WO2020189115A1 - Composite substrate, electronic device, method for manufacturing composite substrate, and method for manufacturing electronic device - Google Patents

Composite substrate, electronic device, method for manufacturing composite substrate, and method for manufacturing electronic device Download PDF

Info

Publication number
WO2020189115A1
WO2020189115A1 PCT/JP2020/005744 JP2020005744W WO2020189115A1 WO 2020189115 A1 WO2020189115 A1 WO 2020189115A1 JP 2020005744 W JP2020005744 W JP 2020005744W WO 2020189115 A1 WO2020189115 A1 WO 2020189115A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
composite
support substrate
piezoelectric
piezoelectric substrate
Prior art date
Application number
PCT/JP2020/005744
Other languages
French (fr)
Japanese (ja)
Inventor
小林 正宏
清行 奥長
益田 紀彰
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2021506240A priority Critical patent/JPWO2020189115A1/ja
Publication of WO2020189115A1 publication Critical patent/WO2020189115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02551Characteristics of substrate, e.g. cutting angles of quartz substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings

Definitions

  • the present invention relates to a composite substrate, an electronic device using the composite substrate, and a composite substrate and a method for manufacturing the electronic device.
  • SAW filters Surface acoustic wave elements
  • the piezoelectric substrate for forming a surface acoustic wave element is required to have a high electromechanical coupling coefficient at a high sound velocity, lithium niobate (LiNbO 3 : hereinafter LN) capable of satisfying these required characteristics and the like.
  • Lithium tantalate (LiTaO 3 : hereinafter LT) is mainly used.
  • LN and LT have a large coefficient of thermal expansion, and the amount of thermal expansion and contraction due to a temperature change is large.
  • the thermal expansion / contraction behavior due to this temperature change affects the pass frequency band or cutoff frequency band of the bandpass filter.
  • the center frequency of the bandpass filter fluctuates, for example, the signal of the frequency that should originally pass through the bandpass filter is attenuated, and the filter characteristic, that is, the separation characteristic of a specific frequency signal deteriorates. Therefore, it is necessary to suppress the thermal expansion / contraction behavior of the surface acoustic wave element due to temperature changes.
  • Patent Document 1 proposes a composite substrate using a Sialon sintered body having a relatively small coefficient of thermal expansion as a support substrate.
  • An object of the present invention is a composite substrate, an electronic device using the composite substrate, a method for manufacturing the composite substrate, and the electronic device, which can enhance the stability of filter characteristics against temperature changes when used in an electronic device. Is to provide a manufacturing method for.
  • the composite substrate of the present invention is a composite substrate used for an electronic device, and includes a support substrate and a piezoelectric substrate provided on the support substrate, and the support substrate is a ⁇ -quartz solid solution and / or ⁇ -U. It is characterized in that it is composed of crystallized glass formed by precipitating a cryptotite solid solution.
  • the average coefficient of thermal expansion of the support substrate in the range of 30 ° C. or higher and 380 ° C. or lower is -1 ⁇ 10 -7 / ° C. or higher and 1 ⁇ 10 -7 / ° C. or lower.
  • Support substrate is in mass%, SiO 2 55% to 75%, Al 2 O 3 15% to 30%, Li 2 O 2% to 5%, Na 2 O 0% to 3%, K 2 O 0% to 3%, MgO 0% ⁇ 5 %, ZnO 0% ⁇ 3%, BaO 0% ⁇ 5%, TiO 2 0% ⁇ 5%, ZrO 2 0% ⁇ 4%, P 2 O 5 0% ⁇ 5%, It is preferably composed of crystallized glass having a composition containing 20 % to 2.5% of SnO.
  • the amount of ⁇ -quartz solid solution and / or ⁇ -eucryptite solid solution precipitated on the support substrate is preferably 50% by mass or more.
  • a bonding layer is further provided between the support substrate and the piezoelectric substrate, and the bonding layer may contain metal and its thickness may be 15 nm or less. Further, the support substrate and the piezoelectric substrate may be directly bonded.
  • the piezoelectric substrate is a lithium niobate crystal substrate or a lithium tantalate crystal substrate, and the thickness of the piezoelectric substrate is 20 ⁇ m or less.
  • the arithmetic average roughness Ra of the surface of the support substrate bonded to the piezoelectric substrate and the surface bonded to the piezoelectric substrate of the piezoelectric substrate is 0.5 nm or less, respectively.
  • the electronic device of the present invention includes the composite substrate and a comb-shaped electrode provided on the piezoelectric substrate, and is characterized in that it is configured to be capable of generating surface acoustic waves on the piezoelectric substrate.
  • the method for manufacturing a composite substrate of the present invention is the above-mentioned method for manufacturing a composite substrate, which includes a step of preparing a support substrate and a step of joining a piezoelectric substrate to the support substrate, and comprises a ⁇ -quartz solid solution and / or ⁇ -. It is characterized in that crystallized glass formed by precipitating a eucryptite solid solution is used as a support substrate.
  • the support substrate and the piezoelectric substrate In the process of joining the piezoelectric substrate to the support substrate, it is preferable to join the support substrate and the piezoelectric substrate by atomic diffusion bonding. Further, in the step of joining the piezoelectric substrate to the support substrate, it is preferable to join the support substrate and the piezoelectric substrate by surface activation bonding.
  • a step of polishing only the piezoelectric substrate side to make the composite substrate thinner is further provided.
  • the method for manufacturing an electronic device of the present invention is characterized by including a step of providing a comb-shaped electrode on the piezoelectric substrate of the composite substrate.
  • a composite substrate, an electronic device using the composite substrate, a method for manufacturing the composite substrate, and the electronic device which can enhance the stability of filter characteristics against temperature changes when used in an electronic device. Manufacturing method can be provided.
  • FIG. 1 is a front sectional view of the composite substrate according to the first embodiment of the present invention.
  • FIG. 2 is a front sectional view of a composite substrate according to a modified example of the first embodiment of the present invention.
  • FIG. 3 is a schematic perspective view of the electronic device according to the second embodiment of the present invention.
  • FIG. 1 is a front sectional view of the composite substrate according to the first embodiment of the present invention.
  • the composite substrate 1 of the present embodiment shown in FIG. 1 is used for an electronic device such as a surface acoustic wave element.
  • the composite substrate 1 includes a support substrate 2 and a piezoelectric substrate 3 provided on the support substrate 2.
  • the support substrate 2 has a first main surface 2a and a second main surface 2b facing each other.
  • the piezoelectric substrate 3 has a third main surface 3a and a fourth main surface 3b that face each other.
  • the first main surface 2a of the support substrate 2 is a surface bonded to the piezoelectric substrate 3.
  • the third main surface 3a of the piezoelectric substrate 3 is a surface bonded to the support substrate 2.
  • the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are directly joined.
  • the direct coupling refers to a bonding made of resin or the like without an adhesive layer.
  • a bonding layer such as a metal layer is formed between the bonding surfaces at the time of bonding is also included in the direct bonding.
  • the direct bonding includes the case where the bonding surfaces are directly bonded to each other without going through the bonding layer.
  • the composite substrate 1 of the present embodiment does not have a bonding layer between the support substrate 2 and the piezoelectric substrate 3.
  • the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are directly joined.
  • the piezoelectric substrate 3 is not particularly limited, but is, for example, a lithium niobate crystal substrate or a lithium tantalate crystal substrate.
  • the support substrate 2 is composed of crystallized glass obtained by precipitating a ⁇ -quartz solid solution and / or a ⁇ -eucryptite solid solution.
  • the average coefficient of thermal expansion of the support substrate 2 of the present embodiment at 30 ° C. or higher and 380 ° C. or lower is -1 ⁇ 10 -7 / ° C. or higher and 1 ⁇ 10 -7 / ° C. or lower.
  • the coefficient of thermal expansion of the support substrate 2 itself is -1 ⁇ 10 -7 / ° C. or higher and 1 ⁇ 10 -7 / ° C. or lower at 30 ° C. or higher and 380 ° C. or lower. As described above, the coefficient of thermal expansion of the support substrate 2 is substantially 0.
  • the amount of ⁇ -quartz solid solution and / or ⁇ -eucryptite solid solution precipitated on the support substrate 2 is preferably 50% by mass or more, more preferably 70% by mass or more. If the amount of ⁇ -quartz solid solution and / or ⁇ -eucryptite solid solution deposited is too small, it is difficult to obtain the effect of reducing the coefficient of thermal expansion. On the other hand, the upper limit of the precipitation amount of the ⁇ -quartz solid solution and / or the ⁇ -eucryptite solid solution is not particularly limited, but is practically 99% by mass or less. When both ⁇ -quartz solid solution and ⁇ -eucryptite are contained, it is preferable that the total amount satisfies the above range.
  • the support substrate 2 is not particularly limited as long as it can precipitate a ⁇ -quartz solid solution and / or a ⁇ -eucryptite solid solution.
  • the support substrate 2 has a mass% of SiO 2 55% to 75%, Al 2 O 3 15% to 30%, Li 2 O 2% to 5%, Na 2 O 0% to 3%, and K 2 O. 0% ⁇ 3%, MgO 0 % ⁇ 5%, ZnO 0% ⁇ 3%, BaO 0% ⁇ 5%, TiO 2 0% ⁇ 5%, ZrO 2 0% ⁇ 4%, P 2 O 5 0% ⁇ It is preferably composed of crystallized glass having a composition containing 5% and 20 % to 2.5% of SnO. The reason why the above glass composition range is preferable will be described below.
  • SiO 2 forms a glass skeleton and also serves as a constituent component of the main crystal.
  • the content of SiO 2 is preferably 55% to 75%, more preferably 60% to 75%. If the content of SiO 2 is too small, the coefficient of thermal expansion tends to be high and the chemical durability tends to be low. On the other hand, if the content of SiO 2 is too large, the meltability tends to decrease. Further, the viscosity of the glass melt increases, which tends to make it difficult to clarify or mold.
  • Al 2 O 3 forms a glass skeleton and also serves as a constituent of the main crystal.
  • the content of Al 2 O 3 is preferably 15% to 30%, more preferably 17% to 27%. If the content of Al 2 O 3 is too small, the coefficient of thermal expansion tends to be high and the chemical durability tends to be lowered. On the other hand, if the content of Al 2 O 3 is too large, the meltability tends to decrease. In addition, the viscosity tends to increase, making it difficult to clarify or molding. In addition, it becomes easy to devitrify.
  • Li 2 O is a constituent component of the main crystal, which has a great influence on crystallinity and is a component that improves meltability and moldability by lowering the viscosity.
  • the content of Li 2 O is preferably 2% to 5%, more preferably 2% to 4.8%. If the content of Li 2 O is too small, the main crystals are difficult to precipitate and the meltability is lowered. Further, the viscosity tends to increase, making it difficult to clarify or molding. On the other hand, if the content of Li 2 O is too large, devitrification is likely to occur.
  • Na 2 O is a component for lowering the viscosity and improving the meltability and moldability.
  • the content of Na 2 O is preferably 0% to 3%, more preferably 0.1% to 1%. If the content of Na 2 O is too large, devitrification tends to occur and the coefficient of thermal expansion tends to increase.
  • K 2 O is a component for lowering the viscosity and improving the meltability and moldability.
  • the K 2 O content is preferably 0% to 3%, more preferably from 0.1% to 1%. If the content of K 2 O is too large, devitrification tends to occur and the coefficient of thermal expansion tends to increase.
  • MgO is a component for adjusting the coefficient of thermal expansion.
  • the content of MgO is preferably 0% to 5%, more preferably 0.1% to 3%, and even more preferably 0.3% to 2%. If the content of MgO is too large, devitrification tends to occur and the coefficient of thermal expansion tends to increase.
  • ZnO is a component for adjusting the coefficient of thermal expansion.
  • the ZnO content is preferably 0% to 3%, more preferably 0.1% to 1%. If the ZnO content is too high, devitrification is likely to occur.
  • BaO is a component for improving meltability and moldability by lowering the viscosity.
  • the content of BaO is preferably 0% to 5%, more preferably 0.1% to 3%. If the BaO content is too high, devitrification is likely to occur.
  • TiO 2 and ZrO 2 are components that act as nucleating agents for precipitating crystals in the crystallization step.
  • the content of TiO 2 is preferably 0% to 5%, more preferably 1% to 4%.
  • the content of ZrO 2 is preferably 0% to 4%, more preferably 0.1% to 3%. If the content of TiO 2 or ZrO 2 is too high, devitrification is likely to occur.
  • P 2 O 5 is a component that promotes phase separation and assists in the formation of crystal nuclei.
  • the content of P 2 O 5 is preferably 0% to 5%, more preferably 0.1% to 4%. If the content of P 2 O 5 is too large, it becomes easy to separate the phases in the melting step, and it becomes difficult to obtain a glass having a desired composition.
  • SnO 2 is a component that acts as a fining agent.
  • the content of SnO 2 is preferably 0% to 2.5%, more preferably 0.1% to 2%. If the content of SnO 2 is too large, the color tone becomes too dark and the light is easily devitrified.
  • B 2 O 3 , SrO, CaO and the like can be appropriately contained as long as the effects of the present invention are not impaired.
  • the piezoelectric substrate 3 is not particularly limited, but is, for example, a lithium niobate crystal substrate or a lithium tantalate crystal substrate.
  • the feature of this embodiment is that the support substrate 2 in the composite substrate 1 is composed of crystallized glass obtained by precipitating a ⁇ -quartz solid solution and / or a ⁇ -eucryptite solid solution.
  • the coefficient of thermal expansion of the support substrate 2 can be made substantially zero. Therefore, the support substrate 2 hardly undergoes thermal expansion or contraction due to a temperature change.
  • the piezoelectric substrate 3 bonded to the support substrate 2 is restrained by the support substrate 2, thermal expansion / contraction of the piezoelectric substrate 3 is suppressed.
  • the composite substrate 1 is unlikely to thermally expand or contract due to temperature changes. Therefore, by using the composite substrate 1 of the present embodiment for an electronic device that utilizes a surface acoustic wave or the like, the stability of the filter characteristics with respect to a temperature change can be improved.
  • the average coefficient of thermal expansion of the support substrate 2 is preferably -1 ⁇ 10 -7 / ° C. or higher and 1 ⁇ 10 -7 / ° C. or lower at 30 ° C. or higher and 380 ° C. or lower as in the present embodiment.
  • the coefficient of thermal expansion of the support substrate 2 is within the above range, the stability of the filter characteristics of the electronic device with respect to temperature changes can be more reliably enhanced.
  • the support substrate 2 and the piezoelectric substrate 3 are directly bonded. Thereby, the binding force of the piezoelectric substrate 3 by the support substrate 2 can be effectively increased. Therefore, the stability of the filter characteristics of the electronic device with respect to the temperature change can be further enhanced.
  • the dimensions of the composite substrate 1 in a plan view are preferably ⁇ 50 mm or more and ⁇ 400 mm or less, more preferably ⁇ 100 mm or more and ⁇ 400 mm or less, and further preferably ⁇ 100 mm or more and ⁇ 300 mm or less.
  • the composite substrate 1 of the present embodiment is particularly suitable when used in a small electronic device because it can enhance the stability of the filter characteristics against a temperature change.
  • the composite substrate 1 is suitable as the substrate used for such an electronic device.
  • the thickness of the piezoelectric substrate 3 is preferably 20 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less. As a result, good device characteristics can be exhibited in the electronic device using the composite substrate 1.
  • the thickness of the piezoelectric substrate 3 is preferably 0.3 ⁇ m or more, and more preferably 1 ⁇ m or more. In this case, the piezoelectric substrate 3 is not easily damaged.
  • FIG. 2 is a front sectional view of the composite substrate according to the modified example of the first embodiment.
  • the composite substrate 11 includes a bonding layer 14 provided between the support substrate 2 and the piezoelectric substrate 3.
  • the bonding layer 14 is not particularly limited, but is, for example, a layer containing a metal such as a Ti layer or a layer containing a semiconductor such as a Si layer.
  • the bonding layer 14 may be a layer in which the components of the metal and the support substrate 2 and / or the piezoelectric substrate 3 are mixed. Further, the bonding layer 14 may be composed of a single metal or an alloy.
  • the thickness of the bonding layer 14 is preferably 15 nm or less, more preferably 10 nm or less, and further preferably 8 nm or less. In this case, the bonding layer 14 is unlikely to affect the amount of residual strain between the support substrate 2 and the piezoelectric substrate 3. Therefore, as in the first embodiment, the stability of the filter characteristics with respect to temperature changes can be enhanced.
  • the thickness of the bonding layer 14 is preferably 1 nm or more, more preferably 2 nm or more.
  • FIG. 3 is a schematic perspective view of the electronic device according to the second embodiment of the present invention.
  • the electronic device 20 includes the composite substrate 1 of the first embodiment, and the first comb-shaped electrode 25A and the second comb-shaped electrode 25B provided on the composite substrate 1.
  • An input terminal 26A is connected to the first comb-shaped electrode 25A.
  • An output terminal 26B is connected to the second comb-shaped electrode 25B.
  • the electronic device 20 is an elastic wave device.
  • the electronic device 20 is configured to be capable of generating elastic waves, specifically, elastic surface waves, on the piezoelectric substrate 3.
  • the elastic wave is excited by applying the signal input from the input terminal 26A to the first comb-shaped electrode 25A.
  • the elastic wave propagates through the piezoelectric substrate 3, is converted into a signal by the second comb-shaped electrode 25B, and the signal is taken out from the output terminal 26B.
  • the signal input from the input terminal 26A is filtered.
  • the circuit configuration of the electronic device 20 is not limited to the above.
  • the electronic device 20 may have at least one comb-shaped electrode.
  • the electronic device 20 has the composite substrate 1 of the first embodiment, it is possible to improve the stability of the filter characteristics against temperature changes.
  • the support substrate 2 shown in FIG. 1 is produced by melting a raw material batch prepared by blending a glass raw material at a predetermined ratio, molding the raw material into a predetermined shape, and crystallizing the glass raw material under a predetermined temperature condition.
  • the melting temperature of the glass batch is preferably about 1600 ° C to 1800 ° C from the viewpoint of productivity and homogeneity.
  • the crystallization conditions include heat treatment at 600 ° C. to 800 ° C. for 1 hour to 5 hours to generate crystal nuclei (crystal nucleation stage), and then at 800 ° C. to 950 ° C. for 0.5 hours to 3 hours. It is preferable to perform heat treatment to precipitate the main crystal (crystal growth stage).
  • each of the above surfaces is preferably an arithmetic average roughness Ra (hereinafter Ra): 0.5 nm or less, more preferably 0.3 nm or less, and 0.2 nm or less by polishing or the like. Is even more preferable.
  • Ra in this specification is based on JIS B 0601: 2013.
  • the total surface of each surface is preferably set to 1.5 ⁇ m or less, and more preferably 1.0 ⁇ m or less by polishing or the like.
  • the support substrate 2 and the piezoelectric substrate 3 can be suitably bonded by direct bonding, and the bonding strength can be increased more reliably.
  • the lower limit of Ra on each of the above surfaces is, for example, 0.05 nm or more.
  • the lower limit of TTV on each of the above surfaces is, for example, 0.5 ⁇ m or more.
  • the support substrate 2 and the piezoelectric substrate 3 can be suitably joined without causing an excessive increase in polishing time or the like in the flattening and smoothing steps.
  • the method for manufacturing the composite substrate 1 does not necessarily have to include a step of flattening and smoothing the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3.
  • the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are activated.
  • This activation is performed, for example, by irradiating the surface with a neutral atom beam of an inert gas (argon or the like), or by irradiating a plasma or an ion beam.
  • a neutral atom beam of an inert gas argon or the like
  • a plasma or an ion beam can be performed using, for example, an ion gun, a FAB (Fast Atom Beam) gun, or the like.
  • the FAB gun has a higher energy per particle than the ion gun, and has a high ability to remove the oxide film and the adsorption layer on the substrate surface that hinder the normal temperature bonding.
  • the piezoelectric substrate 3 and the support substrate 2 can be suitably bonded by direct bonding at room temperature in a later step, and the bonding strength can be increased more reliably.
  • the method for manufacturing the composite substrate 1 does not necessarily have to include a step of activating the respective surfaces of the piezoelectric substrate 3 and the support substrate 2.
  • the normal temperature refers to, for example, a temperature range of 5 to 50 ° C.
  • the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are joined by direct bonding. Specifically, both substrates are pressed with the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 facing each other.
  • ADB atomic diffusion bonding
  • SAB surface-activated bonding, which can be bonded at room temperature, is preferable.
  • optical contacts may be used.
  • the ratio of the actually bonded area to the bonding interface between the support substrate 2 and the piezoelectric substrate 3 is preferably 80% or more, and more preferably 90% or more.
  • the bonding area ratio is large as described above, a good composite substrate in which the support substrate 2 and the piezoelectric substrate 3 are firmly bonded is obtained.
  • the thickness of the piezoelectric substrate 3 is preferably 20 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less by grinding and polishing. As a result, good device characteristics can be exhibited in the electronic device using the composite substrate 1.
  • the joining strength can be increased more reliably, so that the piezoelectric substrate 3 is unlikely to be peeled off from the support substrate 2 even by vibration during grinding and polishing.
  • the bonding layer 14 shown in FIG. 2 may be formed between the support substrate 2 and the piezoelectric substrate 3. For example, when ADB or SAB is used for bonding, the bonding layer 14 is formed between the support substrate 2 and the piezoelectric substrate 3.
  • the bonding layer 14 is bonded after the above-mentioned flattening and smoothing steps and before the above-mentioned activation step or room temperature bonding step.
  • a metal thin film is formed on the surface. Specifically, a step of forming a metal thin film made of, for example, Ti or the like is provided on at least one of the support substrate 2 and the piezoelectric substrate 3.
  • the metal thin film layer may be formed on the joint surface of both the support substrate 2 and the piezoelectric substrate 3, or may be formed on one of the joint surfaces of the support substrate 2 or the piezoelectric substrate 3.
  • Example 2 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
  • An example in which ADB is used as the joining method of the support substrate and the piezoelectric substrate is shown in Example 1.
  • An example in which SAB is used as the joining method is shown in Example 2.
  • Example 1 In Preparation mass% of the supporting substrate, SiO 2 66%, Al 2 O 3 23%, Li 2 O 4%, Na 2 O 0.5%, MgO 1%, BaO 1.5%, TiO 2 2 %, so that the glass having a composition of ZrO 2 2%, the raw material powder were blended, and homogeneously mixed.
  • the obtained raw material batch was melted at 1600 ° C. or higher and 1800 ° C. or lower until it became homogeneous to obtain molten glass.
  • the molten glass was formed into a plate shape.
  • the molten glass formed into a plate shape was cooled to room temperature using a slow cooling furnace to obtain a plate-shaped crystalline glass.
  • the plate-like crystalline glass was heated at a rate of 300 ° C./hour from room temperature to a temperature within the range of 760 ° C. or higher and 780 ° C. or lower, and held for 3 hours for nucleation.
  • the temperature was raised to a temperature within the range of 870 ° C. or higher and 890 ° C. or lower at a rate of 120 ° C./hour, and the temperature was maintained for 1 hour for crystallization.
  • the temperature was lowered to room temperature at 300 ° C./hour to obtain a plate-shaped crystallized glass.
  • the precipitated crystals were analyzed, it was confirmed that a ⁇ -quartz solid solution was precipitated as the main crystal.
  • the average coefficient of thermal expansion in the temperature range of 30 ° C. to 380 ° C. was 0 / ° C.
  • the plate-shaped crystallized glass was cut into a disk shape having a diameter of 100 mm, and the surface of the plate-shaped crystallized glass was polished to a mirror surface shape.
  • the thickness of the plate-shaped crystallized glass was 0.2 mm.
  • the mirrored surface of the plate-shaped crystallized glass was measured with an atomic force microscope (AFM). As a result, Ra: 0.2 nm and TTV: 0.9 ⁇ m. From the above, a support substrate was obtained.
  • a composite is formed by directly bonding a lithium niobate crystal substrate (LN substrate) having a diameter of 100 mm and a thickness of 0.2 mm as a piezoelectric substrate to the support substrate prepared in (1) by ADB. Obtained a substrate. Specifically, a composite substrate was obtained by forming a microcrystalline metal thin film on each of the bonding surfaces of the support substrate and the piezoelectric substrate by a sputtering method and then directly bonding them under vacuum. Almost no bubbles were observed at the bonding interface between the support substrate and the LN substrate, and the bonding was good. Furthermore, the cross section of the composite substrate was observed with a scanning electron microscope (SEM). As a result, it was confirmed that there was no gap at the bonding interface and the support substrate and the LN substrate were firmly bonded.
  • SEM scanning electron microscope
  • Example 2 A lithium tantalate crystal substrate (LT substrate) as a piezoelectric substrate having a diameter of 100 mm and a thickness of 0.35 mm is bonded to the support substrate produced in the same manner as in (1) of Example 1 by SAB.
  • a microcrystalline metal thin film was formed on the surface by a sputtering method.
  • a composite substrate was obtained by activating the surfaces of each microcrystalline metal thin film to be bonded to each other using a FAB gun and then directly bonding them under vacuum.
  • a Si film (thickness 10 nm) was used as the microcrystalline metal thin film. Almost no bubbles were observed at the bonding interface between the support substrate and the LT substrate, and the bonding was good.
  • the cross section of the composite substrate was observed with a scanning electron microscope (SEM). As a result, it was confirmed that there was no gap at the bonding interface and the support substrate and the LT substrate were firmly bonded.
  • the bonding strength of the produced composite substrate was evaluated by the blade crack method. Specifically, "Bounding of silicon wafer for silicon-on-insulator" W. P. Maszara, et. Based on the method described in al Journal of Applied Physics 64, 4943 (1988), a certain amount of blades (thickness: 76 ⁇ m) are inserted into the composite interface from four locations at 90 ° intervals from the end face of the composite substrate, and the peeling length thereof. The surface energy value: ⁇ (J / m 2 ) was calculated from this. The ⁇ value was calculated by the formula shown below. L: Crack length (mm) y: 1/2 thickness ( ⁇ m) of the blade t1, t2: Thickness of each substrate ( ⁇ m) E1, E2: Young's modulus (GPa) of each substrate
  • the surface energy value of the produced composite substrate was 1.2 (J / m 2 ) on average measured at four points. As described above, the surface energy value of the composite substrate exceeds 0.7 (J / m 2 ) required for the grinding and polishing processes, and it is confirmed that the composite substrate has sufficient bonding strength. did it.
  • the piezoelectric substrate side of the composite substrate produced by the above SAB was ground and polished to make it thinner.
  • a high-rigidity grinding machine manufactured by Tokyo Seimitsu Co., Ltd.
  • the average thickness of the processed piezoelectric substrate was 1.98 ⁇ m, and the in-plane thickness variation of the piezoelectric substrate was 0.52 ⁇ m.
  • polishing was performed using a CMP apparatus (manufactured by Tokyo Seimitsu Co., Ltd.) so that the thickness of the piezoelectric substrate was about 1 ⁇ m and Ra was 0.5 nm or less. Since it has sufficient joint strength as in the case of grinding, it was possible to process without causing problems such as breakage during processing.
  • the average thickness of the processed piezoelectric substrate was 0.96 ⁇ m, the in-plane thickness variation of the piezoelectric substrate was 0.39 ⁇ m, and Ra was 0.10 nm.
  • the composite substrate was cut into a size of 1 mm ⁇ 1.5 mm.
  • a chip-shaped SAW filter was obtained. 100 samples of such a SAW filter were prepared, and the filter characteristics in the 1.05 GHz band as a frequency band were evaluated.
  • the frequency temperature characteristic was ⁇ 15 ppm / ° C. in the anti-resonant frequency region and ⁇ 5 ppm / ° C. in the resonance frequency region in the temperature range of ⁇ 40 ° C. to 100 ° C.
  • the TCF of the SAW filter using the Sialon support substrate which is a conventional technique, is generally about ⁇ 20 ppm / ° C., and the SAW filter provided with the composite substrate according to the present invention is superior to the conventional product in TCF. It could be confirmed.
  • a support substrate made of crystallized glass having a coefficient of thermal expansion of substantially 0 is used, and the piezoelectric substrate is restrained by the support substrate to prevent thermal expansion and contraction of the piezoelectric substrate. It can be made less likely to occur. Therefore, by using the composite substrates of Examples 1 and 2 for the electronic device, the frequency temperature characteristic (TCF) can be significantly improved. Therefore, the filter characteristics of the electronic device can be stabilized.
  • TCF frequency temperature characteristic

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Provided is a composite substrate that can enhance stability of filter characteristics against temperature change. A composite substrate 1 is a composite substrate that is used for an electronic device. The composite substrate 1 is characterized by being provided with a support substrate 2, and a piezoelectric substrate 3 that is provided on the support substrate 2, wherein the support substrate 2 is formed of crystallized glass obtained by depositing a β-quartz solid solution and/or a β-eucryptite solid solution.

Description

複合基板、電子デバイス、複合基板の製造方法及び電子デバイスの製造方法Composite substrate, electronic device, manufacturing method of composite substrate and manufacturing method of electronic device
 本発明は、複合基板及びその複合基板を用いた電子デバイス並びに複合基板及び電子デバイスの製造方法に関する。 The present invention relates to a composite substrate, an electronic device using the composite substrate, and a composite substrate and a method for manufacturing the electronic device.
 表面弾性波素子(いわゆるSAWフィルタ)は、例えば、携帯電話などの通信機器におけるバンドパスフィルタとして利用されている。表面弾性波素子を形成するための圧電基板には、高音速で電気機械結合係数が大きいことが要求されるため、これらの要求特性を満たすことができるニオブ酸リチウム(LiNbO:以下LN)やタンタル酸リチウム(LiTaO:以下LT)が主に用いられている。しかしながら、LNやLTは熱膨張係数が大きく、温度変化による熱膨張・収縮量が大きい。この温度変化による熱膨張・収縮挙動が影響し、バンドパスフィルタの通過周波数帯あるいは遮断周波数帯が変動する。具体的には、バンドパスフィルタの中心周波数が変動し、例えばバンドパスフィルタを本来通すべき周波数の信号が減衰する等して、フィルタ特性すなわち特定の周波数信号の分離特性が劣化する。そのため、温度変化による表面弾性波素子の熱膨張・収縮挙動を抑制する必要がある。 Surface acoustic wave elements (so-called SAW filters) are used, for example, as bandpass filters in communication devices such as mobile phones. Since the piezoelectric substrate for forming a surface acoustic wave element is required to have a high electromechanical coupling coefficient at a high sound velocity, lithium niobate (LiNbO 3 : hereinafter LN) capable of satisfying these required characteristics and the like. Lithium tantalate (LiTaO 3 : hereinafter LT) is mainly used. However, LN and LT have a large coefficient of thermal expansion, and the amount of thermal expansion and contraction due to a temperature change is large. The thermal expansion / contraction behavior due to this temperature change affects the pass frequency band or cutoff frequency band of the bandpass filter. Specifically, the center frequency of the bandpass filter fluctuates, for example, the signal of the frequency that should originally pass through the bandpass filter is attenuated, and the filter characteristic, that is, the separation characteristic of a specific frequency signal deteriorates. Therefore, it is necessary to suppress the thermal expansion / contraction behavior of the surface acoustic wave element due to temperature changes.
 温度変化による表面弾性波素子の熱膨張・収縮挙動を抑制するために、特許文献1においては、支持基板として熱膨張係数が比較的小さいサイアロン焼結体を用いた複合基板が提案されている。 In order to suppress the thermal expansion / contraction behavior of the surface acoustic wave element due to temperature change, Patent Document 1 proposes a composite substrate using a Sialon sintered body having a relatively small coefficient of thermal expansion as a support substrate.
国際公開第2018/056210号International Publication No. 2018/05621
 サイアロン焼結体を用いた複合基板であっても、使用環境温度に起因する表面弾性波素子の性能低下の抑制には依然として改善の余地が残されている。特許文献1に記載の複合基板においては、支持基板に比較的小さい熱膨張係数を有するサイアロン焼結体を用いることによって、温度変化による熱膨張・収縮挙動をある程度抑制することはできるものの依然として、支持基板に用いるサイアロン焼結体において熱膨張・収縮が生じるため、複合基板の熱膨張・収縮挙動を完全に抑制することはできない。 Even with a composite substrate using a Sialon sintered body, there is still room for improvement in suppressing the performance deterioration of the surface acoustic wave element due to the operating environment temperature. In the composite substrate described in Patent Document 1, by using a Sialon sintered body having a relatively small coefficient of thermal expansion as the support substrate, the thermal expansion / contraction behavior due to temperature change can be suppressed to some extent, but the support is still supported. Since thermal expansion / contraction occurs in the Sialon sintered body used for the substrate, the thermal expansion / contraction behavior of the composite substrate cannot be completely suppressed.
 また近年、表面弾性波素子を利用した電子デバイスの小型化、高集積化が進んでおり、これまで以上に熱が電子デバイス内に蓄積され易くなるため、さらなる温度影響の抑制が望まれる。さらに、今後は出力される信号の周波数帯域の混雑(取り合い)が予測され、今まで以上に厳格な周波数出力管理も必要となる。従って、上記のように、温度変化による電子デバイスの熱膨張・収縮挙動のさらなる抑制及びフィルタ特性のさらなる安定化が望まれている。 Further, in recent years, electronic devices using surface acoustic wave elements have been miniaturized and highly integrated, and heat is more likely to be accumulated in the electronic devices than ever before. Therefore, further suppression of temperature influence is desired. Furthermore, in the future, congestion (competition) in the frequency band of the output signal is predicted, and stricter frequency output control will be required. Therefore, as described above, it is desired to further suppress the thermal expansion / contraction behavior of the electronic device due to the temperature change and further stabilize the filter characteristics.
 本発明の目的は、電子デバイスに用いた場合に、温度変化に対するフィルタ特性の安定性を高めることができる、複合基板及び上記複合基板を用いた電子デバイス並びに上記複合基板の製造方法及び上記電子デバイスの製造方法を提供することにある。 An object of the present invention is a composite substrate, an electronic device using the composite substrate, a method for manufacturing the composite substrate, and the electronic device, which can enhance the stability of filter characteristics against temperature changes when used in an electronic device. Is to provide a manufacturing method for.
 本発明の複合基板は、電子デバイスに用いられる複合基板であって、支持基板と、支持基板上に設けられている圧電基板とを備え、支持基板が、β-石英固溶体及び/またはβ-ユークリプタイト固溶体を析出してなる結晶化ガラスにより構成されていることを特徴とする。 The composite substrate of the present invention is a composite substrate used for an electronic device, and includes a support substrate and a piezoelectric substrate provided on the support substrate, and the support substrate is a β-quartz solid solution and / or β-U. It is characterized in that it is composed of crystallized glass formed by precipitating a cryptotite solid solution.
 支持基板の30℃以上、380℃以下の範囲における平均熱膨張係数が-1×10-7/℃以上、1×10-7/℃以下であることが好ましい。 It is preferable that the average coefficient of thermal expansion of the support substrate in the range of 30 ° C. or higher and 380 ° C. or lower is -1 × 10 -7 / ° C. or higher and 1 × 10 -7 / ° C. or lower.
 支持基板が、質量%で、SiO 55%~75%、Al 15%~30%、LiO 2%~5%、NaO 0%~3%、KO 0%~3%、MgO 0%~5%、ZnO 0%~3%、BaO 0%~5%、TiO 0%~5%、ZrO 0%~4%、P 0%~5%、及びSnO 0%~2.5%を含有する組成の結晶化ガラスにより構成されていることが好ましい。 Support substrate is in mass%, SiO 2 55% to 75%, Al 2 O 3 15% to 30%, Li 2 O 2% to 5%, Na 2 O 0% to 3%, K 2 O 0% to 3%, MgO 0% ~ 5 %, ZnO 0% ~ 3%, BaO 0% ~ 5%, TiO 2 0% ~ 5%, ZrO 2 0% ~ 4%, P 2 O 5 0% ~ 5%, It is preferably composed of crystallized glass having a composition containing 20 % to 2.5% of SnO.
 支持基板におけるβ-石英固溶体及び/またはβ-ユークリプタイト固溶体の析出量が50質量%以上であることが好ましい。 The amount of β-quartz solid solution and / or β-eucryptite solid solution precipitated on the support substrate is preferably 50% by mass or more.
 支持基板と圧電基板との間に接合層がさらに備えられており、接合層は金属を含み、その厚みが15nm以下であってもよい。また、支持基板と圧電基板とが直接接合されていてもよい。 A bonding layer is further provided between the support substrate and the piezoelectric substrate, and the bonding layer may contain metal and its thickness may be 15 nm or less. Further, the support substrate and the piezoelectric substrate may be directly bonded.
 圧電基板がニオブ酸リチウム結晶基板またはタンタル酸リチウム結晶基板であり、圧電基板の厚みが20μm以下であることが好ましい。 It is preferable that the piezoelectric substrate is a lithium niobate crystal substrate or a lithium tantalate crystal substrate, and the thickness of the piezoelectric substrate is 20 μm or less.
 支持基板の圧電基板に接合されている面及び圧電基板の支持基板に接合されている面の算術平均粗さRaがそれぞれ0.5nm以下であることが好ましい。 It is preferable that the arithmetic average roughness Ra of the surface of the support substrate bonded to the piezoelectric substrate and the surface bonded to the piezoelectric substrate of the piezoelectric substrate is 0.5 nm or less, respectively.
 本発明の電子デバイスは、上記複合基板と、圧電基板上に設けられている櫛形電極とを備え、圧電基板に弾性表面波を生成可能に構成されたことを特徴とする。 The electronic device of the present invention includes the composite substrate and a comb-shaped electrode provided on the piezoelectric substrate, and is characterized in that it is configured to be capable of generating surface acoustic waves on the piezoelectric substrate.
 本発明の複合基板の製造方法は、上記複合基板の製造方法であって、支持基板を用意する工程と、支持基板に圧電基板を接合する工程とを備え、β-石英固溶体及び/またはβ-ユークリプタイト固溶体を析出してなる結晶化ガラスを支持基板に用いることを特徴とする。 The method for manufacturing a composite substrate of the present invention is the above-mentioned method for manufacturing a composite substrate, which includes a step of preparing a support substrate and a step of joining a piezoelectric substrate to the support substrate, and comprises a β-quartz solid solution and / or β-. It is characterized in that crystallized glass formed by precipitating a eucryptite solid solution is used as a support substrate.
 支持基板に圧電基板を接合する工程において、支持基板と圧電基板とを原子拡散接合により接合することが好ましい。また、支持基板に圧電基板を接合する工程において、支持基板と圧電基板とを表面活性化接合により接合することが好ましい。 In the process of joining the piezoelectric substrate to the support substrate, it is preferable to join the support substrate and the piezoelectric substrate by atomic diffusion bonding. Further, in the step of joining the piezoelectric substrate to the support substrate, it is preferable to join the support substrate and the piezoelectric substrate by surface activation bonding.
 支持基板に圧電基板を接合する工程の後に、圧電基板側のみを研磨し、複合基板を薄板化する工程がさらに備えられていることが好ましい。 After the step of joining the piezoelectric substrate to the support substrate, it is preferable that a step of polishing only the piezoelectric substrate side to make the composite substrate thinner is further provided.
 本発明の電子デバイスの製造方法は、上記複合基板の圧電基板上に櫛形電極を設ける工程を備えることを特徴とする。 The method for manufacturing an electronic device of the present invention is characterized by including a step of providing a comb-shaped electrode on the piezoelectric substrate of the composite substrate.
 本発明によれば、電子デバイスに用いた場合に、温度変化に対するフィルタ特性の安定性を高めることができる、複合基板及び上記複合基板を用いた電子デバイス並びに上記複合基板の製造方法及び上記電子デバイスの製造方法を提供することができる。 According to the present invention, a composite substrate, an electronic device using the composite substrate, a method for manufacturing the composite substrate, and the electronic device, which can enhance the stability of filter characteristics against temperature changes when used in an electronic device. Manufacturing method can be provided.
図1は、本発明の第1の実施形態に係る複合基板の正面断面図である。FIG. 1 is a front sectional view of the composite substrate according to the first embodiment of the present invention. 図2は、本発明の第1の実施形態の変形例に係る複合基板の正面断面図である。FIG. 2 is a front sectional view of a composite substrate according to a modified example of the first embodiment of the present invention. 図3は、本発明の第2の実施形態に係る電子デバイスの模式的斜視図である。FIG. 3 is a schematic perspective view of the electronic device according to the second embodiment of the present invention.
 (複合基板)
 図1は、本発明の第1の実施形態に係る複合基板の正面断面図である。図1に示す本実施形態の複合基板1は、例えば、表面弾性波素子などの電子デバイスに用いられる。複合基板1は、支持基板2と、支持基板2上に設けられている圧電基板3とを備える。支持基板2は、対向し合う第1の主面2a及び第2の主面2bを有する。圧電基板3は、対向し合う第3の主面3a及び第4の主面3bを有する。支持基板2の第1の主面2aが圧電基板3に接合されている面である。圧電基板3の第3の主面3aが支持基板2に接合されている面である。
(Composite board)
FIG. 1 is a front sectional view of the composite substrate according to the first embodiment of the present invention. The composite substrate 1 of the present embodiment shown in FIG. 1 is used for an electronic device such as a surface acoustic wave element. The composite substrate 1 includes a support substrate 2 and a piezoelectric substrate 3 provided on the support substrate 2. The support substrate 2 has a first main surface 2a and a second main surface 2b facing each other. The piezoelectric substrate 3 has a third main surface 3a and a fourth main surface 3b that face each other. The first main surface 2a of the support substrate 2 is a surface bonded to the piezoelectric substrate 3. The third main surface 3a of the piezoelectric substrate 3 is a surface bonded to the support substrate 2.
 支持基板2の第1の主面2aと圧電基板3の第3の主面3aとは直接接合されている。本明細書において直接接合とは、樹脂等からなる接着剤層を介さない接合をいう。接合に際し接合面同士の間に金属層などの接合層が形成される場合も、直接接合に含む。もっとも、直接接合は、接合層を介さずに、接合面同士が直接的に接合されている場合も含む。図1に示すように、本実施形態の複合基板1は、支持基板2と圧電基板3との間において接合層を有しない。支持基板2の第1の主面2aと圧電基板3の第3の主面3aとは直接的に接合されている。 The first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are directly joined. In the present specification, the direct coupling refers to a bonding made of resin or the like without an adhesive layer. The case where a bonding layer such as a metal layer is formed between the bonding surfaces at the time of bonding is also included in the direct bonding. However, the direct bonding includes the case where the bonding surfaces are directly bonded to each other without going through the bonding layer. As shown in FIG. 1, the composite substrate 1 of the present embodiment does not have a bonding layer between the support substrate 2 and the piezoelectric substrate 3. The first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are directly joined.
 圧電基板3は、特に限定されないが、例えば、ニオブ酸リチウム結晶基板またはタンタル酸リチウム結晶基板である。 The piezoelectric substrate 3 is not particularly limited, but is, for example, a lithium niobate crystal substrate or a lithium tantalate crystal substrate.
 支持基板2は、β-石英固溶体及び/またはβ-ユークリプタイト固溶体を析出してなる結晶化ガラスにより構成されている。本実施形態の支持基板2の30℃以上、380℃以下における平均熱膨張係数は-1×10-7/℃以上、1×10-7/℃以下である。なお、支持基板2の熱膨張係数自体も、30℃以上、380℃以下において-1×10-7/℃以上、1×10-7/℃以下である。このように、支持基板2の熱膨張係数は実質的に0である。 The support substrate 2 is composed of crystallized glass obtained by precipitating a β-quartz solid solution and / or a β-eucryptite solid solution. The average coefficient of thermal expansion of the support substrate 2 of the present embodiment at 30 ° C. or higher and 380 ° C. or lower is -1 × 10 -7 / ° C. or higher and 1 × 10 -7 / ° C. or lower. The coefficient of thermal expansion of the support substrate 2 itself is -1 × 10 -7 / ° C. or higher and 1 × 10 -7 / ° C. or lower at 30 ° C. or higher and 380 ° C. or lower. As described above, the coefficient of thermal expansion of the support substrate 2 is substantially 0.
 支持基板2におけるβ-石英固溶体及び/またはβ-ユークリプタイト固溶体の析出量は、好ましくは50質量%以上、より好ましくは70質量%以上である。β-石英固溶体及び/またはβ-ユークリプタイト固溶体の析出量が少なすぎると、熱膨張係数を小さくする効果が得られ難い。一方、β-石英固溶体及び/またはβ-ユークリプタイト固溶体の析出量の上限は特に限定されないが、現実的には99質量%以下である。なお、β-石英固溶体及びβ-ユークリプタイトの双方を含有する場合は、合量で上記範囲を満たすことが好ましい。 The amount of β-quartz solid solution and / or β-eucryptite solid solution precipitated on the support substrate 2 is preferably 50% by mass or more, more preferably 70% by mass or more. If the amount of β-quartz solid solution and / or β-eucryptite solid solution deposited is too small, it is difficult to obtain the effect of reducing the coefficient of thermal expansion. On the other hand, the upper limit of the precipitation amount of the β-quartz solid solution and / or the β-eucryptite solid solution is not particularly limited, but is practically 99% by mass or less. When both β-quartz solid solution and β-eucryptite are contained, it is preferable that the total amount satisfies the above range.
 支持基板2は、β-石英固溶体及び/またはβ-ユークリプタイト固溶体を析出可能なものであれば特に限定されない。例えば、支持基板2は、質量%で、SiO 55%~75%、Al 15%~30%、LiO 2%~5%、NaO 0%~3%、KO 0%~3%、MgO 0%~5%、ZnO 0%~3%、BaO 0%~5%、TiO 0%~5%、ZrO 0%~4%、P 0%~5%、及びSnO 0%~2.5%を含有する組成である結晶化ガラスにより構成されていることが好ましい。以下に、上記ガラス組成範囲が好ましい理由を説明する。 The support substrate 2 is not particularly limited as long as it can precipitate a β-quartz solid solution and / or a β-eucryptite solid solution. For example, the support substrate 2 has a mass% of SiO 2 55% to 75%, Al 2 O 3 15% to 30%, Li 2 O 2% to 5%, Na 2 O 0% to 3%, and K 2 O. 0% ~ 3%, MgO 0 % ~ 5%, ZnO 0% ~ 3%, BaO 0% ~ 5%, TiO 2 0% ~ 5%, ZrO 2 0% ~ 4%, P 2 O 5 0% ~ It is preferably composed of crystallized glass having a composition containing 5% and 20 % to 2.5% of SnO. The reason why the above glass composition range is preferable will be described below.
 SiOはガラス骨格を形成するとともに、主結晶の構成成分にもなる。SiOの含有量は、好ましくは55%~75%、より好ましくは60%~75%である。SiOの含有量が少なすぎると、熱膨張係数が高くなったり、化学的耐久性が低下したりする傾向がある。一方、SiOの含有量が多すぎると、溶融性が低下する傾向がある。さらに、ガラス融液の粘度が大きくなり、清澄になり難かったり、成形が困難となったりする傾向がある。 SiO 2 forms a glass skeleton and also serves as a constituent component of the main crystal. The content of SiO 2 is preferably 55% to 75%, more preferably 60% to 75%. If the content of SiO 2 is too small, the coefficient of thermal expansion tends to be high and the chemical durability tends to be low. On the other hand, if the content of SiO 2 is too large, the meltability tends to decrease. Further, the viscosity of the glass melt increases, which tends to make it difficult to clarify or mold.
 Alはガラス骨格を形成するとともに、主結晶の構成成分にもなる。Alの含有量は、好ましくは15%~30%、より好ましくは17%~27%である。Alの含有量が少なすぎると、熱膨張係数が高くなったり、化学的耐久性が低下したりする傾向がある。一方、Alの含有量が多すぎると、溶融性が低下する傾向がある。さらに、粘度が大きくなり、清澄になり難かったり、成形が困難になったりする傾向がある。加えて、失透し易くなる。 Al 2 O 3 forms a glass skeleton and also serves as a constituent of the main crystal. The content of Al 2 O 3 is preferably 15% to 30%, more preferably 17% to 27%. If the content of Al 2 O 3 is too small, the coefficient of thermal expansion tends to be high and the chemical durability tends to be lowered. On the other hand, if the content of Al 2 O 3 is too large, the meltability tends to decrease. In addition, the viscosity tends to increase, making it difficult to clarify or molding. In addition, it becomes easy to devitrify.
 LiOは主結晶の構成成分であり、結晶性に大きな影響を与えるとともに、粘度を低下させることにより溶融性及び成形性を向上させる成分である。LiOの含有量は、好ましくは2%~5%、より好ましくは2%~4.8%である。LiOの含有量が少なすぎると、主結晶が析出し難くなったり、溶融性が低下したりする。さらに、粘度が大きくなり、清澄になり難くなったり、成形が困難になったりする傾向がある。一方、LiOの含有量が多すぎると、失透し易くなる。 Li 2 O is a constituent component of the main crystal, which has a great influence on crystallinity and is a component that improves meltability and moldability by lowering the viscosity. The content of Li 2 O is preferably 2% to 5%, more preferably 2% to 4.8%. If the content of Li 2 O is too small, the main crystals are difficult to precipitate and the meltability is lowered. Further, the viscosity tends to increase, making it difficult to clarify or molding. On the other hand, if the content of Li 2 O is too large, devitrification is likely to occur.
 NaOは、粘度を低下させ、溶融性及び成形性を向上させるための成分である。NaOの含有量は、好ましくは0%~3%、より好ましくは0.1%~1%である。NaOの含有量が多すぎると、失透し易くなるとともに、熱膨張係数が高くなり易い。 Na 2 O is a component for lowering the viscosity and improving the meltability and moldability. The content of Na 2 O is preferably 0% to 3%, more preferably 0.1% to 1%. If the content of Na 2 O is too large, devitrification tends to occur and the coefficient of thermal expansion tends to increase.
 KOは、粘度を低下させ、溶融性及び成形性を向上させるための成分である。KOの含有量は、好ましくは0%~3%、より好ましくは0.1%~1%である。KOの含有量が多すぎると、失透し易くなるとともに、熱膨張係数が高くなり易い。 K 2 O is a component for lowering the viscosity and improving the meltability and moldability. The K 2 O content is preferably 0% to 3%, more preferably from 0.1% to 1%. If the content of K 2 O is too large, devitrification tends to occur and the coefficient of thermal expansion tends to increase.
 MgOは熱膨張係数を調整するための成分である。MgOの含有量は、好ましくは0%~5%、より好ましくは0.1%~3%、さらに好ましくは0.3%~2%である。MgOの含有量が多すぎると、失透し易くなるとともに、熱膨張係数が高くなり易い。 MgO is a component for adjusting the coefficient of thermal expansion. The content of MgO is preferably 0% to 5%, more preferably 0.1% to 3%, and even more preferably 0.3% to 2%. If the content of MgO is too large, devitrification tends to occur and the coefficient of thermal expansion tends to increase.
 ZnOは熱膨張係数を調整するための成分である。ZnOの含有量は、好ましくは0%~3%、より好ましくは0.1%~1%である。ZnOの含有量が多すぎると、失透し易くなる。 ZnO is a component for adjusting the coefficient of thermal expansion. The ZnO content is preferably 0% to 3%, more preferably 0.1% to 1%. If the ZnO content is too high, devitrification is likely to occur.
 BaOは、粘度を低下させることにより溶融性及び成形性を向上させるための成分である。BaOの含有量は、好ましくは0%~5%、より好ましくは0.1%~3%である。BaOの含有量が多すぎると、失透し易くなる。 BaO is a component for improving meltability and moldability by lowering the viscosity. The content of BaO is preferably 0% to 5%, more preferably 0.1% to 3%. If the BaO content is too high, devitrification is likely to occur.
 TiO及びZrOは、結晶化工程で結晶を析出させるための核形成剤として作用する成分である。TiOの含有量は、好ましくは0%~5%、より好ましくは1%~4%である。ZrOの含有量は、好ましくは0%~4%、より好ましくは0.1%~3%である。TiOまたはZrOの含有量が多すぎると、失透し易くなる。 TiO 2 and ZrO 2 are components that act as nucleating agents for precipitating crystals in the crystallization step. The content of TiO 2 is preferably 0% to 5%, more preferably 1% to 4%. The content of ZrO 2 is preferably 0% to 4%, more preferably 0.1% to 3%. If the content of TiO 2 or ZrO 2 is too high, devitrification is likely to occur.
 Pは分相を促進して結晶核の形成を助ける成分である。Pの含有量は、好ましくは0%~5%、より好ましくは0.1%~4%である。Pの含有量が多すぎると、溶融工程において分相し易くなり、所望の組成を有するガラスを得られ難くなる。 P 2 O 5 is a component that promotes phase separation and assists in the formation of crystal nuclei. The content of P 2 O 5 is preferably 0% to 5%, more preferably 0.1% to 4%. If the content of P 2 O 5 is too large, it becomes easy to separate the phases in the melting step, and it becomes difficult to obtain a glass having a desired composition.
 SnOは清澄剤として働く成分である。SnOの含有量は、好ましくは0%~2.5%、より好ましくは0.1%~2%である。SnOの含有量が多すぎると、色調が濃くなりすぎたり、失透し易くなったりする。 SnO 2 is a component that acts as a fining agent. The content of SnO 2 is preferably 0% to 2.5%, more preferably 0.1% to 2%. If the content of SnO 2 is too large, the color tone becomes too dark and the light is easily devitrified.
 上記成分以外にも、B、SrO、CaO等を本発明の効果を損なわない範囲で適宜含有させることができる。 In addition to the above components, B 2 O 3 , SrO, CaO and the like can be appropriately contained as long as the effects of the present invention are not impaired.
 圧電基板3は、特に限定されないが、例えば、ニオブ酸リチウム結晶基板またはタンタル酸リチウム結晶基板である。 The piezoelectric substrate 3 is not particularly limited, but is, for example, a lithium niobate crystal substrate or a lithium tantalate crystal substrate.
 本実施形態の特徴は、複合基板1における支持基板2が、β-石英固溶体及び/またはβ-ユークリプタイト固溶体を析出してなる結晶化ガラスにより構成されていることにある。これにより、支持基板2の熱膨張係数を実質的に0とすることができる。よって、支持基板2は温度変化による熱膨張・収縮がほぼ生じない。さらに、支持基板2に接合されている圧電基板3は、支持基板2により拘束されるため、圧電基板3の熱膨張・収縮が抑制される。これにより、複合基板1は温度変化により熱膨張・収縮し難い。従って、表面弾性波などを利用する電子デバイスに本実施形態の複合基板1を用いることにより、温度変化に対するフィルタ特性の安定性を高めることができる。 The feature of this embodiment is that the support substrate 2 in the composite substrate 1 is composed of crystallized glass obtained by precipitating a β-quartz solid solution and / or a β-eucryptite solid solution. As a result, the coefficient of thermal expansion of the support substrate 2 can be made substantially zero. Therefore, the support substrate 2 hardly undergoes thermal expansion or contraction due to a temperature change. Further, since the piezoelectric substrate 3 bonded to the support substrate 2 is restrained by the support substrate 2, thermal expansion / contraction of the piezoelectric substrate 3 is suppressed. As a result, the composite substrate 1 is unlikely to thermally expand or contract due to temperature changes. Therefore, by using the composite substrate 1 of the present embodiment for an electronic device that utilizes a surface acoustic wave or the like, the stability of the filter characteristics with respect to a temperature change can be improved.
 支持基板2の平均熱膨張係数は、本実施形態のように、30℃以上、380℃以下において‐1×10-7/℃以上、1×10-7/℃以下であることが好ましい。支持基板2の熱膨張係数が上記範囲内である場合には、温度変化に対する電子デバイスのフィルタ特性の安定性をより確実に高めることができる。 The average coefficient of thermal expansion of the support substrate 2 is preferably -1 × 10 -7 / ° C. or higher and 1 × 10 -7 / ° C. or lower at 30 ° C. or higher and 380 ° C. or lower as in the present embodiment. When the coefficient of thermal expansion of the support substrate 2 is within the above range, the stability of the filter characteristics of the electronic device with respect to temperature changes can be more reliably enhanced.
 支持基板2と圧電基板3とは、直接接合されていることが好ましい。それによって、支持基板2による圧電基板3の拘束力を効果的に高めることができる。従って、温度変化に対する電子デバイスのフィルタ特性の安定性をより一層確実に高めることができる。 It is preferable that the support substrate 2 and the piezoelectric substrate 3 are directly bonded. Thereby, the binding force of the piezoelectric substrate 3 by the support substrate 2 can be effectively increased. Therefore, the stability of the filter characteristics of the electronic device with respect to the temperature change can be further enhanced.
 複合基板1の平面視における寸法は、φ50mm以上、φ400mm以下であることが好ましく、φ100mm以上、φ400mm以下であることがより好ましく、φ100mm以上、φ300mm以下であることがさらに好ましい。複合基板1及びこれを用いる電子デバイスが小型である場合には、電子デバイス内に熱が蓄積し易いため、温度変化が大きくなり易い。本実施形態の複合基板1は、温度変化に対するフィルタ特性の安定性を高めることができるため、小型の電子デバイスに用いられる場合に、特に好適である。あるいは、集積化された電子デバイスにおいても電子デバイス内に熱が蓄積し易いため、このような電子デバイスに用いる基板としても、複合基板1が好適である。 The dimensions of the composite substrate 1 in a plan view are preferably φ50 mm or more and φ400 mm or less, more preferably φ100 mm or more and φ400 mm or less, and further preferably φ100 mm or more and φ300 mm or less. When the composite substrate 1 and the electronic device using the composite substrate 1 are small, heat tends to be accumulated in the electronic device, so that the temperature change tends to be large. The composite substrate 1 of the present embodiment is particularly suitable when used in a small electronic device because it can enhance the stability of the filter characteristics against a temperature change. Alternatively, since heat is likely to be accumulated in the electronic device even in the integrated electronic device, the composite substrate 1 is suitable as the substrate used for such an electronic device.
 圧電基板3の厚みは、20μm以下であることが好ましく、5μm以下であることがより好ましく、2μm以下であることがさらに好ましい。それによって、複合基板1を用いた電子デバイスにおいて、良好なデバイス特性を発揮させることができる。圧電基板3の厚みは、0.3μm以上であることが好ましく、1μm以上であることがより好ましい。この場合には、圧電基板3が破損し難い。 The thickness of the piezoelectric substrate 3 is preferably 20 μm or less, more preferably 5 μm or less, and even more preferably 2 μm or less. As a result, good device characteristics can be exhibited in the electronic device using the composite substrate 1. The thickness of the piezoelectric substrate 3 is preferably 0.3 μm or more, and more preferably 1 μm or more. In this case, the piezoelectric substrate 3 is not easily damaged.
 (変形例)
 図2は、第1の実施形態の変形例に係る複合基板の正面断面図である。図2に示すように、複合基板11は、支持基板2と圧電基板3との間に設けられている接合層14を備える。接合層14は、特に限定されないが、例えば、Ti層などの金属を含む層やSi層などの半導体を含む層である。接合層14は、金属と支持基板2及び/または圧電基板3の構成成分が混合されてなる層であってもよい。また、接合層14は、単一金属により構成されてもよいし、合金により構成されてもよい。接合層14の厚みは15nm以下であることが好ましく、より好ましくは10nm以下であり、さらに好ましくは8nm以下である。この場合には、接合層14が、支持基板2と圧電基板3との間の残留歪量に影響を及ぼし難い。よって、第1の実施形態と同様に、温度変化に対するフィルタ特性の安定性を高めることができる。接合層14の厚みは、1nm以上であることが好ましく、より好ましくは2nm以上である。
(Modification example)
FIG. 2 is a front sectional view of the composite substrate according to the modified example of the first embodiment. As shown in FIG. 2, the composite substrate 11 includes a bonding layer 14 provided between the support substrate 2 and the piezoelectric substrate 3. The bonding layer 14 is not particularly limited, but is, for example, a layer containing a metal such as a Ti layer or a layer containing a semiconductor such as a Si layer. The bonding layer 14 may be a layer in which the components of the metal and the support substrate 2 and / or the piezoelectric substrate 3 are mixed. Further, the bonding layer 14 may be composed of a single metal or an alloy. The thickness of the bonding layer 14 is preferably 15 nm or less, more preferably 10 nm or less, and further preferably 8 nm or less. In this case, the bonding layer 14 is unlikely to affect the amount of residual strain between the support substrate 2 and the piezoelectric substrate 3. Therefore, as in the first embodiment, the stability of the filter characteristics with respect to temperature changes can be enhanced. The thickness of the bonding layer 14 is preferably 1 nm or more, more preferably 2 nm or more.
 (電子デバイス)
 図3は、本発明の第2の実施形態に係る電子デバイスの模式的斜視図である。電子デバイス20は、第1の実施形態の複合基板1と、複合基板1上に設けられている第1の櫛形電極25A及び第2の櫛形電極25Bとを備える。第1の櫛形電極25Aには入力端子26Aが接続されている。第2の櫛形電極25Bには出力端子26Bが接続されている。
(Electronic device)
FIG. 3 is a schematic perspective view of the electronic device according to the second embodiment of the present invention. The electronic device 20 includes the composite substrate 1 of the first embodiment, and the first comb-shaped electrode 25A and the second comb-shaped electrode 25B provided on the composite substrate 1. An input terminal 26A is connected to the first comb-shaped electrode 25A. An output terminal 26B is connected to the second comb-shaped electrode 25B.
 電子デバイス20は弾性波装置である。電子デバイス20は圧電基板3に弾性波、具体的には弾性表面波を生成可能なように構成されている。電子デバイス20においては、入力端子26Aから入力された信号が第1の櫛形電極25Aに印加されることにより、弾性波が励振される。弾性波は圧電基板3を伝搬し、第2の櫛形電極25Bにより信号に変換され、該信号が出力端子26Bから取り出される。これにより、入力端子26Aから入力した信号がフィルタリングされる。もっとも、電子デバイス20の回路構成は上記に限定されない。電子デバイス20は、櫛形電極を少なくとも1つ有していればよい。 The electronic device 20 is an elastic wave device. The electronic device 20 is configured to be capable of generating elastic waves, specifically, elastic surface waves, on the piezoelectric substrate 3. In the electronic device 20, the elastic wave is excited by applying the signal input from the input terminal 26A to the first comb-shaped electrode 25A. The elastic wave propagates through the piezoelectric substrate 3, is converted into a signal by the second comb-shaped electrode 25B, and the signal is taken out from the output terminal 26B. As a result, the signal input from the input terminal 26A is filtered. However, the circuit configuration of the electronic device 20 is not limited to the above. The electronic device 20 may have at least one comb-shaped electrode.
 電子デバイス20は、第1の実施形態の複合基板1を有するため、温度変化に対するフィルタ特性の安定性を高めることができる。 Since the electronic device 20 has the composite substrate 1 of the first embodiment, it is possible to improve the stability of the filter characteristics against temperature changes.
 以下に、本発明に係る複合基板の製造方法の一例を図1を用いて説明する。 An example of a method for manufacturing a composite substrate according to the present invention will be described below with reference to FIG.
 (複合基板の製造方法)
 図1に示す支持基板2は、ガラス原料を所定の割合で調合された原料バッチを溶融した後、所定の形状に成形し、所定の温度条件で結晶化することにより作製される。
(Manufacturing method of composite substrate)
The support substrate 2 shown in FIG. 1 is produced by melting a raw material batch prepared by blending a glass raw material at a predetermined ratio, molding the raw material into a predetermined shape, and crystallizing the glass raw material under a predetermined temperature condition.
 ガラスバッチの溶融温度は、生産性や均質性の観点から1600℃~1800℃程度が好ましい。また、結晶化条件としては、600℃~800℃において1時間~5時間熱処理して結晶核を生成させた後(結晶核生成段階)、さらに800℃~950℃で0.5時間~3時間熱処理を行い、主結晶を析出させる(結晶成長段階)ことが好ましい。 The melting temperature of the glass batch is preferably about 1600 ° C to 1800 ° C from the viewpoint of productivity and homogeneity. The crystallization conditions include heat treatment at 600 ° C. to 800 ° C. for 1 hour to 5 hours to generate crystal nuclei (crystal nucleation stage), and then at 800 ° C. to 950 ° C. for 0.5 hours to 3 hours. It is preferable to perform heat treatment to precipitate the main crystal (crystal growth stage).
 一方、圧電基板3を用意する。次に、支持基板2の第1の主面2a及び圧電基板3の第3の主面3aを平坦化及び平滑化する。具体的には、上記各面を、研磨等により算術平均粗さRa(以下Ra):0.5nm以下とすることが好ましく、0.3nm以下とすることがより好ましく、0.2nm以下とすることがさらに好ましい。本明細書におけるRaは、JIS B 0601:2013に基づく。研磨等により上記各面を、Total Thickness Variation(以下TTV):1.5μm以下とすることが好ましく、1.0μm以下とすることがより好ましい。それによって、後の工程において、支持基板2と圧電基板3とを直接接合によって好適に接合することができ、接合強度をより確実に高めることができる。上記各面のRaの下限は、例えば、0.05nm以上である。上記各面のTTVの下限は、例えば、0.5μm以上である。これらの場合には、平坦化及び平滑化の工程における研磨時間等の過度の増加を招かずして、支持基板2と圧電基板3とを好適に接合することができる。なお、複合基板1の製造方法は、支持基板2の第1の主面2a及び圧電基板3の第3の主面3aを平坦化及び平滑化する工程を必ずしも有しなくともよい。 On the other hand, prepare the piezoelectric substrate 3. Next, the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are flattened and smoothed. Specifically, each of the above surfaces is preferably an arithmetic average roughness Ra (hereinafter Ra): 0.5 nm or less, more preferably 0.3 nm or less, and 0.2 nm or less by polishing or the like. Is even more preferable. Ra in this specification is based on JIS B 0601: 2013. The total surface of each surface is preferably set to 1.5 μm or less, and more preferably 1.0 μm or less by polishing or the like. Thereby, in a later step, the support substrate 2 and the piezoelectric substrate 3 can be suitably bonded by direct bonding, and the bonding strength can be increased more reliably. The lower limit of Ra on each of the above surfaces is, for example, 0.05 nm or more. The lower limit of TTV on each of the above surfaces is, for example, 0.5 μm or more. In these cases, the support substrate 2 and the piezoelectric substrate 3 can be suitably joined without causing an excessive increase in polishing time or the like in the flattening and smoothing steps. The method for manufacturing the composite substrate 1 does not necessarily have to include a step of flattening and smoothing the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3.
 次に、支持基板2の第1の主面2a及び圧電基板3の第3の主面3aを活性化させる。この活性化は、例えば、上記面への不活性ガス(アルゴンなど)の中性原子ビームの照射の他、プラズマやイオンビームの照射等により行う。これらの照射には、例えばイオンガンやFAB(Fast Atom Beam)ガンなどを用いて行うことができる。FABガンはイオンガンに比べて1粒子当たりのエネルギーが大きく、常温接合の妨げとなるような基板表面の酸化膜や吸着層を除去する能力が高い。よって、支持基板2及び圧電基板3を接合させるそれぞれの表面における分子の状態として、他の物質に結合されていない結合の手が配置された状態とし易い。従って、上記表面の活性化においては、FABガンを用いることが好ましい。上記活性化を行うことにより、後の工程において、圧電基板3と支持基板2とを常温において直接接合によって好適に接合することができ、接合強度をより確実に高めることができる。なお、複合基板1の製造方法は、圧電基板3及び支持基板2のそれぞれの面を活性化させる工程を必ずしも有しなくともよい。なお、本発明において常温とは、例えば5~50℃の温度域を指す。 Next, the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are activated. This activation is performed, for example, by irradiating the surface with a neutral atom beam of an inert gas (argon or the like), or by irradiating a plasma or an ion beam. These irradiations can be performed using, for example, an ion gun, a FAB (Fast Atom Beam) gun, or the like. The FAB gun has a higher energy per particle than the ion gun, and has a high ability to remove the oxide film and the adsorption layer on the substrate surface that hinder the normal temperature bonding. Therefore, it is easy to set the state of the molecule on each surface to which the support substrate 2 and the piezoelectric substrate 3 are bonded to be a state in which a bonding hand that is not bound to another substance is arranged. Therefore, it is preferable to use a FAB gun for activating the surface. By performing the above activation, the piezoelectric substrate 3 and the support substrate 2 can be suitably bonded by direct bonding at room temperature in a later step, and the bonding strength can be increased more reliably. The method for manufacturing the composite substrate 1 does not necessarily have to include a step of activating the respective surfaces of the piezoelectric substrate 3 and the support substrate 2. In the present invention, the normal temperature refers to, for example, a temperature range of 5 to 50 ° C.
 次に、支持基板2の第1の主面2aと圧電基板3の第3の主面3aとを直接接合によって接合する。具体的には、支持基板2の第1の主面2aと圧電基板3の第3の主面3aとを向かい合わせにした状態において、両基板を押圧する。用いる接合手法としては、常温で接合することができるADB:原子拡散接合、またはSAB:表面活性化接合が好ましい。あるいは、オプティカルコンタクトを用いてもよい。 Next, the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are joined by direct bonding. Specifically, both substrates are pressed with the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 facing each other. As the bonding method to be used, ADB: atomic diffusion bonding or SAB: surface-activated bonding, which can be bonded at room temperature, is preferable. Alternatively, optical contacts may be used.
 支持基板2及び圧電基板3の接合界面のうち、実際に接合している面積の割合が80%以上であることが好ましく、さらに好ましくは90%以上である。このように接合面積割合が大きいと、支持基板2と圧電基板3とが強固に接合された良好な複合基板となる。 The ratio of the actually bonded area to the bonding interface between the support substrate 2 and the piezoelectric substrate 3 is preferably 80% or more, and more preferably 90% or more. When the bonding area ratio is large as described above, a good composite substrate in which the support substrate 2 and the piezoelectric substrate 3 are firmly bonded is obtained.
 支持基板2と圧電基板3とを接合した後に、圧電基板3側のみを研削及び研磨することにより、圧電基板3を薄板化することが好ましい。具体的には、研削及び研磨により、圧電基板3の厚みを20μm以下にすることが好ましく、5μm以下にすることがより好ましく、2μm以下にすることがさらに好ましい。それによって、複合基板1を用いた電子デバイスにおいて、良好なデバイス特性を発揮させることができる。なお、上記の方法によって接合することにより、接合強度をより確実に高めることができるため、研削及び研磨の際の振動等によっても支持基板2から圧電基板3が剥離し難い。 After joining the support substrate 2 and the piezoelectric substrate 3, it is preferable to thin the piezoelectric substrate 3 by grinding and polishing only the piezoelectric substrate 3 side. Specifically, the thickness of the piezoelectric substrate 3 is preferably 20 μm or less, more preferably 5 μm or less, and even more preferably 2 μm or less by grinding and polishing. As a result, good device characteristics can be exhibited in the electronic device using the composite substrate 1. By joining by the above method, the joining strength can be increased more reliably, so that the piezoelectric substrate 3 is unlikely to be peeled off from the support substrate 2 even by vibration during grinding and polishing.
 このようにして作製した複合基板1においては、支持基板2の第1の主面2aと圧電基板3の第3の主面3aとが直接接合されているため、接着剤層を介して接合されている場合に比べて、支持基板2による圧電基板3の拘束力が強い。それによって、外部の温度変化による複合基板1の熱膨張・収縮挙動を効果的に抑制することができる。これにより、周波数温度特性に優れたデバイス設計に寄与することができる。よって、フィルタ特性が安定した電子デバイスを提供することができる。もっとも、接合に際し、支持基板2と圧電基板3との間に図2に示した接合層14を形成してもよい。例えば、接合においてADBまたはSABを用いた場合には、支持基板2と圧電基板3との間に接合層14が形成される。 In the composite substrate 1 produced in this manner, since the first main surface 2a of the support substrate 2 and the third main surface 3a of the piezoelectric substrate 3 are directly bonded, they are bonded via an adhesive layer. The binding force of the piezoelectric substrate 3 by the support substrate 2 is stronger than that of the case where the support substrate 2 is used. As a result, the thermal expansion / contraction behavior of the composite substrate 1 due to an external temperature change can be effectively suppressed. This can contribute to device design with excellent frequency / temperature characteristics. Therefore, it is possible to provide an electronic device having stable filter characteristics. However, at the time of bonding, the bonding layer 14 shown in FIG. 2 may be formed between the support substrate 2 and the piezoelectric substrate 3. For example, when ADB or SAB is used for bonding, the bonding layer 14 is formed between the support substrate 2 and the piezoelectric substrate 3.
 なお、支持基板2と圧電基板3との間に接合層14を設ける場合、上述の平坦化及び平滑化する工程の後であり、かつ、上述の活性化工程または常温接合工程の前に、接合面に金属薄膜を形成する。具体的には、支持基板2及び圧電基板3のうち少なくとも一方に、例えばTi等からなる金属薄膜を形成する工程を備える。金属薄膜層は、支持基板2及び圧電基板3の双方の接合面に形成されてもよいし、支持基板2または圧電基板3の一方の接合面に形成されてもよい。 When the bonding layer 14 is provided between the support substrate 2 and the piezoelectric substrate 3, the bonding layer 14 is bonded after the above-mentioned flattening and smoothing steps and before the above-mentioned activation step or room temperature bonding step. A metal thin film is formed on the surface. Specifically, a step of forming a metal thin film made of, for example, Ti or the like is provided on at least one of the support substrate 2 and the piezoelectric substrate 3. The metal thin film layer may be formed on the joint surface of both the support substrate 2 and the piezoelectric substrate 3, or may be formed on one of the joint surfaces of the support substrate 2 or the piezoelectric substrate 3.
 (実施例)
 以下、実施例に基づき本発明を説明するが、本発明はこれらの実施例に限定されるものではない。なお、支持基板及び圧電基板の接合手法にADBを用いた場合の例を実施例1により示す。接合手法にSABを用いた場合の例を実施例2により示す。
(Example)
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples. An example in which ADB is used as the joining method of the support substrate and the piezoelectric substrate is shown in Example 1. An example in which SAB is used as the joining method is shown in Example 2.
 (実施例1)
 (1)支持基板の作製
 質量%で、SiO 66%、Al 23%、LiO 4%、NaO 0.5%、MgO 1%、BaO 1.5%、TiO 2%、ZrO 2%の組成を有するガラスとなるように、原料粉末を調合し、均一に混合した。得られた原料バッチを1600℃以上、1800℃以下で均質になるまで溶融し、溶融ガラスとした。次に、溶融ガラスを板状に成形した。次に、板状に成形した溶融ガラスを、徐冷炉を用いて室温まで冷却することにより板状結晶性ガラスを得た。
(Example 1)
(1) In Preparation mass% of the supporting substrate, SiO 2 66%, Al 2 O 3 23%, Li 2 O 4%, Na 2 O 0.5%, MgO 1%, BaO 1.5%, TiO 2 2 %, so that the glass having a composition of ZrO 2 2%, the raw material powder were blended, and homogeneously mixed. The obtained raw material batch was melted at 1600 ° C. or higher and 1800 ° C. or lower until it became homogeneous to obtain molten glass. Next, the molten glass was formed into a plate shape. Next, the molten glass formed into a plate shape was cooled to room temperature using a slow cooling furnace to obtain a plate-shaped crystalline glass.
 次に、板状結晶性ガラスに対して、室温から760℃以上、780℃以下の範囲内の温度まで300℃/時間の速度で昇温し、3時間保持して核形成を行った。次に、870℃以上、890℃以下の範囲内の温度まで120℃/時間の速度で昇温し、1時間保持して結晶化させた。その後、室温まで300℃/時間で降温し、板状結晶化ガラスを得た。析出結晶を分析したところ、主結晶としてβ-石英固溶体が析出していることが確認された。得られた板状結晶化ガラスについて、ディラトメータを用いて熱膨張係数を測定した結果、30℃~380℃の温度範囲における、平均熱膨張係数は0/℃であった。 Next, the plate-like crystalline glass was heated at a rate of 300 ° C./hour from room temperature to a temperature within the range of 760 ° C. or higher and 780 ° C. or lower, and held for 3 hours for nucleation. Next, the temperature was raised to a temperature within the range of 870 ° C. or higher and 890 ° C. or lower at a rate of 120 ° C./hour, and the temperature was maintained for 1 hour for crystallization. Then, the temperature was lowered to room temperature at 300 ° C./hour to obtain a plate-shaped crystallized glass. When the precipitated crystals were analyzed, it was confirmed that a β-quartz solid solution was precipitated as the main crystal. As a result of measuring the coefficient of thermal expansion of the obtained plate-shaped crystallized glass using a dilatometer, the average coefficient of thermal expansion in the temperature range of 30 ° C. to 380 ° C. was 0 / ° C.
 次に、板状結晶化ガラスをφ100mmの円板状に切断加工し、該板状結晶化ガラスの表面を研磨により鏡面状とした。板状結晶化ガラスの厚みは0.2mmとした。板状結晶化ガラスの鏡面状とした面を原子間力顕微鏡(AFM)にて測定した。結果、Ra:0.2nm、TTV:0.9μmであった。以上により、支持基板を得た。 Next, the plate-shaped crystallized glass was cut into a disk shape having a diameter of 100 mm, and the surface of the plate-shaped crystallized glass was polished to a mirror surface shape. The thickness of the plate-shaped crystallized glass was 0.2 mm. The mirrored surface of the plate-shaped crystallized glass was measured with an atomic force microscope (AFM). As a result, Ra: 0.2 nm and TTV: 0.9 μm. From the above, a support substrate was obtained.
 (2)複合基板の作製及び評価
 (1)において作製した支持基板に、φ100mm、厚み0.2mmの、圧電基板としてのニオブ酸リチウム結晶基板(LN基板)をADBにより直接接合することにより、複合基板を得た。具体的には、支持基板及び圧電基板のそれぞれの接合面に、スパッタ法により微結晶金属薄膜を形成した後、真空下で直接接合することにより、複合基板を得た。支持基板とLN基板との接合界面には気泡はほぼ観察されず、良好に接合されていた。さらに、走査型電子顕微鏡(SEM)にて複合基板の断面を観察した。結果、接合界面には隙間がなく、支持基板とLN基板とが強固に接合していることが確認できた。
(2) Fabrication and Evaluation of Composite Substrate A composite is formed by directly bonding a lithium niobate crystal substrate (LN substrate) having a diameter of 100 mm and a thickness of 0.2 mm as a piezoelectric substrate to the support substrate prepared in (1) by ADB. Obtained a substrate. Specifically, a composite substrate was obtained by forming a microcrystalline metal thin film on each of the bonding surfaces of the support substrate and the piezoelectric substrate by a sputtering method and then directly bonding them under vacuum. Almost no bubbles were observed at the bonding interface between the support substrate and the LN substrate, and the bonding was good. Furthermore, the cross section of the composite substrate was observed with a scanning electron microscope (SEM). As a result, it was confirmed that there was no gap at the bonding interface and the support substrate and the LN substrate were firmly bonded.
 (実施例2)
 実施例1の(1)と同様にして作製した支持基板に、直径100mm、厚み0.35mmの圧電基板としてのタンタル酸リチウム結晶基板(LT基板)をSABにより支持基板及び圧電基板のそれぞれの接合面に、スパッタ法により微結晶金属薄膜を形成した。次に、FABガンを用いて、各微結晶金属薄膜における、互いに接合させる表面を活性化した後、真空下で直接接合することにより、複合基板を得た。なお、微結晶金属薄膜にはSi膜(厚み10nm)を用いた。支持基板とLT基板との接合界面には気泡はほぼ観察されず、良好に接合されていた。また、走査型電子顕微鏡(SEM)にて複合基板の断面を観察した。結果、接合界面には隙間がなく、支持基板とLT基板とが強固に接合していることが確認できた。
(Example 2)
A lithium tantalate crystal substrate (LT substrate) as a piezoelectric substrate having a diameter of 100 mm and a thickness of 0.35 mm is bonded to the support substrate produced in the same manner as in (1) of Example 1 by SAB. A microcrystalline metal thin film was formed on the surface by a sputtering method. Next, a composite substrate was obtained by activating the surfaces of each microcrystalline metal thin film to be bonded to each other using a FAB gun and then directly bonding them under vacuum. A Si film (thickness 10 nm) was used as the microcrystalline metal thin film. Almost no bubbles were observed at the bonding interface between the support substrate and the LT substrate, and the bonding was good. In addition, the cross section of the composite substrate was observed with a scanning electron microscope (SEM). As a result, it was confirmed that there was no gap at the bonding interface and the support substrate and the LT substrate were firmly bonded.
 さらに、作製した複合基板の接合強度をブレードクラック手法で評価した。具体的には、“Bonding of silicon wafers for silicon‐on‐insulator”W.P.Maszara, et.al Journal of Applied Physics 64, 4943 (1988)に記載の手法に基づき、複合基板端面から、90°間隔にて、4箇所からブレード(厚み:76μm)を一定量複合界面に挿入させ、その剥離長さから表面エネルギー値:Δγ(J/m)を算出した。Δγ値は下記に示す式にて算出した。
Figure JPOXMLDOC01-appb-M000001
 L:クラック長(mm)
 y:ブレードの1/2厚み(μm)
 t1,t2:それぞれの基板の厚み(μm)
 E1,E2:それぞれの基板のヤング率(GPa)
Furthermore, the bonding strength of the produced composite substrate was evaluated by the blade crack method. Specifically, "Bounding of silicon wafer for silicon-on-insulator" W. P. Maszara, et. Based on the method described in al Journal of Applied Physics 64, 4943 (1988), a certain amount of blades (thickness: 76 μm) are inserted into the composite interface from four locations at 90 ° intervals from the end face of the composite substrate, and the peeling length thereof. The surface energy value: Δγ (J / m 2 ) was calculated from this. The Δγ value was calculated by the formula shown below.
Figure JPOXMLDOC01-appb-M000001
L: Crack length (mm)
y: 1/2 thickness (μm) of the blade
t1, t2: Thickness of each substrate (μm)
E1, E2: Young's modulus (GPa) of each substrate
 作製した複合基板の表面エネルギー値は、4箇所測定平均で1.2(J/m)であった。このように、複合基板の表面エネルギー値は、研削及び研磨の工程に必要である0.7(J/m)を超えており、複合基板が十分な接合強度を有していることが確認できた。 The surface energy value of the produced composite substrate was 1.2 (J / m 2 ) on average measured at four points. As described above, the surface energy value of the composite substrate exceeds 0.7 (J / m 2 ) required for the grinding and polishing processes, and it is confirmed that the composite substrate has sufficient bonding strength. did it.
 次に、上記SABにより作製した複合基板の圧電基板側を研削及び研磨することにより、薄板化を行った。まずは、高剛性研削盤(東京精密社製)を用いて、圧電基板の厚みが約2μmになるように研削加工を行った。十分な接合強度を有しているため、下降中に破損等の問題を起こすことなく、加工することができた。加工後の圧電基板の平均厚みは1.98μmであり、圧電基板における面内の厚みのばらつきは0.52μmであった。 Next, the piezoelectric substrate side of the composite substrate produced by the above SAB was ground and polished to make it thinner. First, a high-rigidity grinding machine (manufactured by Tokyo Seimitsu Co., Ltd.) was used to perform grinding so that the thickness of the piezoelectric substrate was about 2 μm. Since it has sufficient joint strength, it can be processed without causing problems such as breakage during descent. The average thickness of the processed piezoelectric substrate was 1.98 μm, and the in-plane thickness variation of the piezoelectric substrate was 0.52 μm.
 次に、上記研削加工した複合基板を研磨することにより、さらなる薄板化及び平坦化を行った。CMP装置(東京精密社製)を用いて、圧電基板の厚みが約1μmになるように、かつRaが0.5nm以下になるように研磨加工を行った。研削加工時と同様、十分な接合強度を有しているため、加工中に破損等の問題を起こすことなく、加工することができた。加工後の圧電基板の平均厚みは0.96μmであり、圧電基板における面内の厚みのばらつきは0.39μmであり、Raは0.10nmであった。 Next, by polishing the above-ground composite substrate, further thinning and flattening were performed. Polishing was performed using a CMP apparatus (manufactured by Tokyo Seimitsu Co., Ltd.) so that the thickness of the piezoelectric substrate was about 1 μm and Ra was 0.5 nm or less. Since it has sufficient joint strength as in the case of grinding, it was possible to process without causing problems such as breakage during processing. The average thickness of the processed piezoelectric substrate was 0.96 μm, the in-plane thickness variation of the piezoelectric substrate was 0.39 μm, and Ra was 0.10 nm.
 次に、上記のようにして作製した複合基板上にL/Sが1.6μmの櫛形電極を形成後、複合基板を1mm×1.5mmサイズに切断した。これにより、チップ状のSAWフィルターとした。このようなSAWフィルターのサンプルを100個作製し、周波数帯として1.05GHz帯におけるフィルタ特性を評価した。 Next, after forming a comb-shaped electrode having an L / S of 1.6 μm on the composite substrate produced as described above, the composite substrate was cut into a size of 1 mm × 1.5 mm. As a result, a chip-shaped SAW filter was obtained. 100 samples of such a SAW filter were prepared, and the filter characteristics in the 1.05 GHz band as a frequency band were evaluated.
 評価の結果、平均値でインピーダンス比65dB、帯域幅:3.5%であり、SAWフィルターとして十分な機能を有することが確認できた。また、周波数温度特性(TCF)は、-40℃から100℃の温度範囲において、反共振周波数領域で、-15ppm/℃、共振周波数領域で、-5ppm/℃であった。なお、従来技術であるサイアロン支持基板を用いたSAWフィルターのTCFは一般的に約±20ppm/℃程度であり、本発明に係る複合基板を備えたSAWフィルターは従来品に比べTCFに優れることが確認できた。 As a result of the evaluation, it was confirmed that the average impedance ratio was 65 dB and the bandwidth was 3.5%, and that the SAW filter had a sufficient function. The frequency temperature characteristic (TCF) was −15 ppm / ° C. in the anti-resonant frequency region and −5 ppm / ° C. in the resonance frequency region in the temperature range of −40 ° C. to 100 ° C. The TCF of the SAW filter using the Sialon support substrate, which is a conventional technique, is generally about ± 20 ppm / ° C., and the SAW filter provided with the composite substrate according to the present invention is superior to the conventional product in TCF. It could be confirmed.
 従来のサイアロン支持基板とは異なり、熱膨張係数が実質的に0である結晶化ガラスにより構成されている支持基板を用い、支持基板により圧電基板を拘束するとにより、圧電基板の熱膨張・収縮を生じ難くすることができる。よって、実施例1及び2の複合基板を電子デバイスに用いることにより、周波数温度特性(TCF)を大幅に改善することができる。従って、電子デバイスのフィルタ特性を安定化することができる。 Unlike the conventional Sialon support substrate, a support substrate made of crystallized glass having a coefficient of thermal expansion of substantially 0 is used, and the piezoelectric substrate is restrained by the support substrate to prevent thermal expansion and contraction of the piezoelectric substrate. It can be made less likely to occur. Therefore, by using the composite substrates of Examples 1 and 2 for the electronic device, the frequency temperature characteristic (TCF) can be significantly improved. Therefore, the filter characteristics of the electronic device can be stabilized.
1…複合基板
2…支持基板
2a…第1の主面
2b…第2の主面
3…圧電基板
3a…第3の主面
3b…第4の主面
11…複合基板
14…接合層
20…電子デバイス
25A…第1の櫛形電極
25B…第2の櫛形電極
26A…入力端子
26B…出力端子
1 ... Composite substrate 2 ... Support substrate 2a ... First main surface 2b ... Second main surface 3 ... Piezoelectric substrate 3a ... Third main surface 3b ... Fourth main surface 11 ... Composite substrate 14 ... Bonding layer 20 ... Electronic device 25A ... First comb-shaped electrode 25B ... Second comb-shaped electrode 26A ... Input terminal 26B ... Output terminal

Claims (14)

  1.  電子デバイスに用いられる複合基板であって、
     支持基板と、
     前記支持基板上に設けられている圧電基板と、
    を備え、
     前記支持基板が、β-石英固溶体及び/またはβ-ユークリプタイト固溶体を析出してなる結晶化ガラスにより構成されていることを特徴とする、複合基板。
    A composite substrate used for electronic devices
    Support board and
    The piezoelectric substrate provided on the support substrate and
    With
    A composite substrate, characterized in that the support substrate is made of crystallized glass formed by precipitating a β-quartz solid solution and / or a β-eucryptite solid solution.
  2.  前記支持基板の30℃以上、380℃以下の範囲における平均熱膨張係数が-1×10-7/℃以上、1×10-7/℃以下である、請求項1に記載の複合基板。 The composite substrate according to claim 1, wherein the average thermal expansion coefficient of the support substrate in the range of 30 ° C. or higher and 380 ° C. or lower is -1 × 10-7 / ° C. or higher and 1 × 10-7 / ° C. or lower.
  3.  前記支持基板が、質量%で、SiO 55%~75%、Al 15%~30%、LiO 2%~5%、NaO 0%~3%、KO 0%~3%、MgO 0%~5%、ZnO 0%~3%、BaO 0%~5%、TiO 0%~5%、ZrO 0%~4%、P 0%~5%、及びSnO 0%~2.5%を含有する組成の結晶化ガラスにより構成されている、請求項1または2に記載の複合基板。 In terms of mass%, the supporting substrate is SiO 2 55% to 75%, Al 2 O 3 15% to 30%, Li 2 O 2% to 5%, Na 2 O 0% to 3%, K 2 O 0%. ~ 3%, MgO 0% ~ 5%, ZnO 0% ~ 3%, BaO 0% ~ 5%, TiO 2 0% ~ 5%, ZrO 2 0% ~ 4%, P 2 O 5 0% ~ 5% The composite substrate according to claim 1 or 2, which is composed of crystallized glass having a composition containing 20 % to 2.5% of SnO.
  4.  前記支持基板におけるβ-石英固溶体及び/またはβ-ユークリプタイト固溶体の析出量が50質量%以上である、請求項1~3のいずれか一項に記載の複合基板。 The composite substrate according to any one of claims 1 to 3, wherein the amount of β-quartz solid solution and / or β-eucryptite solid solution precipitated in the support substrate is 50% by mass or more.
  5.  前記支持基板と前記圧電基板との間に接合層をさらに備え、
     前記接合層は金属を含み、その厚みが15nm以下である、請求項1~4のいずれか一項に記載の複合基板。
    A bonding layer is further provided between the support substrate and the piezoelectric substrate.
    The composite substrate according to any one of claims 1 to 4, wherein the bonding layer contains a metal and has a thickness of 15 nm or less.
  6.  前記支持基板と前記圧電基板とが直接接合されている、請求項1~4のいずれか一項に記載の複合基板。 The composite substrate according to any one of claims 1 to 4, wherein the support substrate and the piezoelectric substrate are directly bonded to each other.
  7.  前記圧電基板がニオブ酸リチウム結晶基板またはタンタル酸リチウム結晶基板であり、
     前記圧電基板の厚みが20μm以下である、請求項1~6のいずれか一項に記載の複合基板。
    The piezoelectric substrate is a lithium niobate crystal substrate or a lithium tantalate crystal substrate.
    The composite substrate according to any one of claims 1 to 6, wherein the thickness of the piezoelectric substrate is 20 μm or less.
  8.  前記支持基板の前記圧電基板に接合されている面及び前記圧電基板の前記支持基板に接合されている面の算術平均粗さRaがそれぞれ0.5nm以下である、請求項1~7のいずれか一項に記載の複合基板。 Any of claims 1 to 7, wherein the arithmetic mean roughness Ra of the surface of the support substrate bonded to the piezoelectric substrate and the surface of the piezoelectric substrate bonded to the support substrate is 0.5 nm or less, respectively. The composite substrate according to one item.
  9.  請求項1~8のいずれか一項に記載の複合基板と、
     前記圧電基板上に設けられている櫛形電極と、
    を備え、
     前記圧電基板に弾性表面波を生成可能に構成された、電子デバイス。
    The composite substrate according to any one of claims 1 to 8 and
    The comb-shaped electrode provided on the piezoelectric substrate and
    With
    An electronic device configured to be capable of generating surface acoustic waves on the piezoelectric substrate.
  10.  請求項1~8のいずれか一項に記載の複合基板の製造方法であって、
     前記支持基板を用意する工程と、
     前記支持基板に前記圧電基板を接合する工程と、
    を備え、
     β-石英固溶体及び/またはβ-ユークリプタイト固溶体を析出してなる結晶化ガラスを前記支持基板に用いることを特徴とする、複合基板の製造方法。
    The method for manufacturing a composite substrate according to any one of claims 1 to 8.
    The process of preparing the support substrate and
    The step of joining the piezoelectric substrate to the support substrate and
    With
    A method for producing a composite substrate, which comprises using a crystallized glass obtained by precipitating a β-quartz solid solution and / or a β-eucryptite solid solution as the support substrate.
  11.  前記支持基板に前記圧電基板を接合する工程において、前記支持基板と前記圧電基板とを原子拡散接合により接合する、請求項10に記載の複合基板の製造方法。 The method for manufacturing a composite substrate according to claim 10, wherein in the step of joining the piezoelectric substrate to the support substrate, the support substrate and the piezoelectric substrate are joined by atomic diffusion bonding.
  12.  前記支持基板に前記圧電基板を接合する工程において、前記支持基板と前記圧電基板とを表面活性化接合により接合する、請求項10に記載の複合基板の製造方法。 The method for manufacturing a composite substrate according to claim 10, wherein in the step of joining the piezoelectric substrate to the support substrate, the support substrate and the piezoelectric substrate are joined by surface activation bonding.
  13.  前記支持基板に前記圧電基板を接合する工程の後に、前記圧電基板側のみを研磨し、前記複合基板を薄板化する工程をさらに備える、請求項10~12のいずれか一項に記載の複合基板の製造方法。 The composite substrate according to any one of claims 10 to 12, further comprising a step of polishing only the piezoelectric substrate side and thinning the composite substrate after the step of joining the piezoelectric substrate to the support substrate. Manufacturing method.
  14.  請求項1~8のいずれか一項に記載の複合基板の前記圧電基板上に櫛形電極を設ける工程を備える、電子デバイスの製造方法。 A method for manufacturing an electronic device, comprising a step of providing a comb-shaped electrode on the piezoelectric substrate of the composite substrate according to any one of claims 1 to 8.
PCT/JP2020/005744 2019-03-15 2020-02-14 Composite substrate, electronic device, method for manufacturing composite substrate, and method for manufacturing electronic device WO2020189115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021506240A JPWO2020189115A1 (en) 2019-03-15 2020-02-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048335 2019-03-15
JP2019-048335 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189115A1 true WO2020189115A1 (en) 2020-09-24

Family

ID=72520126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005744 WO2020189115A1 (en) 2019-03-15 2020-02-14 Composite substrate, electronic device, method for manufacturing composite substrate, and method for manufacturing electronic device

Country Status (2)

Country Link
JP (1) JPWO2020189115A1 (en)
WO (1) WO2020189115A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189103A1 (en) * 2022-03-28 2023-10-05 日本碍子株式会社 Composite substrate, surface acoustic wave element, and method for manufacturing composite substrate
EP4122885A4 (en) * 2021-06-09 2024-02-21 NGK Insulators, Ltd. Composite substrate and composite substrate manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052334A (en) * 1999-08-04 2001-02-23 Okamoto Glass Co Ltd Substrate material for magnetic disk and its manufacture
JP2008118576A (en) * 2006-11-07 2008-05-22 Fujitsu Media Device Kk Elastic wave device
JP2014197845A (en) * 2009-11-26 2014-10-16 株式会社村田製作所 Piezoelectric device
JP2015222970A (en) * 2011-07-29 2015-12-10 株式会社村田製作所 Method of manufacturing acoustic wave device
WO2016017435A1 (en) * 2014-07-30 2016-02-04 日本電気硝子株式会社 Crystallized glass
JP2016074598A (en) * 2015-11-18 2016-05-12 日本電気硝子株式会社 Manufacturing method of silicate glass
JP2018093329A (en) * 2016-12-01 2018-06-14 日本碍子株式会社 Elastic wave element
JP2019009641A (en) * 2017-06-26 2019-01-17 太陽誘電株式会社 Elastic wave resonator, filter and multiplexer
JP2019029941A (en) * 2017-08-02 2019-02-21 株式会社ディスコ Manufacturing method of substrate for elastic wave device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052334A (en) * 1999-08-04 2001-02-23 Okamoto Glass Co Ltd Substrate material for magnetic disk and its manufacture
JP2008118576A (en) * 2006-11-07 2008-05-22 Fujitsu Media Device Kk Elastic wave device
JP2014197845A (en) * 2009-11-26 2014-10-16 株式会社村田製作所 Piezoelectric device
JP2015222970A (en) * 2011-07-29 2015-12-10 株式会社村田製作所 Method of manufacturing acoustic wave device
WO2016017435A1 (en) * 2014-07-30 2016-02-04 日本電気硝子株式会社 Crystallized glass
JP2016074598A (en) * 2015-11-18 2016-05-12 日本電気硝子株式会社 Manufacturing method of silicate glass
JP2018093329A (en) * 2016-12-01 2018-06-14 日本碍子株式会社 Elastic wave element
JP2019009641A (en) * 2017-06-26 2019-01-17 太陽誘電株式会社 Elastic wave resonator, filter and multiplexer
JP2019029941A (en) * 2017-08-02 2019-02-21 株式会社ディスコ Manufacturing method of substrate for elastic wave device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4122885A4 (en) * 2021-06-09 2024-02-21 NGK Insulators, Ltd. Composite substrate and composite substrate manufacturing method
WO2023189103A1 (en) * 2022-03-28 2023-10-05 日本碍子株式会社 Composite substrate, surface acoustic wave element, and method for manufacturing composite substrate

Also Published As

Publication number Publication date
JPWO2020189115A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP7279432B2 (en) Composite substrate, electronic device, method for manufacturing composite substrate, and method for manufacturing electronic device
US8421314B2 (en) Composite substrate, elastic wave device using the same, and method for manufacturing composite substrate
US10879871B2 (en) Elastic wave element and method for manufacturing same
CN203851109U (en) Composite substrate
JP6593669B2 (en) Support glass substrate and carrier using the same
KR101636220B1 (en) Composite substrate, piezoelectric device and method of manufacturing composite substrate
TWI635632B (en) Composite substrate, elastic wave device, and method for manufacturing elastic wave device
WO2020189115A1 (en) Composite substrate, electronic device, method for manufacturing composite substrate, and method for manufacturing electronic device
JP2010187373A (en) Composite substrate and elastic wave device using the same
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP2011087079A (en) Surface acoustic wave device
WO2011158636A1 (en) Composite substrate
JP2007228356A (en) Piezoelectric thin-film device
US20180305241A1 (en) Glass substrate, laminated substrate, laminate, and method for producing semiconductor package
TW201736305A (en) Crystallized glass support substrate and laminate body using same
JP2016117641A (en) Support glass substrate and laminate comprising the same
JP7166802B2 (en) Joints of components, especially electronic components, and glass or glass-ceramic materials
JP4956569B2 (en) Surface acoustic wave device
JP3388453B2 (en) Glass for support of X-ray mask or X-ray mask material, X-ray mask material and X-ray mask
JP6675577B2 (en) Semiconductor wafer support substrate
WO2018168342A1 (en) Crystallized glass support substrate and laminate using same
JPH11340769A (en) Manufacture of glass joined piezoelectric substrate
US11637232B2 (en) Acoustic wave device including Li2CO3 layer on piezoelectric substrate made of LiNbO3 or LiTaO3
JP2868131B2 (en) Method of manufacturing electronic component substrate
JP4828966B2 (en) Piezoelectric thin film device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772836

Country of ref document: EP

Kind code of ref document: A1