JP2018093329A - Elastic wave element - Google Patents

Elastic wave element Download PDF

Info

Publication number
JP2018093329A
JP2018093329A JP2016233933A JP2016233933A JP2018093329A JP 2018093329 A JP2018093329 A JP 2018093329A JP 2016233933 A JP2016233933 A JP 2016233933A JP 2016233933 A JP2016233933 A JP 2016233933A JP 2018093329 A JP2018093329 A JP 2018093329A
Authority
JP
Japan
Prior art keywords
substrate
propagation
support substrate
expansion coefficient
elastic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016233933A
Other languages
Japanese (ja)
Inventor
山口 省一郎
Shoichiro Yamaguchi
省一郎 山口
知義 多井
Tomoyoshi Oi
知義 多井
達也 鬼頭
Tatsuya Kito
達也 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2016233933A priority Critical patent/JP2018093329A/en
Publication of JP2018093329A publication Critical patent/JP2018093329A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable further suppression of the fluctuation in frequency band owing to the change in temperature in a small-size elastic wave element.SOLUTION: An elastic wave element comprises: a support substrate; a propagation substrate made of piezoelectric monocrystalline; and an electrode provided on an upper face of the propagation substrate. The upper face of the propagation substrate has an area of 20 mmor less. The piezoelectric monocrystalline includes a lithium niobate, lithium tantalate or a lithium niobate-lithium tantalate solid solution. The linear thermal expansion coefficient of the material of the support substrate in an elastic wave propagation direction is a negative value.SELECTED DRAWING: Figure 2

Description

本発明は、弾性波素子に関するものである。   The present invention relates to an acoustic wave device.

携帯電話等に使用されるフィルタ素子や発振子として機能させることができる弾性表面波デバイスや、圧電薄膜を用いたラム波素子や薄膜共振子(FBAR:Film Bulk Acoustic Resonator)などの弾性波デバイスが知られている。こうした弾性波デバイスとしては、支持基板と弾性表面波を伝搬させる圧電基板とを貼り合わせ、圧電基板の表面に弾性表面波を励振可能な櫛形電極を設けたものが知られている。   Surface acoustic wave devices that can function as filter elements and oscillators used in cellular phones, etc., and acoustic wave devices such as Lamb wave elements using piezoelectric thin films and thin film resonators (FBARs) Are known. As such an acoustic wave device, a device in which a supporting substrate and a piezoelectric substrate that propagates a surface acoustic wave are bonded together and a comb-shaped electrode capable of exciting the surface acoustic wave is provided on the surface of the piezoelectric substrate is known.

しかし、弾性表面波素子は、温度変化によって通過帯域が移動してしまうという問題がある。特に、現在多用されているニオブ酸リチウムやタンタル酸リチウムは、電気機械結合係数が大きく、広帯域のフィルタ特性を実現するのに有利である。しかし、ニオブ酸リチウムやタンタル酸リチウムは温度安定性に劣る(特許文献1)。   However, the surface acoustic wave element has a problem that the pass band moves due to a temperature change. In particular, lithium niobate and lithium tantalate, which are widely used at present, have a large electromechanical coupling coefficient, and are advantageous for realizing broadband filter characteristics. However, lithium niobate and lithium tantalate are inferior in temperature stability (Patent Document 1).

例えば、タンタル酸リチウムの周波数変化の温度係数は−35ppm/Kであり、−30〜+85℃の温度範囲で周波数変動が大きい。このため、周波数変化の温度係数を低減することが必要である。   For example, the temperature coefficient of frequency change of lithium tantalate is −35 ppm / K, and the frequency variation is large in the temperature range of −30 to + 85 ° C. For this reason, it is necessary to reduce the temperature coefficient of the frequency change.

特許文献2には、SAWの伝搬基板と支持基板とを有機薄膜層によって接着したデバイスが記載されている。伝搬基板は例えば厚さ30μmのタンタル酸リチウム基板であり、これをガラス基板と厚さ1μm以下の有機接着剤によって貼り合わせている。   Patent Document 2 describes a device in which a SAW propagation substrate and a support substrate are bonded by an organic thin film layer. The propagation substrate is a lithium tantalate substrate having a thickness of 30 μm, for example, and is bonded to a glass substrate with an organic adhesive having a thickness of 1 μm or less.

なお、いわゆるFAB(Fast Atom Beam)方式の直接接合法が知られている(特許文献3)。この方法では、中性化原子ビームを常温で各接合面に照射して活性化し、直接接合する。   A so-called FAB (Fast Atom Beam) type direct bonding method is known (Patent Document 3). In this method, a neutralized atom beam is irradiated to each bonding surface at normal temperature to activate and bond directly.

特開2008-301066JP2008-301066 特許4956569Patent 4956569 特開2014−086400JP2014-086400

しかし、最近、周波数帯域の安定性の要求も厳しくなってきている。一方、弾性表面波素子には環境変化、特に輸送中や移動中において温度変化があるので、急激な温度変化がおきても素子に剥離やクラックなどのダメージが生じないようにすることが必要である。   However, recently, the requirement for the stability of the frequency band has become stricter. On the other hand, surface acoustic wave devices have environmental changes, especially temperature changes during transportation and movement, so it is necessary to prevent damage such as peeling and cracks from occurring even if sudden temperature changes occur. is there.

本発明の課題は、支持基板、圧電単結晶からなる伝搬基板、および伝搬基板の上面に設けられた電極を備える弾性波素子において、温度変化による周波数帯域の変動を一層抑制できるようにするとともに、熱衝撃サイクル印加後にも素子に剥離やクラックが生じないようにすることである。   An object of the present invention is to provide a support substrate, a propagation substrate made of a piezoelectric single crystal, and an acoustic wave device including an electrode provided on the upper surface of the propagation substrate, and further suppress fluctuations in the frequency band due to temperature changes, It is to prevent the device from peeling or cracking even after applying the thermal shock cycle.

本発明は、
支持基板、
圧電性単結晶からなる伝搬基板、および
前記伝搬基板の上面に設けられた電極を備えている弾性波素子であって、
前記伝搬基板の上面の面積が20mm以下であり、
前記圧電性単結晶が、ニオブ酸リチウム、タンタル酸リチウムまたはニオブ酸リチウム−タンタル酸リチウム固溶体からなり、前記弾性波の伝搬方向における前記支持基板の材質の線熱膨張係数が負の数値であることを特徴とする。
The present invention
Support substrate,
An acoustic wave device comprising a propagation substrate made of a piezoelectric single crystal, and an electrode provided on the upper surface of the propagation substrate,
The area of the upper surface of the propagation substrate is 20 mm 2 or less,
The piezoelectric single crystal is made of lithium niobate, lithium tantalate or lithium niobate-lithium tantalate solid solution, and the linear thermal expansion coefficient of the material of the support substrate in the propagation direction of the elastic wave is a negative numerical value. It is characterized by.

本発明によれば、圧電性単結晶からなる伝搬基板に対して、伝搬方向における前記支持基板の材質の線熱膨張係数が負である材質からなる支持基板を接合した構造とするとともに、伝搬基板の上面の面積を20mm以下とすることで、温度変化に対する素子の周波数帯域の変動が著しく低減されるとともに、熱衝撃サイクルを加えた後の素子の剥離やクラックを抑制できる。 According to the present invention, a propagation substrate made of a piezoelectric single crystal is joined to a propagation substrate made of a material having a negative linear thermal expansion coefficient of the material of the support substrate in the propagation direction. By making the area of the upper surface of 20 mm 2 or less, fluctuations in the frequency band of the element with respect to temperature changes can be significantly reduced, and peeling and cracking of the element after applying a thermal shock cycle can be suppressed.

(a)は、支持基板1の主面を中性化ビームAによって活性化した状態を示し、(b)は、圧電性単結晶基板6の主面を中性化ビームAによって活性化した状態を示す。(A) shows the state where the main surface of the support substrate 1 is activated by the neutralizing beam A, and (b) shows the state where the main surface of the piezoelectric single crystal substrate 6 is activated by the neutralizing beam A. Indicates. (a)は、支持基板1と圧電性単結晶基板6とが直接接合された接合体3を示し、(b)は、圧電性単結晶基板を加工によって薄くした状態を示し、(c)は、伝搬基板6A上に電極10を設けた弾性波素子5を示す。(A) shows the joined body 3 in which the support substrate 1 and the piezoelectric single crystal substrate 6 are directly joined, (b) shows a state in which the piezoelectric single crystal substrate is thinned by processing, and (c) shows 1 shows an acoustic wave element 5 in which an electrode 10 is provided on a propagation substrate 6A.

以下、適宜図面を参照しつつ、本発明を詳細に説明する。
図1、図2は、支持基板を圧電性単結晶基板の表面に直接接合する実施形態に係るものである。
Hereinafter, the present invention will be described in detail with appropriate reference to the drawings.
1 and 2 relate to an embodiment in which a support substrate is directly bonded to the surface of a piezoelectric single crystal substrate.

図1(a)に示すように、支持基板の表面に対して矢印Aのように中性化ビームを照射し、表面を活性化して活性化面1aとする。一方、図1(b)に示すように、圧電性単結晶基板6の表面に中性化ビームを照射することによって活性化し、活性化面6aとする。そして、図2(a)に示すように、圧電性単結晶基板6の活性化面6aと支持基板1の活性化面1aとを直接接合することによって、接合体3を得る。   As shown in FIG. 1A, the surface of the support substrate is irradiated with a neutralization beam as indicated by an arrow A to activate the surface to be an activated surface 1a. On the other hand, as shown in FIG. 1B, the surface of the piezoelectric single crystal substrate 6 is activated by irradiating the surface with a neutralized beam, thereby forming an activated surface 6a. Then, as shown in FIG. 2A, the joined body 3 is obtained by directly joining the activation surface 6 a of the piezoelectric single crystal substrate 6 and the activation surface 1 a of the support substrate 1.

好適な実施形態においては、接合体3の圧電性単結晶基板の表面6bを更に研磨加工し、図2(b)に示すように圧電性単結晶基板の厚さを小さくし、接合体4を得る。6cは研磨面である。
図2(c)では、伝搬基板6Aの研磨面6c上に所定の電極10を形成することによって、弾性波素子5を作製している。
In a preferred embodiment, the surface 6b of the piezoelectric single crystal substrate of the bonded body 3 is further polished to reduce the thickness of the piezoelectric single crystal substrate as shown in FIG. obtain. 6c is a polished surface.
In FIG. 2C, the acoustic wave element 5 is produced by forming a predetermined electrode 10 on the polishing surface 6c of the propagation substrate 6A.

弾性波素子としては、弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)などが知られている。例えば、弾性表面波デバイスは、圧電性材料基板の表面に、弾性表面波を励振する入力側のIDT(Interdigital Transducer)電極(櫛形電極、すだれ状電極ともいう)と弾性表面波を受信する出力側のIDT電極とを設けたものである。入力側のIDT電極に高周波信号を印加すると、電極間に電界が発生し、弾性表面波が励振されて圧電基板上を伝搬していく。そして、伝搬方向に設けられた出力側のIDT電極から、伝搬された弾性表面波を電気信号として取り出すことができる。   Known acoustic wave elements include surface acoustic wave devices, Lamb wave elements, thin film resonators (FBARs), and the like. For example, a surface acoustic wave device has an IDT (Interdigital Transducer) electrode (also referred to as a comb-shaped electrode or a comb-shaped electrode) for exciting surface acoustic waves on the surface of a piezoelectric material substrate and an output side for receiving surface acoustic waves. IDT electrodes are provided. When a high frequency signal is applied to the IDT electrode on the input side, an electric field is generated between the electrodes, and a surface acoustic wave is excited and propagates on the piezoelectric substrate. Then, the propagated surface acoustic wave can be taken out as an electric signal from the IDT electrode on the output side provided in the propagation direction.

ここで、伝搬基板6Aの上面6cの面積は20mm以下とする。このような小型の弾性波素子の場合には、温度変化に対する周波数帯域の変動が特に大きくなる。この観点からは、伝搬基板の上面の面積は6mm以下とすることが更に好ましい。伝搬基板の上面1bの面積の下限は特にないが、0.01mm以上とすることができ、3mm以上とすることが特に好ましい。 Here, the area of the upper surface 6c of the propagation substrate 6A is 20 mm 2 or less. In the case of such a small acoustic wave element, the fluctuation of the frequency band with respect to the temperature change is particularly large. From this viewpoint, the area of the upper surface of the propagation substrate is more preferably 6 mm 2 or less. The lower limit of the area of the upper surface 1b of the propagation substrate is not particularly but can be a 0.01 mm 2 or more, and particularly preferably 3 mm 2 or more.

伝搬基板を構成する圧電性単結晶は、ニオブ酸リチウム、タンタル酸リチウムまたはニオブ酸リチウム−タンタル酸リチウム固溶体からなる。これらの材質は、弾性表面波の伝搬速度が速く、電気機械結合係数が大きいため、高周波数且つ広帯域周波数用の弾性波デバイスとして適している。また、伝搬基板の上面の法線方向は特に限定されないが、例えば、伝搬基板がタンタル酸リチウムからなるときには、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に36〜47°(例えば42°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。伝搬基板がニオブ酸リチウムからなるときには、弾性表面波の伝搬方向であるX軸を中心に、Y軸からZ軸に60〜68°(例えば64°)回転した方向のものを用いるのが伝搬損失が小さいため好ましい。   The piezoelectric single crystal constituting the propagation substrate is made of lithium niobate, lithium tantalate, or lithium niobate-lithium tantalate solid solution. Since these materials have a high propagation speed of surface acoustic waves and a large electromechanical coupling coefficient, they are suitable as acoustic wave devices for high frequencies and wideband frequencies. Further, the normal direction of the upper surface of the propagation substrate is not particularly limited. For example, when the propagation substrate is made of lithium tantalate, 36 to 36 from the Y axis to the Z axis centering on the X axis that is the propagation direction of the surface acoustic wave. It is preferable to use the one rotated by 47 ° (for example, 42 °) because the propagation loss is small. When the propagation substrate is made of lithium niobate, it is a propagation loss to use the one rotated by 60 to 68 ° (for example, 64 °) from the Y axis to the Z axis around the X axis, which is the propagation direction of the surface acoustic wave. Is preferable because it is small.

伝搬基板の接合面6aに金属膜を有していてもよい。金属膜は、弾性波デバイスとしてラム波素子を製造した際に、圧電基板の裏面近傍の電気機械結合係数を大きくする役割を果たす。この場合、ラム波素子は、伝搬基板の上面6cに櫛歯電極が形成され、支持基板に設けられたキャビティによって圧電基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えばアルミニウム、アルミニウム合金、銅、金などが挙げられる。なお、ラム波素子を製造する場合、底面に金属膜を有さない伝搬基板を備えた接合体を用いてもよい。   A metal film may be provided on the bonding surface 6a of the propagation substrate. The metal film plays a role of increasing the electromechanical coupling coefficient in the vicinity of the back surface of the piezoelectric substrate when a Lamb wave element is manufactured as an elastic wave device. In this case, the Lamb wave element has a structure in which comb electrodes are formed on the upper surface 6c of the propagation substrate, and the metal film of the piezoelectric substrate is exposed by the cavity provided in the support substrate. Examples of the material of such a metal film include aluminum, an aluminum alloy, copper, and gold. When a Lamb wave device is manufactured, a joined body including a propagation substrate that does not have a metal film on the bottom surface may be used.

また、伝搬基板の接合面6aに金属膜と絶縁膜を有していてもよい。金属膜は、弾性波デバイスとして薄膜共振子を製造した際に、電極の役割を果たす。この場合、薄膜共振子は、圧電基板の上面と接合面との両方に電極が形成され、絶縁膜をキャビティにすることによって圧電基板の金属膜が露出した構造となる。こうした金属膜の材質としては、例えば、モリブデン、ルテニウム、タングステン、クロム、アルミニウムなどが挙げられる。また、絶縁膜の材質としては、例えば、二酸化ケイ素、リンシリカガラス、ボロンリンシリカガラスなどが挙げられる。   Moreover, you may have a metal film and an insulating film in the joint surface 6a of a propagation board | substrate. The metal film serves as an electrode when a thin film resonator is manufactured as an acoustic wave device. In this case, the thin film resonator has a structure in which electrodes are formed on both the upper surface and the bonding surface of the piezoelectric substrate, and the metal film of the piezoelectric substrate is exposed by using the insulating film as a cavity. Examples of the material for such a metal film include molybdenum, ruthenium, tungsten, chromium, and aluminum. Examples of the material for the insulating film include silicon dioxide, phosphorous silica glass, and boron phosphorous silica glass.

本発明においては、弾性波の伝搬方向Bにおける支持基板の材質の線熱膨張係数が負の数値である。ここで,本線熱膨張係数は、線膨張係数測定装置で計測される。具体的には、φ3.5mmで長さ15mmの試料および石英ガラスの標準試料を用意し、一定速度で昇温したときの熱膨張量の差から計測されるものである。   In the present invention, the linear thermal expansion coefficient of the material of the support substrate in the elastic wave propagation direction B is a negative numerical value. Here, the main line thermal expansion coefficient is measured by a linear expansion coefficient measuring apparatus. Specifically, a sample having a diameter of 3.5 mm and a length of 15 mm and a standard sample of quartz glass are prepared and measured from the difference in thermal expansion when the temperature is increased at a constant speed.

こうした支持基板の材質としては、低膨張結晶化ガラス、セラミック材料があり、セラミック材料の具体例としては日本電気硝子(株)製の商標CERSATが挙げられる。   Examples of the material of the support substrate include low expansion crystallized glass and ceramic material. Specific examples of the ceramic material include trademark CERSAT manufactured by Nippon Electric Glass Co., Ltd.

また、使用する圧電体基板と支持基板との組合せによってことなるが、圧電基板にタンタル酸リチウムを使用し、支持基板にCERSATを使用した場合、伝搬基板の厚さ(TP)と支持基板の厚さ(TS)の厚さとの比率(TP/TS)を0.02〜0.3(好ましくは0.1〜0.2)とすることによって、弾性波の伝搬方向における素子全体の線熱膨張係数を一層0に近づけることができる。   Also, depending on the combination of the piezoelectric substrate and the support substrate to be used, when lithium tantalate is used for the piezoelectric substrate and CERSAT is used for the support substrate, the thickness (TP) of the propagation substrate and the thickness of the support substrate The linear thermal expansion of the entire element in the propagation direction of the elastic wave by setting the ratio (TP / TS) to the thickness (TS) of 0.02 to 0.3 (preferably 0.1 to 0.2) The coefficient can be made closer to zero.

支持基板と伝搬基板とは、直接接合されていることが好ましいが、直接接合しにくい組合せがあり、両者の間に接合層があってもよい。こうした接合層としては、樹脂が好ましく、熱硬化性樹脂や紫外線硬化型樹脂が更に好ましく、アクリル系樹脂あるいはエポキシ系樹脂が特に好ましい。   The support substrate and the propagation substrate are preferably directly bonded, but there are combinations that are difficult to directly bond, and there may be a bonding layer between the two. Such a bonding layer is preferably a resin, more preferably a thermosetting resin or an ultraviolet curable resin, and particularly preferably an acrylic resin or an epoxy resin.

接合層の厚さは、樹脂等による線膨張変化の影響が小さくするという観点からは、1.0μm以下が好ましく、0.1μm以下が更に好ましい。また、樹脂以外でも、例えば支持基板側にアルミナ、五酸化タンタルなどを接合層として成膜すると、樹脂を使用しなくても接合層を介した接合が可能な場合がある。接合層として使用するアルミナや五酸化タンタル膜の厚みは薄ければ薄いほど線膨張変化への寄与が小さく、1.0μm以下が好ましく、0.1μm以下が更に好ましい。   The thickness of the bonding layer is preferably 1.0 μm or less, and more preferably 0.1 μm or less, from the viewpoint of reducing the influence of changes in linear expansion due to resin or the like. In addition to the resin, for example, when alumina, tantalum pentoxide, or the like is formed as a bonding layer on the support substrate side, bonding through the bonding layer may be possible without using a resin. The thinner the alumina or tantalum pentoxide film used as the bonding layer, the smaller the contribution to the linear expansion change, preferably 1.0 μm or less, and more preferably 0.1 μm or less.

好適な接合法においては、圧電性単結晶基板および支持基板の表面を平坦化して平坦面を得る。ここで、表面を平坦化する方法は、ラップ(lap)研磨、化学機械研磨加工(CMP)などがある。また、平坦面は、Ra≦1nmが好ましいが、0.3nm以下にすると更に好ましい。
しかしながら、扱う基板によっては平滑化が困難な場合があり、その際は樹脂を使用した接合を行うか、アルミナや五酸化タンタルを成膜して、その膜を平滑化することでもよい。アルミナ、五酸化タンタルの膜を平滑化する場合は、予め平滑化に要する膜厚の0.2μmから0.5μmを余分に成膜することになる。
In a preferred bonding method, the surfaces of the piezoelectric single crystal substrate and the support substrate are flattened to obtain a flat surface. Here, methods for flattening the surface include lap polishing and chemical mechanical polishing (CMP). The flat surface is preferably Ra ≦ 1 nm, but more preferably 0.3 nm or less.
However, depending on the substrate to be handled, smoothing may be difficult. In this case, bonding using a resin may be performed, or alumina or tantalum pentoxide may be formed to smooth the film. When the alumina and tantalum pentoxide films are smoothed, an extra film thickness of 0.2 μm to 0.5 μm, which is necessary for smoothing, is formed in advance.

次いで、好適な実施形態においては、圧電性単結晶基板の表面、支持基板の表面に中性化ビームを照射することで、平坦面を活性化する。   Next, in a preferred embodiment, the flat surface is activated by irradiating the surface of the piezoelectric single crystal substrate and the surface of the support substrate with a neutral beam.

中性化ビームによる表面活性化を行う際には、特許文献3に記載のような装置を使用して中性化ビームを発生させ、照射することが好ましい。すなわち、ビーム源として、サドルフィールド型の高速原子ビーム源を使用する。そして、チャンバーに不活性ガスを導入し、電極へ直流電源から高電圧を印加する。これにより、電極(正極)と筺体(負極)との間に生じるサドルフィールド型の電界により、電子eが運動して、不活性ガスによる原子とイオンのビームが生成される。グリッドに達したビームのうち、イオンビームはグリッドで中和されるので、中性原子のビームが高速原子ビーム源から出射される。ビームを構成する原子種は、不活性ガス(アルゴン、窒素等)が好ましい。
ビーム照射による活性化時の電圧は0.5〜2.0kVとすることが好ましく、電流は50〜200mAとすることが好ましい。
When performing surface activation with a neutralized beam, it is preferable to generate and irradiate the neutralized beam using an apparatus as described in Patent Document 3. That is, a saddle field type fast atomic beam source is used as the beam source. Then, an inert gas is introduced into the chamber, and a high voltage is applied to the electrodes from a DC power source. As a result, the saddle field type electric field generated between the electrode (positive electrode) and the casing (negative electrode) moves the electrons e, thereby generating atomic and ion beams by the inert gas. Of the beams that reach the grid, the ion beam is neutralized by the grid, so that a beam of neutral atoms is emitted from the fast atom beam source. The atomic species constituting the beam is preferably an inert gas (argon, nitrogen, etc.).
The voltage upon activation by beam irradiation is preferably 0.5 to 2.0 kV, and the current is preferably 50 to 200 mA.

次いで、真空雰囲気で、活性化面同士を接触させ、接合する。この際の温度は常温であるが、具体的には40℃以下が好ましく、30℃以下が更に好ましい。また、接合時の温度は20℃以上、25℃以下が特に好ましい。接合時の圧力は、100〜20000Nが好ましい。   Next, the activated surfaces are brought into contact with each other and bonded in a vacuum atmosphere. The temperature at this time is room temperature, but specifically, it is preferably 40 ° C. or lower, more preferably 30 ° C. or lower. The temperature at the time of joining is particularly preferably 20 ° C. or higher and 25 ° C. or lower. The pressure at the time of joining is preferably 100 to 20000N.

(実験1)
図1〜図2を参照しつつ説明した方法に従って、弾性波素子を作製した。
具体的には、オリエンテーションフラット部(OF部)を有し、直径が4インチ,厚さが250μmのタンタル酸リチウム基板(LT基板)を、圧電性単結晶基板6として使用した。ただし、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬タンタル酸リチウム基板を用いた。圧電性単結晶基板6の表面6aは、算術平均粗さRaが0.2nmとなるように鏡面研磨しておいた。
(Experiment 1)
An acoustic wave device was manufactured according to the method described with reference to FIGS.
Specifically, a lithium tantalate substrate (LT substrate) having an orientation flat portion (OF portion), a diameter of 4 inches, and a thickness of 250 μm was used as the piezoelectric single crystal substrate 6. However, a 46 ° Y-cut X-propagating lithium tantalate substrate in which the propagation direction of the surface acoustic wave (SAW) is X and the cutting angle is a rotating Y-cut plate was used. The surface 6a of the piezoelectric single crystal substrate 6 was mirror-polished so that the arithmetic average roughness Ra was 0.2 nm.

また、支持基板1として、□30mm、厚さが230μmの支持基板1を用意した。支持基板の材質は負の線膨張係数を有するセラミック基板に五酸化タンタルの膜を0.4μm成膜したものである。支持基板の表面の算術平均粗さRaは1nmである。算術平均粗さは原子間力顕微鏡(AFM)で、縦10μm×横10μmの正方形の視野を評価した。   Further, as the support substrate 1, a support substrate 1 having a diameter of 30 mm and a thickness of 230 μm was prepared. The material of the support substrate is a tantalum pentoxide film having a thickness of 0.4 μm formed on a ceramic substrate having a negative linear expansion coefficient. The arithmetic average roughness Ra of the surface of the support substrate is 1 nm. Arithmetic mean roughness was evaluated with an atomic force microscope (AFM) in a square field of 10 μm length × 10 μm width.

ここで、弾性波の伝搬方向Bにおける支持基板の材質の線熱膨張係数は−8.4ppm/Kであり、伝搬基板の材質の線熱膨張係数は16.1ppm/Kである。
支持基板1で使用のセラミック基板は表面の平滑化加工が難しく、五酸化タンタル膜を0.4μm成膜後、表面を平滑化処理してRaを小さくした。
Here, the linear thermal expansion coefficient of the material of the support substrate in the propagation direction B of the elastic wave is −8.4 ppm / K, and the linear thermal expansion coefficient of the material of the propagation substrate is 16.1 ppm / K.
The ceramic substrate used as the support substrate 1 is difficult to smooth the surface, and after forming 0.4 μm of tantalum pentoxide film, the surface was smoothed to reduce Ra.

次いで、支持基板の表面と圧電性単結晶基板の表面とを洗浄し、汚れを取った後、真空チャンバーに導入した。10−6Pa台まで真空引きした後、それぞれの基板の表面に高速原子ビーム(加速電圧1kV、Ar流量27sccm)を120sec間照射した。ついで、支持基板1のビーム照射面(活性化面)1aと圧電性単結晶基板6の活性化面6aとを接触させた後、10000Nで2分間加圧して両基板を接合した。 Next, the surface of the support substrate and the surface of the piezoelectric single crystal substrate were washed, removed, and introduced into a vacuum chamber. After evacuating to the 10 −6 Pa level, the surface of each substrate was irradiated with a high-speed atomic beam (acceleration voltage 1 kV, Ar flow rate 27 sccm) for 120 seconds. Next, the beam irradiation surface (activation surface) 1a of the support substrate 1 and the activation surface 6a of the piezoelectric single crystal substrate 6 were brought into contact with each other, and then pressed at 10000 N for 2 minutes to bond both substrates.

次いで、圧電性単結晶基板6の表面6bを厚みが当初の250μmから75μmになるように研削及び研磨した(図2(b)参照)。研削および研磨工程中に接合部分の剥がれは確認できなかった。またクラックオープニング法で接合強度を評価した所、1.4J/mであった。ここで、伝搬基板の上面の面積は900mmである。 この状態で接合体全体の伝搬方向における線熱膨張係数を計測した結果、+3.5ppm/Kとなり、ゼロに近づくことがわかった。 Next, the surface 6b of the piezoelectric single crystal substrate 6 was ground and polished so that the thickness was changed from the initial 250 μm to 75 μm (see FIG. 2B). During the grinding and polishing process, no peeling of the joint could be confirmed. Moreover, it was 1.4 J / m < 2 > when the joining strength was evaluated by the crack opening method. Here, the area of the upper surface of the propagation substrate is 900 mm 2 . As a result of measuring the linear thermal expansion coefficient in the propagation direction of the entire joined body in this state, it was found to be +3.5 ppm / K, approaching zero.

次いで、伝搬基板を更に研磨加工し、厚さ40μmまで薄くした。得られた接合体の全体の伝搬方向における線熱膨張係数を計測した結果、+0.2ppm/Kとなった。このように、素子全体の線熱膨張係数をほぼゼロにまで低減できるものであった。   Next, the propagation substrate was further polished to a thickness of 40 μm. As a result of measuring the linear thermal expansion coefficient in the entire propagation direction of the obtained joined body, it was +0.2 ppm / K. As described above, the linear thermal expansion coefficient of the entire element can be reduced to almost zero.

次いで、上述した厚さ40μmまで薄くした接合体の環境耐性を調べるために、熱衝撃サイクル試験を実施した。熱衝撃サイクルの試験条件としては、低温側を−40℃、高温側を+85℃で、両温度間を2秒以内で切り替えられるようにし、各温度の保管温度を30分間として、1000回繰返した。   Next, a thermal shock cycle test was performed in order to examine the environmental resistance of the joined body thinned to the thickness of 40 μm. As test conditions for the thermal shock cycle, the low temperature side was −40 ° C., the high temperature side was + 85 ° C., and the temperature could be switched within 2 seconds. The storage temperature of each temperature was 30 minutes, and the test was repeated 1000 times. .

試験後、接合体の接合箇所を観察した結果、接合界面で剥離が見られ、基板端部から内側に進展するクラックも見られた。特に基板端部は線膨張差により、歪量が大きいので剥離やクラックが生じたものと推定する。   After the test, as a result of observing the bonded portion of the bonded body, peeling was observed at the bonding interface, and cracks that progressed inward from the substrate edge were also observed. In particular, it is presumed that peeling or cracking occurred due to the large amount of strain at the edge of the substrate due to the difference in linear expansion.

次いで、伝搬基板をダイシングにより切断して小片化し、前記の熱衝撃サイクル試験を行った。この結果、伝搬基板の上面の面積が20mm以下のときに接合部分での剥離が生じなくなることがわかった。 Next, the propagation substrate was cut into small pieces by dicing, and the thermal shock cycle test was performed. As a result, it was found that separation at the joint portion does not occur when the area of the upper surface of the propagation substrate is 20 mm 2 or less.

実験1により、接合体により線膨張係数がゼロに近づき、かつ、その基板サイズとして20mm以下にしないと、接合部分で剥離が生じるということが分かったので、最終的な伝搬基板上面の面積が20mmとなるように設計した。具体的には切断に使用するダイシングの砥石の幅(0.1mm)を加味して、伝搬方向を5.1mmピッチ、その垂直方向を4.1mmピッチとして、接合体の表面に縦横に配置するよう設計した。 Experiment 1 shows that if the linear expansion coefficient approaches zero due to the bonded body and the substrate size is not less than 20 mm 2 , peeling occurs at the bonded portion. It was designed to be 20 mm 2 . Specifically, taking into account the width (0.1 mm) of the dicing grindstone used for cutting, the propagation direction is set to 5.1 mm pitch, and the vertical direction is set to 4.1 mm pitch. Designed as follows.

弾性表面波を発生させるIDT電極は、フォトリソグラフィー工程を経て形成した。電極を形成後、ダイシングにより小片化し、伝搬方向5mm、その垂直方向4mmの素子を得た。また、IDT電極を形成せず、線膨張係数を計測するための同サイズの参照用基板も用意した。   The IDT electrode for generating the surface acoustic wave was formed through a photolithography process. After forming the electrode, it was cut into small pieces by dicing, and an element having a propagation direction of 5 mm and a vertical direction of 4 mm was obtained. In addition, a reference substrate of the same size for measuring the linear expansion coefficient was prepared without forming the IDT electrode.

まず、参照用基板で線膨張係数を評価した結果、線膨張係数は+0.03ppm/Kとなった。切断前よりやや増加したが、線膨張係数はゼロに近いことが確認できた。
IDT電極を形成した素子で、25〜80℃の範囲で周波数の温度特性を計測したところ、−5ppm/Kであり、圧電性単結晶基板にのみ形成した圧電素子に比べて温度変化が小さくなることが確認できた。
次いで、上の実験において、伝搬基板上面の面積が10mmおよび3.0mmの素子を設計した。その他は上記と同様にして各素子を得た。この結果、線膨張係数はそれぞれ+0.03ppm/K、+0.04ppm/Kとなり、25〜80℃の範囲で周波数の温度特性はそれぞれ−6ppm/K、−0.07ppm/Kであった。
First, as a result of evaluating the linear expansion coefficient with the reference substrate, the linear expansion coefficient was +0.03 ppm / K. Although it increased slightly before cutting, it was confirmed that the linear expansion coefficient was close to zero.
When the temperature characteristic of the frequency was measured in the range of 25 to 80 ° C. with the element formed with the IDT electrode, it was −5 ppm / K, and the temperature change was smaller than that of the piezoelectric element formed only on the piezoelectric single crystal substrate. I was able to confirm.
Next, in the above experiment, elements having an area of the upper surface of the propagation substrate of 10 mm 2 and 3.0 mm 2 were designed. Other elements were obtained in the same manner as described above. As a result, the linear expansion coefficients were +0.03 ppm / K and +0.04 ppm / K, respectively, and the temperature characteristics of the frequency in the range of 25 to 80 ° C. were −6 ppm / K and −0.07 ppm / K, respectively.

(実験2)
実験1と同様にして弾性表面波素子を作製した。
ただし、オリエンテーションフラット部(OF部)を有し、直径が4インチ,厚さが250μmのニオブ酸リチウム基板(LN基板)を、圧電性単結晶基板6として使用した。ただし、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である46°YカットX伝搬ニオブ酸リチウム基板を用いた。伝搬基板6の表面6aは、算術平均粗さRaが0.2nmとなるように鏡面研磨しておいた。
支持基板1としては、実験1と同じものを使用した。
(Experiment 2)
A surface acoustic wave device was produced in the same manner as in Experiment 1.
However, a lithium niobate substrate (LN substrate) having an orientation flat portion (OF portion), a diameter of 4 inches, and a thickness of 250 μm was used as the piezoelectric single crystal substrate 6. However, a 46 ° Y-cut X-propagating lithium niobate substrate in which the propagation direction of the surface acoustic wave (SAW) is X and the cutting angle is a rotating Y-cut plate was used. The surface 6a of the propagation substrate 6 was mirror-polished so that the arithmetic average roughness Ra was 0.2 nm.
As the support substrate 1, the same one as in Experiment 1 was used.

ここで、弾性波の伝搬方向Bにおける支持基板の材質の線熱膨張係数は−8.4ppm/Kであり、伝搬基板の材質の線熱膨張係数は15.1ppm/Kである。   Here, the linear thermal expansion coefficient of the material of the support substrate in the propagation direction B of the elastic wave is −8.4 ppm / K, and the linear thermal expansion coefficient of the material of the propagation substrate is 15.1 ppm / K.

次いで、支持基板の表面と圧電性単結晶基板の表面とを、実験1と同様にして接合し、接合体を得た。   Next, the surface of the support substrate and the surface of the piezoelectric single crystal substrate were bonded in the same manner as in Experiment 1 to obtain a bonded body.

次いで、圧電性単結晶基板6の表面6bを厚みが当初の250μmから75μmになるように研削及び研磨した(図2(b)参照)。研削および研磨工程中に接合部分の剥がれは確認できなかった。またクラックオープニング法で接合強度を評価した所、1.4J/mであった。
この状態で接合体全体の伝搬方向における線熱膨張係数を計測した結果、+2.5ppm/Kとなり、ゼロに近づくことがわかった。
Next, the surface 6b of the piezoelectric single crystal substrate 6 was ground and polished so that the thickness was changed from the initial 250 μm to 75 μm (see FIG. 2B). During the grinding and polishing process, no peeling of the joint could be confirmed. Moreover, it was 1.4 J / m < 2 > when the joining strength was evaluated by the crack opening method.
As a result of measuring the linear thermal expansion coefficient in the propagation direction of the entire joined body in this state, it was found to be +2.5 ppm / K, approaching zero.

次いで、伝搬基板を更に研磨加工し、厚さ50μmまで薄くした。得られた接合体の全体の伝搬方向における線熱膨張係数を計測した結果、+0.1ppm/Kとなった。このように、素子全体の線熱膨張係数をほぼゼロにまで低減できるものであった。   Next, the propagation substrate was further polished to a thickness of 50 μm. As a result of measuring the linear thermal expansion coefficient in the entire propagation direction of the obtained joined body, it was +0.1 ppm / K. As described above, the linear thermal expansion coefficient of the entire element can be reduced to almost zero.

次いで、上述した厚さ50μmまで薄くした接合体の環境耐性を調べるために、実験1と同じ熱衝撃サイクル試験を実施した。試験後、接合体の接合箇所を観察した結果、接合界面で剥離が見られ、基板端部から内側に進展するクラックも見られた。特に基板端部は線膨張差により、歪量が大きいので剥離やクラックが生じたものと推定する。   Subsequently, the same thermal shock cycle test as that in Experiment 1 was performed in order to examine the environmental resistance of the joined body thinned to the above-described thickness of 50 μm. After the test, as a result of observing the bonded portion of the bonded body, peeling was observed at the bonding interface, and cracks that progressed inward from the substrate edge were also observed. In particular, it is presumed that peeling or cracking occurred due to the large amount of strain at the edge of the substrate due to the difference in linear expansion.

次いで、伝搬基板をダイシングにより切断して小片化し、前記の熱衝撃サイクル試験を行った。この結果、伝搬基板の上面の面積が20mm以下のときに接合部分での剥離が生じなくなることがわかった。 Next, the propagation substrate was cut into small pieces by dicing, and the thermal shock cycle test was performed. As a result, it was found that separation at the joint portion does not occur when the area of the upper surface of the propagation substrate is 20 mm 2 or less.

実験2により、ニオブ酸リチウム基板でも、基板サイズを20mm以下にしないと、接合部分で剥離が生じるということが分かったので、実験1と同様に伝搬基板上面の面積が20mmとなるように設計した。デバイスサイズは実験1と同じとした。また、同様にIDT電極を形成しない参照用基板も用意した。 Experiment 2 shows that even with a lithium niobate substrate, if the substrate size is not less than 20 mm 2 , peeling occurs at the joint, so that the area of the upper surface of the propagation substrate is 20 mm 2 as in Experiment 1. Designed. The device size was the same as in Experiment 1. Similarly, a reference substrate on which no IDT electrode is formed was also prepared.

参照用基板で線膨張係数を測定した結果、線膨張係数は+0.04ppm/Kとなった。切断前よりやや増加したが、線膨張係数はゼロに近いことが確認できた。
この接合体上に弾性表面波用の電極を設けて素子を製造し、25〜80℃の範囲で周波数の温度特性を計測したところ、−15ppm/Kであった。
次いで、上の実験において、伝搬基板上面の面積が10mmおよび3.0mmの素子を設計した。その他は上記と同様にして各素子を得た。この結果、線膨張係数はそれぞれ+0.05ppm/K、+0.06ppm/Kとなり、25〜80℃の範囲で周波数の温度特性はそれぞれ−16ppm/K、−18ppm/Kであった。
As a result of measuring the linear expansion coefficient with the reference substrate, the linear expansion coefficient was +0.04 ppm / K. Although it increased slightly before cutting, it was confirmed that the linear expansion coefficient was close to zero.
A surface acoustic wave electrode was provided on the joined body to produce an element, and the temperature characteristic of the frequency was measured in the range of 25 to 80 ° C., and it was −15 ppm / K.
Next, in the above experiment, elements having an area of the upper surface of the propagation substrate of 10 mm 2 and 3.0 mm 2 were designed. Other elements were obtained in the same manner as described above. As a result, the linear expansion coefficients were +0.05 ppm / K and +0.06 ppm / K, respectively, and the temperature characteristics of the frequency in the range of 25 to 80 ° C. were −16 ppm / K and −18 ppm / K, respectively.

(実験3)
実験1と同様にして接合体を作製した。
ただし、支持基板の材質はシリコン(Si)とした。シリコンの伝搬方向Bにおける線熱膨張係数は2.35ppm/Kである。シリコンは平坦性の高い研磨が可能で、算術平均粗さRaが0.2nmものを用意し、五酸化タンタルを成膜せずに伝搬基板と接合した。
(Experiment 3)
A joined body was produced in the same manner as in Experiment 1.
However, the material of the support substrate was silicon (Si). The linear thermal expansion coefficient in the propagation direction B of silicon is 2.35 ppm / K. Silicon with high flatness can be polished, and an arithmetic average roughness Ra of 0.2 nm was prepared and bonded to the propagation substrate without forming tantalum pentoxide.

次いで、伝搬基板を更に研磨加工し、厚さ75μmまで薄くした。得られた接合体の全体の伝搬方向における線熱膨張係数を計測した結果、+7.5ppm/Kとなった。   Next, the propagation substrate was further polished to a thickness of 75 μm. As a result of measuring the linear thermal expansion coefficient in the entire propagation direction of the obtained joined body, it was +7.5 ppm / K.

この後、伝搬基板を更に研磨加工し、厚さを0.001μmとした。しかし、得られた接合体の全体の伝搬方向における線熱膨張係数を計測した結果、+3.5ppm/Kとなった。
この接合体上に弾性表面波用の電極を設けて素子を製造し、25〜80℃の範囲で周波数の温度特性を計測したところ、−30ppm/Kであった。
Thereafter, the propagation substrate was further polished to a thickness of 0.001 μm. However, as a result of measuring the linear thermal expansion coefficient in the entire propagation direction of the obtained joined body, it was +3.5 ppm / K.
A surface acoustic wave electrode was provided on the joined body to manufacture an element, and the temperature characteristic of the frequency was measured in the range of 25 to 80 ° C. and found to be −30 ppm / K.

Claims (3)

支持基板、
圧電性単結晶からなる伝搬基板、および
前記伝搬基板の上面に設けられた電極を備えている弾性波素子であって、
前記伝搬基板の前記上面の面積が20mm以下であり、
前記圧電性単結晶が、ニオブ酸リチウム、タンタル酸リチウムまたはニオブ酸リチウム−タンタル酸リチウム固溶体からなり、前記弾性波の伝搬方向における前記支持基板の材質の線熱膨張係数が負の数値であることを特徴とする、弾性波素子。
Support substrate,
An acoustic wave device comprising a propagation substrate made of a piezoelectric single crystal, and an electrode provided on the upper surface of the propagation substrate,
An area of the upper surface of the propagation substrate is 20 mm 2 or less;
The piezoelectric single crystal is made of lithium niobate, lithium tantalate or lithium niobate-lithium tantalate solid solution, and the linear thermal expansion coefficient of the material of the support substrate in the propagation direction of the elastic wave is a negative numerical value. An elastic wave device characterized by the above.
前記支持基板の前記材質がセラミックスであることを特徴とする、請求項1記載の素子。
The element according to claim 1, wherein the material of the support substrate is ceramics.
前記支持基板と前記伝搬基板とが直接接合されていることを特徴とする、請求項1または2記載の素子。
The element according to claim 1, wherein the support substrate and the propagation substrate are directly bonded to each other.
JP2016233933A 2016-12-01 2016-12-01 Elastic wave element Pending JP2018093329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016233933A JP2018093329A (en) 2016-12-01 2016-12-01 Elastic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016233933A JP2018093329A (en) 2016-12-01 2016-12-01 Elastic wave element

Publications (1)

Publication Number Publication Date
JP2018093329A true JP2018093329A (en) 2018-06-14

Family

ID=62566505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016233933A Pending JP2018093329A (en) 2016-12-01 2016-12-01 Elastic wave element

Country Status (1)

Country Link
JP (1) JP2018093329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6646187B1 (en) * 2018-11-08 2020-02-14 日本碍子株式会社 Composite substrate for electro-optical element and method of manufacturing the same
WO2020095421A1 (en) * 2018-11-08 2020-05-14 日本碍子株式会社 Composite substrate for electro-optical element and manufacturing method thereof
WO2020189115A1 (en) * 2019-03-15 2020-09-24 日本電気硝子株式会社 Composite substrate, electronic device, method for manufacturing composite substrate, and method for manufacturing electronic device
CN114337580A (en) * 2022-01-06 2022-04-12 武汉敏声新技术有限公司 Thin film surface acoustic wave resonator and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009584A (en) * 2000-06-23 2002-01-11 Hitachi Ltd Surface acoustic wave device
JP2011124628A (en) * 2009-12-08 2011-06-23 Shin-Etsu Chemical Co Ltd Composite piezoelectric chip and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009584A (en) * 2000-06-23 2002-01-11 Hitachi Ltd Surface acoustic wave device
JP2011124628A (en) * 2009-12-08 2011-06-23 Shin-Etsu Chemical Co Ltd Composite piezoelectric chip and method of manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6646187B1 (en) * 2018-11-08 2020-02-14 日本碍子株式会社 Composite substrate for electro-optical element and method of manufacturing the same
WO2020095421A1 (en) * 2018-11-08 2020-05-14 日本碍子株式会社 Composite substrate for electro-optical element and manufacturing method thereof
WO2020095478A1 (en) * 2018-11-08 2020-05-14 日本碍子株式会社 Composite substrate for electro-optical element and production method therefor
JP2020076998A (en) * 2018-11-08 2020-05-21 日本碍子株式会社 Composite substrate for electro-optical element and manufacturing method thereof
CN112955811A (en) * 2018-11-08 2021-06-11 日本碍子株式会社 Composite substrate for electro-optical element and method for manufacturing same
US11150497B2 (en) 2018-11-08 2021-10-19 Ngk Insulators, Ltd. Composite substrate for electro-optic element and method for manufacturing the same
CN112955811B (en) * 2018-11-08 2022-05-24 日本碍子株式会社 Composite substrate for electro-optical element and method for manufacturing same
JP7337713B2 (en) 2018-11-08 2023-09-04 日本碍子株式会社 COMPOSITE SUBSTRATE FOR ELECTRO-OPTIC DEVICE AND MANUFACTURING METHOD THEREOF
US12025864B2 (en) 2018-11-08 2024-07-02 Ngk Insulators, Ltd. Composite substrate for electro-optic element and method for manufacturing the same
WO2020189115A1 (en) * 2019-03-15 2020-09-24 日本電気硝子株式会社 Composite substrate, electronic device, method for manufacturing composite substrate, and method for manufacturing electronic device
CN114337580A (en) * 2022-01-06 2022-04-12 武汉敏声新技术有限公司 Thin film surface acoustic wave resonator and preparation method thereof
CN114337580B (en) * 2022-01-06 2023-11-03 武汉敏声新技术有限公司 Film surface acoustic wave resonator and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6375471B1 (en) Bonded body and acoustic wave element
US10432169B2 (en) Bonded body and elastic wave element
US10964882B2 (en) Bonding method
KR102123350B1 (en) Seismic element and its manufacturing method
JP6708773B2 (en) Bonded body and elastic wave device
JP6731539B2 (en) Acoustic wave device and method for manufacturing the same
JP6682651B2 (en) Zygote
JP2018093329A (en) Elastic wave element
US11070189B2 (en) Joint and elastic wave element
WO2019244461A1 (en) Bonded body and elastic wave element
JP6621567B2 (en) Bonded body of piezoelectric material substrate and support substrate, and acoustic wave device
JP6612002B1 (en) Bonded body and acoustic wave element
JP6621574B1 (en) Bonded body and acoustic wave element
JP6393015B1 (en) Elastic wave device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210210