JP2002111420A - Wafer for elastic surface wave device and its manufacturing method - Google Patents

Wafer for elastic surface wave device and its manufacturing method

Info

Publication number
JP2002111420A
JP2002111420A JP2000296025A JP2000296025A JP2002111420A JP 2002111420 A JP2002111420 A JP 2002111420A JP 2000296025 A JP2000296025 A JP 2000296025A JP 2000296025 A JP2000296025 A JP 2000296025A JP 2002111420 A JP2002111420 A JP 2002111420A
Authority
JP
Japan
Prior art keywords
wafer
mirror
wave device
single crystal
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000296025A
Other languages
Japanese (ja)
Inventor
Akihiko Kataoka
明彦 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000296025A priority Critical patent/JP2002111420A/en
Publication of JP2002111420A publication Critical patent/JP2002111420A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a superior wafer for elastic surface wave device and a manufacturing method for the same, which allows easily and simply applying mirror surface grinding to side portions of the wafer while it is a part of an ingot and high quality wafer processing. SOLUTION: The wafer for an elastic surface wave device has at least a side which is a mirror surface comprising lithium tantalite single crystal with an arithmetic average roughness (Ra) of the side being below 1.5 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タンタル酸リチウ
ム単結晶を基板材料として用いた弾性表面波素子用ウエ
ハ及びその作製方法に関するものである。
The present invention relates to a surface acoustic wave device wafer using a lithium tantalate single crystal as a substrate material and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、タンタル酸リチウム単結晶は表面
が研磨されたウエハを用いて弾性表面波素子の基板とし
て使用される。このウエハは単結晶育成法であるチョク
ラルスキー法等により直径80〜100mm程度の単結
晶が育成された後、弾性表面波素子作製時の基準面とな
るオリエンテーションフラット(以下、オリフラとい
う)の加工と、外径を整える円周研削加工が施され、必
要な結晶方位に沿って厚さ500μm前後の円盤状にス
ライスされて得られる。
2. Description of the Related Art Conventionally, a single crystal of lithium tantalate is used as a substrate of a surface acoustic wave device using a wafer having a polished surface. After a single crystal having a diameter of about 80 to 100 mm is grown on the wafer by the Czochralski method or the like, which is a single crystal growing method, an orientation flat (hereinafter, referred to as an orientation flat) serving as a reference plane when a surface acoustic wave element is manufactured is processed. Then, a circumferential grinding process for adjusting the outer diameter is performed, and sliced into a disk having a thickness of about 500 μm along a required crystal orientation.

【0003】その後、ウエハの表面をGC#1000〜
GC#2000程度の砥粒でラップ研磨された後、ウエ
ハの裏面はバルクスプリアスを減少させるためGC#2
40〜GC#2000程度の砥粒で粗された後、メタル
ボンド等を用いた#600〜#1500の砥石によって
面取り加工される。また、場合によっては鏡面の面取り
加工が施され、主面はメカノケミカル研磨によって鏡面
にされる。
After that, the surface of the wafer is GC # 1000-
After being lapped and polished with abrasives of about GC # 2000, the back surface of the wafer is GC # 2 to reduce bulk spurious.
After roughening with abrasive grains of about 40 to GC # 2000, chamfering is performed with a grindstone # 600 to # 1500 using a metal bond or the like. In some cases, a mirror surface is chamfered, and the main surface is mirror-finished by mechanochemical polishing.

【0004】このようにして研磨されたウエハは、鏡面
側に電極材料となるAlなどの金属膜を被覆し、フォト
リソグラフィー等を使用した微細加工技術により、例え
ば所望形状の櫛形電極をウエハ表面上に形成した後、個
々のチップ状にダイシングされることによって弾性表面
波素子が作製される。
[0004] The wafer polished in this manner is coated with a metal film such as Al as an electrode material on the mirror surface, and a comb-shaped electrode having a desired shape is formed on the wafer surface by a fine processing technique using photolithography or the like. Then, the surface acoustic wave element is manufactured by dicing into individual chips.

【0005】[0005]

【発明が解決しようとする課題】ウエハ面取り部を鏡面
加工するには、ウエハ単体で面取り部を砥石研削した
後、ウエハ面取り部の形状に対応したバフ溝形状を有す
る装置で鏡面加工される。しかしながら、ウエハの厚み
ばらつきやウエハ固定時のセンター位置ずれにより、加
工に多大の時間を要したり、割れにより歩留りを低下さ
せるなどの問題があった。
In order to mirror-process the chamfered portion of the wafer, the chamfered portion of the wafer is ground with a grindstone and then mirror-polished by an apparatus having a buff groove shape corresponding to the shape of the wafer chamfered portion. However, there are problems such as a large amount of time required for processing and a decrease in yield due to cracks due to variations in the thickness of the wafer and displacement of the center when the wafer is fixed.

【0006】また、面取り部が鏡面研磨されていないウ
エハでは、ウエハ加工工程やデバイス作製工程における
熱工程により、エッジ部からクラックが入りやすく、小
片の欠けを発生し易すい。特に、タンタル酸リチウム単
結晶ウエハの場合、{012}面にへきかい面を有する
ため、このへきかい面に沿って欠けが生じ易く、熱応力
や機械的な応力により、エッジ部の欠けが起点となって
ウエハに割れが生じ、ウエハ工程とデバイス工程におけ
る歩留りを低下させるという問題があった。特に、弾性
表面波素子の圧電基板として好適な回転角42°以下の
回転Yカットウエハについては、ウエハ面の垂直方向に
近いへきかい面の影響を受けるため、この問題は深刻で
ある。
On the other hand, in the case of a wafer whose chamfered portion is not mirror-polished, cracks are apt to be formed from the edge portion due to a heating process in the wafer processing step or the device manufacturing step, and chipping is likely to occur. In particular, in the case of a lithium tantalate single crystal wafer, since the {012} plane has a cleavage plane, chipping tends to occur along the cleavage plane, and the chipping of the edge portion becomes a starting point due to thermal stress or mechanical stress. Thus, there is a problem that cracks occur in the wafer and the yield in the wafer process and the device process is reduced. In particular, this problem is serious for a rotated Y-cut wafer having a rotation angle of 42 ° or less, which is suitable as a piezoelectric substrate of a surface acoustic wave device, because it is affected by a rough surface close to the vertical direction of the wafer surface.

【0007】さらに、ウエハの側面が粗いために、パー
ティクルが側面部に入り込み、これにより品質が低下し
歩留まりが低下する。
[0007] Further, since the side surface of the wafer is rough, particles enter the side surface portion, thereby deteriorating the quality and decreasing the yield.

【0008】そこで本発明では、上述の諸問題を解消
し、インゴットの状態でウエハ側面部の鏡面研磨加工が
容易かつ簡便に行え、しかも高品質なウエハ加工を実現
することができる優れた弾性表面波素子用ウエハ及びそ
の作製方法を提供することを目的とする。
Accordingly, the present invention solves the above-mentioned problems and provides an excellent elastic surface capable of easily and simply performing mirror polishing of the side surface of a wafer in an ingot state and realizing high quality wafer processing. It is an object of the present invention to provide a wave element wafer and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明の弾性表面波素子用単結晶ウエハは、タンタ
ル酸リチウム単結晶から成るウエハの少なくとも側面が
鏡面であるとともに、該側面の算術平均粗さ(Ra)が
1.5nm以下であることを特徴とする。特に、ウエハ
の一主面の周縁部が斜面に形成されていることとする。
In order to solve the above-mentioned problems, a single crystal wafer for a surface acoustic wave device according to the present invention is characterized in that at least a side surface of a wafer made of a single crystal of lithium tantalate is a mirror surface and an arithmetic operation of the side surface is performed. The average roughness (Ra) is not more than 1.5 nm. In particular, it is assumed that the peripheral portion of one main surface of the wafer is formed on a slope.

【0010】また、本発明の弾性表面波素子用単結晶ウ
エハの作製方法は、タンタル酸リチウム単結晶から成る
円筒状のインゴットの側面を鏡面研磨する工程と、前記
インゴットの中心軸を横切る方向にダイシングして円盤
状のウエハに切断する工程と、該ウエハの一主面を鏡面
研磨する工程とを含む。
[0010] The method of manufacturing a single crystal wafer for a surface acoustic wave device according to the present invention comprises the steps of: mirror-polishing the side surface of a cylindrical ingot made of lithium tantalate single crystal; A step of dicing and cutting into a disc-shaped wafer; and a step of mirror-polishing one main surface of the wafer.

【0011】また特に、ウエハの側面部の傾斜面形状は
ウエハ円周方向(R)に0.01t≦R≦1t、ウエハ
厚み方向(T)に0.01≦T≦t/2(ただし、tは
ウエハ厚み)の大きさとする。
Particularly, the inclined surface shape of the side surface portion of the wafer is 0.01t ≦ R ≦ 1t in the wafer circumferential direction (R) and 0.01 ≦ T ≦ t / 2 in the wafer thickness direction (T) (however, t is the size of the wafer thickness).

【0012】また、硬度(Asker−C)100以下
の不織布を用いて加工圧0.02GPa以上の条件で研
磨することを特徴とする。
[0012] A nonwoven fabric having a hardness (Asker-C) of 100 or less is polished under a processing pressure of 0.02 GPa or more.

【0013】また、鏡面部の保護に、ワックス・ピッチ
・レジスト・フイルム状のものを使用することを特徴と
する。
[0013] Further, the present invention is characterized in that a wax-pitch-resist-film-like material is used to protect the mirror surface.

【0014】上記構成によれば、簡便かつ容易に高効率
に面取り加工することができ、熱工程でのクラックや欠
けの発生がなく、しかも面取り加工部からの欠けによる
パーティクル汚染がなくなり、歩留り低下を防止するこ
とができる。
According to the above construction, the chamfering can be performed simply and easily with high efficiency, no cracks or chips are generated in the heating step, and particle contamination due to chips from the chamfered portion is eliminated, and the yield is reduced. Can be prevented.

【0015】[0015]

【発明の実施の形態】以下に、本発明の実施形態につい
て模式的に図示した図面に基づき詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】弾性表面波素子として好適に使用できる圧
電基板を切り出すために、36°〜46°回転Yカット
のタンタル酸リチウム単結晶ウエハを得なければならな
いが、まず、高周波加熱方式の単結晶育成炉内におい
て、坩堝を所定温度に加熱して原料を溶融し、この融液
に種結晶を浸し、所定の回転数及び引き上げ速度で、育
成軸36°〜46°回転Y軸での結晶育成を行い、円筒
形状の単結晶インゴットを得る。
In order to cut out a piezoelectric substrate suitable for use as a surface acoustic wave device, a Y-cut lithium tantalate single crystal wafer rotated at 36 ° to 46 ° must be obtained. In a furnace, the crucible is heated to a predetermined temperature to melt the raw material, a seed crystal is immersed in the melt, and a crystal is grown at a predetermined rotation speed and a pulling speed at a growth axis of 36 ° to 46 ° and a Y axis. Then, a cylindrical single crystal ingot is obtained.

【0017】次に、得られた結晶インゴットの両端面を
切断するか研削加工をした後、図1及び図2に示すよう
に、結晶インゴット1の両端面のセンター部を中心出し
治具5及び円筒センター治具3を用いVブロック2等に
配設することにより、結晶インゴット1の芯出しを行っ
た後、後記する円筒研削装置に固定する。なお、図中、
4はテーパー芯出し溝である。
Next, after cutting or grinding the both end faces of the obtained crystal ingot, as shown in FIGS. 1 and 2, the jig 5 for centering the center of both end faces of the crystal ingot 1 and The crystal ingot 1 is centered by disposing it on the V block 2 or the like using the cylindrical center jig 3 and then fixed to a cylindrical grinding device described later. In the figure,
4 is a taper centering groove.

【0018】ここで、円筒研削は例えば#200〜#1
000のメタルボンドを用いた砥石を用いて、弾性表面
波素子の基準方向となるオリフラと外径を整える研削加
工によってなされる。結晶インゴット1の側面部におけ
る粗研削加工後、図3に示す鏡面円筒研削装置と、図4
(a)〜(c)に示すような溝形状を有する不織布砥石
11を用いて鏡面の円筒加工を行う。これにより、イン
ゴットの側面を算術平均粗さ(Ra)が1.5nm以下
にする。すなわち、円筒研削後、図3に示すテーパー芯
出し溝4に、鏡面円筒研削装置円筒テーパー芯押し治具
12で両端から押さえることにより、前工程の円筒研削
時の芯が確保出来る。その後、インゴット1を回転させ
ながら、また図4に示す不織布砥石11を回転させなが
ら左右方向に不織布砥石11を送ることで鏡面円筒加工
が行われ、表面粗さ1.5nm以下の鏡面インゴットの
加工がなされる。
Here, cylindrical grinding is performed, for example, in # 200 to # 1.
Using a grinding wheel using a metal bond of 000, grinding is performed by adjusting an orientation flat serving as a reference direction of the surface acoustic wave element and an outer diameter. After rough grinding on the side surface of the crystal ingot 1, a mirror-surface cylindrical grinding device shown in FIG.
A mirror surface cylindrical processing is performed using the nonwoven fabric grindstone 11 having a groove shape as shown in (a) to (c). Thereby, the arithmetic mean roughness (Ra) of the side surface of the ingot is set to 1.5 nm or less. That is, after the cylindrical grinding, by pressing the tapered centering groove 4 shown in FIG. 3 from both ends with the mirror-surface cylindrical grinding device cylindrical taper centering jigs 12, the core for the cylindrical grinding in the previous process can be secured. Thereafter, while rotating the ingot 1 and rotating the nonwoven fabric grindstone 11 shown in FIG. 4, the nonwoven fabric grindstone 11 is sent in the left-right direction to perform mirror-surface cylindrical processing. Is made.

【0019】次に、円筒状の結晶インゴット1を取り外
して側面の鏡面部保護に、例えばワックス、ピッチ、レ
ジスト、またはフィルムを貼り付けるか塗布する。次
に、所定の結晶面に沿って厚さ500μm前後にスライ
スを行い、ウエハをラッピングする。
Next, the cylindrical crystal ingot 1 is removed, and, for example, a wax, a pitch, a resist, or a film is pasted or applied to protect the mirror surface on the side surface. Next, the wafer is sliced to a thickness of about 500 μm along a predetermined crystal plane, and the wafer is wrapped.

【0020】その後、さらに図5に示すように、裏面部
の傾斜部の加工、例えばメタルボンドを用い#1000
でウエハ10の円周方向(R)に0.01t≦R≦1
t、ウエハ10の厚み方向(T)に0.01≦T≦t/
2(tはウエハ10の厚み)の傾斜面10aの加工を行
う。
Thereafter, as shown in FIG. 5, processing of an inclined portion on the back surface, for example, using a metal bond to # 1000
In the circumferential direction (R) of the wafer 10, 0.01t ≦ R ≦ 1
t, in the thickness direction (T) of the wafer 10, 0.01 ≦ T ≦ t /
2 (t is the thickness of the wafer 10) of the inclined surface 10a is processed.

【0021】特に、回転角42°以下の回転Yカットウ
エハについては、ウエハ面の垂直方向に近いへきかい面
の影響を受けるため、円周方向(R)は27μm以上
(0.03GPa以上の加工圧)が望ましい。また、R
が1t以上ではウエハ有効面積が狭くなり、0.01t
以下では面取りの効果が得られない。インゴット側面鏡
面部の保護にフィルムを使用した場合は主面の鏡面研磨
加工を行う前に取り除き、保護膜を使用した場合は主面
の鏡面研磨加工の後に剥離する。
In particular, since the rotational Y-cut wafer having a rotational angle of 42 ° or less is affected by a cleavage plane close to the vertical direction of the wafer surface, the circumferential direction (R) has a working pressure of 27 μm or more (a processing pressure of 0.03 GPa or more). ) Is desirable. Also, R
Is 1 t or more, the effective area of the wafer becomes narrow, and 0.01 t
Below, the effect of chamfering cannot be obtained. When a film is used to protect the mirror surface of the side surface of the ingot, the film is removed before the main surface is polished, and when a protective film is used, the film is peeled off after the main surface is polished.

【0022】主面の鏡面研磨加工は、布織布タイプで硬
さ(Asker−C)100以下のものを用い、加工圧
0.02GPa以上の条件で研磨を行うことにより、ウ
エハ主面の周縁部における傾斜面の研磨加工を、円周方
向(R)に0.01t≦R≦1t、ウエハ厚み方向
(T)に0.01≦T≦t/2(tはウエハ厚み)の寸
法で主面の鏡面研磨加工と同一の工程で作製することが
できる。これにより作製された斜面10aにより欠けの
心配のないウエハとすることができる。
The mirror polishing of the main surface is performed by using a woven cloth type having a hardness (Asker-C) of 100 or less and performing polishing at a processing pressure of 0.02 GPa or more to obtain a peripheral edge of the wafer main surface. The polishing of the inclined surface in the portion is mainly performed in the circumferential direction (R) with dimensions of 0.01t ≦ R ≦ 1t and in the wafer thickness direction (T) with dimensions of 0.01 ≦ T ≦ t / 2 (t is the wafer thickness). It can be manufactured in the same process as the mirror polishing of the surface. This makes it possible to obtain a wafer that is free from chipping due to the slope 10a produced.

【0023】その後、洗浄により保護膜を剥離した後、
デバイス作製工程では、熱工程によるクラック、欠けの
発生がなくなり歩留り低下が全く生じない基板が作製出
来る。また、側面部の鏡面によりパーティクル等のデバ
イス特性歩留りも向上する優れた弾性表面波特性を得ら
れる。
Then, after removing the protective film by washing,
In the device manufacturing process, a substrate can be manufactured in which cracking and chipping due to the heat process do not occur and the yield does not decrease at all. In addition, excellent surface acoustic wave characteristics that improve the yield of device characteristics such as particles can be obtained by the mirror surface of the side surface.

【0024】以上のように、本発明の弾性表面波素子用
ウエハは、タンタル酸リチウム単結晶から成るウエハの
一主面及び側面が鏡面であるとともに、側面の算術平均
粗さ(Ra)が1.5nm以下である。また、ウエハの
一主面の周縁部が斜面に形成されていることを特徴とす
る。また、本発明の作製方法は、タンタル酸リチウム単
結晶から成る円筒状のインゴットの側面を鏡面研磨する
工程と、インゴットの中心軸を横切る方向にダイシング
して円盤状のウエハに切断する工程と、ウエハの一主面
を鏡面研磨する工程とを含むので、インゴットの状態で
ウエハ側面部の鏡面研磨加工が一度に多量に研磨加工が
可能となり、低コスト、欠け等の生じない高品質なウエ
ハ加工が可能となる。
As described above, in the surface acoustic wave device wafer of the present invention, one principal surface and side surfaces of the wafer made of lithium tantalate single crystal are mirror surfaces, and the arithmetic mean roughness (Ra) of the side surfaces is 1 unit. 0.5 nm or less. Further, a peripheral portion of one main surface of the wafer is formed on a slope. Further, the manufacturing method of the present invention is a step of mirror-polishing the side surface of a cylindrical ingot made of lithium tantalate single crystal, and a step of dicing in a direction crossing the center axis of the ingot to cut into a disk-shaped wafer, A process of mirror-polishing one main surface of the wafer, so that a large amount of mirror-polishing can be performed at once on the side surface of the wafer in an ingot state, resulting in low cost, high-quality wafer processing without chipping and the like. Becomes possible.

【0025】[0025]

【実施例】高周波加熱炉でrot36°Y軸に育成され
たタンタル酸リチウム単結晶をダイヤモンドカッターで
両端面を切断し、Vブロック等を利用して両端面を円筒
センター研削治具にワックス固定した。円筒研削にイン
ゴットを装着し円筒研削・オリフラ研削をメタルボンド
を用いた#325で円筒加工とオリフラ加工を施したし
た。
EXAMPLE A lithium tantalate single crystal grown on a rot36 ° Y-axis in a high-frequency heating furnace was cut at both ends with a diamond cutter, and both ends were fixed to a cylindrical center grinding jig using a V block or the like. . An ingot was attached to the cylindrical grinding, and the cylindrical grinding and the orientation flat grinding were performed by # 325 using a metal bond.

【0026】次に、不織布タイプの研磨パッドにコロイ
ダルシリカの砥粒を用いて鏡面円筒加工・オリフラ鏡面
加工を行なった。この鏡面円筒インゴットの算術表面粗
さ(Ra)を測定したところ算術平均粗さ(Ra)は
1.5nmであった。
Next, a non-woven fabric type polishing pad was subjected to mirror surface cylindrical processing and orientation flat mirror surface processing using abrasive grains of colloidal silica. When the arithmetic surface roughness (Ra) of this mirror-finished cylindrical ingot was measured, the arithmetic average roughness (Ra) was 1.5 nm.

【0027】次にインゴットを装置から取り外し、円筒
鏡面部とオリフラ鏡面部に例えばレジストを塗布して保
護膜とした。
Next, the ingot was removed from the apparatus, and for example, a resist was applied to the cylindrical mirror portion and the orientation flat mirror portion to form a protective film.

【0028】次に、X線回折により36°回転Y面に
0.1°以内の方位修正をしてマルチワイヤーソーにセ
ットした後、厚さ500μm前後に遊離砥粒を用いてス
ライス加工を行った。切断後のウエハはGC#1000
の砥粒で365μmの厚さまで両面ラッピング研磨加工
を施した。さらに、裏面傾斜部の加工は、例えばメタル
ボンドを用いた#1000の砥石を用いて円周方向
(R)に36μm、ウエハ厚み方向(T)に36μm施
した。
Next, after setting the orientation within a range of 0.1 ° on the Y-plane rotated by 36 ° by X-ray diffraction and setting it on a multi-wire saw, slicing was performed using free abrasive grains to a thickness of about 500 μm. Was. The cut wafer is GC # 1000
Lapping polishing was performed to a thickness of 365 μm with the abrasive grains of No. 1. Further, the processing of the inclined back surface was performed using a # 1000 grindstone using a metal bond, for example, in a circumferential direction (R) of 36 μm and in a wafer thickness direction (T) of 36 μm.

【0029】次に、主面の鏡面研磨加工は、例えば不織
布タイプで硬さ(Asker−C)100で、この不織
布に加工圧0.03GPaでウエハの片面(一主面)を
メカノケミカル研磨し、例えばコロイダルシリカと不織
布で350μmまでメカノケミカル研磨を行った。加工
圧と平坦傾斜部との関係は、表1に示すような結果とな
った。
Next, the main surface is mirror-polished by, for example, a nonwoven fabric type having a hardness (Asker-C) of 100, and one side (one main surface) of the wafer is subjected to mechanochemical polishing at a processing pressure of 0.03 GPa. For example, mechanochemical polishing was performed to 350 μm with colloidal silica and a nonwoven fabric. The relationship between the processing pressure and the flat inclined portion was as shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】このウエハ基板50枚と側面部メタルボン
ドを用いた#1200迄の砥石による研磨で得られたウ
エハ50枚と、面取り加工を施さない円筒研削後のウエ
ハ50枚を洗浄し、Al成膜した後、常温(25℃)か
ら83℃のIPA(イソプロピルアルコール)にウエハ
基板を投入し取り出したところ、ウエハ側面部を円筒研
削後のウエハ、算術平均粗さ(Ra)が0.6μmのウ
エハは全て熱ショックで割れた。
The 50 wafer substrates, 50 wafers obtained by grinding with a grindstone up to # 1200 using a metal bond on the side surface, and 50 wafers after cylindrical grinding without chamfering are cleaned, and the aluminum substrate is cleaned. After the film was formed, the wafer substrate was put into IPA (isopropyl alcohol) at room temperature (25 ° C.) to 83 ° C. and taken out. When the wafer side surface was cylindrically ground, the wafer had an arithmetic average roughness (Ra) of 0.6 μm. All wafers were cracked by heat shock.

【0032】また、ウエハ側面部にメタルボンド120
0番の砥石で研磨を行い、算術平均粗さ(Ra)が0.
13μmのウエハは、50枚中10枚が熱ショックで割
れた。
Further, a metal bond 120 is provided on the side surface of the wafer.
Polishing is performed with a No. 0 whetstone, and the arithmetic average roughness (Ra) is 0.
Ten of the 13 μm wafers were cracked by thermal shock.

【0033】また、ウエハ側面部をメカノケミカルポリ
ッシュを行い、算術平均粗さ(Ra)が1.5nmのウ
エハ基板は全く熱ショックで割れ無かった。その後、ウ
エハ鏡面側にAlからなる膜を被覆した後、フォトリソ
グラフィー等を使用した微細加工技術により所望形状、
例えば櫛形電極をウエハ表面状に形成した後チップ状に
ダイシングされることによって弾性表面波装置が作製し
たところ、残りのウエハ基板は全く割れなく良好な特性
が得られた。
Further, the wafer side portion was subjected to mechanochemical polishing, and the wafer substrate having an arithmetic average roughness (Ra) of 1.5 nm was not broken at all by the heat shock. Then, after coating the film made of Al on the mirror surface of the wafer, the desired shape,
For example, when a surface acoustic wave device was manufactured by forming a comb-shaped electrode on the surface of a wafer and then dicing it into chips, the remaining wafer substrate obtained good characteristics without any cracks.

【0034】また、ウエハ側面部をメタルボンド120
0番の砥石で研磨し、平均粗さ(Ra)が0.13μm
のウエハ基板は、側面部のパーティクル等によりデバイ
ス歩留り96%であった。しかしながら、ウエハ側面部
をメカノケミカルポリッシュを施し、算術平均粗さ(R
a)が1.5nmのウエハ基板は、デバイス特性歩留り
100%と良好な結果が得られた。
The side surface of the wafer is covered with a metal bond 120.
Polished with No. 0 whetstone, average roughness (Ra) 0.13μm
The device yield of the wafer substrate was 96% due to particles and the like on the side surface. However, the side surface of the wafer was subjected to mechanochemical polishing, and the arithmetic average roughness (R
The wafer substrate with a) of 1.5 nm showed good results with a device characteristic yield of 100%.

【0035】[0035]

【発明の効果】本発明により、インゴットの状態でウエ
ハ側面部の鏡面研磨加工が一度に多量に研磨加工が可能
となり、低コスト、高品質なウエハ加工が可能となる。
According to the present invention, it is possible to perform a large amount of mirror polishing on the side surface of a wafer at a time in the state of an ingot, thereby enabling low cost and high quality wafer processing.

【0036】また、ウエハの側面部の算術平均粗さ(R
a)を1.5nm以下にすることにより、熱工程での割
れ、欠けを少なくすることができ、更にパーティクル等
の除去が簡便にでき、デバイス工程で高歩留まりに製造
することができ安価なデバイスを提供することができ
る。
The arithmetic mean roughness (R
By setting a) to 1.5 nm or less, cracking and chipping in the thermal process can be reduced, particles and the like can be easily removed, and the device can be manufactured at a high yield in the device process and can be manufactured at a low cost. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る円筒センター接着方法を模式的に
説明する側面図である。
FIG. 1 is a side view schematically illustrating a cylindrical center bonding method according to the present invention.

【図2】本発明に係る円筒芯だし治具の側面図である。FIG. 2 is a side view of a cylindrical centering jig according to the present invention.

【図3】本発明に係る円筒鏡面研磨装置の側面図であ
る。
FIG. 3 is a side view of the cylindrical mirror polishing apparatus according to the present invention.

【図4】本発明に係る円筒鏡面バフ砥石の溝面を説明す
る平面図である。
FIG. 4 is a plan view illustrating a groove surface of the cylindrical mirror-surface buffing wheel according to the present invention.

【図5】本発明の実施形態を模式的に説明するウエハの
断面図である。
FIG. 5 is a cross-sectional view of a wafer schematically illustrating an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:インゴット 2:Vブロック 3:円筒センター治具 4:テーパー芯出し溝 5:中心芯出し治具 10:ウエハ 10a:傾斜面 11:不織布砥石 12:円筒テーパー芯押し治具 1: ingot 2: V block 3: cylindrical center jig 4: taper centering groove 5: center centering jig 10: wafer 10a: inclined surface 11: non-woven grindstone 12: cylindrical taper centering jig

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タンタル酸リチウム単結晶から成るウエ
ハの少なくとも側面が鏡面であるとともに、該側面の算
術平均粗さ(Ra)が1.5nm以下であることを特徴
とする弾性表面波素子用ウエハ。
1. A wafer for a surface acoustic wave device, wherein at least a side surface of a wafer made of a single crystal of lithium tantalate is a mirror surface, and an arithmetic average roughness (Ra) of the side surface is 1.5 nm or less. .
【請求項2】 前記ウエハの一主面の周縁部が斜面に形
成されていることを特徴とする請求項1に記載の弾性表
面波素子用単結晶ウエハ。
2. The single crystal wafer for a surface acoustic wave device according to claim 1, wherein a peripheral portion of one principal surface of the wafer is formed on a slope.
【請求項3】 タンタル酸リチウム単結晶から成る円筒
状のインゴットの側面を鏡面研磨する工程と、前記イン
ゴットの中心軸を横切る方向にダイシングして円盤状の
ウエハに切断する工程と、該ウエハの一主面を鏡面研磨
する工程とを含む請求項1に記載の弾性表面波素子用ウ
エハの作製方法。
3. A step of mirror-polishing a side surface of a cylindrical ingot made of a lithium tantalate single crystal, a step of dicing in a direction crossing a center axis of the ingot, and cutting into a disk-shaped wafer. 2. The method for producing a surface acoustic wave device wafer according to claim 1, further comprising the step of: mirror polishing one principal surface.
JP2000296025A 2000-09-28 2000-09-28 Wafer for elastic surface wave device and its manufacturing method Pending JP2002111420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296025A JP2002111420A (en) 2000-09-28 2000-09-28 Wafer for elastic surface wave device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296025A JP2002111420A (en) 2000-09-28 2000-09-28 Wafer for elastic surface wave device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002111420A true JP2002111420A (en) 2002-04-12

Family

ID=18778363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296025A Pending JP2002111420A (en) 2000-09-28 2000-09-28 Wafer for elastic surface wave device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002111420A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060156A (en) * 2003-08-11 2005-03-10 Tdk Corp Single crystal substrate and its manufacturing method
US7544248B2 (en) * 2003-04-08 2009-06-09 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method of manufacturing same
JP2011124628A (en) * 2009-12-08 2011-06-23 Shin-Etsu Chemical Co Ltd Composite piezoelectric chip and method of manufacturing the same
WO2020040203A1 (en) * 2018-08-21 2020-02-27 京セラ株式会社 Substrate for surface acoustic wave element, and method for manufacturing said substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544248B2 (en) * 2003-04-08 2009-06-09 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method of manufacturing same
US7544247B2 (en) * 2003-04-08 2009-06-09 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method of manufacturing same
US7544246B2 (en) * 2003-04-08 2009-06-09 Sumitomo Metal Mining Co., Ltd. Lithium tantalate substrate and method of manufacturing same
JP2005060156A (en) * 2003-08-11 2005-03-10 Tdk Corp Single crystal substrate and its manufacturing method
JP4539053B2 (en) * 2003-08-11 2010-09-08 Tdk株式会社 Single crystal substrate and manufacturing method thereof
JP2011124628A (en) * 2009-12-08 2011-06-23 Shin-Etsu Chemical Co Ltd Composite piezoelectric chip and method of manufacturing the same
WO2020040203A1 (en) * 2018-08-21 2020-02-27 京セラ株式会社 Substrate for surface acoustic wave element, and method for manufacturing said substrate
KR20210028672A (en) * 2018-08-21 2021-03-12 교세라 가부시키가이샤 Substrate for surface acoustic wave device and method for manufacturing the same
JPWO2020040203A1 (en) * 2018-08-21 2021-09-02 京セラ株式会社 Substrate for surface acoustic wave element and its manufacturing method
JP7019052B2 (en) 2018-08-21 2022-02-14 京セラ株式会社 Substrate for surface acoustic wave element and its manufacturing method
KR102508006B1 (en) * 2018-08-21 2023-03-09 교세라 가부시키가이샤 Substrate for surface acoustic wave device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5384313B2 (en) Composite substrate manufacturing method and composite substrate
US6214704B1 (en) Method of processing semiconductor wafers to build in back surface damage
US6114245A (en) Method of processing semiconductor wafers
JP3328193B2 (en) Method for manufacturing semiconductor wafer
JP7045676B1 (en) Semiconductor crystal wafer manufacturing equipment and manufacturing method
JP2000114216A (en) Manufacture of semiconductor wafer
JP5363092B2 (en) Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
JP3904943B2 (en) Sapphire wafer processing method and electronic device manufacturing method
JP2007260793A (en) Wafer substrate polishing method and wafer made of piezoelectric single crystal
JP5871282B2 (en) A method for producing a piezoelectric oxide single crystal wafer.
JP2002111420A (en) Wafer for elastic surface wave device and its manufacturing method
JP4224871B2 (en) Manufacturing method of semiconductor substrate
KR100453083B1 (en) A method for manufacturing surface acoustic wave
JPH0513388A (en) Manufacture of semiconductor wafer
JP7439415B2 (en) Piezoelectric substrate, piezoelectric substrate manufacturing method, and composite substrate
JPH0632905B2 (en) (III) -Group V compound semiconductor wafer thinning treatment method
JP7019052B2 (en) Substrate for surface acoustic wave element and its manufacturing method
JP2002198762A (en) Single crystal wafer and its manufacturing method
JP7285507B1 (en) Grinding method for semiconductor crystal wafer
JPH09213593A (en) Bonded substrate and manufacture thereof
JP2022100895A (en) Edge polishing method for piezoelectric oxide single crystal wafer, and manufacturing method for piezoelectric oxide single crystal wafer
JPH0957584A (en) Working method for wafer
JP2022068748A (en) Oxide single-crystal wafer, wafer for composite substrate, composite substrate, method for processing oxide single-crystal wafer, method for producing oxide single-crystal wafer, method for producing wafer for composite substrate, and method for producing composite substrate
JPH1131670A (en) Manufacture of semiconductor substrate