JP5180104B2 - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP5180104B2
JP5180104B2 JP2009003371A JP2009003371A JP5180104B2 JP 5180104 B2 JP5180104 B2 JP 5180104B2 JP 2009003371 A JP2009003371 A JP 2009003371A JP 2009003371 A JP2009003371 A JP 2009003371A JP 5180104 B2 JP5180104 B2 JP 5180104B2
Authority
JP
Japan
Prior art keywords
substrate
acoustic wave
piezoelectric substrate
surface acoustic
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009003371A
Other languages
Japanese (ja)
Other versions
JP2010161697A (en
Inventor
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2009003371A priority Critical patent/JP5180104B2/en
Publication of JP2010161697A publication Critical patent/JP2010161697A/en
Application granted granted Critical
Publication of JP5180104B2 publication Critical patent/JP5180104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、弾性表面波素子に関する。   The present invention relates to a surface acoustic wave device.

従来、支持基板と弾性波を伝搬させる圧電基板とを貼り合わせ、圧電基板の表面に弾性表面波を励振可能な櫛形電極を設けた弾性表面波素子が知られている。ここで、圧電基板よりも小さな熱膨張係数を持つ支持基板を圧電基板に貼付けることにより、温度が変化したときの圧電基板の大きさの変化を抑制し、弾性表面波素子としての周波数特性の変化を抑制している。例えば、特許文献1に記載の弾性表面波素子では、圧電基板と支持基板とを接着層によって貼り合わせた構造を有している。この弾性表面波素子は、更に、圧電基板の支持基板と貼り合わせる側の面(裏面)を荒らすことで、スプリアスの発生を抑制している。即ち、櫛形電極付近で弾性表面波と共に発生した弾性波の一種であるバルク波はこの圧電基板の裏面に到達するが、この裏面は荒らされているために散乱される。このようにして、バルク波が圧電基板の裏面で反射して櫛形電極へ到達するのを抑制し、スプリアスの発生を抑制している。   2. Description of the Related Art Conventionally, a surface acoustic wave element is known in which a support substrate and a piezoelectric substrate that propagates an acoustic wave are bonded together and a comb-shaped electrode that can excite a surface acoustic wave is provided on the surface of the piezoelectric substrate. Here, by attaching a support substrate having a thermal expansion coefficient smaller than that of the piezoelectric substrate to the piezoelectric substrate, the change in size of the piezoelectric substrate when the temperature changes is suppressed, and the frequency characteristics of the surface acoustic wave element are reduced. The change is suppressed. For example, the surface acoustic wave element described in Patent Document 1 has a structure in which a piezoelectric substrate and a support substrate are bonded together with an adhesive layer. This surface acoustic wave element further suppresses the occurrence of spurious by roughening the surface (back surface) of the piezoelectric substrate to be bonded to the support substrate. That is, a bulk wave, which is a kind of elastic wave generated in the vicinity of the comb-shaped electrode, reaches the back surface of the piezoelectric substrate, but is scattered because the back surface is roughened. In this manner, the bulk wave is prevented from reflecting on the back surface of the piezoelectric substrate and reaching the comb-shaped electrode, thereby suppressing the occurrence of spurious.

特開2001−53579号公報JP 2001-53579 A

しかしながら、特許文献1に記載の弾性表面波素子では、圧電基板の裏面を荒らすと、圧電基板と支持基板とを接着する接着層の厚さを十分薄くすることができない場合があった。この場合に、バルク波を圧電基板の裏面で散乱させてスプリアスの発生を抑制することは可能なものの、温度が変化したときの圧電基板の大きさの変化を抑制するという支持基板本来の役割が十分に果たせない場合があった。   However, in the surface acoustic wave element described in Patent Document 1, if the back surface of the piezoelectric substrate is roughened, the thickness of the adhesive layer that bonds the piezoelectric substrate and the support substrate may not be sufficiently reduced. In this case, although it is possible to scatter bulk waves on the back surface of the piezoelectric substrate and suppress spurious generation, the original role of the supporting substrate is to suppress changes in the size of the piezoelectric substrate when the temperature changes. In some cases, it could not be fully achieved.

本発明は、上述した課題に鑑みなされたものであり、圧電基板と支持基板とを貼り合わせた弾性表面波素子につき、温度が変化したときの圧電基板の大きさの変化を抑制しつつ、スプリアスの発生を抑制することを主目的とする。   The present invention has been made in view of the above-described problems, and for a surface acoustic wave element in which a piezoelectric substrate and a support substrate are bonded together, while suppressing changes in the size of the piezoelectric substrate when the temperature changes, The main purpose is to suppress the occurrence of

本発明は、上述の目的を達成するために以下の手段を採った。   The present invention adopts the following means in order to achieve the above-mentioned object.

本発明の複合基板の弾性表面波素子は、
弾性波を伝搬可能な圧電基板と、
前記圧電基板の表面に設けられた弾性表面波を励振可能な櫛形電極と、
前記圧電基板と貼り合わせられ、該圧電基板の裏面よりも粗く且つ該圧電基板から伝搬してきたバルク波を散乱させる粗さの裏面を有し、熱膨張係数が前記圧電基板よりも小さい支持基板と、
前記圧電基板と前記支持基板とを接着する有機接着層と、
を備えたものである。
The surface acoustic wave device of the composite substrate of the present invention is
A piezoelectric substrate capable of propagating elastic waves;
A comb electrode provided on the surface of the piezoelectric substrate and capable of exciting a surface acoustic wave;
A support substrate that is bonded to the piezoelectric substrate, has a back surface that is rougher than the back surface of the piezoelectric substrate and has a roughness that scatters bulk waves propagating from the piezoelectric substrate, and has a smaller thermal expansion coefficient than the piezoelectric substrate; ,
An organic adhesive layer for bonding the piezoelectric substrate and the support substrate;
It is equipped with.

本発明の弾性表面波素子では、バルク波が圧電基板から支持基板に伝搬してきた場合には、支持基板の裏面はバルク波を散乱させる粗さであり、バルク波がこの裏面で反射して櫛形電極に到達するのが抑制され、スプリアスの発生が抑制される。更に、圧電基板から伝搬してきたバルク波を散乱させる粗さとなっているのは支持基板の裏面であり、この支持基板の裏面は圧電基板の裏面よりも粗い。このため、有機接着層の厚さを薄くすることができ、支持基板による、温度が変化したときの圧電基板の大きさの変化を抑制する効果が得られる。特に、特許文献1では、有機接着層の厚さを、弾性表面波を散乱させる粗さの凹凸の最高部と最低部の差以上とする必要があるが、本発明では、その差よりも薄くすることができる。   In the surface acoustic wave device according to the present invention, when the bulk wave propagates from the piezoelectric substrate to the support substrate, the back surface of the support substrate has a roughness that scatters the bulk wave, and the bulk wave is reflected by this back surface to form a comb shape. Reaching the electrode is suppressed, and spurious generation is suppressed. Furthermore, it is the back surface of the support substrate that has a roughness that scatters the bulk waves propagated from the piezoelectric substrate, and the back surface of the support substrate is rougher than the back surface of the piezoelectric substrate. For this reason, the thickness of the organic adhesive layer can be reduced, and the effect of suppressing the change in the size of the piezoelectric substrate when the temperature is changed by the support substrate can be obtained. In particular, in Patent Document 1, the thickness of the organic adhesive layer needs to be equal to or greater than the difference between the highest and lowest roughness irregularities that scatter surface acoustic waves. In the present invention, the thickness is thinner than the difference. can do.

LT基板10及びシリコン基板12を用意してからシリコン基板12の裏面を荒らすまでの弾性表面波素子の製造プロセスを模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a manufacturing process of the surface acoustic wave element from the preparation of the LT substrate 10 and the silicon substrate 12 to the roughening of the back surface of the silicon substrate 12. 弾性表面波素子の平面図及びA−A’断面図である。It is the top view and A-A 'sectional view of a surface acoustic wave element. 他の弾性表面波素子の平面図及びB−B’断面図である。It is the top view and B-B 'sectional view of other surface acoustic wave elements. 実施例1及び比較例1の弾性表面波素子の周波数特性の測定結果である。3 is a measurement result of frequency characteristics of the surface acoustic wave elements of Example 1 and Comparative Example 1.

本発明の弾性表面波素子において、圧電基板は、弾性波を伝搬可能なものである。この圧電基板の材質としては、タンタル酸リチウム、ニオブ酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体単結晶などが挙げられる。また、圧電基板の大きさは、特に限定するものではないが、例えば、縦が0.5〜2mm、横が0.5〜2mm、厚さが10〜60μmである。   In the surface acoustic wave element of the present invention, the piezoelectric substrate can propagate an acoustic wave. Examples of the material of the piezoelectric substrate include lithium tantalate, lithium niobate, lithium niobate-lithium tantalate solid solution single crystal, and the like. The size of the piezoelectric substrate is not particularly limited, and for example, the vertical length is 0.5 to 2 mm, the horizontal length is 0.5 to 2 mm, and the thickness is 10 to 60 μm.

本発明の弾性表面波素子において、櫛形電極は、圧電基板の表面に設けられ弾性表面波を励振可能なものである。櫛形電極の材質としては、アルミニウム、アルミニウム合金、銅、金などが挙げられる。   In the surface acoustic wave device of the present invention, the comb-shaped electrode is provided on the surface of the piezoelectric substrate and can excite surface acoustic waves. Examples of the material of the comb electrode include aluminum, aluminum alloy, copper, and gold.

本発明の弾性表面波素子において、支持基板は、圧電基板と貼り合わせられ、この圧電基板の裏面よりも粗く且つ圧電基板から伝搬してきたバルク波を散乱させる粗さの裏面を有し、熱膨張係数が圧電基板よりも小さいものである。この支持基板の材質としては、シリコン、サファイア、窒化アルミニウム、アルミナ、ホウ珪酸ガラス、石英ガラスなどが挙げられる。また、支持基板の大きさは、特に限定するものではないが、例えば、縦が0.5〜2mm、横が0.5〜2mm、厚さが0.25〜0.5mmである。ここで、この支持基板の裏面の粗さは、算術平均粗さRaが0.25〜0.55μmであり、且つ、最大高さRzが算術平均粗さRaの9〜12倍とするのが好ましい。支持基板の裏面の粗さがこの条件を満足する場合には、圧電基板から伝播してきたバルク波を散乱させる効果が十分得られ、しかも、静電チャックに複合基板を吸着させる際に良好に吸着させることができるからである。支持基板の裏面の粗さにつき、この条件を満足させる方法としては、例えば、800番〜1200番の番手の研磨砥粒を使用して研磨することが挙げられる。   In the surface acoustic wave device according to the present invention, the support substrate is bonded to the piezoelectric substrate, and has a back surface that is rougher than the back surface of the piezoelectric substrate and has a roughness that scatters bulk waves that have propagated from the piezoelectric substrate. The coefficient is smaller than that of the piezoelectric substrate. Examples of the material of the support substrate include silicon, sapphire, aluminum nitride, alumina, borosilicate glass, and quartz glass. Moreover, the magnitude | size of a support substrate is although it does not specifically limit, For example, length is 0.5-2 mm, width is 0.5-2 mm, and thickness is 0.25-0.5 mm. Here, the roughness of the back surface of the support substrate is such that the arithmetic average roughness Ra is 0.25 to 0.55 μm, and the maximum height Rz is 9 to 12 times the arithmetic average roughness Ra. preferable. When the roughness of the back surface of the support substrate satisfies this condition, the effect of scattering the bulk wave propagating from the piezoelectric substrate is sufficiently obtained, and it is satisfactorily attracted when the composite substrate is attracted to the electrostatic chuck. It is because it can be made. As a method of satisfying this condition with respect to the roughness of the back surface of the support substrate, for example, polishing is performed using abrasive grains having a number of 800 to 1200.

本発明の弾性表面波素子において、有機接着層は、支持基板と圧電基板とを接着するものである。この有機接着層の材質としては、例えば、エポキシ系接着剤やアクリル系接着剤を固化させたものが挙げられる。更に、有機接着層の厚さは0.1〜1.0μmとするのが好ましい。こうすれば、温度変化に対する周波数特性の変化を比較的抑えることができる。有機接着層の厚さが1.0μmを超えると圧電基板と支持基板との熱膨張係数の差がこの有機接着層に吸収され、温度変化に対する周波数特性の変化を抑える効果が得られないため好ましくない。また、有機接着層の厚さが、0.1μm未満になるとボイドの影響で、温度変化に対する周波数特性の変化を抑える効果が得られないため好ましくない。   In the surface acoustic wave device of the present invention, the organic adhesive layer bonds the support substrate and the piezoelectric substrate. Examples of the material of the organic adhesive layer include a solidified epoxy adhesive or acrylic adhesive. Furthermore, the thickness of the organic adhesive layer is preferably 0.1 to 1.0 μm. In this way, changes in frequency characteristics with respect to temperature changes can be relatively suppressed. If the thickness of the organic adhesive layer exceeds 1.0 μm, the difference in thermal expansion coefficient between the piezoelectric substrate and the support substrate is absorbed by the organic adhesive layer, and the effect of suppressing the change in frequency characteristics with respect to temperature change is not obtained. Absent. Moreover, when the thickness of the organic adhesive layer is less than 0.1 μm, it is not preferable because the effect of suppressing the change of the frequency characteristic with respect to the temperature change cannot be obtained due to the influence of the void.

[実施例1]
図1は、本実施例の複合基板の製造プロセスを模式的に示す断面図である。まず、支持基板に切り出す前の基板として、オリエンテーションフラット部(OF部)を有し、直径が100mm、厚さが350μmのシリコン基板12を用意した。また、圧電基板に切り出す前の基板として、OF部を有し、直径が100mm、厚さが250μmのタンタル酸リチウム基板(LT基板)10を用意した(図1(a)参照)。LT基板10は、弾性表面波(SAW)の伝搬方向をXとし、切り出し角が回転Yカット板である36°YカットX伝搬LT基板を用いた。次いで、LT基板10の裏面にスピンコートによりエポキシ系接着剤13を塗布し、シリコン基板12の表面に重ね合わせ180℃で加熱し、貼り合わせ基板20を得た。この貼り合わせ基板20の有機接着層14は、エポキシ系接着剤13が固化してできたものである(図1(b)参照)。このときの有機接着層14の厚さは0.3μmであった。
[Example 1]
FIG. 1 is a cross-sectional view schematically showing the manufacturing process of the composite substrate of this example. First, a silicon substrate 12 having an orientation flat portion (OF portion), a diameter of 100 mm, and a thickness of 350 μm was prepared as a substrate before being cut out into a support substrate. In addition, a lithium tantalate substrate (LT substrate) 10 having an OF portion, a diameter of 100 mm, and a thickness of 250 μm was prepared as a substrate before being cut out into a piezoelectric substrate (see FIG. 1A). The LT substrate 10 is a 36 ° Y-cut X-propagation LT substrate in which the propagation direction of surface acoustic waves (SAW) is X and the cutting angle is a rotating Y-cut plate. Next, an epoxy-based adhesive 13 was applied to the back surface of the LT substrate 10 by spin coating, and was superposed on the surface of the silicon substrate 12 and heated at 180 ° C. to obtain a bonded substrate 20. The organic adhesive layer 14 of the bonded substrate 20 is formed by solidifying the epoxy adhesive 13 (see FIG. 1B). At this time, the thickness of the organic adhesive layer 14 was 0.3 μm.

次いで、研磨機にてLT基板10の厚さが30μmとなるまで研磨した(図1(c)参照)。研磨機としては、以下のように厚みを薄くしたあと鏡面研磨を行うものを用いた。即ち、厚みを薄くするときには、研磨定盤とプレッシャープレートとの間に貼り合わせ基板20を挟み込み、その貼り合わせ基板20と研磨定盤との間に研磨砥粒を含むスラリーを供給し、このプレッシャープレートにより貼り合わせ基板20を定盤面に押し付けながらプレッシャープレートに自転運動を与えて行うものを用いた。続いて、鏡面研磨を行うときには、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、プレッシャープレートに自転運動及び公転運動を与えることによって、圧電基板に切り出す前の基板の表面を鏡面研磨するものを用いた。まず、貼り合わせ基板20のLT基板の表面を定盤面に押し付け、自転運動の回転速度を100rpm、研磨を継続する時間を60分として研磨した。続いて、研磨定盤を表面にパッドが貼られたものとすると共に研磨砥粒を番手の高いものへと変更し、貼り合わせ基板20を定盤面に押し付ける圧力を0.2MPa、自転運動の回転速度を100rpm、公転運動の回転速度を100rpm、研磨を継続する時間を60分として鏡面研磨した。   Subsequently, it grind | polished until the thickness of LT board | substrate 10 became 30 micrometers with the grinder (refer FIG.1 (c)). As the polishing machine, a machine that performs mirror polishing after reducing the thickness as follows was used. That is, when the thickness is reduced, the bonded substrate 20 is sandwiched between the polishing platen and the pressure plate, and a slurry containing abrasive grains is supplied between the bonded substrate 20 and the polishing platen. A pressure plate was used to rotate the pressure plate while pressing the laminated substrate 20 against the surface plate by using a plate. Subsequently, when performing mirror polishing, the polishing surface plate is assumed to have a pad attached to the surface and the abrasive grains are changed to a high count, and by giving rotation and revolution motion to the pressure plate, A substrate whose surface was mirror-polished before being cut into a piezoelectric substrate was used. First, the surface of the LT substrate of the bonded substrate 20 was pressed against the surface of the platen, and the rotation was performed at a rotation speed of 100 rpm and the polishing duration was 60 minutes. Subsequently, the polishing surface plate is assumed to have a pad attached to the surface and the abrasive grains are changed to a higher one, the pressure for pressing the bonded substrate 20 against the surface plate is 0.2 MPa, rotation of rotation Mirror polishing was performed with a speed of 100 rpm, a revolution speed of 100 rpm, and a polishing duration of 60 minutes.

続いて、貼り合わせ基板20のシリコン基板12の裏面を定盤面に押し付け、番手が800番の研磨砥粒へ変更し、貼り合わせ基板20を定盤面に押し付け、自転運動の回転速度を100rpm、研磨を継続する時間を15分としてシリコン基板12の裏面を荒らした(図1(d))。このときのシリコン基板12の裏面の算術平均粗さRaは、0.55μm、最大高さRzは5.0μm(算術平均粗さRa0.55μmの約9倍)であった。このとき、算術平均粗さRa及び最大高さRzの測定には、触針式の表面粗さ計を用いた。ここで、図1(b)の工程で、LT基板10とシリコン基板12を貼り合わせる前にシリコン基板12の裏面を荒らすと、このシリコン基板12に反りが発生し両基板を貼り合わせにくくなる。ここでは、両基板を貼り合わせた後にシリコン基板12の裏面を荒らしているため、そのような問題を発生させることなく弾性表面波素子を作製することができる。   Subsequently, the back surface of the silicon substrate 12 of the bonded substrate 20 is pressed against the surface of the platen, the count is changed to the number 800 polishing abrasive, the bonded substrate 20 is pressed against the surface of the platen, and the rotational speed of rotation is 100 rpm. The back surface of the silicon substrate 12 was roughened for 15 minutes (FIG. 1D). At this time, the arithmetic average roughness Ra of the back surface of the silicon substrate 12 was 0.55 μm, and the maximum height Rz was 5.0 μm (approximately 9 times the arithmetic average roughness Ra 0.55 μm). At this time, a stylus type surface roughness meter was used to measure the arithmetic average roughness Ra and the maximum height Rz. Here, if the back surface of the silicon substrate 12 is roughened before the LT substrate 10 and the silicon substrate 12 are bonded together in the step of FIG. 1B, the silicon substrate 12 is warped, making it difficult to bond the two substrates. Here, since the back surface of the silicon substrate 12 is roughened after the two substrates are bonded together, the surface acoustic wave element can be manufactured without causing such a problem.

続いて、一般的なフォトリソグラフィ技術を用いて、材質がアルミニウムで、最終的に作製した弾性表面波素子が常温で中心周波数2GHzのバンドパスフィルタとして機能する形状で、厚さが0.1μmの櫛形電極をLT基板の表面に複数形成した。また、各櫛形電極につき、櫛形電極を挟むように2つの反射器を形成した。続いて、ダイシングにより、1つ1つの弾性表面波素子の形状に切り出した。1つ1つの弾性表面波素子は、縦の長さが1mm、横の長さが1mmとなるように切り出した。こうして得られた弾性表面波素子を図2に示す。図2(a)は、得られた弾性表面波素子の平面図であり、図2(b)は、A−A’断面図である。この弾性表面波素子は、図示するように、LT基板10の表面に櫛形電極16,17及び反射器18を有している。なお、図3に示すように、LT基板10の表面に櫛形電極115,116を有する構造を採用してもよい。図3(a)は、この弾性表面波素子の平面図であり、図3(b)は、B−B’断面図である。   Subsequently, using a general photolithography technique, the material is aluminum, and the finally produced surface acoustic wave element has a shape that functions as a bandpass filter with a center frequency of 2 GHz at room temperature, and has a thickness of 0.1 μm. A plurality of comb electrodes were formed on the surface of the LT substrate. In addition, for each comb-shaped electrode, two reflectors were formed so as to sandwich the comb-shaped electrode. Subsequently, each surface acoustic wave element was cut into individual shapes by dicing. Each surface acoustic wave element was cut out so that the vertical length was 1 mm and the horizontal length was 1 mm. The surface acoustic wave device thus obtained is shown in FIG. FIG. 2A is a plan view of the obtained surface acoustic wave element, and FIG. 2B is a cross-sectional view taken along line A-A ′. This surface acoustic wave element has comb-shaped electrodes 16 and 17 and a reflector 18 on the surface of the LT substrate 10 as shown in the figure. As shown in FIG. 3, a structure having comb electrodes 115 and 116 on the surface of the LT substrate 10 may be employed. FIG. 3A is a plan view of the surface acoustic wave element, and FIG. 3B is a cross-sectional view along B-B ′.

[比較例1]
図1(c)の工程でLT基板10を研磨したあと、シリコン基板12の裏面を荒らすことなく、櫛形電極16,17及び反射器18を形成した以外は実施例1と同様にして弾性表面波素子を作製した。このときのシリコン基板12の裏面の算術平均粗さRaは0.3nmであり、最大高さRzは、1nmであった。このとき、算術平均粗さRa及び最大高さRzの測定には、実施例1と同様の表面粗さ計を用いた。
[Comparative Example 1]
After the LT substrate 10 is polished in the step of FIG. 1C, the surface acoustic wave is obtained in the same manner as in Example 1 except that the comb electrodes 16 and 17 and the reflector 18 are formed without roughening the back surface of the silicon substrate 12. An element was produced. At this time, the arithmetic mean roughness Ra of the back surface of the silicon substrate 12 was 0.3 nm, and the maximum height Rz was 1 nm. At this time, the same surface roughness meter as in Example 1 was used for the measurement of the arithmetic average roughness Ra and the maximum height Rz.

[評価]
実施例1及び比較例1の弾性表面波素子をネットワークアナライザに接続し、弾性表面波素子の減衰量を、周波数を変えて測定した。その測定結果を図4に示す。図中、実線が実施例1の弾性表面波素子の測定結果であり、点線が比較例1の弾性表面波素子の測定結果である。図示するように、比較例1の測定結果に表れている高周波側(おおよそ2.02〜2.2GHz)のスプリアスが、実施例1の測定結果では抑制されている。
[Evaluation]
The surface acoustic wave elements of Example 1 and Comparative Example 1 were connected to a network analyzer, and the attenuation of the surface acoustic wave element was measured by changing the frequency. The measurement results are shown in FIG. In the figure, the solid line is the measurement result of the surface acoustic wave element of Example 1, and the dotted line is the measurement result of the surface acoustic wave element of Comparative Example 1. As shown in the figure, spurious on the high frequency side (approximately 2.02 to 2.2 GHz) appearing in the measurement result of Comparative Example 1 is suppressed in the measurement result of Example 1.

[実施例2,3]
図1(d)の工程において使用する研磨砥粒の番手を1000番又は1200番とした以外は、実施例1と同様にして弾性表面波素子を作製した。シリコン基板12の裏面の算術平均粗さRaは、研磨砥粒の番手が1000番のときには0.35μm、1200番のときには0.25μmであった。また、シリコン基板12の裏面の最大高さRzは、研磨砥粒の番手が1000番のときには3.5μm(算術平均粗さRa0.35μmの10倍)、1200番のときには3.0μm(算術平均粗さRa0.25の12倍)であった。これらの場合も、実施例1と同様の周波数特性が得られた。
[Examples 2 and 3]
A surface acoustic wave element was produced in the same manner as in Example 1 except that the number of the abrasive grains used in the step of FIG. The arithmetic average roughness Ra of the back surface of the silicon substrate 12 was 0.35 μm when the number of the abrasive grains was 1000 and was 0.25 μm when the number was 1200. Further, the maximum height Rz of the back surface of the silicon substrate 12 is 3.5 μm (10 times the arithmetic average roughness Ra 0.35 μm) when the number of abrasive grains is 1000, and 3.0 μm (arithmetic average) when the number is 1200 Roughness 12 times of Ra 0.25). In these cases, the same frequency characteristics as in Example 1 were obtained.

[比較例2]
図1(d)の工程において使用する研磨砥粒の番手を1300番とした以外は、実施例1と同様にして弾性表面波素子を作製した。シリコン基板12の裏面の算術平均粗さ(Ra)は、0.2μmであった。また、シリコン基板12の裏面の最大高さRzは、2.4μm(算術平均粗さRaの12倍)であった。この場合も、比較例1と同様の周波数特性が得られ、スプリアスの発生を抑制できていないことが確認できた。
[Comparative Example 2]
A surface acoustic wave element was produced in the same manner as in Example 1 except that the number of the abrasive grains used in the step of FIG. The arithmetic average roughness (Ra) of the back surface of the silicon substrate 12 was 0.2 μm. The maximum height Rz of the back surface of the silicon substrate 12 was 2.4 μm (12 times the arithmetic average roughness Ra). Also in this case, the same frequency characteristic as in Comparative Example 1 was obtained, and it was confirmed that spurious generation could not be suppressed.

ここで、上述した実施例1〜3及び比較例2について、研磨砥粒の番手、シリコン基板12の裏面の算術平均粗さRa及び最大高さRzの測定結果を表1に示す。   Here, with respect to Examples 1 to 3 and Comparative Example 2 described above, Table 1 shows the measurement results of the count of the abrasive grains, the arithmetic average roughness Ra and the maximum height Rz of the back surface of the silicon substrate 12.

Figure 0005180104
Figure 0005180104

[実施例4]
有機接着層14の厚さを表2に示すように変更した以外は、実施例1と同様にして弾性表面波素子を作製した。そして、その熱膨張係数と周波数温度特性とを測定した。その測定結果を表2に示す。ここで、LT基板のSAWの伝搬方向Xの線熱膨張係数は16ppm/℃である。また、単結晶シリコン基板のSAWの伝搬方向Xの線膨張係数は3ppm/℃である。この表1の結果から明らかなように、有機接着層の厚さを0.1〜1.0μmとすることで、周波数温度特性(温度特性)が臨界的に著しく向上することが分かった。
[Example 4]
A surface acoustic wave element was produced in the same manner as in Example 1 except that the thickness of the organic adhesive layer 14 was changed as shown in Table 2. And the thermal expansion coefficient and the frequency temperature characteristic were measured. The measurement results are shown in Table 2. Here, the linear thermal expansion coefficient in the propagation direction X of the SAW of the LT substrate is 16 ppm / ° C. The linear expansion coefficient in the SAW propagation direction X of the single crystal silicon substrate is 3 ppm / ° C. As is apparent from the results in Table 1, it was found that the frequency temperature characteristics (temperature characteristics) are significantly improved by setting the thickness of the organic adhesive layer to 0.1 to 1.0 μm.

Figure 0005180104
Figure 0005180104

10 タンタル酸リチウム基板(LT基板)、12 シリコン基板、13 有機接着剤、14 有機接着層、16,17,115,116 櫛形電極、18 反射器、20 貼り合わせ基板。   10 Lithium tantalate substrate (LT substrate), 12 Silicon substrate, 13 Organic adhesive, 14 Organic adhesive layer, 16, 17, 115, 116 Comb electrode, 18 Reflector, 20 Bonded substrate.

Claims (4)

弾性波を伝搬可能な圧電基板と、
前記圧電基板の表面に設けられた弾性表面波を励振可能な櫛形電極と、
前記圧電基板と貼り合わせられ、該圧電基板の裏面よりも粗く且つ該圧電基板から伝搬してきたバルク波を散乱させる粗さの裏面を有し、熱膨張係数が前記圧電基板よりも小さい支持基板と、
前記圧電基板と前記支持基板とを接着する有機接着層と、
を備えた弾性表面波素子。
A piezoelectric substrate capable of propagating elastic waves;
A comb electrode provided on the surface of the piezoelectric substrate and capable of exciting a surface acoustic wave;
A support substrate that is bonded to the piezoelectric substrate, has a back surface that is rougher than the back surface of the piezoelectric substrate and has a roughness that scatters bulk waves propagating from the piezoelectric substrate, and has a smaller thermal expansion coefficient than the piezoelectric substrate; ,
An organic adhesive layer for bonding the piezoelectric substrate and the support substrate;
A surface acoustic wave device comprising:
前記圧電基板は、タンタル酸リチウム、ニオブ酸リチウム及びニオブ酸リチウム−タンタル酸リチウム固溶体単結晶からなる群より選ばれた材質からなり、
前記支持基板は、シリコン、サファイア、窒化アルミニウム、アルミナ、ホウ珪酸ガラス及び石英ガラスからなる群より選ばれた材質からなる、
請求項1に記載の弾性表面波素子。
The piezoelectric substrate is made of a material selected from the group consisting of lithium tantalate, lithium niobate and lithium niobate-lithium tantalate solid solution single crystal,
The support substrate is made of a material selected from the group consisting of silicon, sapphire, aluminum nitride, alumina, borosilicate glass, and quartz glass.
The surface acoustic wave device according to claim 1.
前記有機接着層は、厚さが0.1〜1.0μmである、
請求項1又は2に記載の弾性表面波素子。
The organic adhesive layer has a thickness of 0.1 to 1.0 μm.
The surface acoustic wave device according to claim 1.
前記バルク波を散乱させる粗さは、算術平均粗さRaが0.25〜0.55μmであり、且つ、最大高さRzが前記算術平均粗さRaの9〜12倍である、
請求項1〜3のいずれか1項に記載の弾性表面波素子。
The roughness for scattering the bulk wave has an arithmetic average roughness Ra of 0.25 to 0.55 μm, and a maximum height Rz of 9 to 12 times the arithmetic average roughness Ra.
The surface acoustic wave device according to claim 1.
JP2009003371A 2009-01-09 2009-01-09 Surface acoustic wave device Active JP5180104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009003371A JP5180104B2 (en) 2009-01-09 2009-01-09 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009003371A JP5180104B2 (en) 2009-01-09 2009-01-09 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2010161697A JP2010161697A (en) 2010-07-22
JP5180104B2 true JP5180104B2 (en) 2013-04-10

Family

ID=42578508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009003371A Active JP5180104B2 (en) 2009-01-09 2009-01-09 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP5180104B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477976B2 (en) * 2011-09-05 2014-04-23 レーザーテック株式会社 Thickness measuring device
JP2013103182A (en) * 2011-11-15 2013-05-30 Toray Ind Inc Spiral type fluid separation element and method for manufacturing the same
JP6072604B2 (en) * 2013-05-17 2017-02-01 京セラ株式会社 Surface acoustic wave device
JP6731539B2 (en) * 2017-09-15 2020-07-29 日本碍子株式会社 Acoustic wave device and method for manufacturing the same
US12095442B2 (en) 2018-09-25 2024-09-17 Kyocera Corporation Composite substrate, piezoelectric device, and method for manufacturing composite substrate
JP2020182035A (en) * 2019-04-23 2020-11-05 株式会社ディスコ SAW filter manufacturing method and SAW filter
WO2021002382A1 (en) * 2019-07-01 2021-01-07 株式会社村田製作所 Elastic wave device
JP7551318B2 (en) 2020-03-27 2024-09-17 太陽誘電株式会社 Acoustic wave device and manufacturing method thereof, filter, and multiplexer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497611A (en) * 1990-08-15 1992-03-30 Clarion Co Ltd Manufacture of surface acoustic wave element
JPH04358410A (en) * 1991-06-05 1992-12-11 Sumitomo Electric Ind Ltd Surface acoustic wave element and production thereof
JPH0563500A (en) * 1991-08-30 1993-03-12 Tdk Corp Surface acoustic wave element
JP4723207B2 (en) * 2004-05-31 2011-07-13 信越化学工業株式会社 Composite piezoelectric substrate

Also Published As

Publication number Publication date
JP2010161697A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP5180104B2 (en) Surface acoustic wave device
KR101766487B1 (en) Composite substrate manufacturing method and composite substrate
JP5539602B1 (en) Composite substrate, surface acoustic wave device, and method of manufacturing composite substrate
JP5591240B2 (en) Composite substrate and manufacturing method thereof
JP5814774B2 (en) Composite substrate and method for manufacturing composite substrate
JP5833239B2 (en) Composite substrate, piezoelectric device, and composite substrate manufacturing method
JP3187231U (en) Composite board
JP3184763U (en) Composite board
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP2010187373A (en) Composite substrate and elastic wave device using the same
WO2014188842A1 (en) Method for manufacturing piezoelectric device, piezoelectric device, and piezoelectric free-standing substrate
JP2007214902A (en) Surface acoustic wave device
JP2011254354A (en) Composite substrate and surface acoustic wave device using the same
JP6247054B2 (en) Elastic wave device and manufacturing method thereof
JP5677030B2 (en) Elastic wave device and manufacturing method thereof
JP2011019043A (en) Composite substrate and method for manufacturing composite substrate
JP2010153962A (en) Method of manufacturing composite substrate, and composite substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5180104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150