JP7401372B2 - Wafer processing method - Google Patents

Wafer processing method Download PDF

Info

Publication number
JP7401372B2
JP7401372B2 JP2020056179A JP2020056179A JP7401372B2 JP 7401372 B2 JP7401372 B2 JP 7401372B2 JP 2020056179 A JP2020056179 A JP 2020056179A JP 2020056179 A JP2020056179 A JP 2020056179A JP 7401372 B2 JP7401372 B2 JP 7401372B2
Authority
JP
Japan
Prior art keywords
wafer
modified layer
ring
shaped
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020056179A
Other languages
Japanese (ja)
Other versions
JP2021158194A (en
Inventor
タン シボ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2020056179A priority Critical patent/JP7401372B2/en
Priority to KR1020210028252A priority patent/KR20210120830A/en
Priority to SG10202102605X priority patent/SG10202102605XA/en
Priority to CN202110306965.3A priority patent/CN113451117A/en
Priority to TW110110757A priority patent/TW202137307A/en
Publication of JP2021158194A publication Critical patent/JP2021158194A/en
Application granted granted Critical
Publication of JP7401372B2 publication Critical patent/JP7401372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Description

本発明は、複数のデバイスが分割予定ラインによって区画されたデバイス領域と、デバイス領域を囲繞する外周余剰領域とが表面に形成されたウエーハを個々のデバイスチップに分割するウエーハの加工方法に関する。 The present invention relates to a wafer processing method for dividing a wafer having a device region in which a plurality of devices are partitioned by dividing lines and a peripheral surplus region surrounding the device region into individual device chips.

IC、LSI等の複数のデバイスが分割予定ラインによって区画されたデバイス領域と、デバイス領域を囲繞する外周余剰領域とが表面に形成されたウエーハは個々のデバイスチップに分割され、分割されたデバイスチップは携帯電話、パソコン等の電気機器に利用される。 A wafer with a device area in which multiple devices such as ICs, LSIs, etc. are partitioned by dividing lines and an extra peripheral area surrounding the device area is divided into individual device chips, and the divided device chips are divided into individual device chips. is used in electrical devices such as mobile phones and computers.

ウエーハを個々のデバイスチップに分割する方法として、ウエーハに対して透過性を有する波長のレーザー光線の集光点を分割予定ラインに対応するウエーハの内部に位置づけてレーザー光線をウエーハに照射し改質層を分割予定ラインに沿って形成し、その後、ウエーハに外力を付与して個々のデバイスチップに分割する技術が提案されている(たとえば特許文献1参照)。 As a method of dividing a wafer into individual device chips, the focal point of a laser beam with a wavelength that is transparent to the wafer is positioned inside the wafer corresponding to the planned division line, and the laser beam is irradiated onto the wafer to form a modified layer. A technique has been proposed in which a wafer is formed along a planned dividing line and then divided into individual device chips by applying an external force to the wafer (for example, see Patent Document 1).

また、ウエーハに外力を付与する方法として、ウエーハの表面に保護部材を配設しウエーハの裏面を研削することでウエーハを所望の厚みに薄くすると共に、改質層からクラックを表面に到達させてウエーハを個々のデバイスチップに分割する技術も提案されている(たとえば特許文献2参照)。 Another method of applying external force to the wafer is to thin the wafer to a desired thickness by disposing a protective member on the surface of the wafer and grinding the back surface of the wafer, and also to allow cracks to reach the surface from the modified layer. A technique for dividing a wafer into individual device chips has also been proposed (see, for example, Patent Document 2).

特許第3408805号公報Patent No. 3408805 特許第4358762号公報Patent No. 4358762

しかし、ウエーハの外周余剰領域の外周面には面取り加工が施されており、分割予定ラインの延長線上の面取り加工が施された領域には改質層を形成することが困難である。このため、ウエーハの内部に分割予定ラインに沿って改質層を形成した後にウエーハに外力を付与すると、外周余剰領域における面取り加工が施された領域においては改質層が形成されていないことに起因して無秩序にクラックが発生することがあり、これによって外周余剰領域に隣接するデバイスが損傷するという問題がある。 However, the outer circumferential surface of the wafer's excess outer circumferential region is chamfered, and it is difficult to form a modified layer in the chamfered region on the extension line of the planned dividing line. Therefore, if an external force is applied to the wafer after forming a modified layer inside the wafer along the planned dividing line, the modified layer will not be formed in the chamfered area in the excess outer circumferential area. As a result, cracks may occur in a disordered manner, which causes a problem of damage to devices adjacent to the peripheral excess area.

上記事実に鑑みてなされた本発明の課題は、ウエーハの外周余剰領域に隣接するデバイスの損傷を防止することができるウエーハの加工方法を提供することである。 An object of the present invention, which has been made in view of the above facts, is to provide a wafer processing method that can prevent damage to devices adjacent to the peripheral surplus area of the wafer.

本発明は上記課題を解決するために以下のウエーハの加工方法を提供する。すなわち、複数のデバイスが分割予定ラインによって区画されたデバイス領域と、該デバイス領域を囲繞する外周余剰領域とが表面に形成されたウエーハを個々のデバイスチップに分割するウエーハの加工方法であって、ウエーハの表面に保護部材を配設する保護部材配設工程と、ウエーハに対して透過性を有する波長のレーザー光線の集光点をウエーハの裏面から外周余剰領域に対応するウエーハの内部に位置づけてレーザー光線をウエーハに照射し外周余剰領域に沿って第一のリング状改質層と該第一のリング状改質層を囲繞する第二のリング状改質層とを形成するリング状改質層形成工程と、ウエーハに対して透過性を有する波長のレーザー光線の集光点をウエーハの裏面から分割予定ラインに対応するウエーハの内部に位置づけてレーザー光線をウエーハに照射し分割予定ラインに沿って分割予定ライン改質層を形成する分割予定ライン改質層形成工程と、ウエーハの裏面を研削して所定の厚みに形成すると共に該分割予定ライン改質層から分割予定ラインに伸長するクラックによってウエーハを個々のデバイスチップに分割する分割工程と、を含み、該分割予定ライン改質層形成工程において、該分割予定ライン改質層の始点および終点が該第一のリング状改質層と該第二のリング状改質層との間に位置するようにレーザー光線の集光点を位置づけるウエーハの加工方法を本発明は提供する。 In order to solve the above problems, the present invention provides the following wafer processing method. That is, a wafer processing method in which a wafer having a surface formed with a device region in which a plurality of devices are partitioned by dividing lines and an outer peripheral surplus region surrounding the device region is divided into individual device chips, A protective member disposing step in which a protective member is disposed on the surface of the wafer, and a laser beam is emitted from the back surface of the wafer by positioning the convergence point of the laser beam with a wavelength that is transparent to the wafer inside the wafer corresponding to the outer peripheral surplus area. Forming a ring-shaped modified layer by irradiating the wafer with a first ring-shaped modified layer and forming a second ring-shaped modified layer surrounding the first ring-shaped modified layer along the outer peripheral surplus area. In the process, the convergence point of a laser beam with a wavelength that is transparent to the wafer is positioned inside the wafer from the back side of the wafer corresponding to the planned dividing line, and the laser beam is irradiated onto the wafer along the planned dividing line. A dividing line modified layer forming step in which a modified layer is formed, and the back surface of the wafer is ground to form a predetermined thickness, and the wafer is separated into individual wafers by cracks extending from the dividing line modified layer to the dividing line. a dividing step of dividing into device chips, and in the dividing line modified layer forming step, the starting point and end point of the dividing line modified layer are located between the first ring-shaped modified layer and the second ring-shaped modified layer. The present invention provides a wafer processing method in which the focal point of a laser beam is positioned between the wafer and the wafer.

好ましくは、該リング状改質層形成工程において形成する該第一のリング状改質層と該第二のリング状改質層との間隔を300~1000μmに設定する。 Preferably, the interval between the first ring-shaped modified layer and the second ring-shaped modified layer formed in the ring-shaped modified layer forming step is set to 300 to 1000 μm.

本発明のウエーハの加工方法は、複数のデバイスが分割予定ラインによって区画されたデバイス領域と、該デバイス領域を囲繞する外周余剰領域とが表面に形成されたウエーハを個々のデバイスチップに分割するウエーハの加工方法であって、ウエーハの表面に保護部材を配設する保護部材配設工程と、ウエーハに対して透過性を有する波長のレーザー光線の集光点をウエーハの裏面から外周余剰領域に対応するウエーハの内部に位置づけてレーザー光線をウエーハに照射し外周余剰領域に沿って第一のリング状改質層と該第一のリング状改質層を囲繞する第二のリング状改質層とを形成するリング状改質層形成工程と、ウエーハに対して透過性を有する波長のレーザー光線の集光点をウエーハの裏面から分割予定ラインに対応するウエーハの内部に位置づけてレーザー光線をウエーハに照射し分割予定ラインに沿って分割予定ライン改質層を形成する分割予定ライン改質層形成工程と、ウエーハの裏面を研削して所定の厚みに形成すると共に該分割予定ライン改質層から分割予定ラインに伸長するクラックによってウエーハを個々のデバイスチップに分割する分割工程と、を含み、該分割予定ライン改質層形成工程において、該分割予定ライン改質層の始点および終点が該第一のリング状改質層と該第二のリング状改質層との間に位置するようにレーザー光線の集光点を位置づけるので、分割予定ライン改質層の始点または終点から無秩序にクラックが伸長したとしても、第一のリング状改質層と第二のリング状改質層とによってクラックが遮断されるため、クラックがデバイスに到達することがない。したがって、本発明のウエーハの加工方法によれば、ウエーハの外周余剰領域に隣接するデバイスの損傷を防止することができる。 The wafer processing method of the present invention includes dividing a wafer into individual device chips, the wafer having a device region in which a plurality of devices are partitioned by division lines and an outer peripheral surplus region surrounding the device region formed on the surface thereof. The processing method includes a protective member disposing step of disposing a protective member on the surface of the wafer, and a convergence point of a laser beam having a wavelength that is transparent to the wafer from the back surface of the wafer to the outer peripheral surplus area. A laser beam is positioned inside the wafer and the wafer is irradiated with a laser beam to form a first ring-shaped modified layer and a second ring-shaped modified layer surrounding the first ring-shaped modified layer along the outer peripheral surplus area. A process of forming a ring-shaped modified layer, and a laser beam with a wavelength that is transparent to the wafer is positioned inside the wafer from the back surface of the wafer corresponding to the dividing line, and the laser beam is irradiated onto the wafer to prepare the wafer for dividing. A dividing line modified layer forming step of forming a dividing line modified layer along the line, and grinding the back side of the wafer to form a predetermined thickness, and extending from the dividing line modified layer to the dividing line. a dividing step of dividing the wafer into individual device chips by cracking, and in the dividing line modified layer forming step, the starting point and end point of the dividing line modified layer form the first ring-shaped modified layer. Since the focal point of the laser beam is positioned between the layer and the second ring-shaped modified layer, even if cracks extend randomly from the starting point or end point of the planned dividing line modified layer, the first ring-shaped modified layer Since the cracks are blocked by the ring-shaped modified layer and the second ring-shaped modified layer, the cracks do not reach the device. Therefore, according to the wafer processing method of the present invention, it is possible to prevent damage to devices adjacent to the extra peripheral region of the wafer.

保護部材配設工程を実施している状態を示す斜視図。FIG. 3 is a perspective view showing a state in which a protective member disposing step is being performed. チャックテーブルにウエーハを保持させる状態を示す斜視図。FIG. 3 is a perspective view showing a state in which a wafer is held on a chuck table. リング状改質層形成工程を実施している状態を示す斜視図。The perspective view which shows the state which is implementing the ring-shaped modified layer formation process. (a)第一・第二のリング状改質層が形成されたウエーハの斜視図、(b)(a)に示すウエーハの断面図。(a) A perspective view of a wafer on which first and second ring-shaped modified layers are formed, and (b) a cross-sectional view of the wafer shown in (a). (a)分割予定ライン改質層形成工程を実施している状態を示す斜視図、(b)(a)に示すウエーハの平面図、(c)(b)におけるA部分の拡大図、(d)(b)におけるB部分の拡大図。(a) A perspective view showing the state in which the dividing line modified layer forming step is being performed, (b) A plan view of the wafer shown in (a), (c) An enlarged view of part A in (b), (d ) An enlarged view of part B in (b). (a)分割工程を実施している状態を示す斜視図、(b)分割されたウエーハの斜視図、(c)(b)に示すウエーハの平面図。(a) A perspective view showing a state in which a dividing step is being performed, (b) a perspective view of a divided wafer, and (c) a plan view of the wafer shown in (b).

以下、本発明のウエーハの加工方法の好適実施形態について図面を参照しつつ説明する。 Hereinafter, preferred embodiments of the wafer processing method of the present invention will be described with reference to the drawings.

図1には、本発明のウエーハの加工方法によって加工が施されるウエーハ2が示されている。ウエーハ2は、たとえばシリコン等から形成され得る。円板状のウエーハ2の表面2aは、IC、LSI等の複数のデバイス4が格子状の分割予定ライン6によって区画されたデバイス領域8と、デバイス領域8を囲繞する外周余剰領域10とが形成されている。図1では、便宜的にデバイス領域8と外周余剰領域10との境界12を二点鎖線で示しているが、実際には境界12を示す線は存在しない。 FIG. 1 shows a wafer 2 that is processed by the wafer processing method of the present invention. The wafer 2 may be made of silicon or the like, for example. The surface 2a of the disk-shaped wafer 2 is formed with a device region 8 in which a plurality of devices 4 such as ICs and LSIs are partitioned by grid-like dividing lines 6, and an outer peripheral surplus region 10 surrounding the device region 8. has been done. In FIG. 1, the boundary 12 between the device region 8 and the peripheral surplus region 10 is shown by a two-dot chain line for convenience, but in reality, there is no line indicating the boundary 12.

図示の実施形態のウエーハの加工方法では、図1に示すとおり、まず、ウエーハ2の表面2aに保護部材14を配設する保護部材配設工程を実施する。保護部材14としては、たとえば、ウエーハ2の直径と同一の直径を有する円形の粘着テープを用いることができる。 In the wafer processing method of the illustrated embodiment, as shown in FIG. 1, first, a protective member disposing step of disposing a protective member 14 on the surface 2a of the wafer 2 is carried out. As the protection member 14, for example, a circular adhesive tape having the same diameter as the wafer 2 can be used.

保護部材配設工程を実施した後、ウエーハ2に対して透過性を有する波長のレーザー光線の集光点をウエーハ2の裏面2bから外周余剰領域10に対応するウエーハ2の内部に位置づけてレーザー光線をウエーハ2に照射し、外周余剰領域10に沿って第一のリング状改質層と第一のリング状改質層を囲繞する第二のリング状改質層とを形成するリング状改質層形成工程を実施する。 After carrying out the protective member disposing process, the convergence point of the laser beam with a wavelength that is transparent to the wafer 2 is positioned inside the wafer 2 corresponding to the outer peripheral surplus area 10 from the back surface 2b of the wafer 2, and the laser beam is directed to the wafer 2. Formation of a ring-shaped modified layer by irradiating 2 to form a first ring-shaped modified layer and a second ring-shaped modified layer surrounding the first ring-shaped modified layer along the outer peripheral surplus region 10 Implement the process.

リング状改質層形成工程は、たとえば図2および図3に一部を示すレーザー加工装置16を用いて実施することができる。レーザー加工装置16は、ウエーハ2を吸引保持するチャックテーブル18と、チャックテーブル18に吸引保持されたウエーハ2にパルスレーザー光線LBを照射する集光器20と、チャックテーブル18に吸引保持されたウエーハ2を撮像する撮像手段(図示していない。)とを備える。 The ring-shaped modified layer forming step can be carried out using, for example, a laser processing device 16, a part of which is shown in FIGS. 2 and 3. The laser processing device 16 includes a chuck table 18 that holds the wafer 2 by suction, a condenser 20 that irradiates the wafer 2 held by the chuck table 18 with a pulsed laser beam LB, and a wafer 2 held by the chuck table 18 by suction. and an imaging means (not shown) for imaging the image.

図2に示すとおり、チャックテーブル18の上端には、吸引手段(図示していない。)に接続された多孔質の円形の吸着チャック22が配置されている。チャックテーブル18は、吸引手段で吸着チャック22の上面に吸引力を生成し、吸着チャック22の上面に載せられたウエーハ2を吸引保持する。 As shown in FIG. 2, a porous circular suction chuck 22 connected to suction means (not shown) is disposed at the upper end of the chuck table 18. The chuck table 18 uses suction means to generate suction force on the upper surface of the suction chuck 22, and suction-holds the wafer 2 placed on the upper surface of the suction chuck 22.

チャックテーブル18は、吸着チャック22の径方向中心を通って上下方向に延びる軸線を回転中心として回転自在に構成されていると共に、図2に矢印Xで示すX軸方向と、X軸方向に直交するY軸方向(図2に矢印Yで示す方向)とのそれぞれに進退自在に構成されている。なお、X軸方向およびY軸方向が規定するXY平面は実質上水平である。 The chuck table 18 is configured to be rotatable about an axis that passes through the radial center of the suction chuck 22 and extends in the vertical direction. It is configured to be able to freely move forward and backward in the Y-axis direction (direction indicated by arrow Y in FIG. 2). Note that the XY plane defined by the X-axis direction and the Y-axis direction is substantially horizontal.

集光器20は、レーザー加工装置16のレーザー光線発振器(図示していない。)が発振したパルスレーザー光線LBを集光する集光レンズ(図示していない。)を有する。レーザー加工装置16の撮像手段は、可視光線により被加工物を撮像する通常の撮像素子(CCD)と、被加工物に赤外線を照射する赤外線照射手段と、赤外線照射手段により照射された赤外線を捕らえる光学系と、光学系が捕らえた赤外線に対応する電気信号を出力する撮像素子(赤外線CCD)とを含む(いずれも図示していない。)。 The condenser 20 has a condenser lens (not shown) that condenses the pulsed laser beam LB emitted by the laser beam oscillator (not shown) of the laser processing device 16 . The imaging means of the laser processing device 16 includes a normal imaging device (CCD) that images the workpiece using visible light, an infrared irradiation means that irradiates the workpiece with infrared rays, and an infrared ray irradiated by the infrared irradiation means that captures the infrared rays. It includes an optical system and an image sensor (infrared CCD) that outputs an electrical signal corresponding to the infrared rays captured by the optical system (none of which are shown).

リング状改質層形成工程では、図2に示すとおり、まず、ウエーハ2の裏面2bを上に向けて、チャックテーブル18の上面でウエーハ2を吸引保持する。この際は、ウエーハ2の径方向中心と吸着チャック22の径方向中心(チャックテーブル18の回転中心)とを整合させる。 In the ring-shaped modified layer forming step, as shown in FIG. 2, first, the wafer 2 is suction-held on the upper surface of the chuck table 18 with the back surface 2b of the wafer 2 facing upward. At this time, the radial center of the wafer 2 and the radial center of the suction chuck 22 (the rotation center of the chuck table 18) are aligned.

次いで、レーザー加工装置16の撮像手段(図示していない。)で上方からウエーハ2を撮像し、撮像手段で撮像したウエーハ2の画像に基づいて、ウエーハ2に対して透過性を有する波長のパルスレーザー光線LBの集光点をウエーハ2の裏面2bから外周余剰領域10に対応するウエーハ2の内部に位置づける。 Next, an imaging means (not shown) of the laser processing device 16 images the wafer 2 from above, and based on the image of the wafer 2 taken by the imaging means, a pulse of a wavelength that is transparent to the wafer 2 is generated. The condensing point of the laser beam LB is positioned inside the wafer 2 corresponding to the outer peripheral surplus area 10 from the back surface 2b of the wafer 2.

なお、撮像手段でウエーハ2を撮像した際には、ウエーハ2の裏面2bが上を向き、デバイス4や分割予定ライン6が形成されている表面2aは下を向いているが、上述のとおり、撮像手段は、赤外線照射手段と、赤外線を捕らえる光学系と、赤外線に対応する電気信号を出力する撮像素子(赤外線CCD)とを含むので、ウエーハ2の裏面2bから透かして表面2aのデバイス4や分割予定ライン6を撮像することができる。これによって、ウエーハ2の裏面2bから外周余剰領域10に対応するウエーハ2の内部にパルスレーザー光線LBの集光点を位置づけることができる。 Note that when the wafer 2 is imaged by the imaging means, the back surface 2b of the wafer 2 faces upward, and the surface 2a on which the devices 4 and planned dividing line 6 are formed faces downward; however, as described above, The imaging means includes an infrared irradiation means, an optical system that captures infrared rays, and an imaging element (infrared CCD) that outputs an electric signal corresponding to infrared rays, so that it can be seen through the back surface 2b of the wafer 2 and the devices 4 and the like on the front surface 2a. The planned dividing line 6 can be imaged. Thereby, the condensing point of the pulsed laser beam LB can be positioned inside the wafer 2 corresponding to the outer peripheral surplus area 10 from the back surface 2b of the wafer 2.

次いで、図3に示すとおり、所定の回転速度でチャックテーブル18を回転させることにより、外周余剰領域10に沿ってパルスレーザー光線LBの集光点をウエーハ2に対して相対的に移動させながら、パルスレーザー光線LBを集光器20からウエーハ2に照射する。これによって、外周余剰領域10に対応するウエーハ2の内部に強度が小さい第一のリング状改質層24を外周余剰領域10に沿って形成することができる。 Next, as shown in FIG. 3, by rotating the chuck table 18 at a predetermined rotational speed, the condensing point of the pulsed laser beam LB is moved relative to the wafer 2 along the outer peripheral surplus area 10, and the pulsed laser beam LB is rotated at a predetermined rotation speed. A laser beam LB is irradiated onto the wafer 2 from a condenser 20. As a result, the first ring-shaped modified layer 24 having low strength can be formed inside the wafer 2 corresponding to the outer circumferential excess area 10 along the outer circumferential excess area 10 .

次いで、チャックテーブル18を移動させ、第一のリング状改質層24よりも径方向外側にパルスレーザー光線LBの集光点を位置づける。次いで、所定の回転速度でチャックテーブル18を回転させることにより、外周余剰領域10に沿ってパルスレーザー光線LBの集光点をウエーハ2に対して相対的に移動させながら、パルスレーザー光線LBを集光器20からウエーハ2に照射する。これによって、外周余剰領域10に対応するウエーハ2の内部に強度が小さい第二のリング状改質層26を外周余剰領域10に沿って形成することができる。 Next, the chuck table 18 is moved to position the focal point of the pulsed laser beam LB radially outside the first ring-shaped modified layer 24 . Next, by rotating the chuck table 18 at a predetermined rotational speed, the condensing point of the pulsed laser beam LB is moved along the outer peripheral surplus area 10 relative to the wafer 2, and the pulsed laser beam LB is transferred to the condenser. The wafer 2 is irradiated from 20. As a result, a second ring-shaped modified layer 26 having low strength can be formed inside the wafer 2 corresponding to the surplus outer region 10 along the surplus outer region 10 .

図4(a)および図4(b)を参照することによって理解されるとおり、第二のリング状改質層26の直径は第一のリング状改質層24の直径よりも大きく、第二のリング状改質層26は第一のリング状改質層24を囲繞している。第一のリング状改質層24と第二のリング状改質層26との間隔(ウエーハ2の径方向における間隔)は、たとえば300~1000μmに設定することができる。 As understood by referring to FIGS. 4(a) and 4(b), the diameter of the second ring-shaped modified layer 26 is larger than the diameter of the first ring-shaped modified layer 24, and the second ring-shaped modified layer 26 has a diameter larger than that of the first ring-shaped modified layer 24. The ring-shaped modified layer 26 surrounds the first ring-shaped modified layer 24 . The interval between the first ring-shaped modified layer 24 and the second ring-shaped modified layer 26 (the interval in the radial direction of the wafer 2) can be set to, for example, 300 to 1000 μm.

このようなリング状改質層形成工程は、たとえば以下の条件で行うことができる。
ウエーハの直径 :φ200mm
デバイス領域の直径 :φ190mm
外周余剰領域の範囲 :φ190mm~φ200mm
第一のリング状改質層の直径:φ193mm
第二のリング状改質層の直径:φ194mm
パルスレーザー光線の波長 :1342nm
繰り返し周波数 :90kHz
平均出力 :0.6W
チャックテーブルの回転速度:0.5周/秒
Such a ring-shaped modified layer forming step can be performed, for example, under the following conditions.
Wafer diameter: φ200mm
Device area diameter: φ190mm
Range of extra peripheral area: φ190mm to φ200mm
Diameter of first ring-shaped modified layer: φ193mm
Diameter of second ring-shaped modified layer: φ194mm
Wavelength of pulsed laser beam: 1342nm
Repetition frequency: 90kHz
Average output: 0.6W
Chuck table rotation speed: 0.5 laps/sec

リング状改質層形成工程を実施した後、ウエーハ2に対して透過性を有する波長のレーザー光線の集光点をウエーハ2の裏面2bから分割予定ライン6に対応するウエーハ2の内部に位置づけてレーザー光線をウエーハ2に照射し分割予定ライン6に沿って分割予定ライン改質層を形成する分割予定ライン改質層形成工程を実施する。分割予定ライン改質層形成工程も、上記レーザー加工装置16を用いて実施することができる。 After performing the ring-shaped modified layer forming step, the focal point of the laser beam with a wavelength that is transparent to the wafer 2 is positioned inside the wafer 2 corresponding to the planned dividing line 6 from the back surface 2b of the wafer 2, and the laser beam is A dividing line modified layer forming step is carried out in which the wafer 2 is irradiated with the wafer 2 to form a dividing line modified layer along the dividing line 6. The planned dividing line modified layer forming step can also be performed using the laser processing device 16 described above.

分割予定ライン改質層形成工程では、まず、チャックテーブル18の上面でウエーハ2を吸引保持した状態において、レーザー加工装置16の撮像手段で撮像したウエーハ2の画像に基づいて、分割予定ライン6をX軸方向に整合させると共に、X軸方向に整合させた分割予定ライン6の上方に集光器20を位置づける。次いで、ウエーハ2の裏面2bから分割予定ライン6に対応するウエーハ2の内部であって、第一のリング状改質層24と第二のリング状改質層26との間に、ウエーハ2に対して透過性を有する波長のパルスレーザー光線LBの集光点を位置づける。 In the dividing line modified layer forming step, first, with the wafer 2 being suction-held on the upper surface of the chuck table 18, the dividing line 6 is formed based on an image of the wafer 2 taken by the imaging means of the laser processing device 16. The condenser 20 is aligned in the X-axis direction and positioned above the planned dividing line 6 aligned in the X-axis direction. Next, the inside of the wafer 2 corresponding to the planned dividing line 6 from the back surface 2b of the wafer 2, between the first ring-shaped modified layer 24 and the second ring-shaped modified layer 26, is coated on the wafer 2. The focal point of the pulsed laser beam LB having a wavelength that is transparent to the laser beam is positioned.

次いで、図5(a)に示すとおり、所定の送り速度でチャックテーブル18をX軸方向に移動させることにより、分割予定ライン6に沿ってパルスレーザー光線LBの集光点をウエーハ2に対して相対的に移動させながら、パルスレーザー光線LBを集光器20からウエーハ2に照射する。これによって、分割予定ライン6に沿ってウエーハ2の内部に強度が小さい分割予定ライン改質層28を形成することができる。分割予定ライン改質層28を形成する際は、パルスレーザー光線LBの集光点が第一のリング状改質層24と第二のリング状改質層26との間に到達したらパルスレーザー光線LBの照射を停止する。 Next, as shown in FIG. 5(a), by moving the chuck table 18 in the X-axis direction at a predetermined feed rate, the focal point of the pulsed laser beam LB is moved relative to the wafer 2 along the dividing line 6. The pulsed laser beam LB is irradiated from the condenser 20 onto the wafer 2 while moving the wafer 2 . Thereby, a planned dividing line modified layer 28 having low strength can be formed inside the wafer 2 along the scheduled dividing line 6. When forming the planned dividing line modified layer 28, when the condensation point of the pulsed laser beam LB reaches between the first ring-shaped modified layer 24 and the second ring-shaped modified layer 26, the pulsed laser beam LB is Stop irradiation.

分割予定ライン改質層形成工程においては、図5(b)ないし図5(d)に示すとおり、分割予定ライン改質層28の始点28aおよび終点28bが第一のリング状改質層24と第二のリング状改質層26との間に位置するようにレーザー光線LBの集光点を位置づけるのが重要である。 In the dividing line modified layer forming step, as shown in FIGS. 5(b) to 5(d), the starting point 28a and the ending point 28b of the dividing line modified layer 28 are connected to the first ring-shaped modified layer 24. It is important to position the condensing point of the laser beam LB so as to be located between it and the second ring-shaped modified layer 26.

次いで、分割予定ライン6のY軸方向の間隔の分だけ、集光器20に対してチャックテーブル18を相対的にY軸方向に割り出し送りする。そして、レーザー光線LBの照射と割り出し送りとを交互に繰り返すことにより、X軸方向に整合させた分割予定ライン6のすべてに沿って分割予定ライン改質層28を形成する。また、チャックテーブル18を90度回転させた上で、レーザー光線LBの照射と割り出し送りとを交互に繰り返すことにより、先に分割予定ライン改質層28を形成した分割予定ライン6と直交する分割予定ライン6のすべてに沿って分割予定ライン改質層28を形成する。 Next, the chuck table 18 is indexed and sent in the Y-axis direction relative to the condenser 20 by an interval of the planned dividing line 6 in the Y-axis direction. Then, by alternately repeating the irradiation of the laser beam LB and the indexing feed, the planned dividing line modified layer 28 is formed along all the planned dividing lines 6 aligned in the X-axis direction. Further, by rotating the chuck table 18 by 90 degrees and repeating the irradiation of the laser beam LB and the indexing feed alternately, the division schedule is made perpendicular to the division schedule line 6 on which the division schedule line modified layer 28 was previously formed. A dividing line modification layer 28 is formed along all of the lines 6.

このような分割予定ライン改質層形成工程は、たとえば以下の条件で行うことができる。
パルスレーザー光線の波長 :1342nm
繰り返し周波数 :90kHz
平均出力 :0.6W
チャックテーブルの送り速度:500mm/s
Such a planned division line modified layer forming step can be performed, for example, under the following conditions.
Wavelength of pulsed laser beam: 1342nm
Repetition frequency: 90kHz
Average output: 0.6W
Chuck table feed speed: 500mm/s

分割予定ライン改質層形成工程を実施した後、ウエーハ2の裏面2bを研削して所定の厚みに形成すると共に分割予定ライン改質層28から分割予定ライン6に伸長するクラックによってウエーハ2を個々のデバイスチップに分割する分割工程を実施する。 After performing the dividing line modified layer forming step, the back surface 2b of the wafer 2 is ground to a predetermined thickness, and the wafer 2 is individually separated by cracks extending from the dividing line modified layer 28 to the dividing line 6. A dividing step is performed to divide the device into device chips.

分割工程は、たとえば図6に一部を示す研削装置30を用いて実施することができる。研削装置30は、ウエーハ2を吸引保持するチャックテーブル32と、チャックテーブル32に吸引保持されたウエーハ2を研削する研削手段34とを備える。上面においてウエーハ2を吸引保持するチャックテーブル32は上下方向に延びる軸線を中心として回転自在に構成されている。 The dividing step can be performed using, for example, a grinding device 30, a part of which is shown in FIG. The grinding device 30 includes a chuck table 32 that holds the wafer 2 under suction, and a grinding means 34 that grinds the wafer 2 that is suction-held on the chuck table 32. The chuck table 32, which holds the wafer 2 by suction on its upper surface, is configured to be rotatable about an axis extending in the vertical direction.

研削手段34は、上下方向に延びるスピンドル36と、スピンドル36の下端に固定された円板状のホイールマウント38とを含む。ホイールマウント38の下面にはボルト40によって環状の研削ホイール42が固定されている。研削ホイール42の下面の外周縁部には、周方向に間隔をおいて環状に配置された複数の研削砥石44が固定されている。 The grinding means 34 includes a spindle 36 that extends in the vertical direction, and a disc-shaped wheel mount 38 fixed to the lower end of the spindle 36. An annular grinding wheel 42 is fixed to the lower surface of the wheel mount 38 by bolts 40. A plurality of grinding wheels 44 are fixed to the outer peripheral edge of the lower surface of the grinding wheel 42 and arranged in an annular manner at intervals in the circumferential direction.

図6を参照して説明を続けると、分割工程では、まず、ウエーハ2の裏面2bを上に向けて、チャックテーブル32の上面でウエーハ2を吸引保持する。次いで、上方からみて反時計回りに所定の回転速度(たとえば300rpm)でチャックテーブル32を回転させる。また、上方からみて反時計回りに所定の回転速度(たとえば6000rpm)でスピンドル36を回転させる。次いで、スピンドル36を下降させてウエーハ2の裏面2bに研削砥石44を接触させた後、所定の研削送り速度(たとえば1.0μm/s)でスピンドル36を下降させる。これによって、ウエーハ2の裏面2bを研削してウエーハ2を所定の厚みに形成することができる。 Continuing the explanation with reference to FIG. 6, in the dividing step, first, the wafer 2 is suction-held on the upper surface of the chuck table 32 with the back surface 2b of the wafer 2 facing upward. Next, the chuck table 32 is rotated counterclockwise when viewed from above at a predetermined rotational speed (for example, 300 rpm). Further, the spindle 36 is rotated counterclockwise when viewed from above at a predetermined rotational speed (for example, 6000 rpm). Next, the spindle 36 is lowered to bring the grinding wheel 44 into contact with the back surface 2b of the wafer 2, and then the spindle 36 is lowered at a predetermined grinding feed rate (for example, 1.0 μm/s). Thereby, the back surface 2b of the wafer 2 can be ground to form the wafer 2 to a predetermined thickness.

ウエーハ2を研削している時には、研削送りによる押圧力がウエーハ2に作用するので、分割予定ライン改質層28から分割予定ライン6に向かって分割予定ラインクラック28´がウエーハ2の厚み方向に伸長する。このため、図6(b)および図6(c)に示すとおり、分割予定ラインクラック28´によってウエーハ2が個々のデバイスチップ46に分割される。なお、抗折強度を向上させるために分割予定ライン改質層28を研削によって除去し、分割予定ラインクラック28´のみを残すのが好ましい。 When the wafer 2 is being ground, a pressing force due to the grinding feed acts on the wafer 2, so that a splitting line crack 28' is formed in the thickness direction of the wafer 2 from the splitting line modified layer 28 toward the splitting line 6. Stretch. Therefore, as shown in FIGS. 6(b) and 6(c), the wafer 2 is divided into individual device chips 46 by the dividing line cracks 28'. In order to improve the bending strength, it is preferable to remove the planned dividing line modified layer 28 by grinding, leaving only the planned dividing line crack 28'.

また、ウエーハ2を研削している時には、分割予定ライン改質層28の始点28aまたは終点28bから無秩序にクラックが伸長するおそれがある。しかしながら、図示の実施形態では、分割予定ライン改質層28の始点28aおよび終点28bが第一のリング状改質層24と第二のリング状改質層26との間に位置しており、ウエーハ2を研削している時には第一・第二のリング状改質層24、26から第一・第二のリング状クラック24´、26´がウエーハ2の厚み方向に伸長するので、始点28aおよび終点28bから伸長する無秩序なクラックが第一・第二のリング状改質層24、26および第一・第二のリング状クラック24´、26´によって遮断され、デバイス4に到達することがない。したがって、図示の実施形態によれば、ウエーハ2の外周余剰領域10に隣接するデバイス4の損傷を防止することができる。 Furthermore, when the wafer 2 is being ground, cracks may extend randomly from the starting point 28a or ending point 28b of the planned dividing line modified layer 28. However, in the illustrated embodiment, the starting point 28a and the ending point 28b of the scheduled dividing line modified layer 28 are located between the first ring-shaped modified layer 24 and the second ring-shaped modified layer 26, When the wafer 2 is being ground, the first and second ring-shaped cracks 24' and 26' extend from the first and second ring-shaped modified layers 24 and 26 in the thickness direction of the wafer 2, so that the starting point 28a The disordered cracks extending from the end point 28b are blocked by the first and second ring-shaped modified layers 24, 26 and the first and second ring-shaped cracks 24', 26', and cannot reach the device 4. do not have. Therefore, according to the illustrated embodiment, it is possible to prevent damage to the devices 4 adjacent to the outer peripheral surplus region 10 of the wafer 2.

そして、ウエーハ2を個々のデバイスチップ46に分割した後、外周が分割予定ラインクラック28´のみによって規定される矩形状のデバイスチップ46を次工程に搬送し、図6(c)に灰色で示す部分(第一のリング状クラック24´(弧状部)を外周に含むチップおよび第一のリング状クラック24´よりも外側の部分)を破棄する。 After dividing the wafer 2 into individual device chips 46, the rectangular device chips 46 whose outer periphery is defined only by the dividing line crack 28' are transported to the next process, and are shown in gray in FIG. 6(c). The portion (the chip including the first ring-shaped crack 24' (arc-shaped portion) on the outer periphery and the portion outside the first ring-shaped crack 24') is discarded.

以上のとおりであり、図示の実施形態のウエーハの加工方法においては、始点28aおよび終点28bから伸長する無秩序なクラックが第一・第二のリング状改質層24、26および第一・第二のリング状クラック24´、26´によって遮断され、デバイス4に到達することがなく、ウエーハ2の外周余剰領域10に隣接するデバイス4の損傷を防止することができる。 As described above, in the wafer processing method of the illustrated embodiment, disordered cracks extending from the starting point 28a and the ending point 28b form the first and second ring-shaped modified layers 24, 26 and the first and second ring-shaped modified layers. The cracks are blocked by the ring-shaped cracks 24' and 26', and do not reach the devices 4, thereby preventing damage to the devices 4 adjacent to the peripheral surplus region 10 of the wafer 2.

なお、リング状改質層が1個の場合には、始点28aおよび終点28bから伸長する無秩序なクラックによってデバイス4が損傷するのを防止するため、始点28aおよび終点28bをリング状改質層の円周上に精密に合わせる必要がある。しかしながら、始点28aおよび終点28bをリング状改質層の円周上に精密に合わせることは困難であるため、リング状改質層が1個であると、無秩序なクラックによってデバイス4が損傷するおそれがある。この点、図示の実施形態のウエーハの加工方法では、ウエーハ2の径方向に間隔をおいて第一・第二のリング状改質層24、26を形成しているので、始点28aおよび終点28bを第一のリング状改質層24と第二のリング状改質層26との間に容易に位置づけることができ、無秩序なクラックを第一・第二のリング状改質層24、26および第一・第二のリング状クラック24´、26´によって遮断することができるので、デバイス4の損傷を確実に防止することができる。 In addition, when there is only one ring-shaped modified layer, in order to prevent the device 4 from being damaged by disordered cracks extending from the starting point 28a and the ending point 28b, the starting point 28a and the ending point 28b are connected to the ring-shaped modified layer. It must be precisely aligned on the circumference. However, since it is difficult to precisely align the starting point 28a and the ending point 28b on the circumference of the ring-shaped modified layer, if there is only one ring-shaped modified layer, there is a risk that the device 4 will be damaged by disordered cracks. There is. In this regard, in the wafer processing method of the illustrated embodiment, the first and second ring-shaped modified layers 24 and 26 are formed at intervals in the radial direction of the wafer 2, so the starting point 28a and the ending point 28b can be easily positioned between the first ring-shaped modified layer 24 and the second ring-shaped modified layer 26, and disordered cracks can be easily positioned between the first and second ring-shaped modified layers 24, 26 and Since it can be blocked by the first and second ring-shaped cracks 24' and 26', damage to the device 4 can be reliably prevented.

2:ウエーハ
2a:ウエーハの表面
2b:ウエーハの裏面
4:デバイス
6:分割予定ライン
8:デバイス領域
10:外周余剰領域
14:保護部材
24:第一のリング状改質層
26:第二のリング状改質層
28:分割予定ライン改質層
28a:分割予定ライン改質層の始点
28b:分割予定ライン改質層の終点
46:デバイスチップ
2: Wafer 2a: Front surface of wafer 2b: Back surface of wafer 4: Device 6: Planned division line 8: Device area 10: Surplus outer area 14: Protective member 24: First ring-shaped modified layer 26: Second ring shape modified layer 28: Scheduled division line modified layer 28a: Start point of scheduled division line modified layer 28b: End point of scheduled division line modified layer 46: Device chip

Claims (2)

複数のデバイスが分割予定ラインによって区画されたデバイス領域と、該デバイス領域を囲繞する外周余剰領域とが表面に形成されたウエーハを個々のデバイスチップに分割するウエーハの加工方法であって、
ウエーハの表面に保護部材を配設する保護部材配設工程と、
ウエーハに対して透過性を有する波長のレーザー光線の集光点をウエーハの裏面から外周余剰領域に対応するウエーハの内部に位置づけてレーザー光線をウエーハに照射し外周余剰領域に沿って第一のリング状改質層と該第一のリング状改質層を囲繞する第二のリング状改質層とを形成するリング状改質層形成工程と、
ウエーハに対して透過性を有する波長のレーザー光線の集光点をウエーハの裏面から分割予定ラインに対応するウエーハの内部に位置づけてレーザー光線をウエーハに照射し分割予定ラインに沿って分割予定ライン改質層を形成する分割予定ライン改質層形成工程と、
ウエーハの裏面を研削して所定の厚みに形成すると共に該分割予定ライン改質層から分割予定ラインに伸長するクラックによってウエーハを個々のデバイスチップに分割する分割工程と、を含み、
該分割予定ライン改質層形成工程において、該分割予定ライン改質層の始点および終点が該第一のリング状改質層と該第二のリング状改質層との間に位置するようにレーザー光線の集光点を位置づけるウエーハの加工方法。
A wafer processing method for dividing a wafer in which a device region in which a plurality of devices are divided by dividing lines and a peripheral surplus region surrounding the device region into individual device chips is formed, the method comprising:
a protective member disposing step of disposing a protective member on the surface of the wafer;
The convergence point of a laser beam with a wavelength that is transparent to the wafer is positioned from the back surface of the wafer to the inside of the wafer corresponding to the outer circumferential excess area, and the laser beam is irradiated onto the wafer to form the first ring-shaped modification along the outer circumferential excess area. a ring-shaped modified layer forming step of forming a quality layer and a second ring-shaped modified layer surrounding the first ring-shaped modified layer;
The convergence point of a laser beam with a wavelength that is transparent to the wafer is positioned inside the wafer from the back surface of the wafer corresponding to the line to be divided, and the laser beam is irradiated onto the wafer to form the line-modified layer along the line to be divided. a dividing line modification layer forming step to form a dividing line;
A dividing step of grinding the back surface of the wafer to a predetermined thickness and dividing the wafer into individual device chips by cracks extending from the planned dividing line modified layer to the scheduled dividing line,
In the dividing line modified layer forming step, the starting point and end point of the dividing line modified layer are located between the first ring-shaped modified layer and the second ring-shaped modified layer. A wafer processing method that positions the focal point of the laser beam.
該リング状改質層形成工程において形成する該第一のリング状改質層と該第二のリング状改質層との間隔を300~1000μmに設定する請求項1記載のウエーハの加工方法。 The method for processing a wafer according to claim 1, wherein the interval between the first ring-shaped modified layer and the second ring-shaped modified layer formed in the ring-shaped modified layer forming step is set to 300 to 1000 μm.
JP2020056179A 2020-03-26 2020-03-26 Wafer processing method Active JP7401372B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020056179A JP7401372B2 (en) 2020-03-26 2020-03-26 Wafer processing method
KR1020210028252A KR20210120830A (en) 2020-03-26 2021-03-03 Processing method of a wafer
SG10202102605X SG10202102605XA (en) 2020-03-26 2021-03-15 Wafer processing method
CN202110306965.3A CN113451117A (en) 2020-03-26 2021-03-23 Method for processing wafer
TW110110757A TW202137307A (en) 2020-03-26 2021-03-25 Wafer processing method capable of preventing damage to a device adjacent to an outer peripheral surplus region of the wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056179A JP7401372B2 (en) 2020-03-26 2020-03-26 Wafer processing method

Publications (2)

Publication Number Publication Date
JP2021158194A JP2021158194A (en) 2021-10-07
JP7401372B2 true JP7401372B2 (en) 2023-12-19

Family

ID=77809185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056179A Active JP7401372B2 (en) 2020-03-26 2020-03-26 Wafer processing method

Country Status (5)

Country Link
JP (1) JP7401372B2 (en)
KR (1) KR20210120830A (en)
CN (1) CN113451117A (en)
SG (1) SG10202102605XA (en)
TW (1) TW202137307A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135342A (en) 2007-11-30 2009-06-18 Hamamatsu Photonics Kk Workpiece cutting method
JP2009131942A (en) 2007-11-30 2009-06-18 Hamamatsu Photonics Kk Grinding method of machining object
JP2013511155A (en) 2009-11-17 2013-03-28 クリー インコーポレイテッド Device with crackstop
JP2013165229A (en) 2012-02-13 2013-08-22 Disco Abrasive Syst Ltd Method for dividing optical device wafer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408805B2 (en) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 Cutting origin region forming method and workpiece cutting method
ES2377521T3 (en) 2002-03-12 2012-03-28 Hamamatsu Photonics K.K. Method to divide a substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135342A (en) 2007-11-30 2009-06-18 Hamamatsu Photonics Kk Workpiece cutting method
JP2009131942A (en) 2007-11-30 2009-06-18 Hamamatsu Photonics Kk Grinding method of machining object
JP2013511155A (en) 2009-11-17 2013-03-28 クリー インコーポレイテッド Device with crackstop
JP2013165229A (en) 2012-02-13 2013-08-22 Disco Abrasive Syst Ltd Method for dividing optical device wafer

Also Published As

Publication number Publication date
SG10202102605XA (en) 2021-10-28
KR20210120830A (en) 2021-10-07
TW202137307A (en) 2021-10-01
CN113451117A (en) 2021-09-28
JP2021158194A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR102505700B1 (en) Method of machining wafer
TWI650809B (en) Wafer processing method
JP6124547B2 (en) Processing method
KR102519860B1 (en) Wafer processing method
JP7460322B2 (en) Wafer Processing Method
JP7193956B2 (en) Wafer processing method
KR20180061011A (en) Processing method of a wafer
TW201911397A (en) Method of processing a substrate
KR20220169899A (en) Processing method
JP2016004795A (en) Bonding wafer formation method
KR20150070941A (en) Method of processing device wafer
JP7401372B2 (en) Wafer processing method
JP5995599B2 (en) Wafer processing method
TW201944474A (en) Wafer processing method capable of appropriately dividing a wafer to form a plurality of flash memory chips
JP6808525B2 (en) Wafer processing method
JP6808526B2 (en) Wafer processing method
JP7420508B2 (en) Laser processing method
JP2019150925A (en) Method for grinding work-piece
JP7358193B2 (en) Wafer processing method
JP2023136467A (en) Processing method for wafer
JP7208062B2 (en) Device chip forming method
US20240128087A1 (en) Wafer processing method
JP2021174801A (en) Wafer processing method
TW202220040A (en) Wafer processing method which can grind and thin the wafer to a finished thickness and suppress clogging of grind stones
JP2024039367A (en) Wafer processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7401372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150