JP2006315915A - Optical component - Google Patents

Optical component Download PDF

Info

Publication number
JP2006315915A
JP2006315915A JP2005141202A JP2005141202A JP2006315915A JP 2006315915 A JP2006315915 A JP 2006315915A JP 2005141202 A JP2005141202 A JP 2005141202A JP 2005141202 A JP2005141202 A JP 2005141202A JP 2006315915 A JP2006315915 A JP 2006315915A
Authority
JP
Japan
Prior art keywords
optical member
fluoride
value
member according
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005141202A
Other languages
Japanese (ja)
Other versions
JP2006315915A5 (en
Inventor
Taihei Mukaide
大平 向出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005141202A priority Critical patent/JP2006315915A/en
Publication of JP2006315915A publication Critical patent/JP2006315915A/en
Publication of JP2006315915A5 publication Critical patent/JP2006315915A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical component wherein the presence of impurities does not adversely affect its imaging performance by regulating the local distribution of impurities. <P>SOLUTION: In the first face and the second face of a crystalline optical member of an optical device, a C<SB>1</SB>/C<SB>2</SB>value (wherein, C<SB>1</SB>and C<SB>2</SB>are respectively the maximum and minimum concentration of alkaline earth metal impurities at least at three points such as center, periphery and middle) is lower than a specified value. The C<SB>1</SB>/C<SB>2</SB>value is 1.05 or less. The crystalline optical component is a fluoride, in particular calcium fluoride. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体集積回路製造用の露光装置(半導体露光装置)に用いられる光学部材に関する。   The present invention relates to an optical member used in an exposure apparatus (semiconductor exposure apparatus) for manufacturing a semiconductor integrated circuit.

従来、レンズのような光学部材は、望遠鏡、カメラ、又は半導体露光装置等に用いられている。中でも半導体露光装置の光学部材では高品質の光学材料が望まれている。近年、半導体集積回路の高集積化に伴い、超微細パターン形成への要求がますます高まり、微細パターンをウエハ上に転写する縮小投影型露光装置(ステッパー)が多用されている。高集積化するためにはステッパーの解像度を上げる必要がある。そして、解像度を上げるには短波長の光を用い、投影レンズの開口数を大きく、つまり大口径化(例えば300mm以上)する必要がある。   Conventionally, an optical member such as a lens is used in a telescope, a camera, a semiconductor exposure apparatus, or the like. In particular, high-quality optical materials are desired for optical members of semiconductor exposure apparatuses. In recent years, with the high integration of semiconductor integrated circuits, the demand for ultra fine pattern formation is increasing, and a reduction projection type exposure apparatus (stepper) for transferring a fine pattern onto a wafer is widely used. In order to achieve high integration, it is necessary to increase the resolution of the stepper. In order to increase the resolution, it is necessary to use short-wavelength light and increase the numerical aperture of the projection lens, that is, to increase the diameter (for example, 300 mm or more).

また、露光用の光は、Kr−Fエキシマレーザ光(波長248nm)から、今後はAr−Fエキシマレーザ光(波長193nm)、F2レーザ光(波長157nm)の使用が有望視されている。Kr−Fエキシマレーザ光以降の短波長レーザでは透過率が低く、従来の光学ガラスを使用することは不可能である。   In addition, from the Kr-F excimer laser light (wavelength 248 nm), the use of Ar-F excimer laser light (wavelength 193 nm) and F2 laser light (wavelength 157 nm) is expected to be promising. A short wavelength laser after the Kr-F excimer laser beam has low transmittance, and it is impossible to use conventional optical glass.

このためエキシマレーザ露光装置の光学部材には極紫外光の透過率の高いフッ化物結晶が用いられる。従来の光学ガラスが非結晶であることに対してこれらの材料は結晶である。   For this reason, a fluoride crystal having a high transmittance of extreme ultraviolet light is used for the optical member of the excimer laser exposure apparatus. These materials are crystalline, whereas conventional optical glass is amorphous.

これらの材料において求められることの一つとして光学的な特性が光学部材全体で均一であることである。光学的均一性を阻害するものの一つとして結晶中の歪の問題がある。結晶中の歪は屈折率の不均一性をもたらす。屈折率の不均一性は収差になり半導体露光装置の像性能に影響することが知られている。その一方もう一つの原因として考えられるのが結晶中の不純物である。   One of the requirements for these materials is that the optical characteristics are uniform throughout the optical member. One of the obstacles to optical uniformity is the problem of strain in crystals. Strain in the crystal causes refractive index non-uniformity. It is known that the non-uniformity of the refractive index becomes an aberration and affects the image performance of the semiconductor exposure apparatus. On the other hand, another possible cause is impurities in the crystal.

ここで、フッ化物結晶の製造方法を述べると、フッ化物結晶は、通常ブリッジマン法による結晶製造装置において製造される(下記特許文献1参照)。同装置において、原料を装填した坩堝を炉体内に設置し、その周囲に環状の発熱体を縦方向に配置して、上部では育成する結晶の融点より高温に、下部ではその融点より低温に炉体内の温度を制御している。この温度分布を利用して炉体内の上部で坩堝内の原料を溶融し、次いで所定の速度で坩堝を炉体下部に引下げる過程において、融点近辺の温度域を通過する際に種結晶又は育成された単結晶の表面に結晶方位を保存しつつ融液内から順次析出が生じることで単結晶が育成される。   Here, the production method of the fluoride crystal will be described. The fluoride crystal is usually produced in a crystal production apparatus by the Bridgman method (see Patent Document 1 below). In this apparatus, a crucible loaded with raw materials is placed in the furnace body, and an annular heating element is vertically arranged around the furnace. It controls the temperature inside the body. In the process of melting the raw material in the crucible at the upper part of the furnace body using this temperature distribution and then pulling down the crucible to the lower part of the furnace body at a predetermined rate, the seed crystal or the growth occurs when passing through the temperature range near the melting point A single crystal is grown by sequential precipitation from the melt while preserving the crystal orientation on the surface of the single crystal.

結晶中の不純物の存在は、上記したように光学的均一性を阻害するので、無いことが望ましい。そこで、予め原料を融解して精製する工程において、原料が水分等と反応して生成した酸化物や原料中の不純物を除去するため金属のフッ化物がスカベンジャとして添加される。   As described above, the presence of impurities in the crystal hinders the optical uniformity, so it is desirable that there is no impurity. Therefore, in the process of melting and purifying the raw material in advance, a metal fluoride is added as a scavenger in order to remove oxides generated by the reaction of the raw material with moisture and the impurities in the raw material.

しかし、スカベンジャだけでは原料中の全ての不純物を除去することはできない。特に、フッ化物結晶をフッ化カルシウム(CaF、蛍石)とした場合、カルシウムと同族のアルカリ土類金属のマグネシウム(Mg)、ストロンチウム(Sr)、バリウム(Ba)は、原料における分離精製が困難であり、なおかつ結晶成長によっても除去がむずかしい。 However, all the impurities in the raw material cannot be removed by the scavenger alone. In particular, when the fluoride crystal is calcium fluoride (CaF 2 , fluorite), magnesium (Mg), strontium (Sr), and barium (Ba), which are alkaline earth metals of the same family as calcium, can be separated and purified in the raw material. It is difficult, and removal is difficult even by crystal growth.

これら不純物としてその許容量を規定することにより光学特性を上げる例もある(下記特許文献2参照)。この例では、蛍石にArFエキシマレーザ光、γ線などの高エネルギの光子、粒子が照射されるとカラーセンタが生じて透過率が低下してしまうのを防ぐものである。アルカリ土類金属不純物の濃度の合計が1E18atom/cm以下、より好ましくはアルカリ土類金属不純物のうち、Srの濃度が1E18atom/cm以下としている。
特開2005−89204号公報 特開平10−203899号公報
There is an example in which the optical characteristics are improved by defining the allowable amount of these impurities (see Patent Document 2 below). In this example, when fluorite is irradiated with ArF excimer laser light, high energy photons such as γ rays, or particles, a color center is generated and the transmittance is prevented from decreasing. The total concentration of the alkaline earth metal impurities is 1E18 atom / cm 3 or less, more preferably, the concentration of Sr among the alkaline earth metal impurities is 1E18 atom / cm 3 or less.
JP 2005-89204 A JP-A-10-203899

上記特許文献2においては、アルカリ土類金属の濃度を規定し所要の結像性能を得たものであるが、本発明において、更に重要な、これら不純物が結晶中にどのように分布しているかであることを見出した。これら不純物の局在的な分布が存在することによって光学的な特性の均一性が失われ半導体露光装置の結像性能悪化に影響を及ぼすため、そのような光学部材を、製造工程において見極めて除外する必要がある。   In the above-mentioned Patent Document 2, the concentration of alkaline earth metal is specified to obtain the required imaging performance. In the present invention, more importantly, how these impurities are distributed in the crystal. I found out. The presence of these localized distributions of impurities results in loss of uniformity in optical characteristics and affects the imaging performance of the semiconductor exposure apparatus. There is a need to.

そこで、本発明は、不純物の局在的な分布を規定することにより、結像性能悪化に影響しない光学部材を提供することにある。   Therefore, the present invention is to provide an optical member that does not affect the imaging performance deterioration by defining the local distribution of impurities.

上記課題を解決するため、本発明では、光学装置の結晶性光学部材であって、その第一面および第二面において、少なくとも中心、外周部及びその中間の3点におけるアルカリ土類金属不純物濃度の最大値及び最小値をC,CとしたときC/Cの値が規定値以下であることを特徴とする。 In order to solve the above-described problems, the present invention provides a crystalline optical member of an optical device, and the alkaline earth metal impurity concentration at least at the center, the outer peripheral portion, and the middle of the first and second surfaces. When the maximum and minimum values of C 1 and C 2 are C 1 / C 2 , the value of C 1 / C 2 is not more than a specified value.

本発明により、結像性能が良好な光学部材を効率よく製造できエキシマレーザ露光装置の像性能を向上させることが出来た。   According to the present invention, an optical member having good imaging performance can be efficiently manufactured, and the image performance of an excimer laser exposure apparatus can be improved.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

前処理工程により原料のフッ化カルシウムに金属のフッ化物をスカベンジャとして添加し、融解、凝固させることにより出来るだけ原料中の不純物の除去を行う。この前処理された原料を用い坩堝引き下げ法(ブリッジマン法)等により結晶成長を行う。このとき、単結晶表面には不純物の析出が生じるが、固液界面の液体側に不純物が排除される現象を一般に偏析と呼ぶ。アルカリ土類金属不純物の結晶内分布は、主に偏析効果によって決まる。つまり出来るだけ固液界面形状を平坦化することによって面内分布を抑えることができ、それと同時に熱応力を軽減させることができ結晶の高品質化にもつながる。   In the pretreatment step, metal fluoride is added to the raw material calcium fluoride as a scavenger, and the impurities in the raw material are removed as much as possible by melting and solidifying. Using this pretreated raw material, crystal growth is performed by a crucible pulling down method (Bridgeman method) or the like. At this time, precipitation of impurities occurs on the surface of the single crystal, but the phenomenon in which impurities are eliminated on the liquid side of the solid-liquid interface is generally called segregation. The intracrystalline distribution of alkaline earth metal impurities is mainly determined by the segregation effect. That is, by flattening the solid-liquid interface shape as much as possible, the in-plane distribution can be suppressed, and at the same time, thermal stress can be reduced, leading to higher quality of crystals.

本発明では坩堝外壁の坩堝引き下げ方向の温度勾配を10℃/cm以下にすることによって熱応力を軽減させて結晶成長を行う。不純物の定量にはレーザアブレーション型のICP−MS(誘導結合プラズマイオン源質量分析装置)を用いて面内の不純物量の分布を測定する。   In the present invention, crystal growth is performed by reducing the thermal stress by reducing the temperature gradient in the crucible pulling direction of the outer wall of the crucible to 10 ° C./cm or less. For the quantification of impurities, the distribution of the amount of impurities in the surface is measured using a laser ablation type ICP-MS (inductively coupled plasma ion source mass spectrometer).

図1は、蛍石結晶の光学部材面内の不純物分析測定点(●)を示す模式図である。   FIG. 1 is a schematic diagram showing impurity analysis measurement points (●) in the optical member surface of a fluorite crystal.

光学部材の第一面および第二面において、少なくとも中心、外周部及びその中間の3点におけるアルカリ土類金属不純物濃度の最大値及び最小値をC,CとしたときC/Cの値が規定値以下である。また、少なくとも上記3点を、中心から複数の放射方向線上にとり、全ての点におけるアルカリ土類金属不純物濃度の最大値及び最小値をC,CとしたときC/Cの値が規定値以下である。そして、上記C/Cの値は、1.05以下である。 In first side and a second side of the optical member, C 1 / C 2 when at least around, the maximum value and the minimum value of the alkaline earth metal impurity concentration in the outer peripheral portion and the three-point of the intermediate was C 1, C 2 Is less than or equal to the specified value. Further, when at least the above three points are taken on a plurality of radial lines from the center, and the maximum value and the minimum value of the alkaline earth metal impurity concentration at all points are C 1 and C 2 , the value of C 1 / C 2 is Below the specified value. The value of C 1 / C 2 is 1.05 or less.

なお、フッ化カルシウム(CaF)以外にも、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化バリウム(BaF)のようなフッ化物の結晶は、紫外領域での透過率が高く、光学材料として用いられている。本発明ではこれらのフッ化物結晶に対して実施可能である。 In addition to calcium fluoride (CaF 2 ), fluoride crystals such as lithium fluoride (LiF), magnesium fluoride (MgF 2 ), and barium fluoride (BaF 2 ) have transmittance in the ultraviolet region. And is used as an optical material. The present invention can be carried out on these fluoride crystals.

[実施例]
以下、実施例を挙げて更に詳細に本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples.

市販の高純度フッ化カルシウムを原料とし、酸化防止のためのスカベンジャである、フッ化亜鉛を0.1mol%添加し攪拌した後に前処理用の坩堝に充填した。200℃真空乾燥を5時間行ったあと、フッ化カルシウムの融点まで温度を上げ融解させ不純物を除去し、その後室温まで戻し、フッ化カルシウムを固化させ結晶成長用の原料とした。   Using commercially available high-purity calcium fluoride as a raw material, 0.1 mol% of zinc fluoride, which is a scavenger for preventing oxidation, was added and stirred, and then charged in a pretreatment crucible. After vacuum drying at 200 ° C. for 5 hours, the temperature was raised to the melting point of calcium fluoride for melting to remove impurities, and then the temperature was returned to room temperature to solidify the calcium fluoride to obtain a crystal growth raw material.

結晶成長は<111>種結晶を用いた引き下げ法(ブリッジマン法)により行った。結晶成長用原料に0.01mol%のフッ化亜鉛をスカベンジャとして添加し、結晶成長用の坩堝に充填した。真空度8×10−2Pa、温度1420℃に昇温し、坩堝内CaFを溶解、脱ガスするため真空度2.6×10−4Pa、温度1420℃として20時間保った。 Crystal growth was performed by a pulling-down method (Bridgeman method) using a <111> seed crystal. 0.01 mol% of zinc fluoride was added as a scavenger to the raw material for crystal growth, and the crucible for crystal growth was filled. The temperature was raised to a vacuum of 8 × 10 −2 Pa and a temperature of 1420 ° C., and the degree of vacuum was 2.6 × 10 −4 Pa and the temperature was 1420 ° C. for 20 hours in order to dissolve and degas the CaF 2 in the crucible.

次に、ヒータの出力をコントロールしながら坩堝外壁の坩堝引き下げ方向の温度勾配を5℃/cmに制御し、坩堝を0.5mm/hの速度で降下させ良質のフッ化カルシウム単結晶を成長させた。この時の引下げ速度は、結晶成長速度に対応することが望ましいので、製作する結晶の大きさ、形状により考慮する必要があることは言うまでもない。一般には、結晶の大きさが大きくなれば、引下げ速度を遅くする必要がある。   Next, while controlling the output of the heater, the temperature gradient in the crucible pulling direction of the outer wall of the crucible is controlled to 5 ° C./cm, and the crucible is lowered at a rate of 0.5 mm / h to grow a good quality calcium fluoride single crystal. It was. Since the pulling rate at this time preferably corresponds to the crystal growth rate, it goes without saying that it is necessary to consider the size and shape of the crystal to be manufactured. In general, as the crystal size increases, the pulling speed needs to be reduced.

次に、熱処理のためにアニール炉の坩堝に成長させたフッ化カルシウム単結晶と、当該フッ化カルシウム単結晶に対して添加量0.01mol%のフッ化亜鉛を入れた。炉内を排気して坩堝の温度を室温から1100℃に速度100℃/hで上昇させた後、約50時間の間、約1100℃に保持した。そして、5℃/hの速度で低下させて室温まで冷却した。この時の、冷却速度は結晶の大きさが大きくなればそれに従い、冷却速度も遅くする必要がある。つまり、遅くしないと、複屈折率を極微小にすることが困難になる。   Next, a calcium fluoride single crystal grown in a crucible of an annealing furnace for heat treatment, and zinc fluoride with an addition amount of 0.01 mol% with respect to the calcium fluoride single crystal were added. The furnace was evacuated and the temperature of the crucible was increased from room temperature to 1100 ° C. at a rate of 100 ° C./h, and then maintained at about 1100 ° C. for about 50 hours. Then, the temperature was lowered to 5 ° C./h and cooled to room temperature. At this time, the cooling rate needs to be reduced as the crystal size increases. In other words, it is difficult to make the birefringence very small unless slow.

このようにして得られた結晶を円盤状に加工し、光学素子にした際に光軸と交わる上底面についてICP−MSにて中心から20mm間隔で8点かつ円周方向に60°おきに不純物濃度分析を行った。レーザは波長213nm、レーザ光径は20μm、照射パルスは15Hzで測定を行った。その結果、一番含まれていたアルカリ土類金属不純物はSrで20ppmであった。また、濃度比が最も大きいものもSrで、上面でSr濃度の最大値、最小値の比が1.04、底面で1.03であった。   The crystal thus obtained is processed into a disk shape, and when it is converted into an optical element, the upper bottom surface intersecting with the optical axis is measured by ICP-MS at 8 points at intervals of 20 mm from the center and at intervals of 60 ° in the circumferential direction. Concentration analysis was performed. The laser was measured at a wavelength of 213 nm, the laser beam diameter was 20 μm, and the irradiation pulse was 15 Hz. As a result, the most contained alkaline earth metal impurity was 20 ppm in Sr. The largest concentration ratio was also Sr, and the ratio of the maximum value and the minimum value of Sr concentration on the top surface was 1.04, and 1.03 on the bottom surface.

この結晶の波面収差を測定し、屈折率差のパワー成分補正後のRMS(root mean square二乗平均平方根)を算出したところ、その値が2.45×10−8でありエキシマレーザ露光装置の像性能を向上させることが出来た。 When the wavefront aberration of this crystal was measured and the RMS (root mean square) after correcting the power component of the refractive index difference was calculated, the value was 2.45 × 10 −8 and the image of the excimer laser exposure apparatus. The performance could be improved.

[比較例]
結晶成長は<111>種結晶を用いた引き下げ法(ブリッジマン法)により行った。結晶成長用原料に0.01mol%のフッ化亜鉛をスカベンジャとして添加し、結晶成長用の坩堝に充填した。真空度8×10−2Pa、温度1420℃に昇温し、坩堝内CaFを解、脱ガスするため真空度2.6×10−4Pa、温度1420℃として20時間保った。
[Comparative example]
Crystal growth was performed by a pulling-down method (Bridgeman method) using a <111> seed crystal. 0.01 mol% of zinc fluoride was added as a scavenger to the raw material for crystal growth, and the crucible for crystal growth was filled. The temperature was raised to a vacuum degree of 8 × 10 −2 Pa and a temperature of 1420 ° C., and the degree of vacuum was 2.6 × 10 −4 Pa and the temperature was 1420 ° C. for 20 hours in order to degas and degas the CaF 2 in the crucible.

次に、ヒータの出力をコントロールしながら坩堝外壁の坩堝引き下げ方向の温度勾配を15℃/cmに制御し、坩堝を0.5mm/hの速度で降下させフッ化カルシウム単結晶を成長させた。この時の引下げ速度は、結晶成長速度に対応することが望ましいので、製作する結晶の大きさ、形状により考慮する必要があることは言うまでもない。一般には、結晶の大きさが大きくなれば、引下げ速度を遅くする必要がある。   Next, while controlling the output of the heater, the temperature gradient in the crucible pulling direction of the outer wall of the crucible was controlled to 15 ° C./cm, and the crucible was lowered at a rate of 0.5 mm / h to grow a calcium fluoride single crystal. Since the pulling rate at this time preferably corresponds to the crystal growth rate, it goes without saying that it is necessary to consider the size and shape of the crystal to be manufactured. In general, as the crystal size increases, the pulling speed needs to be reduced.

次に熱処理のためにアニール炉の坩堝に成長させたフッ化カルシウム単結晶と、当該フッ化カルシウム単結晶に対して添加量0.01mol%のフッ化亜鉛を入れた。炉内を排気して坩堝の温度を室温から1100℃に速度100℃/hで上昇させた後、約50時間の間、約1100℃に保持した。そして、5℃/hの速度で低下させて室温まで冷却した。この時の、冷却速度は結晶の大きさが大きくなればそれに従い、冷却速度も遅くする必要がある。つまり、遅くしないと、複屈折率を極微小にすることが困難になる。   Next, a calcium fluoride single crystal grown in a crucible of an annealing furnace for heat treatment, and zinc fluoride with an addition amount of 0.01 mol% with respect to the calcium fluoride single crystal were added. The furnace was evacuated and the temperature of the crucible was increased from room temperature to 1100 ° C. at a rate of 100 ° C./h, and then maintained at about 1100 ° C. for about 50 hours. Then, the temperature was lowered to 5 ° C./h and cooled to room temperature. At this time, the cooling rate needs to be reduced according to the increase in the size of the crystal. In other words, it is difficult to make the birefringence very small unless slow.

このようにして得られた結晶を円盤状に加工し、光学素子にした際に光軸と交わる上底面についてICP−MSにて中心から20mm間隔で8点かつ円周方向に60°おきに不純物濃度分析を行った。レーザは波長213nm、レーザ光径は20μm、照射パルスは15Hzで測定を行った。その結果、一番含まれていたアルカリ土類金属不純物はSrで50ppmであった。また、濃度比が最も大きいものもSrで、上面でSr濃度と最大値、最小値の比が1.10、底面で1.07であった。   The crystal thus obtained is processed into a disk shape, and when it is converted into an optical element, the upper bottom surface that intersects the optical axis is measured by ICP-MS at 8 points at intervals of 20 mm from the center and every 60 ° in the circumferential direction Concentration analysis was performed. The laser was measured at a wavelength of 213 nm, the laser beam diameter was 20 μm, and the irradiation pulse was 15 Hz. As a result, the most contained alkaline earth metal impurity was 50 ppm in Sr. The largest concentration ratio was Sr, and the ratio of the Sr concentration to the maximum value and the minimum value on the top surface was 1.10, and 1.07 on the bottom surface.

この結晶の波面収差を測定し、屈折率差のパワー成分補正後のRMSを算出したところ、その値が2.01×10−7でありエキシマレーザ露光装置の像性能を向上させることが出来なかった。 When the wavefront aberration of this crystal was measured and the RMS after correcting the power component of the refractive index difference was calculated, the value was 2.01 × 10 −7 and the image performance of the excimer laser exposure apparatus could not be improved. It was.

蛍石結晶の光学部材面内の不純物分析測定点(●)を示す模式図Schematic diagram showing impurity analysis measurement points (●) in the optical member surface of fluorite crystal

Claims (8)

光学装置の結晶性光学部材であって、その第一面および第二面において、少なくとも中心、外周部及びその中間の3点におけるアルカリ土類金属不純物濃度の最大値及び最小値をC,CとしたときC/Cの値が規定値以下であることを特徴とする光学部材。 A crystalline optical member of an optical device, wherein a maximum value and a minimum value of an alkaline earth metal impurity concentration at least at the center, the outer peripheral portion, and the middle of the first surface and the second surface are defined as C 1 , C an optical member, characterized in that 2 to the value of C 1 / C 2 when is less than a specified value. 前記少なくとも中心、外周部及びその中間の3点を、中心から複数の放射方向線上にとり、全ての点におけるアルカリ土類金属不純物濃度の最大値及び最小値をC,CとしたときC/Cの値が規定値以下であることを特徴とする請求項1に記載の光学部材。 When at least the center, the outer periphery and the middle three points are taken on a plurality of radial lines from the center, and the maximum and minimum values of the alkaline earth metal impurity concentration at all points are C 1 and C 2 , C 1 The optical member according to claim 1, wherein the value of / C 2 is a specified value or less. 前記少なくともC/Cの値は、1.05以下であることを特徴とする請求項1又は2に記載の光学部材。 The optical member according to claim 1, wherein the value of at least C 1 / C 2 is 1.05 or less. 前記結晶性光学部材は、フッ化物であることを特徴とする請求項1に記載の光学部材。   The optical member according to claim 1, wherein the crystalline optical member is a fluoride. 前記フッ化物は、フッ化カルシウム、フッ化リチウム、フッ化マグネシウム、又はフッ化バリウムであることを特徴とする請求項4に記載の光学部材。   The optical member according to claim 4, wherein the fluoride is calcium fluoride, lithium fluoride, magnesium fluoride, or barium fluoride. 請求項4に記載の光学部材の製造方法であって、フッ化物を原料としスカベンジャを添加して、融解、凝固させて前処理を行う工程、
前記工程により得られた原料を、ブリッジマン法によりフッ化物単結晶を成長させる工程を有し、
坩堝外壁の坩堝引き下げ方向の温度勾配を10℃/cm以下にすることを特徴とする光学部材の製造方法。
The method for producing an optical member according to claim 4, wherein a scavenger is added using fluoride as a raw material, and the pretreatment is performed by melting and solidifying.
The raw material obtained by the above step has a step of growing a fluoride single crystal by the Bridgman method,
A method for producing an optical member, characterized in that a temperature gradient in a crucible pulling direction of a crucible outer wall is set to 10 ° C./cm or less.
請求項1〜5に記載の光学部材を用いたことを特徴とする光学装置。   An optical device using the optical member according to claim 1. 請求項1〜5に記載の光学部材を用い、エキシマレーザを光源としたことを特徴とする半導体露光装置。   A semiconductor exposure apparatus using the optical member according to claim 1 and using an excimer laser as a light source.
JP2005141202A 2005-05-13 2005-05-13 Optical component Pending JP2006315915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005141202A JP2006315915A (en) 2005-05-13 2005-05-13 Optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141202A JP2006315915A (en) 2005-05-13 2005-05-13 Optical component

Publications (2)

Publication Number Publication Date
JP2006315915A true JP2006315915A (en) 2006-11-24
JP2006315915A5 JP2006315915A5 (en) 2008-06-26

Family

ID=37536910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141202A Pending JP2006315915A (en) 2005-05-13 2005-05-13 Optical component

Country Status (1)

Country Link
JP (1) JP2006315915A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203899A (en) * 1997-01-23 1998-08-04 Nikon Corp Fluorite little in alkaline earth metal impurities and its production
JPH10281992A (en) * 1997-04-02 1998-10-23 Nikon Corp Method of measuring component concentration distribution and light transmissivity distribution thereof of optical material
JP2000119097A (en) * 1998-10-14 2000-04-25 Nikon Corp Production of calcium fluoride crystal, and lens
JP2002286913A (en) * 2001-03-27 2002-10-03 Nikon Corp Method for acquiring optical member, optical member and projection exposure device
JP2003238292A (en) * 2002-02-14 2003-08-27 Canon Inc Method of manufacturing fluorite crystal
JP2004224645A (en) * 2003-01-23 2004-08-12 Kobe Steel Ltd Manufacture method of high-purity fluoride single crystal
JP2004339053A (en) * 2003-05-06 2004-12-02 Corning Inc Method for producing optical fluoride crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203899A (en) * 1997-01-23 1998-08-04 Nikon Corp Fluorite little in alkaline earth metal impurities and its production
JPH10281992A (en) * 1997-04-02 1998-10-23 Nikon Corp Method of measuring component concentration distribution and light transmissivity distribution thereof of optical material
JP2000119097A (en) * 1998-10-14 2000-04-25 Nikon Corp Production of calcium fluoride crystal, and lens
JP2002286913A (en) * 2001-03-27 2002-10-03 Nikon Corp Method for acquiring optical member, optical member and projection exposure device
JP2003238292A (en) * 2002-02-14 2003-08-27 Canon Inc Method of manufacturing fluorite crystal
JP2004224645A (en) * 2003-01-23 2004-08-12 Kobe Steel Ltd Manufacture method of high-purity fluoride single crystal
JP2004339053A (en) * 2003-05-06 2004-12-02 Corning Inc Method for producing optical fluoride crystal

Similar Documents

Publication Publication Date Title
US7837969B2 (en) Method of making large-volume CaF2 single crystals for optical elements with an optic axis parallel to the (100)-or (110)-crystal axis and CaF2 single crystal made thereby
US20040099205A1 (en) Method of growing oriented calcium fluoride single crystals
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
JP5260797B2 (en) Fluorite manufacturing method
JP4569872B2 (en) Fluorite single crystal production apparatus and fluorite single crystal production method using the same
CN103717790A (en) Crucible for manufacturing compound crystal, apparatus for manufacturing compound crystal, and method for manufacturing compound crystal using crucible
JP2006315915A (en) Optical component
JP4092515B2 (en) Fluorite manufacturing method
JP2003238152A (en) Method for making crystal
JP3686204B2 (en) Annealing method of fluorite single crystal
JP4839205B2 (en) Fluorite manufacturing method
JP6035584B2 (en) Method for producing fluorite crystals
JP2005001933A (en) Metal fluoride body and its manufacturing method
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JP2001335398A (en) Large diameter fluorite single crystal for photolithography and its production method
JP4839204B2 (en) Fluorite
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
US20060201412A1 (en) Method of making highly uniform low-stress single crystals with reduced scattering
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
JP2006078565A (en) Optical member and optical apparatus
JP2004315255A (en) Method for manufacturing fluoride crystal, fluoride crystal, optical system, and optical lithography device
JP2005035825A (en) Crucible and method for manufacturing fluoride crystal
JP2002160999A (en) Method for growing crystal, method for forming fluoride crystal, method for forming optical member, and seed crystal for growing crystal
JP2006001760A (en) Method for producing fluoride single crystal
RU2421552C1 (en) Method of annealing crystals of group iia metal fluorides

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403