JP2002037697A - Method for producing optical material - Google Patents

Method for producing optical material

Info

Publication number
JP2002037697A
JP2002037697A JP2000223555A JP2000223555A JP2002037697A JP 2002037697 A JP2002037697 A JP 2002037697A JP 2000223555 A JP2000223555 A JP 2000223555A JP 2000223555 A JP2000223555 A JP 2000223555A JP 2002037697 A JP2002037697 A JP 2002037697A
Authority
JP
Japan
Prior art keywords
fluoride
crystal
fluorine
single crystal
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000223555A
Other languages
Japanese (ja)
Other versions
JP4575561B2 (en
Inventor
Takashi Yamazaki
貴史 山崎
Yutaka Anzai
裕 安斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000223555A priority Critical patent/JP4575561B2/en
Publication of JP2002037697A publication Critical patent/JP2002037697A/en
Application granted granted Critical
Publication of JP4575561B2 publication Critical patent/JP4575561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for producing optical materials which suppresses a decrease in transmittance in ultraviolet and visible regions due to optical damage of a fluoride crystal and hence improves durability for laser radiation. SOLUTION: This method for producing optical materials comprises heat- treating the fluoride crystal, is characterized in that a direct current is applied to the fluoride crystal during heat treatment, in addition, a fluorine pressed powder body is disposed at a cathode side of the fluoride crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学材料の製造方
法に関し、詳しくはエキシマレーザー等の光学系を構成
するレンズやプリズム等の光学素子として使用され、光
損傷による紫外、可視領域における透過率の低下を低減
し、その結果としてレーザー照射に対する耐久性を向上
させた光学材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical material, and more particularly, to a method for producing an optical system such as an excimer laser, which is used as an optical element such as a lens or a prism, and having a transmittance in an ultraviolet or visible region due to optical damage. The present invention relates to a method for producing an optical material in which a decrease in the optical material is reduced, and as a result, the durability against laser irradiation is improved.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】半導体
露光装置の解像度を向上させるべく、光源となるレーザ
ー光の短波長化、投影レンズの大口径化に伴って、光学
系に蛍石単結晶、すなわちフッ化カルシウム(Ca
2 )単結晶等が用いられている。
2. Description of the Related Art In order to improve the resolution of a semiconductor exposure apparatus, the wavelength of a laser beam as a light source has been shortened and the diameter of a projection lens has been increased. Ie, calcium fluoride (Ca
F 2 ) single crystal or the like is used.

【0003】従来、この蛍石単結晶は、ブリッジマン法
により製造されてきた。深紫外又は真空紫外領域で使用
される蛍石単結晶は、原料に天然の蛍石を使用すること
はなく、化学的合成法で作製された高純度原料を使用す
ることが一般的である。原料は溶融したときの体積減少
が激しいため、半溶融品や粉砕品を用いるのが一般的で
ある。
Conventionally, this fluorite single crystal has been produced by the Bridgman method. Fluorite single crystals used in the deep ultraviolet or vacuum ultraviolet region do not use natural fluorite as a raw material, but generally use a high-purity raw material produced by a chemical synthesis method. Since the volume of the raw material greatly decreases when it is melted, a semi-molten product or a pulverized product is generally used.

【0004】この方法は、育成装置の中に上記原料を充
填したルツボを配置し、育成装置内を10-3〜10-4
aの真空雰囲気に保って、育成装置内の温度を蛍石の融
点以上(1370〜1450℃)まで上げて原料を溶融
する。溶融後、ルツボを引き下げて固化(結晶化)させ
る。
According to this method, a crucible filled with the above-mentioned raw material is placed in a growing apparatus, and the inside of the growing apparatus is 10 -3 to 10 -4 P
The temperature in the growing apparatus is raised to the melting point of fluorite or higher (1370 to 1450 ° C.) and the raw material is melted while maintaining the vacuum atmosphere of a. After melting, the crucible is pulled down and solidified (crystallized).

【0005】融液最上部まで結晶化したところで結晶育
成を終了し、育成した結晶(インゴット)が割れないよ
うに徐冷を行い、育成装置内温度が室温程度まで下がっ
たところで、装置を大気下に開放してインゴットを取り
出す。取り出したインゴットは、残留応力と歪が非常に
大きいため、後処理として熱処理を行う。
[0005] When the crystal is crystallized to the uppermost part of the melt, the crystal growth is terminated, and the grown crystal (ingot) is gradually cooled so as not to be broken. Open to take out the ingot. Since the taken out ingot has a very large residual stress and strain, heat treatment is performed as a post-treatment.

【0006】このようにして得られた蛍石単結晶は、目
的とする製品毎に適当な大きさに切断加工される。
[0006] The fluorite single crystal thus obtained is cut into an appropriate size for each target product.

【0007】しかしながら、このように合成された蛍石
単結晶をレンズやプリズム等の光学素子として用いた場
合に、紫外光照射によって光損傷、具体的にはカラーセ
ンターによる紫外領域及び可視領域の透過率における低
下が問題となっていた。すなわち、フッ素の欠陥密度上
昇に伴い、レーザーダメージで見られるカラーセンター
が形成される。このことがレーザー、特にエキシマレー
ザー照射の耐久性を低下させる原因となっていた。各種
条件下で熱処理を行ってもこの問題は解決できなかっ
た。
However, when the fluorite single crystal thus synthesized is used as an optical element such as a lens or a prism, light damage due to ultraviolet light irradiation, specifically, transmission of ultraviolet light and visible light by a color center. The drop in rates was a problem. That is, as the defect density of fluorine increases, a color center seen by laser damage is formed. This has caused a decrease in the durability of laser irradiation, particularly excimer laser irradiation. This problem could not be solved by heat treatment under various conditions.

【0008】従って、本発明の目的は、フッ化物結晶の
光損傷による紫外領域及び可視領域における透過率の低
下を低減し、その結果としてレーザー照射に対する耐久
性を向上させた光学材料の製造方法を提供することにあ
る。
Accordingly, an object of the present invention is to provide a method for producing an optical material in which a decrease in transmittance in an ultraviolet region and a visible region due to optical damage of a fluoride crystal is reduced, and as a result, durability against laser irradiation is improved. To provide.

【0009】[0009]

【課題を解決するための手段】本発明者らは、検討の結
果、フッ化物結晶の熱処理時に、電流を通電し、かつフ
ッ化物結晶の陰極側にフッ素系圧粉体を配置することに
よって、上記目的が達成することを知見した。
Means for Solving the Problems As a result of the examination, the present inventors have found that, during heat treatment of a fluoride crystal, a current is supplied and a fluorine-based green compact is disposed on the cathode side of the fluoride crystal. It has been found that the above object is achieved.

【0010】本発明は、上記知見に基づきなされたもの
で、フッ化物結晶を熱処理する光学材料の製造方法であ
つて、該熱処理時に該フッ化物結晶に直流電流を通電す
ると共に、該フッ化物結晶の陰極側にフッ素系圧粉体を
配置することを特徴とする光学材料の製造方法を提供す
るものである。
The present invention has been made based on the above findings, and is a method for producing an optical material for heat-treating a fluoride crystal, wherein a direct current is applied to the fluoride crystal during the heat treatment, and the fluoride crystal is heat-treated. And a method for producing an optical material, characterized in that a fluorine-based green compact is disposed on the cathode side.

【0011】[0011]

【発明の実施の形態】以下、本発明の光学材料の製造方
法の実施の形態について説明する。本発明は、フッ化物
結晶を熱処理する際に、フッ化物結晶に直流電流を通電
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the method for producing an optical material according to the present invention will be described below. According to the present invention, when heat treating the fluoride crystal, a direct current is applied to the fluoride crystal.

【0012】フッ化物結晶としては、フッ化物含有単結
晶、フッ化物含有多結晶であり、具体的にはフッ化カル
シウム(CaF2 )単結晶、フッ化マグネシウム単結晶
(MgF2 )等が挙げられ、特にフッ化カルシウム(C
aF2 )単結晶が好ましく挙げられる。
The fluoride crystal includes a fluoride-containing single crystal and a fluoride-containing polycrystal, and specifically, a calcium fluoride (CaF 2 ) single crystal, a magnesium fluoride single crystal (MgF 2 ) and the like. Especially calcium fluoride (C
aF 2 ) single crystals are preferred.

【0013】熱処理(アニール)は、雰囲気制御電気炉
において、真空中あるいは不活性ガス雰囲気、例えばア
ルゴンガス雰囲気下で600〜1300℃で行われる。
通電は、例えば電極間に最大18Vの直流電圧をかけて
行う。
The heat treatment (annealing) is performed at 600 to 1300 ° C. in a vacuum or an inert gas atmosphere, for example, an argon gas atmosphere in an atmosphere control electric furnace.
The energization is performed, for example, by applying a maximum DC voltage of 18 V between the electrodes.

【0014】本発明では、このフッ化物結晶に直流電流
を通電するに際して、フッ化物結晶の陰極側にフッ素系
圧粉体を配置する。このフッ素系圧粉体は、フッ化物結
晶へのフッ素イオン源になるもので、通電によってフッ
素系圧粉体中のフッ素イオンがフッ化物結晶に移行し、
拡散する。つまり、フッ素のイオン伝導性を利用し、フ
ッ化物結晶のフッ素イオンを供給し、フッ化物結晶のフ
ッ素の格子欠陥を補償するものである。また、この通電
によって、フッ化物結晶中の不純物としての酸素は電位
勾配によって陽極側に移行してフッ化物結晶から除かれ
るので、酸素に基づく欠陥も解消される。
In the present invention, when a direct current is applied to the fluoride crystal, a fluorine-based green compact is disposed on the cathode side of the fluoride crystal. This fluorine-based green compact is a source of fluoride ions to the fluoride crystal, and the fluorine ions in the fluorine-based green compact are transferred to the fluoride crystal by energization,
Spread. That is, utilizing the ion conductivity of fluorine, fluorine ions of the fluoride crystal are supplied to compensate for the lattice defect of fluorine of the fluoride crystal. Further, by this energization, oxygen as an impurity in the fluoride crystal moves to the anode side due to the potential gradient and is removed from the fluoride crystal, so that defects due to oxygen are also eliminated.

【0015】このようなフッ素系圧粉体としては、フッ
化物結晶にフッ素イオンを供給できるフッ化カルシウ
ム、フッ化鉛又はこれらの混合物等の圧粉体が好ましく
用いられる。但し、陽イオンがフッ化物結晶の不純物と
なるものは好ましくない。
As such a fluorine-based green compact, a green compact such as calcium fluoride, lead fluoride or a mixture thereof which can supply fluorine ions to the fluoride crystal is preferably used. However, it is not preferable that the cation becomes an impurity of the fluoride crystal.

【0016】また、このフッ化物結晶に直流電流を通電
するに際して、フッ化物結晶の陰極側のみならず、陽極
側にもフッ素系圧粉体を配置することが望ましい。この
ように陽極側にフッ素系圧粉体を配置することによっ
て、電極、例えば白金、モリブデン電極とフッ化物結晶
との間に直流電流が充分にかつ均一に流れることができ
る。
When direct current is applied to the fluoride crystal, it is desirable to arrange a fluorine-based green compact not only on the cathode side but also on the anode side of the fluoride crystal. By arranging the fluorine-based green compact on the anode side in this manner, a direct current can be sufficiently and uniformly passed between the electrode, for example, a platinum or molybdenum electrode and the fluoride crystal.

【0017】本発明は、フッ化物結晶中のフッ素イオン
欠陥の制御を行うもので、結晶中のフッ素のイオン伝導
性を利用し、結晶格子内へフッ素イオンを供給するもの
である。また、結晶内に電位勾配を作ることで、フッ素
イオン、フッ素イオン空孔を拡散させるものである。
The present invention controls fluorine ion defects in a fluoride crystal, and supplies fluorine ions into a crystal lattice by utilizing the ionic conductivity of fluorine in the crystal. Further, by forming a potential gradient in the crystal, fluorine ions and fluorine ion vacancies are diffused.

【0018】[0018]

【実施例】以下、実施例等に基づき本発明を具体的に説
明する。
EXAMPLES Hereinafter, the present invention will be specifically described based on examples and the like.

【0019】〔参考例〕電気炉において、アルゴンガス
雰囲気中で、最大860℃で熱処理する際に、図1に示
すように、フッ化カルシウム単結晶1の両端面に白金電
極2をスパツタリングで成膜し、電極間に最大18Vの
直流電圧をかけた。
REFERENCE EXAMPLE In an electric furnace, when heat treatment is performed at a maximum of 860 ° C. in an argon gas atmosphere, platinum electrodes 2 are formed on both end surfaces of a calcium fluoride single crystal 1 by sputtering, as shown in FIG. The membrane was applied and a DC voltage of maximum 18 V was applied between the electrodes.

【0020】このフッ化カルシウム単結晶の両端面を光
学研磨した後、着色部の透過率を分光光度計で測定し
た。
After optically polishing both end faces of the calcium fluoride single crystal, the transmittance of the colored portion was measured with a spectrophotometer.

【0021】この透過率を図2に示す。この透過率のグ
ラフからカラーセンターの形成の有無が判る。
FIG. 2 shows the transmittance. From the graph of the transmittance, it can be seen whether or not the color center is formed.

【0022】〔実施例1〕電気炉において、アルゴンガ
ス雰囲気中で、最大734℃で熱処理する際に、図3に
示すように、フッ化カルシウム単結晶1の陰極側にフッ
素系圧粉体(フッ化鉛圧粉体)3を配置し、白金電極2
と接続させ、電極間に最大18Vの直流電圧をかけた。
Example 1 In an electric furnace, when a heat treatment was performed at a maximum of 734 ° C. in an argon gas atmosphere, as shown in FIG. 3), and a platinum electrode 2
And a maximum DC voltage of 18 V was applied between the electrodes.

【0023】上記加熱処理を行わない未加熱処理フッ化
カルシウム単結晶及び加熱処理フッ化カルシウム単結晶
とをそれぞれその両端面を光学研磨した後、参考例と同
様にエキシマレーザーを照射した。未加熱処理フッ化カ
ルシウム単結晶の透過率を図4、吸収係数を図5にそれ
ぞれ示す。加熱処理フッ化カルシウム単結晶の透過率を
図6、吸収係数を図7にそれぞれ示す。
Both the unheated calcium fluoride single crystal and the heat-treated calcium fluoride single crystal not subjected to the above-mentioned heat treatment were optically polished at both end surfaces, and then irradiated with an excimer laser as in the reference example. FIG. 4 shows the transmittance of the unheated calcium fluoride single crystal, and FIG. 5 shows the absorption coefficient. FIG. 6 shows the transmittance of the heat-treated calcium fluoride single crystal, and FIG. 7 shows the absorption coefficient.

【0024】透過スペクトルは、レーザー照射直前の透
過スペクトル(初期透過スペクトル)とレーザー照射後
の透過スペクトルの比較を行った。透過率が初期の値か
ら低下した部分が、レーザー照射によるカラーセンター
の誘起である。なお、図4及び図6の660nm付近と
340nm付近のピークは、分光光度計に由来するもの
である。
The transmission spectrum was compared between the transmission spectrum immediately before laser irradiation (initial transmission spectrum) and the transmission spectrum after laser irradiation. The part where the transmittance has decreased from the initial value is the induction of the color center by laser irradiation. Note that the peaks near 660 nm and 340 nm in FIGS. 4 and 6 are derived from a spectrophotometer.

【0025】吸収係数は次のように求めた。すなわち、
誘起されたカラーセンターのスペクトル構造を見やすく
するために、初期透過スペクトルからの変化として、吸
収スペクトルを算出した。ランベルトの法則に従い、吸
収係数を算出した。 I=I0 exp(αt) α=−ln(I/I0
/t I:レーザー照射後の透過率、I0 :レーザー照射前の
透過率、t:サンプル厚み(cm)、α:吸収係数(c
-1
The absorption coefficient was determined as follows. That is,
To make it easier to see the spectral structure of the induced color center, the absorption spectrum was calculated as a change from the initial transmission spectrum. The absorption coefficient was calculated according to Lambert's law. I = I 0 exp (αt) α = −ln (I / I 0 )
/ T I: transmittance after laser irradiation, I 0 : transmittance before laser irradiation, t: sample thickness (cm), α: absorption coefficient (c
m -1 )

【0026】〔実施例2〕電気炉において、アルゴンガ
ス雰囲気中で、最大800℃で熱処理する際に、図8に
示すように、フッ化カルシウム単結晶1の陰極側にフッ
素系圧粉体(フッ化カルシウムとフッ化鉛の混合物から
なる圧粉体)3を配置し、白金電極2と接続させ、また
陽極側にフッ素系圧粉体(フッ化鉛圧粉体)4を配置
し、白金電極2と接続させ、電極間に最大18Vの直流
電圧をかけた。
Example 2 In an electric furnace, when a heat treatment was performed at a maximum of 800 ° C. in an argon gas atmosphere, as shown in FIG. A green compact 3 made of a mixture of calcium fluoride and lead fluoride is arranged and connected to the platinum electrode 2, and a fluorine-based green compact (lead fluoride green compact) 4 is It was connected to the electrode 2 and a maximum DC voltage of 18 V was applied between the electrodes.

【0027】上記加熱処理を行わない未加熱処理フッ化
カルシウム単結晶及び加熱処理フッ化カルシウム単結晶
とをそれぞれその両端面を光学研磨した後、参考例と同
様にエキシマレーザーを照射した。未加熱処理フッ化カ
ルシウム単結晶の透過率を図9、吸収係数を図10にそ
れぞれ示す。加熱処理フッ化カルシウム単結晶の透過率
を図11、吸収係数を図12にそれぞれ示す。これら透
過率及び吸収率の測定方法は、実施例1と同様である。
なお、図9の660nm付近及び図6の660nm付近
と340nm付近のピークは、分光光度計に由来するも
のである。
Both end faces of the unheated calcium fluoride single crystal and the heat-treated calcium fluoride single crystal not subjected to the heat treatment were optically polished, and then irradiated with an excimer laser as in the Reference Example. FIG. 9 shows the transmittance of the unheated calcium fluoride single crystal, and FIG. 10 shows the absorption coefficient. FIG. 11 shows the transmittance of the heat-treated calcium fluoride single crystal, and FIG. 12 shows the absorption coefficient. The method for measuring the transmittance and the absorptance is the same as in Example 1.
Note that the peaks near 660 nm in FIG. 9 and the peaks near 660 nm and 340 nm in FIG. 6 are derived from a spectrophotometer.

【0028】〔実施例3〕陽極側のフッ素系圧粉体4と
して、フッ化鉛圧粉体に代えてフッ化カルシウム圧粉体
を用いた以外は、実施例2と同様に加熱処理及び通電を
行った。
[Example 3] Heat treatment and energization were performed in the same manner as in Example 2 except that calcium fluoride compact was used instead of lead fluoride compact as the fluorine-based compact 4 on the anode side. Was done.

【0029】上記加熱処理を行わない未加熱処理フッ化
カルシウム単結晶及び加熱処理フッ化カルシウム単結晶
とをそれぞれその両端面を光学研磨した後、参考例と同
様にエキシマレーザーを照射した。未加熱処理フッ化カ
ルシウム単結晶の透過率を図13、吸収係数を図14に
それぞれ示す。加熱処理フッ化カルシウム単結晶の透過
率を図15、吸収係数を図16にそれぞれ示す。これら
透過率及び吸収率の測定方法は、実施例1と同様であ
る。なお、図13及び図15の660nm付近のピーク
は、分光光度計に由来するものである。
Both end faces of the unheated calcium fluoride single crystal and the heat-treated calcium fluoride single crystal not subjected to the heat treatment were optically polished, and then irradiated with an excimer laser in the same manner as in the reference example. FIG. 13 shows the transmittance of the unheated calcium fluoride single crystal, and FIG. 14 shows the absorption coefficient. FIG. 15 shows the transmittance of the heat-treated calcium fluoride single crystal, and FIG. 16 shows the absorption coefficient. The method for measuring the transmittance and the absorptance is the same as in Example 1. The peak near 660 nm in FIGS. 13 and 15 is derived from a spectrophotometer.

【0030】[0030]

【発明の効果】本発明の光学材料の製造方法によって、
フッ化物結晶の光損傷による紫外領域及び可視領域にお
ける透過率の低下を低減し、光学素子としての性能が向
上する。その結果としてレーザー、特にエキシマレーザ
ー照射に対する耐久性が向上する。
According to the method for producing an optical material of the present invention,
A decrease in transmittance in the ultraviolet region and the visible region due to optical damage of the fluoride crystal is reduced, and the performance as an optical element is improved. As a result, durability against laser irradiation, particularly excimer laser irradiation, is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、参考例の概略説明図である。FIG. 1 is a schematic explanatory diagram of a reference example.

【図2】図2は、参考例におけるフッ化カルシウム単結
晶の透過率と波長との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between transmittance and wavelength of a calcium fluoride single crystal in a reference example.

【図3】図3は、実施例1の概略説明図である。FIG. 3 is a schematic explanatory diagram of a first embodiment;

【図4】図4は、実施例1における未加熱処理フッ化カ
ルシウム単結晶の透過率と波長との関係を示すグラフで
ある。
FIG. 4 is a graph showing the relationship between the transmittance and the wavelength of the unheated calcium fluoride single crystal in Example 1.

【図5】図5は、実施例1における未加熱処理フッ化カ
ルシウム単結晶の吸収係数と波長との関係を示すグラフ
である。
FIG. 5 is a graph showing the relationship between the absorption coefficient and the wavelength of the unheated calcium fluoride single crystal in Example 1.

【図6】図6は、実施例1における加熱処理フッ化カル
シウム単結晶の透過率と波長との関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the transmittance and the wavelength of the heat-treated calcium fluoride single crystal in Example 1.

【図7】図7は、実施例1における加熱処理フッ化カル
シウム単結晶の吸収係数と波長との関係を示すグラフで
ある。
FIG. 7 is a graph showing the relationship between the absorption coefficient and the wavelength of the heat-treated calcium fluoride single crystal in Example 1.

【図8】図8は、実施例2の概略説明図である。FIG. 8 is a schematic explanatory diagram of a second embodiment.

【図9】図9は、実施例2における未加熱処理フッ化カ
ルシウム単結晶の透過率と波長との関係を示すグラフで
ある。
FIG. 9 is a graph showing the relationship between the transmittance and the wavelength of the unheated calcium fluoride single crystal in Example 2.

【図10】図10は、実施例2における未加熱処理フッ
化カルシウム単結晶の吸収係数と波長との関係を示すグ
ラフである。
FIG. 10 is a graph showing the relationship between the absorption coefficient and the wavelength of the unheated calcium fluoride single crystal in Example 2.

【図11】図11は、実施例2における加熱処理フッ化
カルシウム単結晶の透過率と波長との関係を示すグラフ
である。
FIG. 11 is a graph showing the relationship between the transmittance and the wavelength of the heat-treated calcium fluoride single crystal in Example 2.

【図12】図12は、実施例3における加熱処理フッ化
カルシウム単結晶の吸収係数と波長との関係を示すグラ
フである。
FIG. 12 is a graph showing the relationship between the absorption coefficient and the wavelength of the heat-treated calcium fluoride single crystal in Example 3.

【図13】図13は、実施例3における未加熱処理フッ
化カルシウム単結晶の透過率と波長との関係を示すグラ
フである。
FIG. 13 is a graph showing the relationship between the transmittance and the wavelength of an unheated calcium fluoride single crystal in Example 3.

【図14】図14は、実施例3における未加熱処理フッ
化カルシウム単結晶の吸収係数と波長との関係を示すグ
ラフである。
FIG. 14 is a graph showing the relationship between the absorption coefficient and the wavelength of the unheated calcium fluoride single crystal in Example 3.

【図15】図15は、実施例3における加熱処理フッ化
カルシウム単結晶の透過率と波長との関係を示すグラフ
である。
FIG. 15 is a graph showing the relationship between the transmittance and the wavelength of the heat-treated calcium fluoride single crystal in Example 3.

【図16】図16は、実施例3における加熱処理フッ化
カルシウム単結晶の吸収係数と波長との関係を示すグラ
フである。
FIG. 16 is a graph showing the relationship between the absorption coefficient and the wavelength of the heat-treated calcium fluoride single crystal in Example 3.

【符号の説明】[Explanation of symbols]

1:フッ化カルシウム単結晶 2:白金電極 3:陰極側フッ素系圧粉体 3:陽極側フッ素系圧粉体 1: Single crystal of calcium fluoride 2: Platinum electrode 3: Fluorine compact on the cathode side 3: Fluorine compact on the anode side

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フッ化物結晶を熱処理する光学材料の製
造方法であつて、該熱処理時に該フッ化物結晶に直流電
流を通電すると共に、該フッ化物結晶の陰極側にフッ素
系圧粉体を配置することを特徴とする光学材料の製造方
法。
1. A method for producing an optical material for heat-treating a fluoride crystal, comprising applying a direct current to the fluoride crystal during the heat treatment, and arranging a fluorine-based green compact on the cathode side of the fluoride crystal. A method for producing an optical material.
【請求項2】 上記フッ化物結晶の陽極側に、フッ素系
圧粉体を配置する請求項1記載の光学材料の製造方法。
2. The method for producing an optical material according to claim 1, wherein a fluorine-based green compact is disposed on the anode side of the fluoride crystal.
【請求項3】 上記陰極側のフッ素系圧粉体が、フッ化
カルシウム、フッ化鉛又はこれらの混合物の圧粉体であ
る請求項1又は2記載の光学材料の製造方法。
3. The method of manufacturing an optical material according to claim 1, wherein the fluorine-based green compact on the cathode side is a green compact of calcium fluoride, lead fluoride, or a mixture thereof.
【請求項4】 上記フッ化物結晶が、フッ化カルシウム
単結晶である請求項1、2又は3記載の光学材料の製造
方法。
4. The method according to claim 1, wherein the fluoride crystal is a calcium fluoride single crystal.
JP2000223555A 2000-07-25 2000-07-25 Manufacturing method of optical material Expired - Fee Related JP4575561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223555A JP4575561B2 (en) 2000-07-25 2000-07-25 Manufacturing method of optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223555A JP4575561B2 (en) 2000-07-25 2000-07-25 Manufacturing method of optical material

Publications (2)

Publication Number Publication Date
JP2002037697A true JP2002037697A (en) 2002-02-06
JP4575561B2 JP4575561B2 (en) 2010-11-04

Family

ID=18717627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223555A Expired - Fee Related JP4575561B2 (en) 2000-07-25 2000-07-25 Manufacturing method of optical material

Country Status (1)

Country Link
JP (1) JP4575561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011373A1 (en) * 2010-07-22 2012-01-26 日本結晶光学株式会社 Fluorite production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186300A (en) * 1985-02-13 1986-08-19 Fujitsu Ltd Poling of single crystal
JPS63303834A (en) * 1987-06-02 1988-12-12 Canon Inc Production of optical element
JPH01172299A (en) * 1987-12-26 1989-07-07 Fujitsu Ltd Polling method for lithium tantalate single crystal
JPH01301598A (en) * 1988-05-27 1989-12-05 Hitachi Chem Co Ltd Uniformizing method of characteristic property of compound semiconductor single crystal
JPH1027929A (en) * 1996-07-10 1998-01-27 Toshiba Corp Ferroelectrics oxide single crystalline wafer and its manufacturing method as well as saw device substrate using the same
JPH1121197A (en) * 1997-07-02 1999-01-26 Canon Inc Seed crystal for crystal growth and fluoride crystal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186300A (en) * 1985-02-13 1986-08-19 Fujitsu Ltd Poling of single crystal
JPS63303834A (en) * 1987-06-02 1988-12-12 Canon Inc Production of optical element
JPH01172299A (en) * 1987-12-26 1989-07-07 Fujitsu Ltd Polling method for lithium tantalate single crystal
JPH01301598A (en) * 1988-05-27 1989-12-05 Hitachi Chem Co Ltd Uniformizing method of characteristic property of compound semiconductor single crystal
JPH1027929A (en) * 1996-07-10 1998-01-27 Toshiba Corp Ferroelectrics oxide single crystalline wafer and its manufacturing method as well as saw device substrate using the same
JPH1121197A (en) * 1997-07-02 1999-01-26 Canon Inc Seed crystal for crystal growth and fluoride crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011373A1 (en) * 2010-07-22 2012-01-26 日本結晶光学株式会社 Fluorite production method
US9322954B2 (en) 2010-07-22 2016-04-26 Nihon Kessho Kogaku Co., Ltd. Fluorite production method

Also Published As

Publication number Publication date
JP4575561B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
Shimamura et al. Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere
US6146456A (en) Method for annealing single crystal fluoride and method for manufacturing the same
JP3466948B2 (en) Heat treatment method for fluoride crystal and method for producing optical component
KR100222378B1 (en) Method and device for producing monocrystals
JP4575561B2 (en) Manufacturing method of optical material
JPH0419199B2 (en)
JP6591182B2 (en) Fluoride crystals and optical components
JP4092515B2 (en) Fluorite manufacturing method
JP4839205B2 (en) Fluorite manufacturing method
KR20040044365A (en) As-Grown Single Crystal of Alkaline Earth Metal Fluoride
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
JP2007161565A (en) Method for heat treating fluoride single crystal and fluoride single crystal
JP2005001933A (en) Metal fluoride body and its manufacturing method
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JP4839204B2 (en) Fluorite
JP2003221297A (en) Method for producing calcium fluoride crystal
JPH10279378A (en) Production of crystal and apparatus for production therefor
JP6035584B2 (en) Method for producing fluorite crystals
JPH09278592A (en) Production of aluminum oxide single crystal containing titanium
JP2005330123A (en) Method for producing caf2 crystal
JP2005022921A (en) Synthetic quartz glass optical member, manufacturing method thereof, optical system, exposure equipment and surface heating furnace for synthetic quartz glass
JP2010285327A (en) Method for heat-treating fluoride, method for producing fluoride single crystal, and fluoride single crystal
US8111441B2 (en) Treatment of crystals for the prevention of optical damage
JP2007308349A (en) METHOD FOR HEAT-TREATING BaLiF3 CRYSTAL
JPS63319293A (en) Furnace for pulling and growing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees