composite piezoelectric chip according to [6] or [7], wherein the mounting substrate is made of alumina or a low expansion ceramic.
[9] 請求項 6乃至請求項 8のいずれか一項に記載の複合圧電チップにおいて、前記圧 電基板は、タンタル酸リチウム、ニオブ酸リチウム、ホウ酸リチウムのいずれか 1つから なるものであることを特徴とする複合圧電チップ。 [9] The composite piezoelectric chip according to any one of claims 6 to 8, wherein the piezoelectric substrate is made of any one of lithium tantalate, lithium niobate, and lithium borate. A composite piezoelectric chip characterized by that.
[10] 請求項 6乃至請求項 9のいずれか一項に記載の複合圧電チップにおいて、前記複 合圧電チップは、バンプを介して実装されるものであることを特徴とする複合圧電チッ プ。 [10] The composite piezoelectric chip according to any one of [6] to [9], wherein the composite piezoelectric chip is mounted via bumps.
[11] 弾性表面波素子の製造方法であって、少なくとも、圧電基板と支持基板とを貼り合 わせた複合圧電基板をチップ形状に加工した複合圧電チップの該圧電基板上に弾 性表面波を励振 ·検出する電極を形成し、該複合圧電チップをフリップチップボンデ イングによって実装基板に実装する際に、前記圧電基板表面の特定方向の膨張係 数ひ c (ppm/°C)と、前記実装基板の膨張係数ひ s (ppm/°C)とが、 [11] A method of manufacturing a surface acoustic wave device, wherein at least an elastic surface wave is applied on a piezoelectric substrate of a composite piezoelectric chip obtained by processing a composite piezoelectric substrate in which a piezoelectric substrate and a support substrate are bonded into a chip shape. When an electrode for excitation and detection is formed and the composite piezoelectric chip is mounted on a mounting board by flip chip bonding, an expansion coefficient H (ppm / ° C) in a specific direction on the surface of the piezoelectric board, and the mounting The expansion coefficient of the substrate (s / ppm / ° C) is
a cく s + o  a c s + o
なる関係を満たすように実装することを特徴とする弾性表面波素子の製造方法。  The surface acoustic wave device is manufactured so as to satisfy the relationship.
[12] 請求項 11に記載の弾性表面波素子の製造方法において、前記複合圧電チップを 、バンプを介して実装することを特徴とする弾性表面波素子の製造方法。 12. The method for manufacturing a surface acoustic wave device according to claim 11, wherein the composite piezoelectric chip is A method of manufacturing a surface acoustic wave element, wherein the surface acoustic wave element is mounted via a bump.
PCT/JP2006/301514 2005-04-25 2006-01-31 Surface acoustic wave element, composite piezoelectric chip and method for manufacturing such surface acoustic wave element WO2006114922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005126785A JP2006304206A (en) 2005-04-25 2005-04-25 Surface acoustic wave element, composite piezoelectric chip, and manufacturing method thereof
JP2005-126785 2005-04-25

Publications (1)

Publication Number Publication Date
WO2006114922A1 true WO2006114922A1 (en) 2006-11-02

Family

ID=37214553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301514 WO2006114922A1 (en) 2005-04-25 2006-01-31 Surface acoustic wave element, composite piezoelectric chip and method for manufacturing such surface acoustic wave element

Country Status (2)

Country Link
JP (1) JP2006304206A (en)
WO (1) WO2006114922A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004665A1 (en) * 2009-07-07 2011-01-13 株式会社村田製作所 Elastic wave device and manufacturing method of elastic wave device
JPWO2016084526A1 (en) * 2014-11-28 2017-06-29 株式会社村田製作所 Elastic wave device
JP2018207355A (en) * 2017-06-07 2018-12-27 日本碍子株式会社 Bonded body of piezoelectric material substrate, bonding method, and elastic wave element
WO2019130857A1 (en) * 2017-12-28 2019-07-04 日本碍子株式会社 Assembly of piezoelectric material substrate and support substrate, and method for manufacturing said assembly
JPWO2019130852A1 (en) * 2017-12-28 2019-12-26 日本碍子株式会社 Bonded body of piezoelectric material substrate and support substrate and method of manufacturing the same
CN110915136A (en) * 2017-06-14 2020-03-24 株式会社日本制钢所 Junction substrate, surface acoustic wave element device, and method for manufacturing junction substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251978A (en) * 2009-04-14 2010-11-04 Shin-Etsu Chemical Co Ltd Method of manufacturing composite piezoelectric board and composite piezoelectric board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244781A (en) * 2000-02-28 2001-09-07 Toshiba Corp Surface acoustic wave device
JP2004297693A (en) * 2003-03-28 2004-10-21 Fujitsu Media Device Kk Method for manufacturing surface acoustic wave device and surface acoustic wave device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435789B2 (en) * 1993-03-15 2003-08-11 松下電器産業株式会社 Surface acoustic wave device
JP2000196410A (en) * 1998-12-31 2000-07-14 Kazuhiko Yamanouchi High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element
JP3952666B2 (en) * 2000-06-23 2007-08-01 株式会社日立製作所 Surface acoustic wave device
JP2004129193A (en) * 2002-07-31 2004-04-22 Kyocera Corp Elastic surface wave apparatus
JP2004336503A (en) * 2003-05-09 2004-11-25 Fujitsu Media Device Kk Surface acoustic wave element and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244781A (en) * 2000-02-28 2001-09-07 Toshiba Corp Surface acoustic wave device
JP2004297693A (en) * 2003-03-28 2004-10-21 Fujitsu Media Device Kk Method for manufacturing surface acoustic wave device and surface acoustic wave device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004665A1 (en) * 2009-07-07 2011-01-13 株式会社村田製作所 Elastic wave device and manufacturing method of elastic wave device
JPWO2011004665A1 (en) * 2009-07-07 2012-12-20 株式会社村田製作所 Acoustic wave device and method of manufacturing acoustic wave device
US8339015B2 (en) 2009-07-07 2012-12-25 Murata Manufacturing Co., Ltd. Elastic wave device and method for manufacturing the same
JP5637136B2 (en) * 2009-07-07 2014-12-10 株式会社村田製作所 Acoustic wave device and method of manufacturing acoustic wave device
US10171061B2 (en) 2014-11-28 2019-01-01 Murata Manufacturing Co., Ltd. Elastic wave device
JPWO2016084526A1 (en) * 2014-11-28 2017-06-29 株式会社村田製作所 Elastic wave device
JP2018207355A (en) * 2017-06-07 2018-12-27 日本碍子株式会社 Bonded body of piezoelectric material substrate, bonding method, and elastic wave element
CN110915136A (en) * 2017-06-14 2020-03-24 株式会社日本制钢所 Junction substrate, surface acoustic wave element device, and method for manufacturing junction substrate
WO2019130857A1 (en) * 2017-12-28 2019-07-04 日本碍子株式会社 Assembly of piezoelectric material substrate and support substrate, and method for manufacturing said assembly
JPWO2019130857A1 (en) * 2017-12-28 2019-12-26 日本碍子株式会社 Bonded body of piezoelectric material substrate and support substrate and method of manufacturing the same
JPWO2019130852A1 (en) * 2017-12-28 2019-12-26 日本碍子株式会社 Bonded body of piezoelectric material substrate and support substrate and method of manufacturing the same
CN111492577A (en) * 2017-12-28 2020-08-04 日本碍子株式会社 Bonded body of piezoelectric material substrate and supporting substrate, and method for producing same
US11700771B2 (en) 2017-12-28 2023-07-11 Ngk Insulators, Ltd. Assembly of piezoelectric material substrate and support substrate, and method for manufacturing said assembly
CN111492577B (en) * 2017-12-28 2024-04-02 日本碍子株式会社 Bonded body of piezoelectric material substrate and support substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JP2006304206A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4657002B2 (en) Composite piezoelectric substrate
JP4723207B2 (en) Composite piezoelectric substrate
US6426583B1 (en) Surface acoustic wave element, method for producing the same and surface acoustic wave device using the same
JP5850137B2 (en) Elastic wave device and manufacturing method thereof
JP6998650B2 (en) Manufacturing method of bonded substrate, surface acoustic wave element, surface acoustic wave device and bonded substrate
JP3774782B2 (en) Manufacturing method of surface acoustic wave device
JP2005229455A (en) Compound piezoelectric substrate
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
JP2010187373A (en) Composite substrate and elastic wave device using the same
US20050194864A1 (en) Bonded substrate, surface acoustic wave chip, and surface acoustic wave device
JP2007214902A (en) Surface acoustic wave device
WO2006114922A1 (en) Surface acoustic wave element, composite piezoelectric chip and method for manufacturing such surface acoustic wave element
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP2007134889A (en) Composite piezoelectric substrate
US20230370043A1 (en) Composite substrate for surface acoustic wave device and manufacturing method thereof
JP2012010054A (en) Composite substrate and elastic wave device using thereof
JP2011254354A (en) Composite substrate and surface acoustic wave device using the same
JP2002016468A (en) Surface acoustic wave device
US11658635B2 (en) Joined body of piezoelectric material substrate and support substrate, and acoustic wave element
JP2021180465A (en) Composite substrate for surface acoustic wave device and method for manufacturing the same
JP2007228120A (en) Surface acoustic wave element
JP2002026684A (en) Surface acoustic wave element
JP2010068484A (en) Combined piezoelectric substrate
Geshi et al. Wafer bonding of polycrystalline spinel with LiNbO 3/LiTaO 3 for temperature compensation of RF surface acoustic wave devices
JP2012209662A (en) Wafer level package material for surface acoustic wave device, surface acoustic wave device junction wafer using package material, and surface acoustic wave device cut from junction wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06712657

Country of ref document: EP

Kind code of ref document: A1