JPWO2013027645A1 - Glass substrate cutting method, optical glass for solid-state imaging device - Google Patents

Glass substrate cutting method, optical glass for solid-state imaging device Download PDF

Info

Publication number
JPWO2013027645A1
JPWO2013027645A1 JP2013529983A JP2013529983A JPWO2013027645A1 JP WO2013027645 A1 JPWO2013027645 A1 JP WO2013027645A1 JP 2013529983 A JP2013529983 A JP 2013529983A JP 2013529983 A JP2013529983 A JP 2013529983A JP WO2013027645 A1 JPWO2013027645 A1 JP WO2013027645A1
Authority
JP
Japan
Prior art keywords
glass substrate
glass
cutting
light
scratch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013529983A
Other languages
Japanese (ja)
Other versions
JP5910633B2 (en
Inventor
大澤 光生
光生 大澤
芳樹 小花
芳樹 小花
一秀 久野
一秀 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2013027645A1 publication Critical patent/JPWO2013027645A1/en
Application granted granted Critical
Publication of JP5910633B2 publication Critical patent/JP5910633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

機械的強度と清浄性を備えたガラス基板を得るための切断方法を提供すること。板厚方向に対向する2つの透光面を備えるガラス基板の内部に集光点を合わせてレーザ光を照射し、前記ガラス基板の切断予定ラインに沿って、前記ガラス基板の板厚方向内部に切断起点となるキズ領域を形成する工程と、前記キズ領域を起点として前記ガラス基板の厚さ方向に発生する割れを発生させ、前記切断予定ラインに沿って前記ガラス基板を切断する工程と、を備えるガラス基板の切断方法であって、前記キズ領域は、少なくとも一方の前記透光面から離間している。To provide a cutting method for obtaining a glass substrate having mechanical strength and cleanliness. A laser beam is irradiated by aligning a condensing point inside a glass substrate having two light-transmitting surfaces opposed to each other in the plate thickness direction, and along the planned cutting line of the glass substrate, inside the plate thickness direction of the glass substrate. A step of forming a scratch region serving as a starting point of cutting, and a step of generating a crack generated in the thickness direction of the glass substrate starting from the scratch region, and cutting the glass substrate along the planned cutting line. In the method for cutting a glass substrate, the scratch area is separated from at least one of the light-transmitting surfaces.

Description

本発明は、高い機械的強度と清浄性を備えたガラス基板の切断方法、及び固体撮像装置用光学ガラスに関するものである。   The present invention relates to a method for cutting a glass substrate having high mechanical strength and cleanliness, and an optical glass for a solid-state imaging device.

固体撮像装置が用いられるデジタルスチルカメラとして、一眼レフタイプのものがある。このタイプのカメラでは、防塵フィルタなどの光学ガラスの透光面に付着したチリや埃が撮像画像に写り込むため、光学ガラスを振動してこれらを弾き落とす、いわゆるダスト除去装置が搭載されることが多い。
また、光学ガラスは、撮像素子が収められたパッケージを気密封着するカバーガラスとしても用いられる。撮像素子を用いた固体撮像装置は、その製造工程において、カバーガラスを仮留めした後、撮像素子からの出力画像情報をもとに素子表面に付着する塵埃の有無を検査する。そして、塵埃が含まれていると判断された場合、仮留めされたカバーガラスをパッケージから取り外し、撮像素子を清浄する(特許文献1)。
上記においては、いずれもガラスに曲げ応力が作用するため、ガラスにはそれに耐えられる強度が求められる。
There is a single-lens reflex type as a digital still camera using a solid-state imaging device. This type of camera is equipped with a so-called dust removal device that vibrates the optical glass and flips it off because dust and dirt adhering to the light-transmitting surface of the optical glass such as a dustproof filter appear in the captured image. There are many.
The optical glass is also used as a cover glass for hermetically sealing a package containing an image sensor. In the manufacturing process of a solid-state imaging device using an imaging element, after temporarily covering a cover glass, the presence or absence of dust adhering to the element surface is inspected based on output image information from the imaging element. And when it is judged that dust is contained, the temporarily attached cover glass is removed from a package and an image pick-up element is cleaned (patent document 1).
In all of the above, since bending stress acts on the glass, the glass is required to have strength to withstand it.

近年、デジタルスチルカメラの小型化要請から、これら用途の光学ガラスは0.3〜0.5mm程度の薄い板厚で用いられることが多くなり、ダスト除去装置により強振動が加えられた際に端部の微小な欠けを起点としてヒビが入るといった信頼性上の課題が懸念される。
また、固体撮像素子を用いた固体撮像装置は、小型化、高画素数化、高画素面積化が進展している。固体撮像装置及びその搭載機器の薄型、大面積化に伴って、使用される光学ガラスは外形が大きく、固体撮像装置の奥行きに影響を与える光学ガラスの肉厚は非常に薄いものが求められる。
特許文献2には、固体撮像素子用カバーガラスについて、板厚方向に対向する2つの透光面の少なくとも一方の面に被覆膜を有し、カバーガラスの外周端面をレーザにより切断された面よりなり、被覆膜がレーザ切断以前に成膜されてなることが記載されている。これにより、高い機械的強度と高い光学性能、さらに安定した化学的性能を有する清浄度の高い固体撮像素子用カバーガラスが得られるとされている。
In recent years, due to the demand for downsizing of digital still cameras, optical glass for these applications is often used with a thin plate thickness of about 0.3 to 0.5 mm. There is a concern about reliability problems such as cracks starting from minute cracks in the part.
In addition, solid-state imaging devices using a solid-state imaging element are progressing in downsizing, increasing the number of pixels, and increasing the pixel area. As the solid-state imaging device and the equipment on which the solid-state imaging device is mounted become thinner and larger in area, the optical glass used has a larger outer shape, and the thickness of the optical glass that affects the depth of the solid-state imaging device is required to be very thin.
Patent Document 2 discloses a surface of a cover glass for a solid-state imaging device that has a coating film on at least one surface of two light-transmitting surfaces that face each other in the thickness direction, and the outer peripheral end surface of the cover glass is cut by a laser. It is described that the coating film is formed before laser cutting. Thereby, it is said that a cover glass for a solid-state imaging device having high mechanical strength, high optical performance, and stable chemical performance and high cleanliness can be obtained.

日本特開2006−303954号公報Japanese Unexamined Patent Publication No. 2006-303955 日本特開2008−187170号公報Japanese Unexamined Patent Publication No. 2008-187170

しかしながら、特許文献2に開示されたレーザを用いた切断方法には、以下の問題がある。
この切断方法では、ガラスの切断起点となる切り込みをガラス表面に形成するため、ガラスの曲げ強度のバラツキが大きくなるという問題がある。理由として、レーザにて切り込みをいれたガラス表面を下側にして4点曲げ試験を行う場合、割れの起点は、レーザにより加工された切断面の稜線のいずれかの箇所となる。そのため、レーザによる切り込み状態が、突発的に大きかったり、深いことがあると、ガラスの曲げ強度が大幅に低くなる要因となる。
However, the cutting method using a laser disclosed in Patent Document 2 has the following problems.
This cutting method has a problem that the variation in the bending strength of the glass is increased because the glass cut surface is formed on the glass surface. The reason for this is that when a four-point bending test is performed with the glass surface cut by the laser facing downward, the starting point of the crack is any one of the ridgelines of the cut surface processed by the laser. For this reason, if the cutting state by the laser is suddenly large or deep, the bending strength of the glass is significantly reduced.

また、この切断方法では、ガラス表面とその表面に形成された被膜の両方にレーザにより切り込みを形成するため、切断面にレーザにより加工された被膜に起因するささくれのような突起物が発生したり、前記切断面が隆起するという問題、さらに切断後の洗浄処理等によっても前記突起物の除去が困難であるという問題がある。このような突起物が生じたガラス基板は、固体撮像装置に組み付ける際に突起物がガラス基板から離れることで装置内部に混入したり、透光面に付着するおそれがある。   Further, in this cutting method, since the laser cuts are formed on both the glass surface and the film formed on the surface, protrusions such as a whirl caused by the film processed by the laser are generated on the cut surface. Further, there is a problem that the cut surface is raised, and there is a problem that it is difficult to remove the protrusions by a cleaning process after cutting. The glass substrate on which such protrusions are formed may be mixed into the apparatus or attached to the light-transmitting surface when the protrusions are separated from the glass substrate when assembled to the solid-state imaging device.

また、固体撮像装置の奥行き寸法が小さくなると、光学ガラスの表面から固体撮像素子までの距離が短くなり、固体撮像素子に斜入射する光が多くなる。このため、固体撮像素子に斜入射する光が固体撮像素子の表面で反射した場合、迷光となって固体撮像装置内で反射し、撮像画像に悪影響を及ぼすおそれがある。通常、光学ガラスの透光面は、可視域の光に対して反射防止機能を備える光学多層膜が設けられている。しかしながら、光学ガラスの側面は特に対策されていないため、迷光を反射させるおそれがある。
本発明は上記事情に鑑みてなされたもので、高い機械的強度と清浄性を備えたガラス基板を得るためのガラス基板の切断方法を提供することを目的とする。
Further, when the depth dimension of the solid-state imaging device is reduced, the distance from the surface of the optical glass to the solid-state imaging element is shortened, and the light incident on the solid-state imaging element is increased. For this reason, when light obliquely incident on the solid-state image sensor is reflected on the surface of the solid-state image sensor, it becomes stray light and is reflected in the solid-state image sensor, which may adversely affect the captured image. Usually, the light-transmitting surface of the optical glass is provided with an optical multilayer film having an antireflection function for visible light. However, since the side surface of the optical glass is not particularly treated, there is a possibility of reflecting stray light.
This invention is made | formed in view of the said situation, and it aims at providing the cutting method of the glass substrate for obtaining the glass substrate provided with high mechanical strength and cleanliness.

本発明のガラス基板の切断方法は、板厚方向に対向する2つの透光面を備えるガラス基板の内部に集光点を合わせてレーザ光を照射し、前記ガラス基板の切断予定ラインに沿って、前記ガラス基板の板厚方向内部に切断起点となるキズ領域を形成する工程と、前記キズ領域を起点として前記ガラス基板の厚さ方向に発生する割れを発生させ、前記切断予定ラインに沿って前記ガラス基板を切断する工程と、を備えるガラス基板の切断方法であって、前記キズ領域は、少なくとも一方の前記透光面から離間していることを特徴とする。
本発明の固体撮像装置用光学ガラスは、板厚方向に対向する2つの透光面と前記2つの透光面の間に側面とを備えるガラス基板であって、前記側面は、ガラス基板の内部に集光点を合せてレーザ光を照射し、切断予定ラインに沿って前記ガラス基板の板厚方向内部に切断起点となるキズ領域を形成し、前記キズ領域を伸展させることで形成された切断面であり、前記側面の前記キズ領域は、少なくとも一方の前記透光面との距離が前記ガラス基板の板厚に対して20%以上であることを特徴とする。
In the method for cutting a glass substrate according to the present invention, a laser beam is irradiated with a condensing point inside a glass substrate having two light-transmitting surfaces opposed to each other in the plate thickness direction, and along the planned cutting line of the glass substrate. A step of forming a scratch area to be a starting point of cutting inside the plate thickness direction of the glass substrate, and generating a crack generated in the thickness direction of the glass substrate starting from the scratch area, along the planned cutting line Cutting the glass substrate, wherein the scratch area is spaced from at least one of the light-transmitting surfaces.
The optical glass for a solid-state imaging device according to the present invention is a glass substrate including two light-transmitting surfaces facing each other in the thickness direction and a side surface between the two light-transmitting surfaces, and the side surface is the interior of the glass substrate. A laser beam is formed by aligning the condensing point with the laser beam, forming a scratch area as a cutting start point in the thickness direction of the glass substrate along the planned cutting line, and extending the scratch area. The scratch area on the side surface is at least 20% of the thickness of the glass substrate with respect to the thickness of the glass substrate.

本発明のガラス基板の切断方法によれば、高い機械的強度と清浄性(すなわち、切断時にガラス基板に加工屑が発生し難いこと)を備えたガラス基板を提供することができる。   According to the method for cutting a glass substrate of the present invention, it is possible to provide a glass substrate having high mechanical strength and cleanliness (that is, it is difficult for processing waste to be generated on the glass substrate during cutting).

本発明のガラス基板の切断方法の概略を示す断面図である。It is sectional drawing which shows the outline of the cutting method of the glass substrate of this invention. 本発明のガラス基板の切断方法によって切断されたガラス基板が用いられた固体撮像装置の断面図である。It is sectional drawing of the solid-state imaging device using the glass substrate cut | disconnected by the cutting method of the glass substrate of this invention.

本発明のガラス基板の切断方法(以下、本発明の切断方法ということがある)は、図1の様に、板厚方向に対向する2つの透光面6、6を備えるガラス基板の切断に関する。
本発明の切断方法は、以下の工程を備えることで、ガラス基板の切断部の稜線にクラックを形成することなく切断できるため、機械的強度が高く、かつ透光面の清浄性が高いガラス基板を得ることができる。
The glass substrate cutting method of the present invention (hereinafter also referred to as the cutting method of the present invention) relates to cutting of a glass substrate having two light-transmitting surfaces 6 and 6 facing each other in the plate thickness direction as shown in FIG. .
Since the cutting method of the present invention includes the following steps, the glass substrate can be cut without forming a crack at the ridgeline of the cutting portion of the glass substrate, and thus the glass substrate has high mechanical strength and high transparency of the translucent surface. Can be obtained.

本発明の切断方法は、板厚方向に対向する2つの透光面6、6を備えるガラス基板の内部に集光点を合わせてレーザ光を照射し、前記ガラス基板の切断予定ラインに沿って、前記ガラス基板の板厚方向内部に切断起点となるキズ領域を形成する工程と、前記キズ領域を起点として前記ガラス基板の厚さ方向に発生する割れを発生させ、前記切断予定ラインに沿って前記ガラス基板を切断する工程と、を備える。そして、キズ領域を形成する工程において、キズ領域は少なくとも一方の透光面から離間しているという特徴を有する。   In the cutting method of the present invention, a laser beam is irradiated with a condensing point inside a glass substrate provided with two light-transmitting surfaces 6 and 6 facing in the plate thickness direction, and along the planned cutting line of the glass substrate. A step of forming a scratch area to be a starting point of cutting inside the plate thickness direction of the glass substrate, and generating a crack generated in the thickness direction of the glass substrate starting from the scratch area, along the planned cutting line Cutting the glass substrate. In the step of forming the flaw region, the flaw region has a feature that it is separated from at least one light-transmitting surface.

以下、各工程について、図1を用いて詳細に説明する。
キズ領域を形成する工程は、ガラス基板1の内部に集光点を合わせてレーザ光2を照射することにより、ガラス基板1の内部にキズ領域3を形成する。ガラス基板1に、所定のエネルギー強度を有するレーザ光2を、前記ガラス基板1の内部に集光するように照射すると、レーザ光2が集光された部分はレーザ光2により加熱され、膨張する。これにより、レーザ光2が集光された領域の周囲に、熱膨張による圧力が加わる。しかしながら、熱膨張により加圧される部分の外側の領域、すなわちレーザ光2が照射されない領域にはレーザ光2による加熱の影響が及ばないことから、そのレーザ光2が照射されない領域は熱膨張により加圧される部分を拘束する。その結果、レーザ光2が集光された領域は、レーザ光2が照射されない領域との間で熱ひずみが生じ、ガラス基板1の内部にキズ領域3が形成される。ここで、レーザ光2が集光された領域は、キズ領域3の起点となる。そして、この起点からキズが透光面に向けて伸長することでキズ領域3が形成される。
Hereinafter, each process is demonstrated in detail using FIG.
In the step of forming the flaw region, the flaw region 3 is formed inside the glass substrate 1 by irradiating the laser beam 2 with the focusing point inside the glass substrate 1. When the glass substrate 1 is irradiated with laser light 2 having a predetermined energy intensity so as to be condensed inside the glass substrate 1, the portion where the laser light 2 is condensed is heated by the laser light 2 and expands. . Thereby, the pressure by thermal expansion is added around the area | region where the laser beam 2 was condensed. However, since the region outside the portion pressed by thermal expansion, that is, the region not irradiated with the laser beam 2 is not affected by the heating by the laser beam 2, the region not irradiated with the laser beam 2 is affected by thermal expansion. Restrain the part to be pressurized. As a result, thermal distortion occurs between the region where the laser beam 2 is condensed and the region where the laser beam 2 is not irradiated, and a scratch region 3 is formed inside the glass substrate 1. Here, the region where the laser beam 2 is condensed becomes the starting point of the flaw region 3. The scratch area 3 is formed by the scratch extending from the starting point toward the translucent surface.

ガラス基板1の内部に形成されるキズ領域3は、前記ガラス基板1の少なくとも一方の透光面6から離間していることが重要である。前述の従来のガラス基板の切断方法で説明したとおり、ガラス基板の切断予定ライン上の透光面6に切断の起点となるクラックをレーザやスクライバー等で形成する従来の切断方法を用いると、切断後のガラス基板の切断部の稜線にクラック(透光面に並行もしくは直交する方向に伸展するキズ)が発生する。ガラス基板1の切断部の稜線にクラックが存在すると、ガラス基板1に曲げ応力が付与された場合に、このクラックを起点としてガラス基板1が割れやすくなる。
これに対し、本発明の切断方法におけるキズ領域を形成する工程では、前述のとおりガラス基板1の内部に集光点を合わせてレーザ光2を照射することにより、ガラス基板1の内部にキズ領域3を形成する。具体的には、レーザ光2により、ガラス基板1の内部にキズ領域3の起点を形成し、このキズ領域3の起点から透光面6に向けて伸長したキズがキズ領域3を形成する。よって、ガラス基板の切断予定ラインの稜線にキズ領域3が及ぶことがあったとしても、従来方法のようにガラス基板の切断予定ライン上の透光面6に物理的な手段で切断の起点となるキズを形成していないため、ガラス基板の切断部の稜線にクラックが発生し難い。これにより、ガラス基板1に曲げ応力が付与された場合に、起点となるクラックがほぼ存在しないため、ガラス基板1が容易に割れることがない。
It is important that the flaw region 3 formed inside the glass substrate 1 is separated from at least one light transmitting surface 6 of the glass substrate 1. As described in the above-described conventional method for cutting a glass substrate, if a conventional cutting method for forming a crack as a starting point of cutting with a laser or a scriber on the light transmitting surface 6 on the planned cutting line of the glass substrate is used, the cutting is performed. Cracks (scratches extending in a direction parallel to or perpendicular to the light-transmitting surface) occur on the ridge line of the cut portion of the glass substrate later. If there is a crack in the ridge line of the cut portion of the glass substrate 1, when bending stress is applied to the glass substrate 1, the glass substrate 1 is easily cracked starting from this crack.
On the other hand, in the step of forming the flaw region in the cutting method of the present invention, the flaw region is formed inside the glass substrate 1 by irradiating the laser beam 2 with the focusing point inside the glass substrate 1 as described above. 3 is formed. Specifically, the origin of the flaw region 3 is formed inside the glass substrate 1 by the laser beam 2, and the flaw that extends from the origin of the flaw region 3 toward the translucent surface 6 forms the flaw region 3. Therefore, even if the flaw region 3 may reach the ridge line of the planned cutting line of the glass substrate, the light transmitting surface 6 on the planned cutting line of the glass substrate can be cut by a physical means as in the conventional method. Since the crack which becomes is not formed, a crack is hard to generate | occur | produce in the ridgeline of the cutting part of a glass substrate. Thereby, when a bending stress is applied to the glass substrate 1, there is almost no starting crack, so the glass substrate 1 is not easily broken.

本発明の切断方法におけるキズ領域を形成する工程では、ガラス基板1の内部に形成されるキズ領域3は、少なくとも一方の前記透光面6との距離が、前記ガラス基板1の板厚の20%以上離間していることが好ましい。このようにすることで、切断時にキズ領域3と離れている透光面6の切断部の稜線にクラックが発生し難くなる。そのため、クラックの発生が抑制された透光面6側が凸状態になるようにガラス基板1に曲げ応力が付与された場合に、ガラス基板1が割れる可能性が低く、曲げ強さが高くなる。なお、本発明における少なくとも一方の前記透光面6は、ガラス基板の使用時において凸状態になるようにガラス基板1に曲げ応力が付与された場合に、凸形状となる側の透光面6とすることが好ましい。   In the step of forming the flaw region in the cutting method of the present invention, the flaw region 3 formed inside the glass substrate 1 has a distance from at least one of the light-transmitting surfaces 6 of the plate thickness of the glass substrate 1. % Or more is preferable. By doing in this way, it becomes difficult to generate | occur | produce a crack in the ridgeline of the cut part of the translucent surface 6 which is separated from the crack area | region 3 at the time of a cutting | disconnection. Therefore, when a bending stress is applied to the glass substrate 1 so that the light-transmitting surface 6 side in which generation of cracks is suppressed is in a convex state, the glass substrate 1 is less likely to crack and the bending strength is increased. Note that at least one of the light-transmitting surfaces 6 in the present invention has a convex shape when the glass substrate 1 is subjected to bending stress so as to be in a convex state when the glass substrate is used. It is preferable that

前記キズ領域3の前記透光面6との距離は、前記ガラス基板1の板厚の20%未満であると、ガラス基板1の切断時にキズ領域3から伸展したキズが透光面6の切断部の稜線にクラックとして形成されるおそれがある。切断部の稜線にクラックが形成されると、ガラス基板1の曲げ強さが低くなるため好ましくない。また、前記キズ領域3の前記透光面6との距離は、前記ガラス基板1の板厚の25%以上が好ましく、28%以上がより好ましい。
ガラス基板1の内部に形成されるキズ領域3とは、レーザ光2の照射により形成されたガラス基板1の内部にキズが発生した部分をいう。そのため、キズがガラス基板1の板厚方向に伸びている場合は、キズの上側の先端から下側の先端までの領域が、本発明でいうキズ領域3となる。
If the distance between the scratch area 3 and the light-transmitting surface 6 is less than 20% of the thickness of the glass substrate 1, scratches that extend from the scratch area 3 when the glass substrate 1 is cut will cause the light-transmitting surface 6 to be cut. There is a risk of forming a crack in the ridge line of the part. If a crack is formed in the ridge line of the cut portion, the bending strength of the glass substrate 1 is lowered, which is not preferable. Further, the distance between the scratch area 3 and the light transmitting surface 6 is preferably 25% or more, more preferably 28% or more of the thickness of the glass substrate 1.
The flaw region 3 formed inside the glass substrate 1 refers to a portion where a flaw has occurred inside the glass substrate 1 formed by irradiation with the laser beam 2. Therefore, when the scratch extends in the thickness direction of the glass substrate 1, the region from the upper end of the scratch to the lower end becomes the scratch region 3 in the present invention.

キズ領域3は、ガラス基板1の切断予定ラインに沿って形成される。つまり、レーザ光2をガラス基板1の内部に集光させながら、ガラス基板1の透光面6に平行な方向に移動させることで走査を行う。これにより、ガラス基板1の切断予定ラインに沿って、キズ領域3を連続的に形成する。なお、ガラス基板1の切断予定ラインに沿って形成するキズ領域3は、1本の切断予定ラインに対して、単数であっても複数であってもよい。つまり、ガラス基板1の切断予定ラインに沿ってキズ領域3を形成し、次いで先に形成したレーザ光2の集光点と板厚方向の異なる位置にレーザ光2を集光し再度キズ領域を形成する。これを繰り返すことで、切断予定ラインに対して複数本のキズ領域3を形成してもよい。   The flaw region 3 is formed along the planned cutting line of the glass substrate 1. That is, scanning is performed by moving the laser beam 2 in a direction parallel to the light transmitting surface 6 of the glass substrate 1 while condensing the laser beam 2 inside the glass substrate 1. Thereby, the flaw area | region 3 is continuously formed along the cutting plan line of the glass substrate 1. FIG. In addition, the flaw area | region 3 formed along the cutting plan line of the glass substrate 1 may be single or plural with respect to one cutting plan line. That is, the scratch area 3 is formed along the planned cutting line of the glass substrate 1, and then the laser light 2 is condensed at a position different from the condensing point of the previously formed laser light 2 in the thickness direction, and the scratch area is formed again. Form. By repeating this, a plurality of flaw regions 3 may be formed for the planned cutting line.

本発明の切断方法に用いるレーザ光2は、パルスレーザ光を用いることが好ましい。パルスレーザ光を使用する場合、波長、パルス幅、繰り返し周波数、照射時間、及びエネルギー強度を、ガラス基板1の板厚や形成するキズ領域3の大きさ等に応じて任意に設定してよい。
レーザ光2として、例えばパルス幅が5ps〜100ps(ps:ピコ秒)の範囲に入る、いわゆるピコ秒レーザを好適に用いることができる。このようなレーザ光2は、1回のレーザ光2の照射によりガラス基板1の内部に形成されるキズが小さい。このようなレーザ光2を繰り返し周波数を高くすると、多数の微小なキズからなるキズ領域3が形成される。このようなキズ領域3は、ガラス基板1を切断した後、ガラス基板1の側面から加工屑等が発生しがたく、ガラス基板1の清浄性を高くすることに寄与する。
The laser beam 2 used in the cutting method of the present invention is preferably a pulsed laser beam. When using pulsed laser light, the wavelength, pulse width, repetition frequency, irradiation time, and energy intensity may be arbitrarily set according to the thickness of the glass substrate 1 and the size of the flaw region 3 to be formed.
As the laser beam 2, for example, a so-called picosecond laser having a pulse width in the range of 5 ps to 100 ps (ps: picoseconds) can be suitably used. Such a laser beam 2 has a small scratch formed inside the glass substrate 1 by one irradiation of the laser beam 2. When the frequency of such laser light 2 is repeatedly increased, a flaw region 3 composed of a large number of minute flaws is formed. Such a flaw region 3 is less likely to generate processing waste or the like from the side surface of the glass substrate 1 after cutting the glass substrate 1 and contributes to increasing the cleanliness of the glass substrate 1.

ガラス基板1を切断する工程は、前記キズ領域3と前記透光面6との距離が近い側の透光面6aが凸形状となるような曲げ荷重を加えることで前記ガラス基板1を折り割る。すなわち、図1においてガラス基板1に対して、その略垂直上方向に、下側の透光面6bから上側の透光面6aに向けて、折り割りのための曲げ荷重を加える。折り割りによりガラス基板1に応力を付与し、ガラス基板1の内部に形成されたキズ領域3を起点に板厚方向にこのキズを伸展させることで、ガラス基板1の切断予定ラインに沿ってガラス基板を切断する。図1においては、キズ領域3と透光面6aとの距離7よりもキズ領域3と透光面6bとの距離8の方が大きく、下側の透光面6bが上側の透光面6aと比べてキズ領域3から多く離れている。   The step of cutting the glass substrate 1 is to break the glass substrate 1 by applying a bending load such that the translucent surface 6a on the side where the distance between the scratch region 3 and the translucent surface 6 is short becomes a convex shape. . That is, a bending load for splitting is applied to the glass substrate 1 in the substantially vertical upward direction from the lower light transmitting surface 6b toward the upper light transmitting surface 6a in FIG. By applying stress to the glass substrate 1 by folding and extending the scratch in the thickness direction starting from the scratch region 3 formed inside the glass substrate 1, the glass along the planned cutting line of the glass substrate 1 is obtained. Cut the substrate. In FIG. 1, the distance 8 between the flaw region 3 and the translucent surface 6b is larger than the distance 7 between the flaw region 3 and the translucent surface 6a, and the lower translucent surface 6b is the upper translucent surface 6a. It is far away from the scratch area 3 as compared with FIG.

ガラス基板1を切断する工程において、前記キズ領域3と前記透光面6との距離が近い側の透光面6aが凸形状となるような曲げ応力を加えるとした理由は、少ない曲げ応力によりガラス基板1を切断することが可能なためである。ガラス基板1を折り割る際に、ガラス基板1の切断面には切断時の衝撃によりクラックや欠けが発生する。そのため、少ない曲げ応力で折り割りすることで、透光面6の切断部の稜線にクラックや欠けが発生することを抑制することができ、切断後のガラス基板1は高い機械的強度と清浄性を備える。なお、前記キズ領域3と前記透光面6bとの距離が遠い側が凸形状となるような曲げ応力を加えると、前記キズ領域3と前記透光面6bとの距離が遠いため、キズ領域3から伸展したキズが切断予定ラインから外れたり、蛇行する等して、切断後のガラス基板1の形状精度が悪くなることが懸念される。
ガラス基板1の切断方法は、前記折り割りにより切断方法に限ることなく、公知の切断方法を用いることも可能である。例えば、ガラス基板1を伸縮性のある粘着シート上に貼り付け、この粘着シートを引っ張ることでガラス基板1の平面方向に応力を付与して切断する方法を用いてもよい。
In the step of cutting the glass substrate 1, the reason why the bending stress is applied such that the light transmitting surface 6 a on the side where the distance between the scratch region 3 and the light transmitting surface 6 is short is a convex shape is due to a small bending stress. This is because the glass substrate 1 can be cut. When the glass substrate 1 is folded, cracks and chips are generated on the cut surface of the glass substrate 1 due to impact during cutting. Therefore, by cracking with a small bending stress, it is possible to suppress the occurrence of cracks and chips on the ridgeline of the cut portion of the light-transmitting surface 6, and the glass substrate 1 after cutting has high mechanical strength and cleanliness. Is provided. When a bending stress is applied such that the side where the distance between the scratch area 3 and the translucent surface 6b is far becomes convex, the distance between the scratch area 3 and the translucent surface 6b is long. There is a concern that the scratches that extend from the cut off from the line to be cut or meander, and the shape accuracy of the glass substrate 1 after cutting is deteriorated.
The cutting method of the glass substrate 1 is not limited to the cutting method by the folding, and a known cutting method can also be used. For example, a method may be used in which the glass substrate 1 is attached to a stretchable adhesive sheet, and the adhesive sheet is pulled to give a stress in the plane direction of the glass substrate 1 and cut.

本発明の切断方法に用いられるガラスの材質としては、どのような材質であっても使用できる。例えば、ホウケイ酸ガラス、石英ガラス、無アルカリガラス、アルミノシリケートガラス、リン酸塩ガラス、フツリン酸塩ガラス、ソーダ石灰ガラス等の各種ガラス材質を適宜使用することができる。また、ガラス基板として、光学特性に優れた白板ガラスや赤外線を吸収する赤外線吸収ガラスを好適に用いることができる。
また、ガラス基板1の透光面6には、機能膜が設けられていてもよい。機能膜としては、単層もしくは複数層の金属酸化物や金属フッ化物からなる光学膜であって、反射防止、赤外線カット、紫外線カット、紫外線及び赤外線カット等の適宜の光学特性を備えるものである。
Any material can be used for the glass used in the cutting method of the present invention. For example, various glass materials such as borosilicate glass, quartz glass, alkali-free glass, aluminosilicate glass, phosphate glass, fluorophosphate glass, and soda lime glass can be appropriately used. Moreover, as the glass substrate, white plate glass having excellent optical characteristics or infrared absorbing glass that absorbs infrared rays can be suitably used.
Further, a functional film may be provided on the light transmitting surface 6 of the glass substrate 1. The functional film is an optical film made of a single layer or a plurality of layers of metal oxide or metal fluoride, and has appropriate optical characteristics such as antireflection, infrared cut, ultraviolet cut, ultraviolet ray and infrared cut. .

本発明の切断方法で切断されたガラス基板は、薄い板厚で、かつ使用に際し曲げ応力が付与される用途、例えば、前述の固体撮像装置のカバーガラスや光学フィルタ(これらを総称して固体撮像装置用光学ガラスという)に好適に用いることができる。この際、キズ領域と透光面との距離が近い側の透光面6aを固体撮像装置のパッケージや他の光学フィルタとの貼り付け側とすることが好ましい。
この理由として、キズ領域と透光面との距離が近い側の透光面の切断部の稜線は、他方の透光面の切断部の稜線と比較しクラックが多く発生している。そのため、キズ領域3と透光面との距離が近い側の透光面6aを他部材と接着することで、この透光面の切断部の稜線が固定されるため、ガラス基板に曲げ応力が作用した際にクラックの伸展が抑制される。これに対し、キズ領域と透光面との距離が遠い側の透光面は、稜線のクラックが非常に少ないため、この面が凸形状となるような曲げ応力がガラス基板に作用したとしても、クラックを起点としたガラス基板の破壊が発生し難く、これらによりガラス基板は高い曲げ強度を示す。
The glass substrate cut by the cutting method of the present invention has a thin plate thickness and is applied with bending stress during use, for example, the above-described cover glass and optical filter of the solid-state imaging device (collectively referring to solid imaging) (Referred to as an optical glass for a device). At this time, it is preferable that the light-transmitting surface 6a on the side where the distance between the scratch area and the light-transmitting surface is short is the side to be bonded to the package of the solid-state imaging device or another optical filter.
As a reason for this, the ridgeline of the cut portion of the translucent surface on the side where the distance between the flaw region and the translucent surface is close is more cracked than the ridgeline of the cut portion of the other translucent surface. Therefore, since the ridge line of the cut portion of the light-transmitting surface is fixed by adhering the light-transmitting surface 6a on the side where the distance between the scratch area 3 and the light-transmitting surface is short, the bending stress is applied to the glass substrate. Crack extension is suppressed when acting. On the other hand, the light-transmitting surface on the side where the distance between the scratch area and the light-transmitting surface is far has very few ridge line cracks, so even if bending stress acting on the glass substrate acts on this surface becomes convex. The glass substrate is hardly broken starting from the crack, and the glass substrate exhibits high bending strength.

図2に、固体撮像装置10の断面図を示す。固体撮像装置10は、CCDやCMOSから構成される撮像素子11を内蔵したパッケージ12に保護用光透過部材13を気密封着したものである。また、パッケージ12の被写体側に光学フィルタである近赤外線カットフィルタガラス15とローパスフィルタ14が貼り合わせて設けられる。本発明のガラス基板の切断方法を用いて保護用光透過部材13を切断した場合は、保護用光透過部材13のパッケージ12との貼り合わせ面が、キズ領域と透光面との距離が近い側の透光面6aであることが好ましい。また、本発明の切断方法を用いて近赤外線カットフィルタガラス15を切断した場合は、近赤外線カットフィルタガラス15のローパスフィルタ14との貼り合わせ面は、キズ領域と透光面との距離が近い側の透光面6aであることが好ましい。このようにすることで、前述の理由により、固体撮像装置10に保護用光透過部材13や近赤外線カットフィルタガラス15を用いた場合、各ガラス基板の破損等を抑制することが可能となる。   FIG. 2 shows a cross-sectional view of the solid-state imaging device 10. The solid-state imaging device 10 is obtained by hermetically sealing a protective light transmission member 13 on a package 12 including an imaging element 11 composed of a CCD or a CMOS. A near-infrared cut filter glass 15 that is an optical filter and a low-pass filter 14 are attached to the subject side of the package 12. When the protective light transmissive member 13 is cut using the glass substrate cutting method of the present invention, the bonding surface of the protective light transmissive member 13 with the package 12 is close to the scratch area and the light transmissive surface. The side light-transmitting surface 6a is preferable. Moreover, when the near-infrared cut filter glass 15 is cut using the cutting method of the present invention, the distance between the scratch area and the translucent surface is short on the bonding surface of the near-infrared cut filter glass 15 with the low-pass filter 14. The side light-transmitting surface 6a is preferable. By doing in this way, when the light transmission member 13 for protection and the near-infrared cut filter glass 15 are used for the solid-state imaging device 10 for the above-mentioned reason, it becomes possible to suppress damage of each glass substrate.

本発明のガラス基板の切断方法は、キズ領域が少なくとも一方の透光面から離間していることを特徴とするが、それに加え、キズ領域が他方の透光面からも離間していてもよい。このような場合、2つの透光面の切断部の稜線にクラックがほぼ存在しないため、どちらの透光面が凸形状になるような曲げ応力がガラス基板に加わったとしても、いずれの場合もガラス基板は破損しがたく高い機械的強度を備えることが可能となる。
このように、前記キズ領域3が前記ガラス基板1の両面の透光面6、6から離間してガラス基板の内部に形成されている場合、前記キズ領域3は、前記ガラス基板1の両面の透光面6、6から前記ガラス基板1の板厚の5%以上50%以下離間して形成されていることが好ましい。
The glass substrate cutting method of the present invention is characterized in that the scratch region is separated from at least one light-transmitting surface, but in addition, the scratch region may be spaced from the other light-transmitting surface. . In such a case, since there is almost no crack in the ridge line of the cut portion of the two light-transmitting surfaces, no matter which light-transmitting surface has a bending stress applied to the glass substrate, in any case The glass substrate can be provided with high mechanical strength that is not easily damaged.
As described above, when the scratch region 3 is formed inside the glass substrate apart from the light transmitting surfaces 6 and 6 on both sides of the glass substrate 1, the scratch region 3 is formed on both surfaces of the glass substrate 1. It is preferable that the light-transmitting surfaces 6 and 6 are formed so as to be 5% to 50% apart from the plate thickness of the glass substrate 1.

本発明の固体撮像装置用光学ガラスは、板厚方向に対向する2つの透光面と前記2つの透光面の間に側面とを備えるガラス基板である。前記側面は、ガラス基板の内部に集光点を合せてレーザ光を照射し、切断予定ラインに沿って前記ガラス基板の板厚方向内部に切断起点となるキズ領域を形成し、前記キズ領域を伸展させることで形成された切断面である。そして、前記側面の前記キズ領域は、少なくとも一方の前記透光面との距離が前記ガラス基板の板厚に対して20%以上であることが好ましい。このようにすることで、切断時にキズ領域3と離れている透光面6の切断部の稜線にクラックが発生し難くなる。
また、ガラス基板の製造過程や使用される状況において、ガラス基板に曲げ応力が作用して透光面が凸形状となることが想定される場合、前記キズ領域と前記透光面との距離が前記ガラス基板の板厚に対して20%以上離れている透光面を、前記凸形状となる透光面にすることが好ましい。
The optical glass for a solid-state imaging device according to the present invention is a glass substrate including two light-transmitting surfaces facing each other in the thickness direction and a side surface between the two light-transmitting surfaces. The side surface irradiates a laser beam with a condensing point inside the glass substrate, forms a scratch region that becomes a cutting start point in the thickness direction of the glass substrate along a planned cutting line, It is a cut surface formed by extending. And it is preferable that the said crack area | region of the said side surface is 20% or more with respect to the plate | board thickness of the said glass substrate at least one said translucent surface. By doing in this way, it becomes difficult to generate | occur | produce a crack in the ridgeline of the cut part of the translucent surface 6 which is separated from the crack area | region 3 at the time of a cutting | disconnection.
Further, in the manufacturing process of the glass substrate and the situation in which it is used, when it is assumed that the light transmission surface is convex due to the bending stress acting on the glass substrate, the distance between the scratch area and the light transmission surface is It is preferable that a light-transmitting surface that is 20% or more away from the thickness of the glass substrate is a light-transmitting surface that has the convex shape.

本発明の固体撮像装置用光学ガラスは、その側面における前記キズ領域の表面粗さRaが1.0〜3.0μmであり、その側面における前記キズ領域と前記透光面との間の非キズ領域の表面粗さRaが0.01〜0.5μmであることが好ましい。このようにすることで、透光面と側面との間の稜線にクラックが非常に少ない状態となり、ガラスの曲げ強度を高めることができる。なお、非キズ領域とは、ガラスの側面におけるキズ領域以外の箇所をいうものである。本発明の固体撮像装置用光学ガラスは、側面において、キズ領域と少なくとも一方の前記透光面との間に非キズ領域を備える。また、上下の透光面とキズ領域との間にそれぞれ非キズ領域を備えるのがより好ましい。非キズ領域の表面粗さRaは、0.01μm未満であると加工が困難である。また、0.5μmを超えるとガラスの機械的強度の低下が懸念される。非キズ領域の表面粗さRaは、0.02〜0.3μmであることが好ましい。   In the optical glass for a solid-state imaging device of the present invention, the surface roughness Ra of the flaw region on the side surface is 1.0 to 3.0 μm, and the non-flaw between the flaw region on the side surface and the light-transmitting surface is present. The surface roughness Ra of the region is preferably 0.01 to 0.5 μm. By doing in this way, it becomes a state with very few cracks in the ridgeline between a translucent surface and a side surface, and can improve the bending strength of glass. In addition, a non-scratch area | region means locations other than the crack area | region in the side surface of glass. The optical glass for a solid-state imaging device according to the present invention includes a non-scratch region between a scratch region and at least one of the light-transmitting surfaces on the side surface. It is more preferable that non-scratch regions are provided between the upper and lower light-transmitting surfaces and the scratch region. If the surface roughness Ra of the non-scratch region is less than 0.01 μm, it is difficult to process. On the other hand, if it exceeds 0.5 μm, the mechanical strength of the glass may be lowered. The surface roughness Ra of the non-scratch region is preferably 0.02 to 0.3 μm.

本発明の固体撮像装置用光学ガラスは、前記側面の前記キズ領域の板厚方向の幅が前記ガラス基板の板厚に対して15%〜60%であることが好ましい。固体撮像装置は、レンズ側から光が入射した際、固体撮像素子の表面で反射した光が迷光となって、装置内を多重反射し、撮像画像に影響を及ぼすことがある。ここで、ガラスの側面の一部がキズ領域となることで、ガラスの側面に入射した迷光が乱反射し、撮像画像への影響を少なくすることが可能である。ガラスの側面のキズ領域の表面粗さRaは、1.0μm未満であると迷光を乱反射する効果が少なくなり、3.0μmを超えるとガラスの搬送中にキズ領域からのガラス屑の発生が懸念される。ガラスの側面のキズ領域の表面粗さRaは、1.2〜2.5μmであることがより好ましい。   In the optical glass for a solid-state imaging device of the present invention, it is preferable that the width of the flaw region on the side surface in the thickness direction is 15% to 60% with respect to the thickness of the glass substrate. In the solid-state imaging device, when light is incident from the lens side, the light reflected on the surface of the solid-state imaging device becomes stray light, and the inside of the device may be reflected multiple times to affect the captured image. Here, part of the side surface of the glass becomes a flaw region, so that stray light incident on the side surface of the glass is diffusely reflected, and the influence on the captured image can be reduced. If the surface roughness Ra of the flaw region on the side surface of the glass is less than 1.0 μm, the effect of irregularly reflecting stray light is reduced, and if it exceeds 3.0 μm, there is a concern that glass dust is generated from the flaw region during the conveyance of the glass. Is done. The surface roughness Ra of the flaw region on the side surface of the glass is more preferably 1.2 to 2.5 μm.

本発明の固体撮像装置用光学ガラスは、高透過ガラス(通称、白板ガラス)であることが好ましい。白板ガラスとは、鉄成分等の不純物の含有が少ない高純度の原料を溶融してつくられるガラスであって、可視域の波長範囲で高い透過率を備えるものである。具体的には、B270ガラス(ショット社製)やBK7ガラス(ショット社製)、これらに類似する特性を備えるガラスをいう。また、白板ガラスは、少なくとも一方の透光面に反射防止膜や赤外線カット膜を備えることが好ましい。   The optical glass for a solid-state imaging device according to the present invention is preferably a highly transmissive glass (commonly called white plate glass). The white plate glass is a glass made by melting a high-purity raw material containing little impurities such as an iron component, and has a high transmittance in a visible wavelength range. Specifically, it refers to B270 glass (manufactured by Schott), BK7 glass (manufactured by Schott), or glass having characteristics similar to these. Moreover, it is preferable that white plate glass equips at least one translucent surface with an antireflection film or an infrared cut film.

以下、本発明の実施例に基づいて詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
以下の各実施例(例1〜例3)及び各比較例(例4、例5)では、切断前のガラス基板1として、白板ガラス(ショット社製、B270ガラス、サイズ:6インチ×6インチ、厚さ:0.3mm)を用意した。
例1〜例4は、ガラス基板1を以下に示す条件にて、50mm×20mmの矩形状に切断した。各例にて用いたキズ領域の形成工程における条件は、レーザ(波長:1064nm、パルス幅:30psec(ピコ秒)、周波数:1MHz)、加工速度:100mm/sec、レンズ:NA 0.7である。また、ガラス基板を切断する工程では、折り割りにて切断予定ラインに沿って個片に切断を行った。なお、レーザ光の焦点距離4や走査回数は、表1に示すキズ領域3を形成するように設定した。レーザ光は、ガラス基板1の板厚方向中心付近に焦点を合わせるようにした。例1および例4は、上面透光面とキズ領域との距離が0μmとなっているが、これは、レーザ光でガラス基板の中心付近にキズ領域の起点を形成したが、このキズ領域の起点から上面透光面に達するようにキズが伸長したことを意味する。
例5は、ガラス基板1をダイシング装置を用いて、#600ブレード、加工速度3mm/secの条件にて、50mm×20mmの矩形状に切断した。また、ガラス基板を切断する工程では、例1〜例4と同様に折り割りにて切断予定ラインに沿って個片に切断を行った。
EXAMPLES Hereinafter, although it demonstrates in detail based on the Example of this invention, this invention is not limited only to these Examples.
In each of the following Examples (Examples 1 to 3) and Comparative Examples (Examples 4 and 5), as a glass substrate 1 before cutting, white plate glass (B270 glass manufactured by Schott Corp., size: 6 inches × 6 inches) , Thickness: 0.3 mm).
In Examples 1 to 4, the glass substrate 1 was cut into a 50 mm × 20 mm rectangular shape under the following conditions. The conditions in the formation process of the flaw region used in each example are laser (wavelength: 1064 nm, pulse width: 30 psec (picosecond), frequency: 1 MHz), processing speed: 100 mm / sec, and lens: NA 0.7. . Further, in the step of cutting the glass substrate, individual pieces were cut along the planned cutting line by folding. The focal length 4 and the number of scans of the laser light were set so as to form the flaw region 3 shown in Table 1. The laser beam was focused on the vicinity of the center of the glass substrate 1 in the thickness direction. In Example 1 and Example 4, the distance between the upper surface translucent surface and the scratch area is 0 μm. This is because the origin of the scratch area was formed near the center of the glass substrate by the laser beam. It means that the scratches extended from the starting point so as to reach the upper surface translucent surface.
In Example 5, the glass substrate 1 was cut into a 50 mm × 20 mm rectangular shape using a dicing machine under the conditions of # 600 blade and processing speed of 3 mm / sec. Moreover, in the process of cut | disconnecting a glass substrate, it cut | disconnected to the individual piece along the cutting scheduled line by folding similarly to Example 1-4.

次いで、個片となった各例のガラス基板について、各透光面からキズ領域までの距離(上側透光面からキズ領域までの距離7、および下側透光面からキズ領域までの距離8)及び曲げ強さを測定した。曲げ強さは、JIS R1601:2008「ファインセラミックスの曲げ強さ試験方法」に記載の3点曲げ強さ試験に基づき、破壊荷重P(N)を測定し、曲げ強さ(MPa)を算出した。曲げ強さ試験においては、表1の上側透光面を上にして曲げ強さ試験を行った。なお、キズ領域と各透光面との距離及び曲げ強さは各5枚測定した平均値を示す。なお、表1における上側透光面とは、ガラス基板の折り曲げのための曲げ応力を作用させる面を指し、下側透光面とは、その反対面をいう。   Next, with respect to the glass substrate of each example as a piece, the distance from each translucent surface to the scratch area (distance 7 from the upper translucent surface to the scratch area, and distance 8 from the lower translucent surface to the scratch area) ) And bending strength were measured. The bending strength was determined by measuring the breaking load P (N) and calculating the bending strength (MPa) based on the three-point bending strength test described in JIS R1601: 2008 “Fine ceramic bending strength test method”. . In the bending strength test, the bending strength test was performed with the upper light-transmitting surface in Table 1 facing upward. In addition, the distance of a crack area | region and each translucent surface and bending strength show the average value which measured 5 each. In Table 1, the upper translucent surface refers to a surface on which a bending stress for bending the glass substrate is applied, and the lower translucent surface refers to the opposite surface.

Figure 2013027645
Figure 2013027645

以上より、本発明のガラス基板の切断方法を用いることで、高い曲げ強さを備えるガラス基板が得られることがわかる。特に、ガラス基板に曲げ応力が作用する際、凸形状になる側の透光面とキズ領域との距離をガラス基板の板厚の20%以上とすることで、ダイシング等の従来の切断方法で切断したガラス基板と比較し、大幅に曲げ強さの高いガラス基板が得られることがわかる。   As mentioned above, it turns out that a glass substrate provided with high bending strength is obtained by using the cutting method of the glass substrate of the present invention. In particular, when bending stress acts on the glass substrate, the distance between the convex translucent surface and the scratch area is set to 20% or more of the thickness of the glass substrate, so that the conventional cutting method such as dicing can be used. It can be seen that a glass substrate with significantly higher bending strength can be obtained compared to the cut glass substrate.

次いで、例1と例5の切断後のガラス基板について、側面(切断面)のキズ領域の幅、キズ領域の表面粗さRa、非キズ領域の表面粗さRaを確認した。例1のガラス基板は、キズ領域の上下側に非キズ領域が存在しているため、平均値を示す。結果を表2に示す。   Subsequently, about the glass substrate after the cutting | disconnection of Example 1 and Example 5, the width | variety of the flaw area | region of a side surface (cut surface), the surface roughness Ra of a flaw area | region, and the surface roughness Ra of a non-flaw area | region were confirmed. The glass substrate of Example 1 shows an average value because non-scratch regions exist on the upper and lower sides of the scratch region. The results are shown in Table 2.

Figure 2013027645
Figure 2013027645

表1及び表2より、例1のガラス基板はキズ領域の上下側にそれぞれ表面粗さ(Ra)の非常に小さい非キズ領域を備えるため、例5のガラス基板と比較して曲げ強さが高い。また、例1のガラス基板は、側面のキズ領域の表面粗さ(Ra)が1.0μm以上であるため、固体撮像装置用光学ガラスに用いた場合、側面に入射した迷光を散乱させ、撮像画像への影響を少なくすることが可能であると推測される。これに対し、例5のガラス基板は、側面の表面粗さ(Ra)が1.0μm以上であるため、迷光を散乱する効果が得られるものの、側面の全面がキズ領域であるため、表1に示すように機械的強度が低い。   From Table 1 and Table 2, since the glass substrate of Example 1 is provided with non-scratch regions having very small surface roughness (Ra) on the upper and lower sides of the scratch region, the bending strength is higher than that of the glass substrate of Example 5. high. In addition, since the glass substrate of Example 1 has a surface roughness (Ra) of a flaw region on the side surface of 1.0 μm or more, when used in the optical glass for a solid-state imaging device, the stray light incident on the side surface is scattered and imaged. It is presumed that the influence on the image can be reduced. On the other hand, the glass substrate of Example 5 has an effect of scattering stray light because the surface roughness (Ra) of the side surface is 1.0 μm or more, but the entire side surface is a scratch region. As shown in FIG.

本発明のガラス基板の切断方法を用いることで、例えば固体撮像装置に用いられるカバーガラスや光学フィルタを高い機械的強度と清浄性を備えたガラス基板として切断することが可能である。
なお、2011年8月19日に出願された日本特許出願2011−179651号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
By using the method for cutting a glass substrate of the present invention, for example, a cover glass or an optical filter used in a solid-state imaging device can be cut as a glass substrate having high mechanical strength and cleanliness.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2011-179651 filed on August 19, 2011 are incorporated herein as the disclosure of the present invention. .

1…ガラス基板、2…レーザ光、3…キズ領域、4…焦点距離、6…透光面、6a…キズ領域と透光面との距離が近い方の透光面、6b…キズ領域と透光面との距離が遠い方の透光面、7…キズ領域と透光面との距離、8…キズ領域と透光面との距離、10…固体撮像装置、11…撮像素子、12…パッケージ、13…保護用光透過部材(カバーガラス)、14…ローパスフィルタ、15…近赤外線カットフィルタガラス。   DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Laser beam, 3 ... Scratch area | region, 4 ... Focal length, 6 ... Translucent surface, 6a ... Translucent surface with the near distance of a flaw area | region and a translucent surface, 6b ... Scratch area | region The translucent surface that is farther from the translucent surface, 7... The distance between the flawed region and the translucent surface, 8... The distance between the flawed region and the translucent surface, 10. DESCRIPTION OF SYMBOLS Package, 13 ... Protective light transmission member (cover glass), 14 ... Low-pass filter, 15 ... Near-infrared cut filter glass.

Claims (9)

板厚方向に対向する2つの透光面を備えるガラス基板の内部に集光点を合わせてレーザ光を照射し、前記ガラス基板の切断予定ラインに沿って、前記ガラス基板の板厚方向内部に切断起点となるキズ領域を形成する工程と、
前記キズ領域を起点として前記ガラス基板の厚さ方向に発生する割れを発生させ、前記切断予定ラインに沿って前記ガラス基板を切断する工程と、を備えるガラス基板の切断方法であって、
前記キズ領域は、少なくとも一方の前記透光面から離間していることを特徴とするガラス基板の切断方法。
A laser beam is irradiated by aligning a condensing point inside a glass substrate having two light-transmitting surfaces opposed to each other in the plate thickness direction, and along the planned cutting line of the glass substrate, inside the plate thickness direction of the glass substrate. A step of forming a scratch region to be a starting point of cutting;
Generating a crack that occurs in the thickness direction of the glass substrate starting from the scratch region, and cutting the glass substrate along the planned cutting line, and a method of cutting a glass substrate,
The method for cutting a glass substrate, wherein the scratch region is separated from at least one of the light-transmitting surfaces.
前記キズ領域は、少なくとも一方の前記透光面との距離が前記ガラス基板の板厚の20%以上であることを特徴とする請求項1に記載のガラス基板の切断方法。   The method for cutting a glass substrate according to claim 1, wherein a distance between the scratch area and at least one of the light-transmitting surfaces is 20% or more of a plate thickness of the glass substrate. 前記ガラス基板を切断する工程は、前記キズ領域と前記透光面との距離が近い側の透光面が凸形状となるような曲げ荷重を加えることで前記ガラス基板を折り割ることを特徴とする請求項1又は請求項2に記載のガラス基板の切断方法。   The step of cutting the glass substrate is characterized in that the glass substrate is folded by applying a bending load such that the light transmitting surface on the side closer to the scratch area and the light transmitting surface has a convex shape. The cutting method of the glass substrate of Claim 1 or Claim 2 to do. 前記レーザ光は、ピコ秒レーザであることを特徴とする請求項1ないし請求項3のいずれか1項に記載のガラス基板の切断方法。   The method for cutting a glass substrate according to any one of claims 1 to 3, wherein the laser beam is a picosecond laser. 前記キズ領域は、前記ガラス基板の両面の透光面から離間してガラス基板の内部に形成されていることを特徴とする請求項1ないし請求項4のいずれか1項に記載のガラス基板の切断方法。   5. The glass substrate according to claim 1, wherein the scratch region is formed inside the glass substrate so as to be separated from the light-transmitting surfaces on both sides of the glass substrate. Cutting method. 板厚方向に対向する2つの透光面と前記2つの透光面の間に側面とを備えるガラス基板であって、
前記側面は、ガラス基板の内部に集光点を合せてレーザ光を照射し、切断予定ラインに沿って前記ガラス基板の板厚方向内部に切断起点となるキズ領域を形成し、前記キズ領域を伸展させることで形成された切断面であり、
前記側面の前記キズ領域は、少なくとも一方の前記透光面との距離が前記ガラス基板の板厚に対して20%以上であることを特徴とする固体撮像装置用光学ガラス。
A glass substrate comprising two light-transmitting surfaces opposed to each other in a plate thickness direction and a side surface between the two light-transmitting surfaces;
The side surface irradiates a laser beam with a condensing point inside the glass substrate, forms a scratch region that becomes a cutting start point in the thickness direction of the glass substrate along a planned cutting line, It is a cut surface formed by extending,
The optical glass for a solid-state imaging device, wherein the scratch area on the side surface has a distance from at least one of the translucent surfaces of 20% or more with respect to the thickness of the glass substrate.
前記側面は、前記キズ領域の表面粗さRaが1.0〜3.0μmであり、前記キズ領域と前記透光面との間の非キズ領域の表面粗さRaが0.01〜0.5μmであることを特徴とする請求項6に記載の固体撮像装置用光学ガラス。   The side surface has a surface roughness Ra of the scratch area of 1.0 to 3.0 μm, and a surface roughness Ra of a non-scratch area between the scratch area and the light transmitting surface is 0.01 to 0. 0. The optical glass for a solid-state imaging device according to claim 6, wherein the optical glass is 5 μm. 前記側面の前記キズ領域は、板厚方向の幅が前記ガラス基板の板厚に対して15%〜60%であることを特徴とする請求項6または7に記載の固体撮像装置用光学ガラス。   8. The optical glass for a solid-state imaging device according to claim 6, wherein the flaw region on the side surface has a width in the plate thickness direction of 15% to 60% with respect to the plate thickness of the glass substrate. 前記ガラス基板は、白板ガラスであることを特徴とする請求項6ないし8のいずれか1項に記載の固体撮像装置用光学ガラス。   The optical glass for a solid-state imaging device according to any one of claims 6 to 8, wherein the glass substrate is a white plate glass.
JP2013529983A 2011-08-19 2012-08-16 Glass substrate cutting method, optical glass for solid-state imaging device Active JP5910633B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011179651 2011-08-19
JP2011179651 2011-08-19
PCT/JP2012/070801 WO2013027645A1 (en) 2011-08-19 2012-08-16 Glass substrate cutting method and optical glass for solid-state image capturing device

Publications (2)

Publication Number Publication Date
JPWO2013027645A1 true JPWO2013027645A1 (en) 2015-03-19
JP5910633B2 JP5910633B2 (en) 2016-04-27

Family

ID=47746390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013529983A Active JP5910633B2 (en) 2011-08-19 2012-08-16 Glass substrate cutting method, optical glass for solid-state imaging device

Country Status (4)

Country Link
JP (1) JP5910633B2 (en)
KR (1) KR101920100B1 (en)
CN (1) CN103732550A (en)
WO (1) WO2013027645A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046088A1 (en) * 2013-09-25 2015-04-02 旭硝子株式会社 Optical glass
WO2015182300A1 (en) * 2014-05-29 2015-12-03 旭硝子株式会社 Optical glass and method for cutting glass substrate
CN107205318B (en) * 2016-03-17 2021-01-29 塔工程有限公司 Scribing apparatus and scribing method
JP6904567B2 (en) * 2017-09-29 2021-07-21 三星ダイヤモンド工業株式会社 Scribe processing method and scribe processing equipment
CN109623175B (en) * 2018-12-26 2021-04-13 元亮科技有限公司 Phosphate glass laser cutting process
JP2022026724A (en) * 2020-07-31 2022-02-10 三星ダイヤモンド工業株式会社 Scribe line formation method, dividing method of brittle substrate, scribe line formation device, and small substrate
JP7092174B2 (en) 2020-11-04 2022-06-28 カシオ計算機株式会社 Manufacturing method of decorative board unit, clock and decorative board unit
WO2023210552A1 (en) * 2022-04-26 2023-11-02 Agc株式会社 Method for producing glass article, and glass article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015467A (en) * 1998-07-01 2000-01-18 Shin Meiwa Ind Co Ltd Working method of workpiece by beam and its working device
JP2002192370A (en) * 2000-09-13 2002-07-10 Hamamatsu Photonics Kk Laser beam machining method
JP2006175487A (en) * 2004-12-24 2006-07-06 Japan Steel Works Ltd:The Laser cutting method and apparatus
JP2007185664A (en) * 2006-01-11 2007-07-26 Seiko Epson Corp Laser beam inside-scribing method
WO2009069510A1 (en) * 2007-11-30 2009-06-04 Hamamatsu Photonics K.K. Working object cutting method
JP2010026041A (en) * 2008-07-16 2010-02-04 Seiko Epson Corp Manufacturing method of display panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148175A (en) 2000-09-13 2006-06-08 Hamamatsu Photonics Kk Laser beam machining method
JP5380986B2 (en) 2008-09-30 2014-01-08 アイシン精機株式会社 Laser scribing method and laser scribing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015467A (en) * 1998-07-01 2000-01-18 Shin Meiwa Ind Co Ltd Working method of workpiece by beam and its working device
JP2002192370A (en) * 2000-09-13 2002-07-10 Hamamatsu Photonics Kk Laser beam machining method
JP2006175487A (en) * 2004-12-24 2006-07-06 Japan Steel Works Ltd:The Laser cutting method and apparatus
JP2007185664A (en) * 2006-01-11 2007-07-26 Seiko Epson Corp Laser beam inside-scribing method
WO2009069510A1 (en) * 2007-11-30 2009-06-04 Hamamatsu Photonics K.K. Working object cutting method
JP2010026041A (en) * 2008-07-16 2010-02-04 Seiko Epson Corp Manufacturing method of display panel

Also Published As

Publication number Publication date
KR20140047626A (en) 2014-04-22
WO2013027645A1 (en) 2013-02-28
CN103732550A (en) 2014-04-16
JP5910633B2 (en) 2016-04-27
KR101920100B1 (en) 2018-11-19

Similar Documents

Publication Publication Date Title
JP5910633B2 (en) Glass substrate cutting method, optical glass for solid-state imaging device
CN106414352B (en) Optical glass and method for cutting glass substrate
KR102144324B1 (en) Method for cutting glass substrate, glass substrate, near infrared ray cut filter glass and method for manufacturing glass substrate
JP3761567B2 (en) Laser processing method
JP3761565B2 (en) Laser processing method
JP5998968B2 (en) Glass substrate cutting method, glass substrate and near infrared cut filter glass
JP6324719B2 (en) Glass substrate chamfering method and laser processing apparatus
JP2010026041A (en) Manufacturing method of display panel
JP4527098B2 (en) Laser processing method
CN108367966B (en) Infrared absorbing glass plate, method for manufacturing same, and solid-state imaging element apparatus
TWI791530B (en) Infrared-absorbing glass plate, manufacturing method thereof, and solid-state imaging device
JP2010128477A (en) Method of manufacturing optical component and optical component
JP2007185664A (en) Laser beam inside-scribing method
TW201802052A (en) Infrared absorbing glass sheet, method for manufacturing same, and solid state imaging element device
JP5025876B2 (en) Laser processing equipment
CN108093626B (en) Laser processing method and laser processing apparatus
JP6406263B2 (en) Optical glass
JP5994686B2 (en) Optical glass
WO2021100480A1 (en) Method for processing glass plate, and glass plate
JP2010023055A (en) Method of manufacturing display panel
JP4663952B2 (en) Laser processing apparatus and laser processing method
JP2006191139A (en) Laser beam machining method
JP2015131732A (en) Method for cutting glass substrate
JP6767650B2 (en) How to make a mirror
JP5834335B2 (en) Substrate with thin film, thin film processing method, piezoelectric device, and frequency adjustment method of piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250