JP2012010054A - Composite substrate and elastic wave device using thereof - Google Patents

Composite substrate and elastic wave device using thereof Download PDF

Info

Publication number
JP2012010054A
JP2012010054A JP2010143414A JP2010143414A JP2012010054A JP 2012010054 A JP2012010054 A JP 2012010054A JP 2010143414 A JP2010143414 A JP 2010143414A JP 2010143414 A JP2010143414 A JP 2010143414A JP 2012010054 A JP2012010054 A JP 2012010054A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric substrate
piezoelectric
adhesive layer
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010143414A
Other languages
Japanese (ja)
Inventor
Yasunori Iwasaki
康範 岩崎
Yuji Hori
裕二 堀
Hirotoshi Kobayashi
弘季 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2010143414A priority Critical patent/JP2012010054A/en
Publication of JP2012010054A publication Critical patent/JP2012010054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a composite substrate from being remained warped after getting high-temperature in which a piezoelectric substrate and a support substrate are joined with a resin adhesive layer.SOLUTION: An insulating resin adhesive layer 13 which joins a rear face of a piezoelectric substrate 11 and a support substrate 12 includes conductive discharging particles which eliminate charge of the piezoelectric substrate 11. Consequently, a composite substrate 10 and an elastic wave device formed using thereof are prevented from being remained warped after getting high-temperature.

Description

本発明は、複合基板及びそれを用いた弾性波デバイスに関する。   The present invention relates to a composite substrate and an acoustic wave device using the same.

従来より、弾性波デバイスとして、携帯電話等に使用されるフィルター素子や発振子として機能させることができる弾性表面波デバイスや、薄膜共振子(FBAR:Film Bulk Acoustic Resonator)などのバルク波デバイスが知られている。このような弾性波デバイスにおいて、導電率が1×10-13[Ω-1・cm-1]以上の圧電基板と導電率が5×10-12[Ω-1・cm-1]以下の絶縁体基板とを接着剤を介して張り合わせた複合基板を用いることが提案されている(例えば、特許文献1参照)。こうすることにより、圧電基板に生ずる焦電効果が抑制され、180℃の熱処理後においても複合基板の反り増加量を小さくできることが記載されている。 Conventionally, as acoustic wave devices, surface acoustic wave devices that can function as filter elements and oscillators used in cellular phones and the like, and bulk wave devices such as thin film resonators (FBAR: Film Bulk Acoustic Resonator) are known. It has been. In such an acoustic wave device, a piezoelectric substrate having an electric conductivity of 1 × 10 −13−1 · cm −1 ] or higher and an insulation having an electric conductivity of 5 × 10 −12−1 · cm −1 ] or lower It has been proposed to use a composite substrate that is bonded to a body substrate via an adhesive (see, for example, Patent Document 1). By doing so, it is described that the pyroelectric effect generated in the piezoelectric substrate is suppressed, and the amount of increase in warpage of the composite substrate can be reduced even after heat treatment at 180 ° C.

特開2010−68484号公報JP 2010-68484 A

しかし、例えば弾性波デバイスをプリント配線基板に実装する際のリフロー工程など、180℃よりも高い温度(例えば250℃以上)でのプロセスを経ると、特許文献1に記載の複合基板では焦電効果を抑制する効果が弱まり、熱処理後の反り増加量を十分小さくできない場合がある。また、特許文献1に記載の複合基板では、上記の導電率の範囲にある圧電基板及び支持基板(絶縁体基板)を使用する必要があるため、これらの材質が限定されてしまうという問題がある。さらに、圧電基板が焦電体でない場合には焦電効果の抑制は必要がないが、この場合でも、圧電基板と支持基板との熱膨張係数の違いにより高温時に生じた反りが常温で残ってしまう場合がある。反りが残ると、以降のプロセスで不具合が生じる場合があるため、特許文献1記載の手法以外の手法により熱処理後の反りを防止することが望まれている。   However, when a process at a temperature higher than 180 ° C. (for example, 250 ° C. or higher) such as a reflow process for mounting an acoustic wave device on a printed wiring board is performed, the pyroelectric effect is obtained in the composite substrate described in Patent Document 1. In some cases, the amount of warpage after heat treatment cannot be sufficiently reduced. Moreover, in the composite substrate described in Patent Document 1, since it is necessary to use a piezoelectric substrate and a support substrate (insulator substrate) that are in the above-described conductivity range, there is a problem that these materials are limited. . Furthermore, if the piezoelectric substrate is not a pyroelectric body, it is not necessary to suppress the pyroelectric effect, but even in this case, the warpage generated at a high temperature due to the difference in thermal expansion coefficient between the piezoelectric substrate and the support substrate remains at room temperature. May end up. If the warp remains, problems may occur in the subsequent processes. Therefore, it is desired to prevent warp after heat treatment by a method other than the method described in Patent Document 1.

本発明はこのような課題を解決するためになされたものであり、圧電基板と支持基板とを樹脂製の接着層で接合した複合基板において、一度高温となった後に反りが残るのを防止することを主目的とする。   The present invention has been made to solve such a problem, and in a composite substrate in which a piezoelectric substrate and a support substrate are bonded together by a resin adhesive layer, warping remains after the temperature has once increased. The main purpose.

本発明の複合基板は、上述の主目的を達成するために以下の手段を採った。   The composite substrate of the present invention employs the following means in order to achieve the main object described above.

本発明の複合基板は、
弾性波を伝搬可能な圧電基板と、
前記圧電基板よりも熱膨張係数が小さい支持基板と、
前記圧電基板の裏面と前記支持基板とを接合する絶縁性の樹脂からなる接着層と、
を備え、
前記接着層は、前記圧電基板の電荷を除去する導電性の除電粒子を含有している、
ものである。
The composite substrate of the present invention is
A piezoelectric substrate capable of propagating elastic waves;
A support substrate having a smaller coefficient of thermal expansion than the piezoelectric substrate;
An adhesive layer made of an insulating resin that joins the back surface of the piezoelectric substrate and the support substrate;
With
The adhesive layer contains conductive static eliminating particles that remove electric charges of the piezoelectric substrate.
Is.

この複合基板では、圧電基板の裏面と支持基板とを接合する樹脂製の接着層に、圧電基板の電荷を除去する導電性の除電粒子を含有させている。これにより、この複合基板が一度高温となった後に反りが残るのを防止することができる。なお、この理由は以下のように考えられる。複合基板が高温になると、圧電基板と支持基板との熱膨張係数の違いにより複合基板に反りが生じ、この反りにより生じた応力によって圧電基板の表面には電荷が生じる。また、圧電基板が焦電体である場合には、複合基板が高温になることで圧電基板の表面には焦電効果による電荷も生じる。そして、温度が常温に戻ってもこのような電荷が圧電基板中に存在し続けると、この電荷による逆圧電効果により圧電基板が反ったままとなってしまう。本発明の複合基板では、接着層に導電性の除電粒子が存在するため、圧電基板中の電荷が接着層中に移動することで圧電基板が除電されて反りが解消していると考えられる。なお、本発明の複合基板において、前記除電粒子はカーボン又は金属からなるものとしてもよい。   In this composite substrate, conductive charge-removing particles that remove charges on the piezoelectric substrate are contained in a resin adhesive layer that joins the back surface of the piezoelectric substrate and the support substrate. Thereby, it is possible to prevent the warp from remaining after the composite substrate once becomes high temperature. The reason for this is considered as follows. When the composite substrate reaches a high temperature, the composite substrate is warped due to the difference in thermal expansion coefficient between the piezoelectric substrate and the support substrate, and electric charges are generated on the surface of the piezoelectric substrate due to the stress generated by the warp. Further, when the piezoelectric substrate is a pyroelectric body, the composite substrate is heated to generate charges due to the pyroelectric effect on the surface of the piezoelectric substrate. If such charges continue to exist in the piezoelectric substrate even when the temperature returns to room temperature, the piezoelectric substrate remains warped by the inverse piezoelectric effect due to the charges. In the composite substrate of the present invention, since the conductive charge-removing particles exist in the adhesive layer, it is considered that the electric charge in the piezoelectric substrate moves into the adhesive layer, so that the piezoelectric substrate is discharged and the warp is eliminated. In the composite substrate of the present invention, the charge eliminating particles may be made of carbon or metal.

本発明の第1の弾性波デバイスは、上述した本発明の複合基板を用いて形成され、前記弾性波を励振可能な電極を前記圧電基板の表面に備えたものである。この弾性波デバイスによれば、上述した複合基板で得られる効果と同様の効果を得ることができる。なお、弾性波デバイスとしては、例えば、共振子やフィルター,コンボルバーなどの弾性表面波デバイスや、薄膜共振子などのバルク波デバイスが挙げられる。   A first acoustic wave device of the present invention is formed using the composite substrate of the present invention described above, and includes an electrode capable of exciting the acoustic wave on the surface of the piezoelectric substrate. According to this elastic wave device, the same effect as that obtained with the composite substrate described above can be obtained. Examples of the acoustic wave device include a surface acoustic wave device such as a resonator, a filter, and a convolver, and a bulk wave device such as a thin film resonator.

本発明の第2の弾性波デバイスは、
弾性波を伝搬可能な圧電基板と、
前記圧電基板の表面に形成され、前記弾性波を励振可能な電極と、
前記圧電基板よりも熱膨張係数が小さい支持基板と、
前記圧電基板の裏面と前記支持基板とを接合する絶縁性の樹脂からなる接着層と、
前記圧電基板の側面に接着され、該圧電基板の電荷を除去する導電性の除電粒子を絶縁性の樹脂に含有させた除電層と、
を備えたものである。
The second acoustic wave device of the present invention is
A piezoelectric substrate capable of propagating elastic waves;
An electrode formed on a surface of the piezoelectric substrate and capable of exciting the elastic wave;
A support substrate having a smaller coefficient of thermal expansion than the piezoelectric substrate;
An adhesive layer made of an insulating resin that joins the back surface of the piezoelectric substrate and the support substrate;
A static elimination layer that is bonded to a side surface of the piezoelectric substrate and contains conductive static elimination particles that remove electric charges of the piezoelectric substrate in an insulating resin;
It is equipped with.

この弾性波デバイスでは、圧電基板の側面に圧電基板の電荷を除去する導電性の除電粒子を絶縁性の樹脂に含有させた除電層を備えている。これにより、圧電基板中の電荷が除電層に移動することで圧電基板が除電されるため、弾性波デバイスが一度高温となった後に反りが残るのを防止することができる。なお、本発明の複合基板において、前記除電粒子はカーボン又は金属からなるものとしてもよい。   In this acoustic wave device, a charge-removing layer in which electrically conductive charge-removing particles that remove charges on the piezoelectric substrate are contained in an insulating resin is provided on the side surface of the piezoelectric substrate. Thereby, since the electric charge in the piezoelectric substrate moves to the charge removal layer, the piezoelectric substrate is discharged, so that it is possible to prevent the warp from remaining after the acoustic wave device is once heated to a high temperature. In the composite substrate of the present invention, the charge eliminating particles may be made of carbon or metal.

本発明の第2の弾性波デバイスにおいて、前記除電層は、前記圧電基板の側面を覆っているものとしてもよい。こうすれば、圧電基板の反りを防止する効果が高くなる。   In the second acoustic wave device of the present invention, the charge removal layer may cover a side surface of the piezoelectric substrate. By doing so, the effect of preventing warpage of the piezoelectric substrate is enhanced.

複合基板10の斜視図である。1 is a perspective view of a composite substrate 10. FIG. 複合基板10の製造工程を模式的に示す説明図(断面図)である。4 is an explanatory view (cross-sectional view) schematically showing a manufacturing process of the composite substrate 10. FIG. 複合基板10を用いて作製した1ポートSAW共振子30の斜視図である。1 is a perspective view of a 1-port SAW resonator 30 manufactured using a composite substrate 10. FIG. 1ポートSAW共振子30をセラミックス基板40に搭載し樹脂で封入し、プリント配線基板60に実装した様子を示す断面図である。2 is a cross-sectional view showing a state in which a 1-port SAW resonator 30 is mounted on a ceramic substrate 40, sealed with resin, and mounted on a printed wiring board 60. FIG. 別の実施形態の1ポートSAW共振子70の断面図である。It is sectional drawing of 1 port SAW resonator 70 of another embodiment. 評価試験1における比較例1の結果をプロットしたグラフである。3 is a graph plotting the results of Comparative Example 1 in Evaluation Test 1. FIG. 評価試験2における比較例2の結果をプロットしたグラフである。6 is a graph plotting the results of Comparative Example 2 in Evaluation Test 2. FIG.

次に、本発明の実施の形態を図面に基づいて説明する。図1は、本発明の実施形態である複合基板10の斜視図である。この複合基板10は、弾性表面波デバイスに利用されるものであり、1箇所がフラットになった円形に形成されている。このフラットな部分はオリエンテーションフラット(OF)と呼ばれる部分であり、弾性表面波デバイスの製造工程において諸操作を行うときのウエハー位置や方向の検出などに用いられる。本実施形態の複合基板10は、圧電基板11と、支持基板12と、接着層13とを備えている。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a composite substrate 10 according to an embodiment of the present invention. The composite substrate 10 is used for a surface acoustic wave device, and is formed in a circular shape with one portion being flat. This flat portion is a portion called an orientation flat (OF), and is used for detecting the wafer position and direction when various operations are performed in the manufacturing process of the surface acoustic wave device. The composite substrate 10 of this embodiment includes a piezoelectric substrate 11, a support substrate 12, and an adhesive layer 13.

圧電基板11は、弾性表面波を伝搬可能な圧電体の基板である。圧電基板11の材質としては、例えば、タンタル酸リチウム,ニオブ酸リチウム,ニオブ酸リチウム−タンタル酸リチウム固溶体単結晶,ホウ酸リチウム,窒化ガリウム,水晶などが挙げられる。圧電基板11の大きさは、特に限定するものではないが、例えば、直径が50〜150mm、厚さが10〜50μmである。   The piezoelectric substrate 11 is a piezoelectric substrate capable of propagating surface acoustic waves. Examples of the material of the piezoelectric substrate 11 include lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution single crystal, lithium borate, gallium nitride, and quartz. Although the magnitude | size of the piezoelectric substrate 11 is not specifically limited, For example, a diameter is 50-150 mm and thickness is 10-50 micrometers.

支持基板12は、接着層13を介して圧電基板11の裏面に貼り合わせられた基板である。この支持基板12は、圧電基板11よりも熱膨張係数の小さい材質からなるものである。支持基板12の材質としては、例えば、シリコン,サファイア,窒化アルミニウム,アルミナ,ホウ珪酸ガラス,石英ガラス,スピネルなどが挙げられる。中でもシリコンは半導体デバイス作成用として最も実用化されている材料であり、この複合基板10を用いて作製した弾性表面波デバイスと半導体デバイスとを複合化しやすくなるため好ましい。支持基板12の大きさは、特に限定するものではないが、例えば、直径が50〜150mm、厚さが100〜500μmである。また、支持基板12の熱膨張係数は、例えば圧電基板11の熱膨張係数が13〜20ppm/Kの場合には、2〜7ppm/Kのものを用いるのが好ましい。なお、このように支持基板12を圧電基板11よりも熱膨張係数の小さい材質とすることで、温度が変化したときの圧電基板11の大きさの変化が支持基板12によって抑制される。すなわち、この複合基板10の温度特性が向上する。   The support substrate 12 is a substrate bonded to the back surface of the piezoelectric substrate 11 via the adhesive layer 13. The support substrate 12 is made of a material having a smaller thermal expansion coefficient than the piezoelectric substrate 11. Examples of the material of the support substrate 12 include silicon, sapphire, aluminum nitride, alumina, borosilicate glass, quartz glass, and spinel. Among these, silicon is the most practical material for semiconductor device fabrication, and is preferable because it is easy to composite the surface acoustic wave device fabricated using the composite substrate 10 and the semiconductor device. Although the magnitude | size of the support substrate 12 is not specifically limited, For example, a diameter is 50-150 mm and thickness is 100-500 micrometers. Further, the thermal expansion coefficient of the support substrate 12 is preferably 2 to 7 ppm / K when the thermal expansion coefficient of the piezoelectric substrate 11 is 13 to 20 ppm / K, for example. Note that the support substrate 12 is made of a material having a smaller thermal expansion coefficient than the piezoelectric substrate 11 in this way, so that the change in size of the piezoelectric substrate 11 when the temperature changes is suppressed by the support substrate 12. That is, the temperature characteristics of the composite substrate 10 are improved.

接着層13は、圧電基板11の裏面と支持基板12の表面とを接着するものである。この接着層13は、圧電基板11と支持基板12とを接着するための絶縁樹脂製の接着剤組成物に、導電性の除電粒子を含有させたものである。接着剤組成物の材質としては、例えばエポキシ樹脂やアクリル樹脂が挙げられる。除電粒子の材質としては、例えば、カーボン又は金属(例えば銀など)が挙げられる。この粒子の大きさは、特に限定するものではないが、例えば、直径が20〜200nmである。また、接着層13における粒子の量は、特に限定するものではないが、例えば接着剤組成物の5〜15wt%である。また、接着層13の厚さは、例えば0.1〜2μmとするのが好ましい。接着層13の厚さが2μmを越えると、複合基板10の温度特性を向上させる効果が十分得られなくなるため好ましくない。また、接着層13の厚さが0.1μm未満になると十分な接着強度が得られないため好ましくない。   The adhesive layer 13 adheres the back surface of the piezoelectric substrate 11 and the front surface of the support substrate 12. The adhesive layer 13 is obtained by adding conductive charge eliminating particles to an adhesive composition made of an insulating resin for bonding the piezoelectric substrate 11 and the support substrate 12. Examples of the material of the adhesive composition include an epoxy resin and an acrylic resin. Examples of the material of the charge eliminating particles include carbon or metal (for example, silver). The size of the particles is not particularly limited, and for example, the diameter is 20 to 200 nm. Further, the amount of particles in the adhesive layer 13 is not particularly limited, but is, for example, 5 to 15 wt% of the adhesive composition. Moreover, it is preferable that the thickness of the contact bonding layer 13 shall be 0.1-2 micrometers, for example. If the thickness of the adhesive layer 13 exceeds 2 μm, it is not preferable because the effect of improving the temperature characteristics of the composite substrate 10 cannot be obtained sufficiently. Further, if the thickness of the adhesive layer 13 is less than 0.1 μm, it is not preferable because sufficient adhesive strength cannot be obtained.

こうした複合基板10の製造方法について、図2を用いて以下に説明する。図2は、複合基板10の製造工程を模式的に示す説明図(断面図)である。まず、OFを有する所定の直径及び厚さの支持基板12を用意する。また、圧電基板11の研磨前の状態である圧電基板21を用意する(図2(a)参照)。そして、接着剤組成物に導電性の除電粒子を含有させたものを支持基板12の表面と圧電基板21の裏面との少なくとも一方に均一に塗布する。その後、両基板を貼り合わせ、接着剤組成物が熱硬化性樹脂の場合には加熱して硬化させ、接着剤組成物が光硬化性樹脂の場合には光を照射して硬化させる。これにより、除電粒子を含有した接着剤組成物が硬化して接着層13となり、貼り合わせ基板20(研磨前の複合基板10)が得られる(図2(b)参照)。その後、研磨機にて圧電基板21を研磨して所定厚さまで薄くし、さらに圧電基板21の表面を鏡面研磨することで研磨前の圧電基板21が圧電基板11となり、複合基板10が得られる(図2(c)参照)。   A method for manufacturing such a composite substrate 10 will be described below with reference to FIG. FIG. 2 is an explanatory view (cross-sectional view) schematically showing the manufacturing process of the composite substrate 10. First, a support substrate 12 having an OF and a predetermined diameter and thickness is prepared. In addition, a piezoelectric substrate 21 in a state before polishing the piezoelectric substrate 11 is prepared (see FIG. 2A). Then, an adhesive composition containing conductive charge eliminating particles is uniformly applied to at least one of the front surface of the support substrate 12 and the back surface of the piezoelectric substrate 21. Thereafter, the two substrates are bonded together, and when the adhesive composition is a thermosetting resin, it is heated and cured, and when the adhesive composition is a photocurable resin, it is cured by irradiation with light. Thereby, the adhesive composition containing the charge eliminating particles is cured to become the adhesive layer 13, and the bonded substrate 20 (composite substrate 10 before polishing) is obtained (see FIG. 2B). Thereafter, the piezoelectric substrate 21 is polished to a predetermined thickness by a polishing machine, and the surface of the piezoelectric substrate 21 is mirror-polished, so that the piezoelectric substrate 21 before polishing becomes the piezoelectric substrate 11 and the composite substrate 10 is obtained ( (Refer FIG.2 (c)).

こうして得られた複合基板10は、この後、一般的なフォトリソグラフィ技術を用いて電極を形成して、複合基板10を多数の弾性表面波デバイスの集合体としたあと、ダイシングにより1つ1つの弾性表面波デバイスに切り出される。複合基板10を弾性表面波デバイスである1ポートSAW(Surface Acoustic Wave)共振子30の集合体としたときの様子を図3に示す。1ポートSAW共振子30は、フォトリソグラフィ技術により、圧電基板11の表面にIDT(Interdigital Transducer)電極32,34(櫛形電極、すだれ状電極ともいう)と反射電極36とが形成されたものである。なお、得られた1ポートSAW共振子30は、次のようにしてプリント配線基板60に実装される。即ち、図4に示すように、IDT電極32,34とセラミックス基板40のパッド42,44とを金ボール46,48を介して接続したあと、このセラミックス基板40上で樹脂50により封入する。そして、そのセラミックス基板40の裏面に設けられた電極52,54とプリント配線基板60のパッド62,64との間に鉛フリーのはんだペーストを介在させたあと、リフロー工程によりプリント配線基板60に実装される。なお、図4には、はんだペーストが溶融・再固化したあとのはんだ66,68を示した。ここで、リフロー工程では、1ポートSAW共振子30が例えば260℃程度に加熱されるため、加熱中は圧電基板11と支持基板12との熱膨張係数の差により反りが生じる。そして、この反りによる応力によって圧電基板の表面には電荷が生じる。また、圧電基板11が焦電体である場合には、1ポートSAW共振子30が高温になることで圧電基板11の表面には焦電効果による電荷も生じる。しかし、本実施形態では、接着層13中の除電粒子にこれらの電荷が移動することで圧電基板11が除電される。そのため、リフロー工程後に1ポートSAW共振子30が常温に戻ったときには、圧電基板11には電荷による逆圧電効果が生じず、圧電基板11の反りは解消される。   The composite substrate 10 thus obtained is then formed with electrodes by using a general photolithographic technique to make the composite substrate 10 an assembly of a large number of surface acoustic wave devices. Cut out to a surface acoustic wave device. FIG. 3 shows a state where the composite substrate 10 is an assembly of 1-port SAW (Surface Acoustic Wave) resonators 30 which are surface acoustic wave devices. The 1-port SAW resonator 30 is obtained by forming IDT (Interdigital Transducer) electrodes 32 and 34 (also referred to as comb-shaped electrodes and interdigital electrodes) and a reflective electrode 36 on the surface of the piezoelectric substrate 11 by photolithography. . The obtained 1-port SAW resonator 30 is mounted on the printed wiring board 60 as follows. That is, as shown in FIG. 4, after the IDT electrodes 32 and 34 and the pads 42 and 44 of the ceramic substrate 40 are connected via the gold balls 46 and 48, the resin 50 is sealed on the ceramic substrate 40. A lead-free solder paste is interposed between the electrodes 52 and 54 provided on the back surface of the ceramic substrate 40 and the pads 62 and 64 of the printed wiring board 60, and then mounted on the printed wiring board 60 by a reflow process. Is done. FIG. 4 shows the solders 66 and 68 after the solder paste is melted and re-solidified. Here, since the 1-port SAW resonator 30 is heated to, for example, about 260 ° C. in the reflow process, warping occurs due to a difference in thermal expansion coefficient between the piezoelectric substrate 11 and the support substrate 12 during heating. And the electric charge arises on the surface of a piezoelectric substrate by the stress by this curvature. Further, when the piezoelectric substrate 11 is a pyroelectric body, the one-port SAW resonator 30 is heated to generate a charge due to the pyroelectric effect on the surface of the piezoelectric substrate 11. However, in this embodiment, the piezoelectric substrate 11 is neutralized by the movement of these charges to the neutralization particles in the adhesive layer 13. Therefore, when the 1-port SAW resonator 30 returns to room temperature after the reflow process, the piezoelectric substrate 11 does not have an inverse piezoelectric effect due to electric charges, and the warpage of the piezoelectric substrate 11 is eliminated.

以上詳述した本実施形態の複合基板10によれば、圧電基板11の裏面と支持基板12とを接合する絶縁樹脂製の接着層13に、圧電基板11の電荷を除去する導電性の除電粒子を含有させている。これにより、この複合基板10及びそれを用いて形成された弾性表面波デバイスが一度高温となった後に反りが残るのを防止することができる。   According to the composite substrate 10 of the present embodiment described in detail above, the conductive charge-removing particles that remove the electric charge of the piezoelectric substrate 11 on the adhesive layer 13 made of an insulating resin that joins the back surface of the piezoelectric substrate 11 and the support substrate 12. Is contained. Thereby, it is possible to prevent warping from remaining after the composite substrate 10 and the surface acoustic wave device formed using the composite substrate 10 are once heated to a high temperature.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、複合基板10において、絶縁樹脂製の接着層13に、圧電基板11の電荷を除去する導電性の除電粒子を含有させるものとしたが、複合基板10の接着層13には除電粒子を含有させないものとし、複合基板10を用いて形成された弾性表面波デバイスにおいて、圧電基板11の側面に圧電基板の電荷を除去する導電性の除電粒子を絶縁性の樹脂に含有させた除電層を接着させるものとしてもよい。この場合の1ポートSAW共振子70の断面図を図5に示す。なお、上述した実施形態における複合基板10及び1ポートSAW共振子30と同じ構成要素については、同じ符号を付すものとし、説明を省略する。この1ポートSAW共振子70は、圧電基板11の裏面と支持基板12とを接着層73により接着した複合基板において、圧電基板11の表面にIDT電極32,34(図示は省略)と反射電極36とを形成して作製したものである。接着層73は、接着層13とは異なり除電粒子を含有しておらず、接着層13の接着剤組成物と同様の絶縁性樹脂からなるものである。また、この1ポートSAW共振子70は、圧電基板11の側面に圧電基板11の電荷を除去する除電層74を備えている。この除電層74は、接着層13と同様、絶縁樹脂製の接着剤組成物に導電性の除電粒子を含有させたものである。除電粒子の材質としては、接着層13における除電粒子と同様に、例えばカーボン又は金属が挙げられる。この除電層74を、例えば複合基板から1ポートSAW共振子70を切り出した後、リフロー工程前に圧電基板11の側面に接着しておくことで、上述した複合基板10及び1ポートSAW共振子30と同様に、弾性表面波デバイス70が一度高温となった後に反りが残るのを防止する効果が得られる。なお、除電層74は、圧電基板14の側面の一部に接着されるものとしてもよいし、側面を覆っているものとしてもよい。側面を覆うものとした方が一度高温となった後に反りが残るのを防止する効果が高まるため好ましい。また、図5では、除電層74は圧電基板11の側面にのみ接着されているが、圧電基板11の側面に接着されていればよく、例えば、接着層73や支持基板12の側面にも接着されているものとしてもよい。さらにまた、除電層74だけでなく、接着層73についても接着層13と同様に除電粒子を含有させるものとしてもよい。   For example, in the above-described embodiment, in the composite substrate 10, the insulating resin-made adhesive layer 13 contains the conductive charge-removing particles that remove the electric charges of the piezoelectric substrate 11. However, the adhesive layer 13 of the composite substrate 10 In the surface acoustic wave device formed by using the composite substrate 10, the electrically conductive charge eliminating particles for removing the charge of the piezoelectric substrate are included in the insulating resin on the side surface of the piezoelectric substrate 11. It is good also as what adheres the made static elimination layer. A cross-sectional view of the 1-port SAW resonator 70 in this case is shown in FIG. In addition, the same code | symbol shall be attached | subjected about the same component as the composite substrate 10 and 1 port SAW resonator 30 in embodiment mentioned above, and description is abbreviate | omitted. The one-port SAW resonator 70 is a composite substrate in which the back surface of the piezoelectric substrate 11 and the support substrate 12 are bonded by an adhesive layer 73. IDT electrodes 32 and 34 (not shown) and a reflective electrode 36 are provided on the surface of the piezoelectric substrate 11. Are formed. Unlike the adhesive layer 13, the adhesive layer 73 does not contain static elimination particles and is made of an insulating resin similar to the adhesive composition of the adhesive layer 13. The 1-port SAW resonator 70 includes a charge removal layer 74 that removes charges from the piezoelectric substrate 11 on the side surface of the piezoelectric substrate 11. Similar to the adhesive layer 13, the charge removal layer 74 is made of an insulating resin adhesive composition containing conductive charge removal particles. As the material of the charge eliminating particles, for example, carbon or metal can be used as in the case of the charge eliminating particles in the adhesive layer 13. For example, after the 1-port SAW resonator 70 is cut out from the composite substrate and then bonded to the side surface of the piezoelectric substrate 11 before the reflow process, the charge removal layer 74 is bonded to the composite substrate 10 and the 1-port SAW resonator 30 described above. Similarly, the effect of preventing the warp from remaining after the surface acoustic wave device 70 once becomes high temperature can be obtained. The charge removal layer 74 may be bonded to a part of the side surface of the piezoelectric substrate 14 or may cover the side surface. It is preferable to cover the side surface because the effect of preventing the warp from remaining after the temperature has once increased is increased. In FIG. 5, the charge removal layer 74 is bonded only to the side surface of the piezoelectric substrate 11, but it may be bonded to the side surface of the piezoelectric substrate 11, for example, bonded to the side surface of the adhesive layer 73 or the support substrate 12. It is good also as what is done. Furthermore, not only the charge removal layer 74 but also the adhesive layer 73 may contain charge removal particles as in the adhesive layer 13.

上述した実施形態では、複合基板10を用いて作製する弾性波デバイスとして1ポートSAW共振子について説明したが、複合基板10を用いて他の弾性波デバイスを作製しても同様の効果を得ることができる。他の弾性波デバイスとしては、例えば、2ポートSAW共振子やトランスバーサル型SAWフィルター、ラダー型SAWフィルター、コンボルバーなどの弾性表面波デバイスや、薄膜共振子などのバルク波デバイスが挙げられる。   In the above-described embodiment, the 1-port SAW resonator has been described as the elastic wave device manufactured using the composite substrate 10, but the same effect can be obtained even if another elastic wave device is manufactured using the composite substrate 10. Can do. Examples of other acoustic wave devices include surface acoustic wave devices such as 2-port SAW resonators, transversal SAW filters, ladder SAW filters, and convolvers, and bulk wave devices such as thin film resonators.

[実施例1]
実施例1として、図1に示した複合基板10を作製し、これを用いて図3に示した1ポートSAW共振子30を作製した。
[Example 1]
As Example 1, the composite substrate 10 shown in FIG. 1 was produced, and the 1-port SAW resonator 30 shown in FIG. 3 was produced using the composite substrate 10.

具体的には、まず、圧電基板11となる厚さが250μm,直径100mmのタンタル酸リチウム基板(以下、LT基板)と、支持基板12となる厚さ250μm,直径100mmのシリコン基板とを用意した。ここで、LT基板は、弾性表面波の伝搬方向をXとし、切り出し角が回転Yカットである42°YカットX伝搬LT基板を用いた。LT基板の体積抵抗率は5.0×1010Ω・cmであった。続いて、エポキシ樹脂系接着剤に除電粒子として平均粒径50nmのカーボン粒子をエポキシ樹脂系接着剤の15wt%の分量だけ混ぜた混合接着剤を用意し、これをシリコン基板の表面にスピンコートにより塗布した。なお、混合接着剤の比抵抗は2.0×10-4Ω・cmであった。そして、LT基板の裏面がシリコン基板の混合接着剤を塗布した側と接するように貼り合わせて160℃に加熱し、硬化後の接着層13の厚さが1μmとなる貼り合わせ基板を形成した。 Specifically, first, a lithium tantalate substrate (hereinafter referred to as an LT substrate) having a thickness of 250 μm and a diameter of 100 mm serving as the piezoelectric substrate 11 and a silicon substrate having a thickness of 250 μm and a diameter of 100 mm serving as the support substrate 12 were prepared. . Here, as the LT substrate, a 42 ° Y-cut X-propagation LT substrate in which the propagation direction of the surface acoustic wave is X and the cutting angle is a rotational Y-cut is used. The volume resistivity of the LT substrate was 5.0 × 10 10 Ω · cm. Subsequently, a mixed adhesive prepared by mixing carbon particles having an average particle diameter of 50 nm as an antistatic particle in the epoxy resin adhesive in an amount of 15 wt% of the epoxy resin adhesive is prepared, and this is applied to the surface of the silicon substrate by spin coating. Applied. The specific resistance of the mixed adhesive was 2.0 × 10 −4 Ω · cm. And it bonded so that the back surface of LT board | substrate might contact the side which apply | coated the mixed adhesive of the silicon substrate, it heated at 160 degreeC, and the bonded substrate from which the thickness of the contact bonding layer 13 after hardening was set to 1 micrometer was formed.

次に、この貼り合わせ基板を、研磨機にてLT基板の厚さが10μmとなるまで研磨した。研磨機としては、まずLT基板の厚みを薄くし、その後鏡面研磨を行うものを用いた。厚みを薄くするときには、研磨定盤とプレッシャープレートとの間に貼り合わせ基板を挟み込み、その貼り合わせ基板と研磨定盤との間に研磨砥粒を含むスラリーを供給し、このプレッシャープレートにより貼り合わせ基板を定盤面に押し付けながらプレッシャープレートに自転運動を与えて行うものを用いた。続いて、鏡面研磨を行うときには、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、プレッシャープレートに自転運動及び公転運動を与えることによって、LT基板の表面を鏡面研磨した。具体的には、まず、貼り合わせ基板のLT基板の表面を定盤面に押し付け、自転運動の回転速度を100rpm、研磨を継続する時間を60分として研磨した。続いて、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、貼り合わせ基板を定盤面に押し付ける圧力を0.2MPa、自転運動の回転速度を100rpm、公転運動の回転速度を100rpm、研磨を継続する時間を60分として鏡面研磨した。この結果、研磨前のLT基板が研磨後の圧電基板11になり、実施例1の複合基板10が完成した。   Next, this bonded substrate was polished with a polishing machine until the thickness of the LT substrate became 10 μm. As a polishing machine, a machine that first thins the LT substrate and then performs mirror polishing is used. When the thickness is reduced, a bonded substrate is sandwiched between the polishing platen and the pressure plate, and a slurry containing abrasive grains is supplied between the bonded substrate and the polishing platen, and the pressure plate is used for bonding. A pressure plate that rotates while pressing the substrate against the surface plate was used. Subsequently, when performing mirror polishing, the polishing surface plate is assumed to have a pad attached to the surface and the abrasive grains are changed to a high count, and by giving rotation and revolution motion to the pressure plate, The surface of the LT substrate was mirror-polished. Specifically, first, the surface of the LT substrate of the bonded substrate was pressed against the surface of the platen, and polishing was performed with a rotation speed of 100 rpm and a polishing duration of 60 minutes. Subsequently, the polishing surface plate is assumed to have a pad attached to the surface and the abrasive grains are changed to a higher one, the pressure for pressing the bonded substrate against the surface plate surface is 0.2 MPa, the rotational speed of the rotation motion Was polished at 100 rpm, the revolution speed was 100 rpm, and the polishing time was 60 minutes. As a result, the LT substrate before polishing became the polished piezoelectric substrate 11, and the composite substrate 10 of Example 1 was completed.

続いて、作製した複合基板10に一般的なフォトリソグラフィ技術を用いてIDT電極32,34、反射電極36を形成して、4000個の1ポートSAW共振子30の集合体とした。そして、2000番のレジン系砥石を使用し、回転数29000rpmにてダイシングを行って1つ1つの1ポートSAW共振子30を切り出した。なお、IDT電極32,34は線幅が値0.55μm,周期λが値2.2μmとなるように形成し、反射電極36はストライプの線幅が値0.55μm,周期pが1/2λとなるように形成した。   Subsequently, the IDT electrodes 32 and 34 and the reflective electrode 36 were formed on the fabricated composite substrate 10 using a general photolithography technique to form an assembly of 4000 one-port SAW resonators 30. Then, using a No. 2000 resin grindstone, dicing was performed at a rotational speed of 29000 rpm, and each one-port SAW resonator 30 was cut out. The IDT electrodes 32 and 34 are formed to have a line width of 0.55 μm and a period λ of 2.2 μm, and the reflective electrode 36 has a stripe line width of 0.55 μm and a period p of 1 / 2λ. It formed so that it might become.

[比較例1]
接着層13をカーボン粒子を混ぜずにエポキシ樹脂系接着剤のみにより形成したした点以外は、実施例1と同様にして複合基板10を作製し、実施例1と同様に1ポートSAW共振子30を作製した。
[Comparative Example 1]
A composite substrate 10 is produced in the same manner as in Example 1 except that the adhesive layer 13 is formed only by an epoxy resin adhesive without mixing carbon particles, and the 1-port SAW resonator 30 is produced in the same manner as in Example 1. Was made.

[評価試験1]
実施例1及び比較例1の1ポートSAW共振子30をそれぞれサンプルとして10個ずつ用意し、250℃に設定されたホットプレート上にサンプルをのせ、上方をSUS製の箱で囲んだ。この状態で3分間保持し、開放してサンプルをφ100mm,厚さ20mmのSUS板へ移して室温まで冷却した後に、圧電基板11の表面の反り量及び静電気量(電位)を測定した。なお、反り量はZygo社製光学測定器(NV5010)を用いて測定し、静電気量はKeyence社製の静電気測定器(SK-200)を用いて測定した。その結果、実施例1の1ポートSAW共振子30は10個全てにおいて反り量及び電位がゼロであった。一方、比較例1の1ポートSAW共振子30の反り量及び電位は図6のようになった。なお、図6ではプロットされた点は9個に見えるが、これは反り量が1μm,電位が220Vの1ポートSAW共振子30が2個あったためである。比較例1の反り量の平均値は1.19μmであり、電位の平均値は229.8Vであった。実施例1の結果及び図6の結果から、実施例1では、一度高温になった後の圧電基板11の電荷が除電粒子を含有する接着層13により除去されることで、圧電基板11の電位がゼロとなり、これにより反りが残っていないことがわかる。
[Evaluation Test 1]
Ten 1-port SAW resonators 30 of Example 1 and Comparative Example 1 were prepared as samples, placed on a hot plate set at 250 ° C., and surrounded by a SUS box. In this state, the sample was held for 3 minutes, opened, and the sample was transferred to a SUS plate having a diameter of 100 mm and a thickness of 20 mm and cooled to room temperature, and then the amount of warpage and the amount of static electricity (potential) of the piezoelectric substrate 11 were measured. The amount of warpage was measured using an optical measuring device (NV5010) manufactured by Zygo, and the amount of static electricity was measured using an electrostatic measuring device (SK-200) manufactured by Keyence. As a result, in all 10 one-port SAW resonators 30 of Example 1, the amount of warpage and the potential were zero. On the other hand, the warpage amount and potential of the 1-port SAW resonator 30 of Comparative Example 1 are as shown in FIG. In FIG. 6, nine plotted points appear because there are two 1-port SAW resonators 30 having a warp amount of 1 μm and a potential of 220V. The average value of the warpage amount of Comparative Example 1 was 1.19 μm, and the average value of the potential was 229.8V. From the result of Example 1 and the result of FIG. 6, in Example 1, the electric potential of the piezoelectric substrate 11 is removed by removing the electric charge of the piezoelectric substrate 11 once heated to the temperature by the adhesive layer 13 containing the charge eliminating particles. Becomes zero, which indicates that no warp remains.

[実施例2]
実施例2として、図5に示した1ポートSAW共振子70を作製した。なお、1ポートSAW共振子70は、比較例1と同様にして1ポートSAW共振子を作製し、その後に圧電基板11の側面を覆うように除電層74を接着することで作製した。なお、除電層74は、エポキシ樹脂系接着剤に除電粒子として平均粒径50nmの銀粒子をエポキシ樹脂系接着剤の15wt%の分量だけ混ぜた混合接着剤を用いた。混合接着剤の比抵抗は5.0×10-5Ω・cmであった。この混合接着剤を綿棒にて圧電基板11の側面を覆うように塗布したのち160℃に加熱することで硬化させて、除電層74とした。
[Example 2]
As Example 2, the 1-port SAW resonator 70 shown in FIG. The 1-port SAW resonator 70 was manufactured by manufacturing a 1-port SAW resonator in the same manner as in Comparative Example 1, and then bonding the charge removal layer 74 so as to cover the side surface of the piezoelectric substrate 11. In addition, the static elimination layer 74 used the mixed adhesive agent which mixed silver particle with an average particle diameter of 50 nm as a static elimination particle by the amount of 15 wt% of an epoxy resin adhesive in the epoxy resin adhesive. The specific resistance of the mixed adhesive was 5.0 × 10 −5 Ω · cm. The mixed adhesive was applied with a cotton swab so as to cover the side surface of the piezoelectric substrate 11, and then cured by heating to 160 ° C. to obtain a charge removal layer 74.

[比較例2]
除電層74をカーボン粒子を混ぜずにエポキシ樹脂系接着剤のみにより形成したした点以外は、実施例2と同様にして1ポートSAW共振子70を作製した。
[Comparative Example 2]
A 1-port SAW resonator 70 was produced in the same manner as in Example 2 except that the charge removal layer 74 was formed only with an epoxy resin adhesive without mixing carbon particles.

[評価試験2]
実施例2及び比較例2の1ポートSAW共振子70をそれぞれ10個ずつ用意し、これらを評価試験1と同様の条件で加熱・冷却した後、評価試験1と同様に圧電基板11の表面の反り量及び静電気量(電位)を測定した。その結果、実施例2の1ポートSAW共振子70は10個全てにおいて反り量及び電位がゼロであった。一方、比較例1の1ポートSAW共振子70の反り量及び電位は図7のようになった。なお、比較例2の反り量の平均値は1.29μmであり、電位の平均値は229.9Vであった。実施例2の結果及び図7の結果から、実施例2では、一度高温になった後の圧電基板11の電荷が除電粒子を含有する除電層74により除去されることで、圧電基板11の電位がゼロとなり、これにより反りが残っていないことがわかる。
[Evaluation Test 2]
Ten 10-port SAW resonators 70 of Example 2 and Comparative Example 2 were prepared and heated and cooled under the same conditions as in Evaluation Test 1, and then the surface of the piezoelectric substrate 11 was tested in the same manner as in Evaluation Test 1. The amount of warpage and the amount of static electricity (potential) were measured. As a result, in all 10 one-port SAW resonators 70 of Example 2, the amount of warpage and the potential were zero. On the other hand, the warpage amount and potential of the 1-port SAW resonator 70 of Comparative Example 1 are as shown in FIG. In addition, the average value of the curvature amount of the comparative example 2 was 1.29 μm, and the average value of the potential was 229.9V. From the result of Example 2 and the result of FIG. 7, in Example 2, the electric potential of the piezoelectric substrate 11 is removed by removing the electric charge of the piezoelectric substrate 11 once heated to the temperature by the charge eliminating layer 74 containing the charge eliminating particles. Becomes zero, which indicates that no warp remains.

10 複合基板、11 圧電基板、12 支持基板、13 接着層、20 貼り合わせ基板、21 圧電基板(研磨前)、30 1ポートSAW共振子、32,34 IDT電極、36 反射電極、40 セラミックス基板、42,44 パッド、46,48 金ボール、50 樹脂、52,54 電極、60 プリント配線板、62,64 パッド、66,68 はんだ、70 1ポートSAW共振子、74 除電層。   DESCRIPTION OF SYMBOLS 10 Composite substrate, 11 Piezoelectric substrate, 12 Support substrate, 13 Adhesive layer, 20 Bonded substrate, 21 Piezoelectric substrate (before polishing), 30 1-port SAW resonator, 32, 34 IDT electrode, 36 Reflective electrode, 40 Ceramic substrate, 42,44 pad, 46,48 gold ball, 50 resin, 52,54 electrode, 60 printed wiring board, 62,64 pad, 66,68 solder, 70 1-port SAW resonator, 74 static elimination layer.

Claims (6)

弾性波を伝搬可能な圧電基板と、
前記圧電基板よりも熱膨張係数が小さい支持基板と、
前記圧電基板の裏面と前記支持基板とを接合する絶縁性の樹脂からなる接着層と、
を備え、
前記接着層は、前記圧電基板の電荷を除去する導電性の除電粒子を含有している、
複合基板。
A piezoelectric substrate capable of propagating elastic waves;
A support substrate having a smaller coefficient of thermal expansion than the piezoelectric substrate;
An adhesive layer made of an insulating resin that joins the back surface of the piezoelectric substrate and the support substrate;
With
The adhesive layer contains conductive static eliminating particles that remove electric charges of the piezoelectric substrate.
Composite board.
前記除電粒子は、カーボン又は金属からなる、
請求項1に記載の複合基板。
The charge eliminating particles are made of carbon or metal.
The composite substrate according to claim 1.
請求項1又は2に記載の複合基板を用いて形成され、前記弾性波を励振可能な電極を前記圧電基板の表面に備えた弾性波デバイス。   3. An acoustic wave device formed using the composite substrate according to claim 1 and having an electrode capable of exciting the acoustic wave on a surface of the piezoelectric substrate. 弾性波を伝搬可能な圧電基板と、
前記圧電基板の表面に形成され、前記弾性波を励振可能な電極と、
前記圧電基板よりも熱膨張係数が小さい支持基板と、
前記圧電基板の裏面と前記支持基板とを接合する絶縁性の樹脂からなる接着層と、
前記圧電基板の側面に接着され、該圧電基板の電荷を除去する導電性の除電粒子を絶縁性の樹脂に含有させた除電層と、
を備えた弾性波デバイス。
A piezoelectric substrate capable of propagating elastic waves;
An electrode formed on a surface of the piezoelectric substrate and capable of exciting the elastic wave;
A support substrate having a smaller coefficient of thermal expansion than the piezoelectric substrate;
An adhesive layer made of an insulating resin that joins the back surface of the piezoelectric substrate and the support substrate;
A static elimination layer that is bonded to a side surface of the piezoelectric substrate and contains conductive static elimination particles that remove electric charges of the piezoelectric substrate in an insulating resin;
Elastic wave device with
前記除電粒子はカーボン又は金属からなる、
請求項4に記載の弾性波デバイス。
The charge eliminating particles are made of carbon or metal.
The elastic wave device according to claim 4.
前記除電層は、前記圧電基板の側面を覆っている、
請求項4又は5に記載の弾性波デバイス
The charge removal layer covers a side surface of the piezoelectric substrate;
The elastic wave device according to claim 4 or 5
JP2010143414A 2010-06-24 2010-06-24 Composite substrate and elastic wave device using thereof Pending JP2012010054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143414A JP2012010054A (en) 2010-06-24 2010-06-24 Composite substrate and elastic wave device using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143414A JP2012010054A (en) 2010-06-24 2010-06-24 Composite substrate and elastic wave device using thereof

Publications (1)

Publication Number Publication Date
JP2012010054A true JP2012010054A (en) 2012-01-12

Family

ID=45540116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143414A Pending JP2012010054A (en) 2010-06-24 2010-06-24 Composite substrate and elastic wave device using thereof

Country Status (1)

Country Link
JP (1) JP2012010054A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214954A (en) * 2012-03-07 2013-10-17 Taiyo Yuden Co Ltd Resonator, frequency filter, duplexer, electronic device, and method for manufacturing resonator
JP2014078778A (en) * 2012-10-09 2014-05-01 Panasonic Corp Piezoelectric wafer, acoustic wave device and manufacturing method of acoustic wave device
WO2015064238A1 (en) * 2013-10-31 2015-05-07 京セラ株式会社 Elastic wave element, filter element and communication device
JP2015216212A (en) * 2014-05-09 2015-12-03 東京エレクトロン株式会社 Thermal processing device, thermal processing method and storage medium
USD809804S1 (en) * 2014-12-17 2018-02-13 Ngk Insulators, Ltd. Composite substrate for acoustic wave device
USD849422S1 (en) 2014-12-17 2019-05-28 Ngk Insulators, Ltd. Composite substrate for acoustic wave device
JPWO2018163841A1 (en) * 2017-03-09 2019-11-21 株式会社村田製作所 Elastic wave device, elastic wave device package, multiplexer, high frequency front end circuit, and communication device
CN112910415A (en) * 2021-01-15 2021-06-04 天津大学 Particle nonlinear elastic wave metamaterial device for directional transmission

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116211A (en) * 1988-10-26 1990-04-27 Fujitsu Ltd Piezo-electric element
JP2000517144A (en) * 1997-06-10 2000-12-19 トムソン―セーエスエフ Surface acoustic wave device for removing pyroelectric interference
JP2002135076A (en) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacturing method
JP2004201285A (en) * 2002-12-06 2004-07-15 Murata Mfg Co Ltd Method of producing piezoelectric component and piezoelectric component
JP2006042008A (en) * 2004-07-28 2006-02-09 Kyocera Corp Surface acoustic wave element and communication apparatus
JP2007134889A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Composite piezoelectric substrate
JP2008028842A (en) * 2006-07-24 2008-02-07 Fujitsu Media Device Kk Surface acoustic wave device and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116211A (en) * 1988-10-26 1990-04-27 Fujitsu Ltd Piezo-electric element
JP2000517144A (en) * 1997-06-10 2000-12-19 トムソン―セーエスエフ Surface acoustic wave device for removing pyroelectric interference
JP2002135076A (en) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacturing method
JP2004201285A (en) * 2002-12-06 2004-07-15 Murata Mfg Co Ltd Method of producing piezoelectric component and piezoelectric component
JP2006042008A (en) * 2004-07-28 2006-02-09 Kyocera Corp Surface acoustic wave element and communication apparatus
JP2007134889A (en) * 2005-11-09 2007-05-31 Shin Etsu Chem Co Ltd Composite piezoelectric substrate
JP2008028842A (en) * 2006-07-24 2008-02-07 Fujitsu Media Device Kk Surface acoustic wave device and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214954A (en) * 2012-03-07 2013-10-17 Taiyo Yuden Co Ltd Resonator, frequency filter, duplexer, electronic device, and method for manufacturing resonator
JP2014078778A (en) * 2012-10-09 2014-05-01 Panasonic Corp Piezoelectric wafer, acoustic wave device and manufacturing method of acoustic wave device
WO2015064238A1 (en) * 2013-10-31 2015-05-07 京セラ株式会社 Elastic wave element, filter element and communication device
JP6050486B2 (en) * 2013-10-31 2016-12-21 京セラ株式会社 Filter element and communication device
US10153748B2 (en) 2013-10-31 2018-12-11 Kyocera Corporation Acoustic wave element, filter element, and communication device
JP2015216212A (en) * 2014-05-09 2015-12-03 東京エレクトロン株式会社 Thermal processing device, thermal processing method and storage medium
USD809804S1 (en) * 2014-12-17 2018-02-13 Ngk Insulators, Ltd. Composite substrate for acoustic wave device
USD849422S1 (en) 2014-12-17 2019-05-28 Ngk Insulators, Ltd. Composite substrate for acoustic wave device
JPWO2018163841A1 (en) * 2017-03-09 2019-11-21 株式会社村田製作所 Elastic wave device, elastic wave device package, multiplexer, high frequency front end circuit, and communication device
US11588467B2 (en) 2017-03-09 2023-02-21 Murata Manufacturing Co., Ltd. Acoustic wave device, acoustic wave device package, multiplexer, radio-frequency front-end circuit, and communication device
CN112910415A (en) * 2021-01-15 2021-06-04 天津大学 Particle nonlinear elastic wave metamaterial device for directional transmission
CN112910415B (en) * 2021-01-15 2022-05-27 天津大学 Particle nonlinear elastic wave metamaterial device for directional transmission

Similar Documents

Publication Publication Date Title
JP2012010054A (en) Composite substrate and elastic wave device using thereof
JP2010187373A (en) Composite substrate and elastic wave device using the same
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP5668179B1 (en) Composite substrate for acoustic wave device and acoustic wave device
JP5539602B1 (en) Composite substrate, surface acoustic wave device, and method of manufacturing composite substrate
KR101842278B1 (en) Composite substrate and method for manufacturing the composite substrate
JP4723207B2 (en) Composite piezoelectric substrate
JP3187231U (en) Composite board
JP2011071967A (en) Method for manufacturing composite substrate
JP3184763U (en) Composite board
KR101636220B1 (en) Composite substrate, piezoelectric device and method of manufacturing composite substrate
JP2005229455A (en) Compound piezoelectric substrate
JP2007214902A (en) Surface acoustic wave device
JP2011254354A (en) Composite substrate and surface acoustic wave device using the same
JP5180104B2 (en) Surface acoustic wave device
WO2006114922A1 (en) Surface acoustic wave element, composite piezoelectric chip and method for manufacturing such surface acoustic wave element
JP2018093329A (en) Elastic wave element
JP2006246050A (en) Composite piezoelectric wafer and surface acoustic wave device
JP2002135076A (en) Surface acoustic wave device and its manufacturing method
JP2010068484A (en) Combined piezoelectric substrate
Geshi et al. Wafer bonding of polycrystalline spinel with LiNbO 3/LiTaO 3 for temperature compensation of RF surface acoustic wave devices
US20130214645A1 (en) Piezoelectric device and method for fabricating the same
JP2012209662A (en) Wafer level package material for surface acoustic wave device, surface acoustic wave device junction wafer using package material, and surface acoustic wave device cut from junction wafer
JP2011019043A (en) Composite substrate and method for manufacturing composite substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401