JP6035584B2 - Method for producing fluorite crystals - Google Patents

Method for producing fluorite crystals Download PDF

Info

Publication number
JP6035584B2
JP6035584B2 JP2011240033A JP2011240033A JP6035584B2 JP 6035584 B2 JP6035584 B2 JP 6035584B2 JP 2011240033 A JP2011240033 A JP 2011240033A JP 2011240033 A JP2011240033 A JP 2011240033A JP 6035584 B2 JP6035584 B2 JP 6035584B2
Authority
JP
Japan
Prior art keywords
melt
solidified body
crushed
crystal
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011240033A
Other languages
Japanese (ja)
Other versions
JP2013032256A (en
Inventor
勇介 城
勇介 城
正雄 関口
正雄 関口
紘佑 齋藤
紘佑 齋藤
一幸 阿部
一幸 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kessho Koogaku Co Ltd
Original Assignee
Nihon Kessho Koogaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kessho Koogaku Co Ltd filed Critical Nihon Kessho Koogaku Co Ltd
Priority to JP2011240033A priority Critical patent/JP6035584B2/en
Priority to DE102011118229.6A priority patent/DE102011118229B4/en
Publication of JP2013032256A publication Critical patent/JP2013032256A/en
Application granted granted Critical
Publication of JP6035584B2 publication Critical patent/JP6035584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Description

本発明は、例えば光学用レンズ、例えば半導体リソグラフィなどに用いるレンズ材料として利用することができる蛍石結晶(CaF2、フッ化カルシウムの結晶)の製造方法に関する。 The present invention relates to a method for producing a fluorite crystal (CaF 2 , calcium fluoride crystal) that can be used as an optical lens, for example, a lens material used in semiconductor lithography or the like.

蛍石結晶は、色分散が非常に小さく、一般的な光学ガラスに比べて屈折率及び分散率が低い上、特殊な部分分散特性(異常部分分散、アッベ数:95)を有しているため、色消レンズ(アポクロマート)、赤外線分析装置やエキシマレーザー等の窓板、TVカメラレンズや顕微鏡レンズ、微細パターンをウェハー上に転写するための装置である半導体リソグラフィ(ステッパーやスキャナなどを含む)装置のレンズなどに広く利用されている。   Fluorite crystals have very small chromatic dispersion, lower refractive index and lower dispersion than general optical glass, and have special partial dispersion characteristics (abnormal partial dispersion, Abbe number: 95). Semiconductor lithography (including steppers and scanners) that are devices for transferring fine patterns onto wafers, window plates such as achromatic lenses (apochromats), infrared analyzers and excimer lasers, TV camera lenses and microscope lenses Widely used for lenses.

中でも半導体リソグラフィ装置において微細化加工を担うステッパー(縮小投影型露光装置)について言えば、解像力を高めるために光源の短波長化が進められ、紫外域で発振する高出力レーザーとしてのエキシマレーザーを光源に用いたステッパーが開発されたことに伴い、これに適したレンズ材料として蛍石結晶が注目されている。蛍石結晶は、エキシマレーザー光の中でもArFレーザー(波長:193nm)などのような真空紫外域と呼ばれる波長域の光線の透過率が高いという特徴を有している。   In particular, for steppers (reduction projection type exposure devices) that are responsible for miniaturization in semiconductor lithography equipment, the wavelength of light sources has been shortened to improve resolution, and excimer lasers as high-power lasers that oscillate in the ultraviolet region are used as light sources. With the development of the stepper used for this, fluorite crystals have attracted attention as a lens material suitable for this. Fluorite crystals are characterized by high transmittance of light in a wavelength region called a vacuum ultraviolet region such as an ArF laser (wavelength: 193 nm) among excimer laser light.

この種の蛍石結晶は、合成された粉末状のフッ化カルシウム原料とスカベンジャーとを混合して坩堝に入れ、加熱溶融させた後、徐冷してフッ化カルシウムを結晶成長させ、得られた結晶を、必要に応じて種結晶と共に、育成用坩堝に入れて炉内を真空雰囲気に保ちつつ蛍石の融点以上(1370℃〜1450℃)まで徐々に昇温させて原料を溶融させ、その後、育成用坩堝を徐々に引き下げながら坩堝下部から徐々に結晶化させて蛍石結晶を育成し、これを熱処理して製造するのが一般的であった。   This type of fluorite crystal was obtained by mixing a synthesized powdered calcium fluoride raw material and a scavenger, placing them in a crucible, heating and melting, and then slowly cooling to grow calcium fluoride crystals. The crystal is placed in a growth crucible together with a seed crystal as necessary, and the raw material is melted by gradually raising the temperature to the melting point of fluorite (1370 ° C. to 1450 ° C.) while maintaining the inside of the furnace in a vacuum atmosphere. In general, the growth crucible is gradually lowered and crystallized from the lower part of the crucible to grow a fluorite crystal, which is generally produced by heat treatment.

ところが、従来の蛍石結晶の製造方法では、原料粉末に含まれている不純物や酸化物が結晶中に残留してしまうという問題があったため、このような不純物や酸化物の残留を無くして製品(蛍石結晶)の透過率を高める方法が従来から提案されている。   However, the conventional method for producing fluorite crystals has a problem in that impurities and oxides contained in the raw material powder remain in the crystal. A method for increasing the transmittance of (fluorite crystal) has been proposed.

例えば特許文献1には、フッ化カルシウム粉末とスカベンジャーの混合物を溶融し、続いて徐冷して結晶成長させる工程及び上記工程により結晶成長したフッ化カルシウムのうち最後に結晶化した部分を除去する工程を含む精製工程と、結晶化したフッ化カルシウムとフッ化ストロンチウムを溶融させた後、徐冷して結晶成長させる成長工程と、を有することを特徴とする蛍石結晶の製造方法が開示されている。   For example, in Patent Document 1, a mixture of calcium fluoride powder and a scavenger is melted, followed by slow cooling to crystal growth, and the last crystallized portion of the calcium fluoride crystal grown by the above process is removed. A method for producing a fluorite crystal is disclosed, comprising: a purification step including a step; and a growth step in which crystallized calcium fluoride and strontium fluoride are melted and then slowly cooled to grow a crystal. ing.

また、特許文献2には、原材料を加熱、溶融して結晶成長させ単結晶インゴットを得るブリッジマン法による蛍石結晶の製造方法において、多結晶体を加熱、溶融して結晶成長させ単結晶インゴットを得る第1工程、前記第1工程を複数回行い、得られた複数の単結晶インゴットの成長方向の下部を切り出す第2工程、前記第2工程で切り出した複数の単結晶インゴットの下部を合わせて加熱、溶融して結晶成長させ単結晶インゴットを得る第3工程を備えた製造方法が開示されている。   Patent Document 2 discloses a fluorite crystal manufacturing method by Bridgeman's method in which a raw material is heated and melted to grow a crystal to obtain a single crystal ingot, and a polycrystal is heated and melted to grow a crystal to produce a single crystal ingot. The first step of obtaining the first step, the second step of performing the first step a plurality of times, the second step of cutting out the lower portion in the growth direction of the obtained single crystal ingots, and the lower portions of the single crystal ingots cut out in the second step are combined A manufacturing method including a third step of obtaining a single crystal ingot by crystal growth by heating and melting is disclosed.

また、特許文献3には、135nmの波長の光に対する10mmあたりの内部透過率が70%以上である合成された蛍石結晶の製造方法において、フッ化カルシウム粉末とスカベンジャーとを混合して得られる混合物を溶融し、続いて徐冷して結晶成長させる工程及び上記工程により結晶成長したフッ化カルシウムのうち最後に結晶化した部分を除去する工程を含む精製工程と、結晶化したフッ化カルシウムを溶融させた後、徐冷して結晶成長させる成長工程と、を有し、前記精製工程を複数回繰り返すことを特徴とする蛍石結晶の製造方法が開示されている。   Further, Patent Document 3 is obtained by mixing calcium fluoride powder and a scavenger in a method for producing a synthesized fluorite crystal having an internal transmittance per 10 mm with respect to light having a wavelength of 135 nm of 70% or more. A step of melting the mixture followed by slow cooling and crystal growth, and a purification step including the step of removing the last crystallized portion of the calcium fluoride crystal-grown by the above-mentioned step, and the crystallized calcium fluoride There is disclosed a method for producing a fluorite crystal, which comprises a growth step in which a crystal is grown by slow cooling after melting, and the purification step is repeated a plurality of times.

特許3957782(特開平9−255328)号公報Japanese Patent No. 3955782 (Japanese Patent Laid-Open No. 9-255328) 特開平10−203899号公報JP-A-10-203899 特開2003−238293号公報JP 2003-238293 A

不純物や酸化物の残留を無くして蛍石結晶の透過率を高めるために従来提案されていた方法は、上述のように、結晶成長したフッ化カルシウムのうち最後に結晶化した部分に不純物等が残留するため、この部分を除去するという方法であったが、除去する分だけ収率が下がるという課題を抱えていた。   In order to eliminate the residue of impurities and oxides and to increase the transmittance of fluorite crystals, as described above, as described above, impurities or the like are present in the last crystallized portion of calcium fluoride that has grown. Although this method was to remove this portion because it remained, there was a problem that the yield was lowered by the amount removed.

そこで本発明は、結晶成長又は凝固させたフッ化カルシウムの一部を除去することなく、蛍石結晶の透過率を高めることができる、新たな蛍石結晶の製造方法を提案せんとするものである。   Thus, the present invention proposes a new method for producing fluorite crystals that can increase the transmittance of fluorite crystals without removing a part of the crystal grown or solidified calcium fluoride. is there.

本発明は、フッ化カルシウム粉末とスカベンジャーとを混合して得られる混合物を溶融し、続いて冷却して凝固させて溶融凝固体Aを得、得られた溶融凝固体Aの全量を砕いて溶融凝固体破砕物とし、この溶融凝固体破砕物全量とスカベンジャーとを混合して得られる混合物を溶融し、続いて冷却して凝固させて溶融凝固体Bを得る溶融凝固工程と、該溶融凝固工程で得られた溶融凝固体Bの全量を砕いて溶融凝固体破砕物とする破砕工程と、前記溶融凝固体破砕物を溶融させた後、冷却して結晶成長させて蛍石結晶を得る結晶育成工程と、結晶育成工程で得られた蛍石結晶を熱処理する熱処理工程と、を備えた蛍石結晶の製造方法を提案する。   In the present invention, a mixture obtained by mixing calcium fluoride powder and a scavenger is melted, then cooled and solidified to obtain a molten solidified body A, and the total amount of the obtained molten solidified body A is crushed and melted. A melt solidification step of obtaining a solidified solid body B by melting a mixture obtained by mixing the total amount of the melt solidified solid body and the scavenger, and then solidifying by cooling. Crushing step of crushing the entire amount of the molten solidified body B obtained in step 1 to make a molten solidified body crushed material, and crystal growth to obtain a fluorite crystal by cooling the crystal after cooling the molten solidified body crushed material The present invention proposes a method for producing a fluorite crystal comprising a step and a heat treatment step of heat-treating the fluorite crystal obtained in the crystal growth step.

本発明のように、フッ化カルシウム粉末とスカベンジャーの混合物を溶融し凝固させ、得られた溶融凝固体の全量を砕いて、再びスカベンジャーを加えて溶融し凝固させるという一連の処理を繰り返して溶融凝固工程を行うことにより、結晶成長又は凝固させたフッ化カルシウムの一部を除去することなく、蛍石結晶の透過率を高めることができることが判明した。
よって、本発明によれば、光学的に優れた蛍石結晶を工業的に効率良く製造することができるから、本発明の製造方法により得られる蛍石結晶は、例えばTVカメラレンズ、顕微鏡レンズ、赤外線分析用窓材、半導体リソグラフィ装置に用いられるレンズなどのレンズ材料、特に高度な光学特性が要求されるArF(フッ化アルゴン)エキシマレーザー露光装置やF(フッ素)エキシマレーザー露光装置など、紫外或いは真空紫外波長域のレーザーを光源に用いた露光装置等のステッパー用レンズ材料として好適に用いることができる。
As in the present invention, a mixture of calcium fluoride powder and scavenger is melted and solidified, and the total amount of the obtained molten solidified body is crushed, and then a scavenger is added again to melt and solidify repeatedly to melt and solidify. By performing the process, it has been found that the transmittance of the fluorite crystal can be increased without removing a part of the crystal grown or solidified calcium fluoride.
Therefore, according to the present invention, an optically excellent fluorite crystal can be industrially efficiently produced. Therefore, the fluorite crystal obtained by the production method of the present invention is, for example, a TV camera lens, a microscope lens, Infrared analysis window materials, lens materials such as lenses used in semiconductor lithography equipment, especially ArF (argon fluoride) excimer laser exposure equipment and F 2 (fluorine) excimer laser exposure equipment that require high optical properties Or it can use suitably as lens materials for steppers, such as an exposure apparatus which used the laser of the vacuum ultraviolet wavelength range for the light source.

γ値を説明するために、波長と吸収係数との関係を示したグラフである。It is the graph which showed the relationship between a wavelength and an absorption coefficient, in order to demonstrate (gamma) value.

以下に本発明の実施形態について詳細に述べるが、本発明の範囲が以下に説明する実施形態に限定されるものではない。   Embodiments of the present invention will be described in detail below, but the scope of the present invention is not limited to the embodiments described below.

本実施形態に係る蛍石結晶の製造方法(以下、この製造方法を「本製造方法」という)は、原料を混合し、この混合物を加熱溶融させた後、冷却して凝固させて溶融凝固体Aを得、得られた溶融凝固体Aの全量を砕いて溶融凝固体破砕物とし、この溶融凝固体破砕物全量とスカベンジャーとを混合して得られる混合物を溶融し、続いて冷却して凝固させて溶融凝固体Bを得る溶融凝固工程と、該溶融凝固工程で得られた溶融凝固体Bの全量を砕いて溶融凝固体破砕物とする破砕工程と、前記溶融凝固体破砕物を溶融させた後、冷却して結晶成長させて蛍石結晶を得る結晶育成工程と、結晶育成工程で得られた蛍石結晶を熱処理する熱処理工程と、を備えた蛍石結晶の製造方法である。   The method for producing a fluorite crystal according to the present embodiment (hereinafter, this production method is referred to as “the present production method”) includes mixing raw materials, heating and melting the mixture, and cooling and solidifying the mixture. A is obtained, and the total amount of the obtained molten solidified product A is crushed to obtain a molten solidified product crushed product. The mixture obtained by mixing the total amount of the molten solidified product crushed product and the scavenger is melted and then cooled to solidify. A melt-solidified step of obtaining a melt-solidified body B, a crushing step of crushing the entire amount of the melt-solidified body B obtained in the melt-solidified step to obtain a melt-solidified product, and melting the melt-solidified product And a crystal growth step of cooling and crystal growth to obtain a fluorite crystal, and a heat treatment step of heat-treating the fluorite crystal obtained in the crystal growth step.

<原料>
原料としては、粉末状のフッ化カルシウム原料と、スカベンジャー、すなわち蛍石結晶内の不純物(主に酸素)を除去する反応材料との混合物を挙げることができる。但し、適宜他の材料を加えることは可能である。
<Raw material>
Examples of the raw material include a mixture of powdered calcium fluoride raw material and a scavenger, that is, a reaction material that removes impurities (mainly oxygen) in the fluorite crystal. However, other materials can be added as appropriate.

フッ化カルシウム原料としては、公知のフッ化カルシウム原料を適宜用いることができる。紫外や真空紫外域で使用される蛍石結晶を製造するには、人工的に合成された高純度なフッ化カルシウム粉末を原料として使用するのが好ましい。例えば炭酸カルシウムとフッ化水素とを反応させて合成して得られる粉末状のフッ化カルシウム原料粉を挙げることができる。   As a calcium fluoride raw material, a well-known calcium fluoride raw material can be used suitably. In order to produce a fluorite crystal used in the ultraviolet or vacuum ultraviolet region, it is preferable to use artificially synthesized high-purity calcium fluoride powder as a raw material. For example, powdery calcium fluoride raw material powder obtained by synthesizing calcium carbonate and hydrogen fluoride can be used.

また、スカベンジャーとしては、フッ化亜鉛(ZnF2)、フッ化鉛(PbF2)、フッ化ビスマス(BiF3)、フッ化ナトリウム(NaF)、フッ化リチウム(LiF)等を挙げることができる。 Examples of the scavenger include zinc fluoride (ZnF 2 ), lead fluoride (PbF 2 ), bismuth fluoride (BiF 3 ), sodium fluoride (NaF), and lithium fluoride (LiF).

フッ化カルシウム原料中のフッ化カルシウム(CaF2)100mol%に対するスカベンジャーの混合割合は、1〜4mol%であるのが好ましい。1mol%以上であれば、スカベンジャーの効果、すなわち蛍石結晶内の不純物(主に酸素)を除去する効果を有効に発揮することができる一方、4mol%以下であれば、スカベンジャーが蛍石結晶中に残存するのを避けることができる。かかる観点から、1.2mol%以上、或いは、3mol%以下であるのがさらに好ましく、中でも1.5mol%以上、或いは、2.5mol%以下であるのがより一層好ましい。 The mixing ratio of the scavenger to 100 mol% of calcium fluoride (CaF 2 ) in the calcium fluoride raw material is preferably 1 to 4 mol%. If it is 1 mol% or more, the scavenger effect, that is, the effect of removing impurities (mainly oxygen) in the fluorite crystal can be effectively exhibited, while if it is 4 mol% or less, the scavenger is contained in the fluorite crystal. Can be avoided. From this point of view, the content is more preferably 1.2 mol% or more, or 3 mol% or less, and even more preferably 1.5 mol% or more, or 2.5 mol% or less.

<溶融凝固工程>
本工程では、原料の混合物を加熱溶融させた後、冷却して凝固させて溶融凝固体Aを得、得られた溶融凝固体Aの全量を砕いて溶融凝固体破砕物とし、この溶融凝固体破砕物全量に再び新たなスカベンジャーを加えた混合物を溶融し、続いて冷却して凝固させて溶融凝固体Bを得るようにすればよい。
<Melt solidification process>
In this step, after the raw material mixture is heated and melted, it is cooled and solidified to obtain a molten solidified body A, and the total amount of the obtained molten solidified body A is crushed to obtain a molten solidified body crushed material. What is necessary is just to make it melt | dissolve the mixture which added the new scavenger again to the crushed material whole quantity, and to solidify by cooling, and to obtain the molten solidified body B here.

より具体的には、例えば、フッ化カルシウム原料とスカベンジャーとを混合して坩堝に入れ、真空雰囲気で加熱して加熱溶融させた後、徐冷して溶融凝固体Aを得、得られた溶融凝固体Aの全量を砕いて溶融凝固体破砕物とする。次に、この溶融凝固体破砕物全量に再び新たなスカベンジャーを加えた混合物を溶融し、続いて冷却して凝固させて溶融凝固体Bを得るようにすればよい。
なお、本発明で「真空」と言う場合、10-3Pa以下の雰囲気を意味するものとする。
More specifically, for example, a calcium fluoride raw material and a scavenger are mixed and put in a crucible, heated and melted by heating in a vacuum atmosphere, and then slowly cooled to obtain a molten solidified body A, and the obtained melt The entire amount of the solidified body A is crushed to obtain a molten solidified body crushed material. Next, the mixture obtained by adding a new scavenger to the total amount of the melted and solidified product may be melted and then cooled and solidified to obtain a melted and solidified product B.
In the present invention, “vacuum” means an atmosphere of 10 −3 Pa or less.

このようにスカベンジャーを新たに加えて溶融凝固を繰り返すことにより、溶融凝固体の一部を取り除かなくても、蛍石結晶製造中間体としての溶融凝固体のγ値(吸収係数の200nm〜800nmの積分値)を顕著に低下させることができ、製品(蛍石結晶)の内部透過率及びレーザー耐久性を高めることができる。   Thus, by adding a scavenger and repeating the melt solidification, the γ value (absorption coefficient of 200 nm to 800 nm) of the melt solidified body as an intermediate for producing fluorite crystals can be obtained without removing a part of the melt solidified body. Integration value) can be significantly reduced, and the internal transmittance and laser durability of the product (fluorite crystal) can be increased.

必要に応じて、上記溶融凝固体Bの全量を砕いて溶融凝固体破砕物とし、この溶融凝固体破砕物全量に再び新たなスカベンジャーを加えた混合物を溶融し、続いて冷却して凝固させて溶融凝固体を得る一連の処理を1回又は2回以上行うようにしてもよい。   If necessary, the entire amount of the molten solidified body B is crushed to obtain a molten solidified body crushed material, and a mixture obtained by adding a new scavenger to the whole molten solidified body crushed material is melted, and then cooled and solidified. A series of processes for obtaining a melt-solidified body may be performed once or twice or more.

この際、スカベンジャーの混合量は、溶融凝固体Aの全量を砕いて得られる溶融凝固体破砕物中のフッ化カルシウム100mol%に対して、又は、溶融凝固体Bの全量を砕いて得られる溶融凝固体破砕物中のフッ化カルシウム100mol%に対して、混合するスカベンジャーの量が1〜4mol%であるのが好ましい。1mol%以上であれば、スカベンジャーの効果、すなわち蛍石結晶内の不純物(主に酸素)を除去する効果を効果的に発揮することができる一方、4mol%以下であれば、スカベンジャーが蛍石結晶中に残存するのを避けることができる。かかる観点から、1.2mol%以上、或いは、3mol%以下であるのがさらに好ましく、中でも1.5mol%以上、或いは、2.5mol%以下であるのがより一層好ましい。
破砕、加熱溶融から徐冷によるフッ化カルシウムの結晶成長を繰り返す場合においても、スカベンジャーの混合割合は上記範囲とするのが好ましい。
At this time, the mixing amount of the scavenger is the melting amount obtained by crushing the whole amount of the molten solidified body B with respect to 100 mol% of calcium fluoride in the molten solidified body crushed material obtained by crushing the whole amount of the molten solidified body A. It is preferable that the amount of the scavenger to be mixed is 1 to 4 mol% with respect to 100 mol% of calcium fluoride in the crushed solid product. If it is 1 mol% or more, the scavenger effect, that is, the effect of removing impurities (mainly oxygen) in the fluorite crystal can be effectively exhibited, while if it is 4 mol% or less, the scavenger is a fluorite crystal. It can be avoided to remain inside. From this point of view, the content is more preferably 1.2 mol% or more, or 3 mol% or less, and even more preferably 1.5 mol% or more, or 2.5 mol% or less.
Even in the case where the crystal growth of calcium fluoride is repeated by crushing, heating and melting and slow cooling, the mixing ratio of the scavenger is preferably in the above range.

このようにして得られる溶融凝固体、すなわち多結晶体は、蛍石結晶を製造する際の中間体(蛍石結晶製造中間体)であり、後述する実施例の結果からも分かるように、そのγ値(吸収係数の200nm〜800nmの積分値)は、70以下、中でも50以下、その中でも1以上、或いは20以下とすることができ、顕著に低下させることができる。   The melt-solidified body thus obtained, that is, the polycrystalline body, is an intermediate when producing a fluorite crystal (intermediate body for producing fluorite crystal), and as can be seen from the results of Examples described later, The γ value (the integrated value of the absorption coefficient of 200 nm to 800 nm) can be 70 or less, particularly 50 or less, and more preferably 1 or more, or 20 or less, and can be significantly reduced.

溶融凝固工程において、炉内の雰囲気は、最初真空とするのが好ましく、脱水反応が終了した時点から、炉内を真空排気系により真空雰囲気とするのが好ましい。
また、溶融凝固工程における温度プロファイルは、1日程度の時間をかけて室温からフッ化カルシウムの融点(1420℃)以上の温度域まで昇温し、該温度域で数日間保持するのが好ましい。
In the melt-solidification step, the atmosphere in the furnace is preferably initially set to a vacuum, and from the time when the dehydration reaction is completed, the furnace is preferably set to a vacuum atmosphere by a vacuum exhaust system.
The temperature profile in the melt-solidification step is preferably raised from room temperature to a temperature range higher than the melting point of calcium fluoride (1420 ° C.) over a period of about one day, and kept in this temperature range for several days.

また、加熱溶融は、原料混合物を坩堝に入れ、溶融温度や設備などに適した加熱手段により加熱溶融すればよい。
加熱溶融は、無酸素雰囲気(真空雰囲気および不活性ガス雰囲気含む)で行うのが好ましい。
In addition, the heat melting may be performed by putting the raw material mixture in a crucible and heating and melting by a heating means suitable for the melting temperature, equipment and the like.
Heating and melting is preferably performed in an oxygen-free atmosphere (including a vacuum atmosphere and an inert gas atmosphere).

溶融凝固体を砕く手段及びその程度は、不純物が入らない道具や入っても後工程で除去できる道具、例えばプラスチック製ハンマー(ハンマーの一部が混入しても、その後に揮発除去できる)などを用いるか、或いは、手で、適宜大きさ、例えば数mm角〜こぶし大の大きさに砕くのが好ましい。   Means and level of crushing the molten solidified body are tools that do not contain impurities, and tools that can be removed in the subsequent process even if they enter, such as a plastic hammer (even if part of the hammer is mixed, it can be volatilized and removed later). It is preferably used or crushed by hand to a suitable size, for example, a few mm square to a fist size.

<破砕工程>
溶融凝固工程で得られた溶融凝固体を砕く手段及びその程度は、上記同様である。
<Crushing process>
The means for crushing the melt-solidified body obtained in the melt-solidification step and the degree thereof are the same as described above.

<結晶育成工程>
破砕工程で得られた溶融凝固体破砕物は、溶融させた後、冷却して結晶成長させて蛍石結晶を得ることができる。この際、必要に応じて種結晶を用いて蛍石結晶を育成すればよい。また、溶融凝固体破砕物を溶融する際、必要に応じてスカベンジャーと混合して溶融させてもよい。
<Crystal growth process>
The melted and solidified product obtained in the crushing step can be melted and then cooled and crystal grown to obtain fluorite crystals. At this time, a fluorite crystal may be grown using a seed crystal as necessary. Further, when melting the melted and solidified product, it may be mixed with a scavenger and melted as necessary.

この際の結晶育成方法は、特に限定するものではなく、例えばBridgman−Stockbarger法(「BS法」ともいう)、Czochralski(「CZ法」ともいう)、ゾーンメルト法、これらの改良法、その他の融液成長法等、公知の結晶育成方法を適宜採用することができる。   The crystal growth method in this case is not particularly limited. For example, the Bridgman-Stockbarger method (also referred to as “BS method”), Czochralski (also referred to as “CZ method”), zone melt method, improved methods thereof, and other methods A known crystal growth method such as a melt growth method can be appropriately employed.

BS法は、坩堝の中に原料を入れて融解させ、坩堝を引下げながら、坩堝底から単結晶を育成させていく方法である。結晶育成装置が比較的安価であり、大口径の単結晶を比較的に容易に育成可能であるという特徴を有している。その反面、結晶成長方位の制御が困難であり、また、結晶育成時や冷却時に無理な応力がかかるため、応力分布が結晶内に残って歪や転位が誘起され易いと言われている。   The BS method is a method in which raw materials are put in a crucible and melted, and a single crystal is grown from the bottom of the crucible while pulling down the crucible. The crystal growing apparatus is relatively inexpensive and has a feature that a single crystal having a large diameter can be grown relatively easily. On the other hand, it is difficult to control the crystal growth orientation, and excessive stress is applied during crystal growth or cooling, so that it is said that the stress distribution remains in the crystal and strain and dislocations are easily induced.

他方、CZ法は、坩堝内に原料を入れて融解させ、シード(種結晶)を溶融液面に接触させて単結晶を回転引き上げながら育成(結晶化)していく方法である。CZ法は、結晶方位を特定し結晶化させることが可能であるため、目的とする結晶方位の育成が容易であると言われている。   On the other hand, the CZ method is a method in which a raw material is put in a crucible and melted, and a seed (seed crystal) is brought into contact with a molten liquid surface and grown (crystallized) while rotating a single crystal. The CZ method is said to facilitate the growth of the target crystal orientation because it is possible to identify and crystallize the crystal orientation.

結晶育成方法の一例についてより具体的に説明すると、種結晶を坩堝の底に設置し、破砕工程で得られた溶融凝固体破砕物を坩堝に充填し、この坩堝を結晶成長装置内に設置し、真空排気系によって結晶成長装置内部の真空度が1×10-3〜10-4Pa程度になるまで排気を行い、加熱装置によって坩堝を加熱し、坩堝に充填した原料を融解させる。
坩堝内の原料が融解した後、坩堝を0.1mm/時間〜3mm/時間程度の速度で徐々に鉛直下方に引き下げると、坩堝内で融液となった原料は種結晶付近から固化が始まり、単結晶が育成される。坩堝内の原料がすべて固化した段階で坩堝の引き下げを終了し、加熱装置により徐冷しつつ、坩堝を室温程度にまで冷却し、インゴット状の蛍石結晶を育成することができる。
More specifically, an example of the crystal growth method will be described. The seed crystal is placed at the bottom of the crucible, the molten solidified product obtained in the crushing step is filled into the crucible, and the crucible is placed in the crystal growth apparatus. Then, evacuation is performed until the degree of vacuum inside the crystal growth apparatus reaches about 1 × 10 −3 to 10 −4 Pa by a vacuum exhaust system, the crucible is heated by a heating apparatus, and the raw material filled in the crucible is melted.
After the raw material in the crucible is melted, when the crucible is gradually pulled down vertically at a speed of about 0.1 mm / hour to 3 mm / hour, the raw material that has become a melt in the crucible starts to solidify from the vicinity of the seed crystal, A single crystal is grown. When all the raw materials in the crucible are solidified, the lowering of the crucible is completed, and the crucible is cooled to about room temperature while being gradually cooled by a heating device, whereby an ingot-like fluorite crystal can be grown.

以上のようにして育成したインゴット状の蛍石結晶は、必要に応じて所定の大きさ、並びに、所定の方位の表面が出現するように切り出して熱処理工程に供するのが好ましい。例えば、直径200mm程度、厚さ40mm程度の円盤形状に切り出して熱処理工程に供することができる。   The ingot-like fluorite crystal grown as described above is preferably cut out so that a surface having a predetermined size and a predetermined orientation appears as necessary, and subjected to a heat treatment step. For example, it can be cut into a disk shape having a diameter of about 200 mm and a thickness of about 40 mm and used for the heat treatment step.

<熱処理工程>
次に、前記工程で育成された蛍石結晶を容器に入れ、この容器を熱処理炉内に設置し、熱処理炉を900℃乃至1300℃に均熱的に加熱して、固体のまま蛍石結晶の歪を除去する。
加熱温度を1140℃以上にすると構造変化などを引き起こしてしまうので好ましくはない。
熱処理工程では、熱処理を経ることによって結晶の歪がなくなった状態を維持しながら蛍石結晶の温度を室温に戻すのが好ましい。
<Heat treatment process>
Next, the fluorite crystal grown in the above process is put in a container, the container is placed in a heat treatment furnace, and the heat treatment furnace is heated uniformly to 900 ° C. to 1300 ° C. Remove the distortion.
A heating temperature of 1140 ° C. or higher is not preferable because it causes structural changes.
In the heat treatment step, it is preferable to return the temperature of the fluorite crystal to room temperature while maintaining the state in which the distortion of the crystal is eliminated by the heat treatment.

熱処理における雰囲気、すなわちアニーリングケース内の雰囲気は、真空雰囲気、或いはアルゴン(Ar)等の不活性ガス雰囲気とすればよい。中でも、アルゴン等の不活性ガス雰囲気、その中でも、アルゴンガスにフッ素系ガスを混合・注入してなる雰囲気が好ましい。また、アルゴンガス等の不活性化ガスにスカベンジャー(例えばPbF2)の熱分解によるフッ素ガスが混合した雰囲気も好ましい一例である。 The atmosphere in the heat treatment, that is, the atmosphere in the annealing case may be a vacuum atmosphere or an inert gas atmosphere such as argon (Ar). Of these, an inert gas atmosphere such as argon is preferable, and an atmosphere obtained by mixing and injecting a fluorine-based gas into argon gas is preferable. An atmosphere in which an inert gas such as argon gas is mixed with fluorine gas by thermal decomposition of a scavenger (for example, PbF 2 ) is also a preferred example.

熱処理工程における温度プロファイルは、特に限定するものではない。蛍石の融点は1370℃〜1410℃程度であるため、蛍石結晶が溶融せず、固体の状態を維持しつつ、蛍石結晶を構成する各原子に十分なエネルギーを与えてそれぞれ適切な位置に移動させて結晶構造の乱れによる異方性を解消することができる温度まで加熱すればよく、その温度域を特に限定するものではない。目安としては、結晶構造の乱れによる異方性をより効果的に解消するためには、1000〜1350℃まで昇温するのが好ましい。
昇温速度は特に限定するものではないが、蛍石結晶が熱衝撃により割れ等の破損が生じないように炉内温度を上昇させる必要があるため、例えば10℃/h〜300℃/hで昇温するのが好ましい。
The temperature profile in the heat treatment step is not particularly limited. Since the melting point of fluorite is about 1370 ° C. to 1410 ° C., the fluorite crystal does not melt and maintains a solid state, while giving sufficient energy to each atom constituting the fluorite crystal to each appropriate position. The temperature range is not particularly limited, and it may be heated to a temperature at which the anisotropy due to disorder of the crystal structure can be eliminated. As a guideline, it is preferable to raise the temperature to 1000 to 1350 ° C. in order to more effectively eliminate the anisotropy due to disorder of the crystal structure.
The rate of temperature rise is not particularly limited, but it is necessary to raise the temperature in the furnace so that the fluorite crystal does not break due to thermal shock, such as cracking. For example, it is 10 ° C./h to 300 ° C./h. It is preferable to raise the temperature.

熱処理後の冷却工程では、急冷すると結晶内部に歪が残留しやすく、また、スベリ欠陥が導入され転位等が増加することになるため、ゆっくり時間をかけて冷却するのが好ましい。その反面、あまり時間をかけると、生産性を著しく損ねてしまう。このような観点から、熱処理後の冷却工程では、例えば0.7〜3.0℃/hの冷却速度で室温付近まで冷却するのが好ましい。   In the cooling step after the heat treatment, if it is rapidly cooled, strain is likely to remain in the crystal, and slip defects are introduced and dislocations and the like increase. Therefore, it is preferable to cool slowly over time. On the other hand, if too much time is spent, productivity is significantly impaired. From such a viewpoint, in the cooling step after the heat treatment, for example, it is preferable to cool to near room temperature at a cooling rate of 0.7 to 3.0 ° C./h.

<成形加工工程>
熱処理後の蛍石結晶は、適当に切削し、必要に応じて適宜形状に加工すればよい。例えば、(111)面と平行な面を表面とする形状に加工すればよい。より具体的な一例としては、円盤形状を呈する蛍石結晶に切削して、(111)面と平行な表面を有する形状とし、さらに表面を平滑化するために表面を平面研削する方法を挙げることができる。
<Molding process>
The fluorite crystal after the heat treatment may be appropriately cut and processed into a suitable shape as necessary. For example, what is necessary is just to process into the shape which makes a surface parallel to a (111) plane. As a more specific example, there is a method in which a fluorite crystal having a disc shape is cut into a shape having a surface parallel to the (111) plane, and the surface is surface ground to smooth the surface. Can do.

<用途>
本製造方法によって得られた蛍石結晶は、例えば色消レンズ(アポクロマート)、TVカメラレンズ、顕微鏡レンズ、赤外線分析用窓材、半導体リソグラフィ(ステッパー、スキャナ)装置に用いられるレンズ、その他の光学レンズとして用いることができる。特に巨視的に結晶の均質性が高く、且つレーザー耐久性に優れた蛍石結晶を得ることができるから、高精度ステッパー、すなわちArF(フッ化アルゴン)エキシマレーザー等の紫外或いは真空紫外波長域のレーザーを光源に用いた露光装置等のステッパー用レンズ材料として好適に用いることができる。さらに、蛍石結晶は、優れたレーザー耐久性を有することから、ArFエキシマレーザー等の紫外或いは真空紫外波長域のレーザー光源の窓材、あるいは共振器鏡等の光学素子として好適に用いることができる。
<Application>
Fluorite crystals obtained by this production method are, for example, achromatic lenses (apochromats), TV camera lenses, microscope lenses, window materials for infrared analysis, lenses used in semiconductor lithography (steppers, scanners), and other optical lenses. Can be used as In particular, since a fluorite crystal having high crystal homogeneity and excellent laser durability can be obtained macroscopically, a high-precision stepper, that is, an ultraviolet or vacuum ultraviolet wavelength region such as an ArF (Argon fluoride) excimer laser is used. It can be suitably used as a lens material for a stepper such as an exposure apparatus using a laser as a light source. Furthermore, since the fluorite crystal has excellent laser durability, it can be suitably used as an optical element such as a window material of a laser light source in the ultraviolet or vacuum ultraviolet wavelength region such as an ArF excimer laser or a resonator mirror. .

<語句の説明>
なお、結晶育成工程及び熱処理工程での処理温度は、特にことわらない限り、炉内の雰囲気温度を示すものである。
<Explanation of words>
In addition, the treatment temperature in the crystal growth step and the heat treatment step indicates the atmospheric temperature in the furnace unless otherwise specified.

本発明において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。
また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意も包含するものである。
In the present invention, when described as “X to Y” (X and Y are arbitrary numbers), unless otherwise specified, “X is preferably greater than X” or “preferably Y”. It also includes the meaning of “smaller”.
Further, when described as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and described as “Y or less” (Y is an arbitrary number). In the case, unless otherwise specified, the meaning of “preferably smaller than Y” is also included.

以下、本発明に関する実施例及び比較例について説明する。但し、本発明は以下に説明する内容に限定されるものではない。
先ず、得られた蛍石結晶の評価方法について説明する。
Examples of the present invention and comparative examples will be described below. However, the present invention is not limited to the contents described below.
First, an evaluation method of the obtained fluorite crystal will be described.

<吸収係数の測定方法とγ値の算出方法>
ここでは、放射線源に放射性同位体である60Coから放射されるγ線(1.17MeV、1.33MeV)を所定の線量を照射し、その時、結晶内に誘起されるカラーセンターを分光光度計にて測定し、誘起カラーセンター吸収スペクトルを得た。レーザー耐久性とγ線誘起カラーセンター吸収強度との関係は、負の相関があることが知られている。即ち、レーザー耐久性の高い結晶においては、γ線誘起カラーセンター吸収強度が小さい。この相関関係から、蛍石結晶のレーザー耐久性を評価することができる。
<Measurement method of absorption coefficient and calculation method of γ value>
Here, a gamma ray (1.17 MeV, 1.33 MeV) emitted from a radioactive isotope 60 Co is irradiated to a radiation source at a predetermined dose, and at that time, a color center induced in the crystal is measured by a spectrophotometer. And an induced color center absorption spectrum was obtained. It is known that the relationship between laser durability and γ-ray-induced color center absorption intensity has a negative correlation. That is, in the crystal with high laser durability, the γ-ray induced color center absorption intensity is small. From this correlation, the laser durability of the fluorite crystal can be evaluated.

具体的には、溶融凝固体の両端面を平行平面となるように光学研磨を施し、光学長さ(溶融凝固体の厚み)を30mmとした。このような溶融凝固体を暗箱内に保持し、大気中にて、60Coからのγ線(1.33MeV)を、線量5.4kGy照射し、溶融凝固体にカラーセンターを誘起させた。次に、照射後速やかに、自記分光光度計(U−4100、日立ハイテクノロジーズ)を用いて、この溶融凝固体の紫外可視波長域(200nm〜800nm)における吸収スペクトルを測定した。   Specifically, optical polishing was performed so that both end faces of the molten solidified body became parallel planes, and the optical length (thickness of the molten solidified body) was set to 30 mm. Such a molten solidified body was held in a dark box, and γ-rays (1.33 MeV) from 60Co were irradiated in the atmosphere at a dose of 5.4 kGy to induce a color center in the molten solidified body. Next, immediately after irradiation, the absorption spectrum in the ultraviolet-visible wavelength region (200 nm to 800 nm) of this molten solidified body was measured using a self-recording spectrophotometer (U-4100, Hitachi High-Technologies).

「吸収係数」として、Lambert・Beerの法則に従い、端面の反射補正を施した透過率の自然対数をとり、長さで規格化した値(cm−1)を算出した。
また、「γ値」は、得られた吸収スペクトルにおいて、波長200nmから800nmの区間において吸収係数(cm−1)を積分した値として算出した(cm−1・nm)。
As the “absorption coefficient”, the natural logarithm of the transmittance subjected to the reflection correction of the end face was taken according to Lambert · Beer's law, and a value (cm −1 ) normalized by the length was calculated.
Further, the “γ value” was calculated as a value (cm −1 · nm) obtained by integrating the absorption coefficient (cm −1 ) in a section from a wavelength of 200 nm to 800 nm in the obtained absorption spectrum.

<レーザー耐久性の評価方法>
ArFエキシマレーザーを蛍石結晶に照射し、照射した前後の透過率を測定し、透過率の低下割合を指標としてレーザー耐久性を検討した。
<Laser durability evaluation method>
The fluorite crystal was irradiated with an ArF excimer laser, the transmittance before and after irradiation was measured, and the laser durability was examined using the rate of decrease in transmittance as an index.

蛍石結晶に、出力30mJ/cm2のArFエキシマレーザーを20万パルス照射し、照射した前後の193.4nmでの透過率(内部透過率)を測定した。
なお、193.4nmでの内部透過率は、真空紫外線分分光光度計で測定した。
The fluorite crystal was irradiated with 200,000 pulses of ArF excimer laser with an output of 30 mJ / cm 2 , and the transmittance (internal transmittance) at 193.4 nm before and after irradiation was measured.
The internal transmittance at 193.4 nm was measured with a vacuum ultraviolet spectrophotometer.

表1には、算出した透過光波長193.4nmにおける蛍石結晶の厚み1cmあたりの内部透過率(%)について、レーザー照射前およびレーザー照射後のそれぞれの値を示した。
これら蛍石結晶の厚み1cmあたりの内部透過率の算出は、以下の通りとした。
厚み1cmあたりの内部透過率(%)=exp{ln(z/R)×1/d×1}×100
ここで、
z:波長193.4nmにおける透過率の測定値(%)
R:波長193.4nmにおける端面の反射を考慮した場合の理論透過率(92.256%)
d:蛍石結晶の厚み(cm)
である。
Table 1 shows the values of the internal transmittance (%) per 1 cm thickness of the fluorite crystal at the calculated transmitted light wavelength of 193.4 nm before and after the laser irradiation.
The internal transmittance per 1 cm thickness of these fluorite crystals was calculated as follows.
Internal transmittance per 1 cm thickness (%) = exp {ln (z / R) × 1 / d × 1} × 100
here,
z: Measured value of transmittance at a wavelength of 193.4 nm (%)
R: Theoretical transmittance (92.256%) in consideration of reflection at the end face at a wavelength of 193.4 nm
d: Thickness of fluorite crystal (cm)
It is.

(比較例1)
原料フッ化カルシウムの粉末に、この原料フッ化カルシウム中のフッ化カルシウムを100mol%とした場合に1.5mol%に相当する量のスカベンジャーとしてのフッ化鉛(PbF2)を添加し、これらを入れた坩堝を炉内に入れ、炉内を真空状態(10-3Pa以下)とした後、6時間かけて1400℃±20℃まで昇温し、原料を溶融させた。この温度を1日保持した後、数日かけて自然冷却し、溶融凝固体Aを炉内から取り出し、溶融凝固体Aの全量をこぶし大の大きさに手で破砕した。
(Comparative Example 1)
Lead fluoride (PbF 2 ) as a scavenger is added to the raw material calcium fluoride powder in an amount corresponding to 1.5 mol% when the calcium fluoride in the raw material calcium fluoride is 100 mol%. After putting the crucible into the furnace and making the furnace in a vacuum state (10 −3 Pa or less), the temperature was raised to 1400 ° C. ± 20 ° C. over 6 hours to melt the raw material. After maintaining this temperature for one day, it was naturally cooled over several days, the molten solidified body A was taken out from the furnace, and the entire amount of the molten solidified body A was kneaded into a large size by hand.

次に、このように破砕して得た溶融凝固体破砕物全量と、この破砕物中のフッ化カルシウムを100mol%とした場合に2.0mol%に相当する量のフッ化鉛(PbF2)とを混合し、この混合物を単結晶成長炉の坩堝に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて蛍石結晶を育成した。
次に、室温にて、熱処理炉内を減圧して真空雰囲気とした後、炉内雰囲気を速やかにArガス雰囲気に置換した後、加熱装置にて、昇温時間36時間で、最高温度1000〜1200℃まで昇温し、その温度を24時間温度に保持した。その後、約10日かけて室温まで冷却した。
このように熱処理して得られた結晶を切り出し、(111)面両端面に光学研磨を施して蛍石結晶を得た。
Next, the total amount of molten and solidified crushed material obtained by crushing as described above, and lead fluoride (PbF 2 ) in an amount corresponding to 2.0 mol% when calcium fluoride in the crushed material is 100 mol%. And the mixture is put in a crucible of a single crystal growth furnace, the inside of the furnace is evacuated and the crucible is heated, and the degree of vacuum is 10 −3 Pa or less, and the temperature is 1400 ° C. ± 20 ° C. After maintaining the above, the crucible was lowered to grow fluorite crystals.
Next, after depressurizing the inside of the heat treatment furnace at room temperature to form a vacuum atmosphere, the atmosphere inside the furnace was quickly replaced with an Ar gas atmosphere, and then the maximum temperature of 1000 to 1000 hours in a heating apparatus with a heating time of 36 hours. The temperature was raised to 1200 ° C., and the temperature was maintained for 24 hours. Then, it cooled to room temperature over about 10 days.
The crystal obtained by heat treatment in this manner was cut out, and both ends of the (111) plane were optically polished to obtain a fluorite crystal.

(実施例1)
比較例1と同様にして得られた溶融凝固体Aの全量を、こぶし大の大きさに手で破砕し、これに、該溶融凝固体Aの破砕物中のフッ化カルシウムを100mol%とした場合に1.5mol%に相当する量のフッ化鉛(PbF2)を添加し、これらを入れた坩堝を炉内に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて溶融凝固体Bを得た。
この溶融凝固体Bを、比較例1の溶融凝固体Aと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
Example 1
The total amount of the melt-solidified product A obtained in the same manner as in Comparative Example 1 was crushed by hand into a fist size, and the calcium fluoride in the crushed product of the melt-solidified product A was 100 mol%. In this case, lead fluoride (PbF 2 ) in an amount corresponding to 1.5 mol% is added, the crucible containing these is put in the furnace, the inside of the furnace is evacuated, the crucible is heated, and the degree of vacuum is 10 −3. The temperature was set to 1400 ° C. ± 20 ° C. at Pa or lower, and this was maintained for 1 day or longer, and then the crucible was lowered to obtain a molten solidified body B.
This melt-solidified body B was crystal-grown, heat-treated and processed in the same manner as the melt-solidified body A of Comparative Example 1 to obtain fluorite crystals.

(実施例2)
実施例1と同様にして得られた溶融凝固体Bの全量を、こぶし大の大きさに手で破砕し、得られた溶融凝固体Bの破砕物中のフッ化カルシウムを100mol%とした場合に1.5mol%に相当する量のフッ化鉛(PbF2)を添加し、これらを入れた坩堝を炉内に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて溶融凝固体Cを得た。この溶融凝固体Cを、実施例1の溶融凝固体Bと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
(Example 2)
When the total amount of the melt-solidified body B obtained in the same manner as in Example 1 is crushed by hand into a fist size, and the calcium fluoride in the crushed material of the obtained melt-solidified body B is 100 mol% An amount of lead fluoride (PbF 2 ) corresponding to 1.5 mol% was added to the reactor, the crucible containing these was placed in the furnace, the inside of the furnace was evacuated and the crucible was heated, and the degree of vacuum was 10 −3 Pa. Hereinafter, the temperature was set to 1400 ° C. ± 20 ° C., and this was maintained for one day or more, and then the crucible was lowered to obtain a molten solidified product C. This melt-solidified body C was crystal-grown, heat-treated and processed in the same manner as the melt-solidified body B of Example 1 to obtain fluorite crystals.

Figure 0006035584
Figure 0006035584

(考察)
この結果、実施例1及び2のように、溶融凝固体の全量を砕いて溶融凝固体破砕物とし、この溶融凝固体破砕物全量に再び新たなスカベンジャーを加えて再び溶融し、続いて冷却して凝固させて溶融凝固体を得るという一連の処理を繰り返すことにより、溶融凝固体の一部を取り除かなくても、蛍石結晶製造中間体としての溶融凝固体のγ値(カラーセンター吸収係数の波長区間200nm〜800nmの積分値)を顕著に低下させることができることが分かった。よって、この溶融凝固体を用いて蛍石結晶を製造することで、比較例のような従来方法で製造された蛍石結晶の場合と比較して、波長193nmにおける内部透過率及びレーザー耐久性を高めることができることが分かった。
(Discussion)
As a result, as in Examples 1 and 2, the entire amount of the molten solidified body was crushed into a molten solidified body, and a new scavenger was again added to the total amount of the molten solidified body to melt again, followed by cooling. By repeating a series of processes to obtain a molten solidified body by solidification, the γ value (of the color center absorption coefficient) of the molten solidified body as an intermediate for producing fluorite crystals can be obtained without removing a part of the molten solidified body. It was found that the integrated value of the wavelength section 200 nm to 800 nm) can be significantly reduced. Therefore, by producing a fluorite crystal using this molten solidified body, the internal transmittance and laser durability at a wavelength of 193 nm can be obtained compared to the case of a fluorite crystal produced by a conventional method such as a comparative example. It turned out that it can raise.

(比較例2)
溶融凝固体Aを得るまでの工程において、原料フッ化カルシウムの粉末に、この原料フッ化カルシウム中のフッ化カルシウムを100mol%とした場合に2.5mol%に相当する量のスカベンジャーとしてのフッ化鉛(PbF2)を添加した以外は、比較例1と同様にして溶融凝固体Aを得、比較例1の溶融凝固体Aと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
(Comparative Example 2)
In the process until obtaining the molten solidified body A, the raw material calcium fluoride powder is fluorinated as a scavenger in an amount corresponding to 2.5 mol% when the calcium fluoride in the raw material calcium fluoride is 100 mol%. Except for the addition of lead (PbF 2 ), a melt-solidified body A was obtained in the same manner as in Comparative Example 1, and crystal growth, heat treatment and processing were performed in the same manner as in the melt-solidified body A of Comparative Example 1 to obtain fluorite crystals. .

(実施例3)
比較例2と同様にして得られた溶融凝固体Aの全量を、こぶし大の大きさに手で破砕し、これに、該溶融凝固体Aの破砕物中のフッ化カルシウムを100mol%とした場合に2.5mol%に相当する量のフッ化鉛(PbF2)を添加し、これらを入れた坩堝を炉内に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて溶融凝固体Bを得た。
この溶融凝固体Bを、比較例1の溶融凝固体Aと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
Example 3
The total amount of the molten solidified product A obtained in the same manner as in Comparative Example 2 was crushed by hand into a fist size, and the calcium fluoride in the crushed material of the molten solidified product A was 100 mol%. In this case, lead fluoride (PbF 2 ) in an amount corresponding to 2.5 mol% is added, the crucible containing these is put in the furnace, the inside of the furnace is evacuated, the crucible is heated, and the degree of vacuum is 10 −3. The temperature was set to 1400 ° C. ± 20 ° C. at Pa or lower, and this was maintained for 1 day or longer, and then the crucible was lowered to obtain a molten solidified body B.
This melt-solidified body B was crystal-grown, heat-treated and processed in the same manner as the melt-solidified body A of Comparative Example 1 to obtain fluorite crystals.

(実施例4)
実施例3と同様にして得られた溶融凝固体Bの全量を、こぶし大の大きさに手で破砕し、得られた溶融凝固体Bの破砕物中のフッ化カルシウムを100mol%とした場合に2.5mol%に相当する量のフッ化鉛(PbF2)を添加し、これらを入れた坩堝を炉内に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて溶融凝固体Cを得た。この溶融凝固体Cを、実施例3の溶融凝固体Bと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
Example 4
When the total amount of the melt-solidified body B obtained in the same manner as in Example 3 is crushed by hand into a large fist size, and the calcium fluoride in the crushed material of the obtained melt-solidified body B is 100 mol% An amount of lead fluoride (PbF 2 ) corresponding to 2.5 mol% was added to the reactor, the crucible containing these was placed in the furnace, the inside of the furnace was evacuated, the crucible was heated, and the degree of vacuum was 10 −3 Pa. Hereinafter, the temperature was set to 1400 ° C. ± 20 ° C., and this was maintained for one day or more, and then the crucible was lowered to obtain a molten solidified product C. This melt-solidified body C was crystal-grown, heat-treated and processed in the same manner as the melt-solidified body B of Example 3 to obtain fluorite crystals.

(比較例3)
溶融凝固体Aを得るまでの工程において、原料フッ化カルシウムの粉末に、この原料フッ化カルシウム中のフッ化カルシウムを100mol%とした場合に4.0mol%に相当する量のスカベンジャーとしてのフッ化鉛(PbF2)を添加した以外は、比較例1と同様にして溶融凝固体Aを得、比較例1の溶融凝固体Aと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
(Comparative Example 3)
In the process until obtaining the molten solidified product A, the raw material calcium fluoride powder is fluorinated as a scavenger in an amount corresponding to 4.0 mol% when the calcium fluoride in the raw material calcium fluoride is 100 mol%. Except for the addition of lead (PbF 2 ), a melt-solidified body A was obtained in the same manner as in Comparative Example 1, and crystal growth, heat treatment and processing were performed in the same manner as in the melt-solidified body A of Comparative Example 1 to obtain fluorite crystals. .

(実施例5)
比較例3と同様にして得られた溶融凝固体Aの全量を、こぶし大の大きさに手で破砕し、これに、該溶融凝固体Aの破砕物中のフッ化カルシウムを100mol%とした場合に4.0mol%に相当する量のフッ化鉛(PbF2)を添加し、これらを入れた坩堝を炉内に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて溶融凝固体Bを得た。
この溶融凝固体Bを、比較例1の溶融凝固体Aと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
(Example 5)
The total amount of the melt-solidified product A obtained in the same manner as in Comparative Example 3 was crushed by hand into a fist size, and the calcium fluoride in the crushed product of the melt-solidified product A was 100 mol%. In this case, lead fluoride (PbF 2 ) in an amount corresponding to 4.0 mol% is added, the crucible containing these is put in the furnace, the inside of the furnace is evacuated, the crucible is heated, and the degree of vacuum is 10 −3. The temperature was set to 1400 ° C. ± 20 ° C. at Pa or lower, and this was maintained for 1 day or longer, and then the crucible was lowered to obtain a molten solidified body B.
This melt-solidified body B was crystal-grown, heat-treated and processed in the same manner as the melt-solidified body A of Comparative Example 1 to obtain fluorite crystals.

(実施例6)
実施例5と同様にして得られた溶融凝固体Bの全量を、こぶし大の大きさに手で破砕し、得られた溶融凝固体Bの破砕物中のフッ化カルシウムを100mol%とした場合に4.0mol%に相当する量のフッ化鉛(PbF2)を添加し、これらを入れた坩堝を炉内に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて溶融凝固体Cを得た。この溶融凝固体Cを、実施例5の溶融凝固体Bと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
(Example 6)
When the total amount of the melt-solidified body B obtained in the same manner as in Example 5 is crushed by hand to a large fist size, and the calcium fluoride in the crushed material of the obtained melt-solidified body B is 100 mol% The amount of lead fluoride (PbF 2 ) corresponding to 4.0 mol% was added to the crucible, the crucible containing these was put into the furnace, the inside of the furnace was evacuated, the crucible was heated, and the degree of vacuum was 10 −3 Pa. Hereinafter, the temperature was set to 1400 ° C. ± 20 ° C., and this was maintained for one day or more, and then the crucible was lowered to obtain a molten solidified product C. This melt-solidified body C was crystal-grown, heat-treated and processed in the same manner as the melt-solidified body B of Example 5 to obtain fluorite crystals.

(比較例4)
溶融凝固体Aを得るまでの工程において、原料フッ化カルシウムの粉末に、この原料フッ化カルシウム中のフッ化カルシウムを100mol%とした場合に5.0mol%に相当する量のスカベンジャーとしてのフッ化鉛(PbF2)を添加した以外は、比較例1と同様にして溶融凝固体Aを得、比較例1の溶融凝固体Aと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
(Comparative Example 4)
In the process until obtaining the molten solidified body A, the raw material calcium fluoride powder is fluorinated as a scavenger in an amount corresponding to 5.0 mol% when the calcium fluoride in the raw material calcium fluoride is 100 mol%. Except for the addition of lead (PbF 2 ), a melt-solidified body A was obtained in the same manner as in Comparative Example 1, and crystal growth, heat treatment and processing were performed in the same manner as in the melt-solidified body A of Comparative Example 1 to obtain fluorite crystals. .

(実施例7)
比較例4と同様にして得られた溶融凝固体Aの全量を、こぶし大の大きさに手で破砕し、これに、該溶融凝固体Aの破砕物中のフッ化カルシウムを100mol%とした場合に5.0mol%に相当する量のフッ化鉛(PbF2)を添加し、これらを入れた坩堝を炉内に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて溶融凝固体Bを得た。
この溶融凝固体Bを、比較例1の溶融凝固体Aと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
(Example 7)
The total amount of the melt-solidified product A obtained in the same manner as in Comparative Example 4 was crushed by hand into a fist size, and the calcium fluoride in the crushed product of the melt-solidified product A was 100 mol%. In this case, lead fluoride (PbF 2 ) in an amount corresponding to 5.0 mol% is added, the crucible containing these is put in the furnace, the inside of the furnace is evacuated, the crucible is heated, and the degree of vacuum is 10 −3. The temperature was set to 1400 ° C. ± 20 ° C. at Pa or lower, and this was maintained for 1 day or longer, and then the crucible was lowered to obtain a molten solidified body B.
This melt-solidified body B was crystal-grown, heat-treated and processed in the same manner as the melt-solidified body A of Comparative Example 1 to obtain fluorite crystals.

(比較例5)
原料フッ化カルシウムの粉末にスカベンジャーとしてのフッ化鉛(PbF2)を添加しない以外の点は、比較例1と同様にして蛍石結晶を得た。
(Comparative Example 5)
A fluorite crystal was obtained in the same manner as in Comparative Example 1 except that lead fluoride (PbF 2 ) as a scavenger was not added to the raw material calcium fluoride powder.

(比較例6)
比較例5と同様にして得られた溶融凝固体Aの全量を、こぶし大の大きさに手で破砕し、これを入れた坩堝を炉内に入れ、炉内を真空排気して坩堝を加熱し、真空度10-3Pa以下、温度は1400℃±20℃とし、これを1日以上保った後、坩堝を降下させて溶融凝固体Bを得た。この溶融凝固体Bを、比較例1の溶融凝固体Aと同様に結晶育成、熱処理及び加工して蛍石結晶を得た。
(Comparative Example 6)
The entire amount of the melt-solidified product A obtained in the same manner as in Comparative Example 5 was crushed by hand into a fist size, the crucible containing this was put into the furnace, the inside of the furnace was evacuated, and the crucible was heated. Then, the degree of vacuum was 10 −3 Pa or less, the temperature was 1400 ° C. ± 20 ° C., and this was maintained for 1 day or longer, and then the crucible was lowered to obtain a molten solidified body B. This melt-solidified body B was crystal-grown, heat-treated and processed in the same manner as the melt-solidified body A of Comparative Example 1 to obtain fluorite crystals.

Figure 0006035584
Figure 0006035584

(考察)
上記比較例及び実施例とこれまで行ってきた試験結果から、フッ化カルシウム粉末とスカベンジャーの混合物を溶融し凝固させ、得られた溶融凝固体の全量を砕いて、再びスカベンジャーを加えて溶融し凝固させるという一連の処理を繰り返して溶融凝固工程を行うことにより、結晶成長又は凝固させたフッ化カルシウムの一部を除去することなく、蛍石結晶の透過率を高めることができ、蛍石結晶を製造する際の中間体としての溶融凝固体のγ値(吸収係数の200nm〜800nmの積分値)を70以下、特に50以下、中でも1〜20程度に低下させることができることが分かった。
(Discussion)
From the above comparative examples and examples and the results of the tests conducted so far, the mixture of calcium fluoride powder and scavenger was melted and solidified, and the total amount of the obtained molten solidified material was crushed and again added with scavenger to melt and solidify. By repeating the melt-solidification step by repeating a series of treatments, the transmittance of the fluorite crystal can be increased without removing a portion of the crystal grown or solidified calcium fluoride. It has been found that the γ value (integral value of the absorption coefficient of 200 nm to 800 nm) of the melt-solidified product as an intermediate during the production can be reduced to 70 or less, particularly 50 or less, especially 1 to 20 or so.

Claims (4)

フッ化カルシウム粉末とスカベンジャーの混合物を溶融し、続いて冷却して凝固させて溶融凝固体Aを得る原料溶融凝固工程と前記原料溶融凝固工程で得られた溶融凝固体Aの全量を砕いて溶融凝固体破砕物とし、この溶融凝固体破砕物Aの全量とスカベンジャーとを混合して得られる混合物を溶融し、続いて冷却して凝固させて溶融凝固体を得る溶融凝固工程と前記溶融凝固工程で得られた溶融凝固体の全量を砕いて溶融凝固体破砕物とする破砕工程と前記破砕工程で得られた溶融凝固体破砕物を溶融させた後、冷却して結晶成長させて蛍石結晶を得る結晶育成工程と前記結晶育成工程で得られた蛍石結晶を熱処理する熱処理工程と、を備えた蛍石結晶の製造方法において、
前記溶融凝固工程において、溶融凝固体Aの全量を砕いて得られる溶融凝固体破砕物中のフッ化カルシウム100mol%に対して1〜4mol%の量のスカベンジャーを混合することを特徴とする蛍石結晶の製造方法。
Melting a mixture of calcium powder and scavenger fluoride, followed by the raw material melting and solidification step of cooling and solidifying to obtain a melt solidified body A, the crushed the whole amount of the resulting melt solidified body A in the raw material melting and solidification step a melt solidified body crushed a, and the melt-solidified product of ruptured obtained by mixing the total amount and scavengers a mixture melting, followed by cooling solidifying to obtain a melt solidified body Ru melt solidifying step, the melting and solidification and crushing step to resulting melt solidified body melt solidified body crushed crushed the entire amount of the step, after melting the melt-solidified disrupted product obtained by crushing step, crystal growth and cooling a crystal growth step of obtaining a fluorite crystal by a heat treatment step of heat-treating the fluorite crystal obtained in the crystal growth step, the method for producing a fluorite crystal having a,
Wherein the melting and solidification process, firefly, which comprises mixing the 1~4Mol% of the amount of scavenger with respect to calcium fluoride 100 mol% of the melt solidified body crushed in A obtained crushed whole amount of the melt solidified body A A method for producing stone crystals.
フッ化カルシウム粉末とスカベンジャーの混合物を溶融し、続いて冷却して凝固させて溶融凝固体Aを得る原料溶融凝固工程と前記原料溶融凝固工程で得られた溶融凝固体Aの全量を砕いて溶融凝固体破砕物とし、この溶融凝固体破砕物Aの全量とスカベンジャーとを混合して得られる混合物を溶融し、続いて冷却して凝固させて溶融凝固体を得る溶融凝固工程と前記溶融凝固工程で得られた溶融凝固体の全量を砕いて溶融凝固体破砕物とし、この溶融凝固体破砕物全量とスカベンジャーとを混合して得られる混合物を溶融し、続いて冷却して凝固させて溶融凝固体を得る再溶融凝固工程と、前記再溶融凝固工程を1回又は2回以上行い、最後に得られた溶融凝固体の全量を砕いて溶融凝固体破砕物とする破砕工程と前記破砕工程で得られた溶融凝固体破砕物を溶融させた後、冷却して結晶成長させて蛍石結晶を得る結晶育成工程と前記結晶育成工程で得られた蛍石結晶を熱処理する熱処理工程と、を備えた蛍石結晶の製造方法において、
前記溶融凝固工程において、溶融凝固体Aの全量を砕いて得られる溶融凝固体破砕物中のフッ化カルシウム100mol%に対して1〜4mol%の量のスカベンジャーを混合するか、又は、
前記再溶融凝固工程において、溶融凝固体の全量を砕いて得られる溶融凝固体破砕物中のフッ化カルシウム100mol%に対して1〜4mol%の量のスカベンジャーを混合することを特徴とする蛍石結晶の製造方法。
Melting a mixture of calcium powder and scavenger fluoride, followed by the raw material melting and solidification step of cooling and solidifying to obtain a melt solidified body A, the crushed the whole amount of the resulting melt solidified body A in the raw material melting and solidification step a melt solidified body crushed a, and the melt-solidified product of ruptured obtained by mixing the total amount and scavengers a mixture melting, followed by cooling solidifying to obtain a melt solidified body Ru melt solidifying step, The entire amount of the molten solidified body obtained in the melt solidification step is crushed to obtain a molten solidified body crushed material, and the mixture obtained by mixing the total amount of the molten solidified body crushed material and the scavenger is melted and then cooled to solidify. and re-melting and solidification to obtain a melt solidified body by, the re-melting and solidification process is performed one or more times, the crushing step to melt solidified body crushed crushed the entire amount of the finally obtained melt solidified body , in the crushing process After melting was melt solidified body crushed, includes a crystal growth step of cooling by crystal growth to obtain a fluorite crystal, and a heat treatment step of heat-treating the crystal growth step fluorite crystals obtained in In the method for producing fluorite crystals,
Wherein the melting and solidification process, or mixing 1~4Mol% of the amount of scavenger with respect to calcium fluoride 100 mol% in the melt-solidified product of ruptured A obtained crushed whole amount of the melt solidified body A, or,
In the remelting and solidifying step, scavengers in an amount of 1 to 4 mol% are mixed with 100 mol% of calcium fluoride in the molten and solidified product obtained by crushing the entire amount of the molten and solidified product. Crystal production method.
前記溶融凝固工程において、溶融凝固体Aの全量を砕いて得られる溶融凝固体破砕物中のフッ化カルシウム100mol%に対して1〜4mol%の量のスカベンジャーを混合し、且つ、
前記再溶融凝固工程において、溶融凝固体の全量を砕いて得られる溶融凝固体破砕物中のフッ化カルシウム100mol%に対して1〜4mol%の量のスカベンジャーを混合することを特徴とする請求項に記載の蛍石結晶の製造方法。
Wherein the melt-solidified step, mixing 1~4Mol% of the amount of scavenger with respect to calcium fluoride 100 mol% in the melt-solidified product of ruptured A obtained crushed whole amount of the melt solidified body A, and,
The scavenger in an amount of 1 to 4 mol% is mixed with 100 mol% of calcium fluoride in the melted and solidified product obtained by crushing the entire amount of the melted and solidified product in the remelting and solidifying step. 2. A method for producing a fluorite crystal according to 2 .
前記再溶融凝固工程を2回以上行うことを特徴とする請求項2又は3に記載の蛍石結晶の製造方法。
The method for producing a fluorite crystal according to claim 2 or 3 , wherein the remelting and solidification step is performed twice or more.
JP2011240033A 2010-11-26 2011-11-01 Method for producing fluorite crystals Active JP6035584B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011240033A JP6035584B2 (en) 2010-11-26 2011-11-01 Method for producing fluorite crystals
DE102011118229.6A DE102011118229B4 (en) 2010-11-26 2011-11-10 Process for the production of a flourite crystal

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010263140 2010-11-26
JP2010263140 2010-11-26
JP2011147146 2011-07-01
JP2011147146 2011-07-01
JP2011240033A JP6035584B2 (en) 2010-11-26 2011-11-01 Method for producing fluorite crystals

Publications (2)

Publication Number Publication Date
JP2013032256A JP2013032256A (en) 2013-02-14
JP6035584B2 true JP6035584B2 (en) 2016-11-30

Family

ID=46049995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240033A Active JP6035584B2 (en) 2010-11-26 2011-11-01 Method for producing fluorite crystals

Country Status (2)

Country Link
JP (1) JP6035584B2 (en)
DE (1) DE102011118229B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956146B (en) * 2022-06-02 2023-08-11 中南大学 Pretreatment method of fluorine-containing waste residues and recovery method of calcium fluoride

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342312B2 (en) * 1996-03-22 2002-01-29 Canon Kabushiki Kaisha Calcium fluoride crystal, optical article and exposure apparatus for photo-lithography using the same
JP3957782B2 (en) 1996-03-22 2007-08-15 キヤノン株式会社 Fluorite, manufacturing method thereof and exposure apparatus
JPH10203899A (en) 1997-01-23 1998-08-04 Nikon Corp Fluorite little in alkaline earth metal impurities and its production
JP3337638B2 (en) * 1997-03-31 2002-10-21 キヤノン株式会社 Method for producing fluoride crystal and method for producing optical component
JP3631063B2 (en) * 1998-10-21 2005-03-23 キヤノン株式会社 Method for purifying fluoride and method for producing fluoride crystal
JP2003238293A (en) * 2002-12-16 2003-08-27 Canon Inc Fluorite, method of producing the same, and optical system and exposure apparatus using the fluorite
JP4020313B2 (en) * 2003-03-28 2007-12-12 ステラケミファ株式会社 Impurity in fluoride and color center analysis method and method for producing single crystal growth material
JP2007051013A (en) * 2004-05-31 2007-03-01 Nikon Corp Method for producing calcium fluoride crystal

Also Published As

Publication number Publication date
DE102011118229B4 (en) 2020-03-05
DE102011118229A1 (en) 2012-05-31
JP2013032256A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP2001354494A (en) Method for growing single crystal having large volume from calcium fluoride and use of the single crystal
JP2003532610A (en) Fluoride crystal optical lithography lens element material
JP5260797B2 (en) Fluorite manufacturing method
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
JP6035584B2 (en) Method for producing fluorite crystals
JP2005001933A (en) Metal fluoride body and its manufacturing method
JP4092515B2 (en) Fluorite manufacturing method
JP2003238152A (en) Method for making crystal
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JP4839205B2 (en) Fluorite manufacturing method
JP2004315255A (en) Method for manufacturing fluoride crystal, fluoride crystal, optical system, and optical lithography device
JP5030861B2 (en) Ferroelectric fluoride crystal
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
US7014703B2 (en) Method for annealing group IIA metal fluoride crystals
JP2010285327A (en) Method for heat-treating fluoride, method for producing fluoride single crystal, and fluoride single crystal
JP2011026142A (en) Method for growing fluoride crystal, fluoride crystal, and optical member
JP4839204B2 (en) Fluorite
JP5682894B2 (en) Fluorite
US20060201412A1 (en) Method of making highly uniform low-stress single crystals with reduced scattering
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
JP4427217B2 (en) Barium fluoride single crystal for optical member for vacuum ultraviolet and method for producing the same
JP2006315915A (en) Optical component
JP4425186B2 (en) Heat treatment method of metal fluoride single crystal
JP2005330123A (en) Method for producing caf2 crystal
JP2006001760A (en) Method for producing fluoride single crystal

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20141015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6035584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250