JP2005001933A - Metal fluoride body and its manufacturing method - Google Patents

Metal fluoride body and its manufacturing method Download PDF

Info

Publication number
JP2005001933A
JP2005001933A JP2003166469A JP2003166469A JP2005001933A JP 2005001933 A JP2005001933 A JP 2005001933A JP 2003166469 A JP2003166469 A JP 2003166469A JP 2003166469 A JP2003166469 A JP 2003166469A JP 2005001933 A JP2005001933 A JP 2005001933A
Authority
JP
Japan
Prior art keywords
metal fluoride
single crystal
manufacturing
heating
millimeter wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003166469A
Other languages
Japanese (ja)
Inventor
Takafumi Kajima
孝文 鹿嶋
Mitsuru Uekatano
充 上片野
Naoki Shamoto
尚樹 社本
Koichi Harada
光一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003166469A priority Critical patent/JP2005001933A/en
Publication of JP2005001933A publication Critical patent/JP2005001933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal fluoride body, by which the highly oriented metal fluoride body can be manufactured easily in a short period of time; and to provide the metal fluoride body manufactured using the method. <P>SOLUTION: In the method for manufacturing the metal fluoride body by growing a metal fluoride single crystal by a Czochralski method or a floating zone melting method, when the metal fluoride single crystal is grown, the method for manufacturing the metal fluoride body is characterized in that millimeter-wave heating is utilized in at least a part of heating means for melting the metal fluoride. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エキシマレーザ等の紫外域の高出力レーザ光を利用する光学装置等に使用される金属フッ化物体とその製造方法に関する。
【0002】
【従来の技術】
近年、半導体素子の縮小化や高密度化要求に従い、ウェハ上の回路パターンにおける超細密化が進み、光リソグラフィに用いられる光線としては、より波長の短い真空紫外域の光が用いられ、光学材料も紫外線透過性に優れた合成石英ガラスが適用されている。
しかしながら、使用される光の波長が短く且つ高エネルギーになるにつれて、石英ガラス自体もダメージを受けやすくなり、耐用時間が短くなってきている。これは、光線による損傷でガラスに各種構造欠陥が生じ、新たな吸収帯の発生や局所的な密度変化による屈折率及び均質性の変化による透過特性の劣化が発生するためである。石英ガラスについては、今のところ197nm(ArFレーザ)領域までは使用可能であるが、次世代の157nm(Fレーザ)領域の使用において、光透過特性及び耐レーザ特性に関しては限界に達しており、具体的な光学材料としてはフッ化カルシウム(CaF)をはじめとする金属フッ化物の単結晶体が使用されている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−119098号公報
【0004】
【発明が解決しようとする課題】
前記のように、レーザ波長が短くなるにつれて石英ガラスでは対応困難となり、主にCaF等の金属フッ化物単結晶体が光学部品材料として用いられている。これらの金属フッ化物は、シリコン半導体と同様、チョクラルスキー(CZ)法や浮遊帯域溶融(FZ)法等での単結晶育成技術を用いて製造されている。チョクラルスキー法や浮遊帯域溶融法等で単結晶を育成する場合、均質な結晶体を育成するために、結晶化を開始させる前に十分な安定化時間を必要としたり、引上げ又は引下げ速度を例えば1mm/時間以下と非常にゆっくりと行う必要がある。つまり、良好な単結晶体を製造するのに非常に長い時間と装置稼働に伴うエネルギーを必要としているために、コストアップを生じるという欠点を有している。また、作製時間が長いために、不純物が単結晶体に侵入するコンタミネーションが生じる可能性が高いという問題がある。特に、安定した耐レーザ性を保つには、結晶配向性はもとより不純物の混入は回避せねばならない。
【0005】
本発明は前記事情に鑑みてなされ、短時間かつ容易に高配向性の金属フッ化物体を製造し得る製造方法と該方法により得られた金属フッ化物体の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明は、前記目的を達成するために、チョクラルスキー法または浮遊帯域融解法で金属フッ化物単結晶を育成して金属フッ化物体を製造する方法において、加熱手段の少なくとも一部にミリ波加熱を用いることを特徴とする金属フッ化物体の製造方法を提供する。
本発明の方法において、前記金属フッ化物は、CaF,LiF,AlF,BaF,MgF,SrF,HfF,LaF,PrF,ZrF,NdF,CeF,YbF,YF,SiOFからなる群から選択される1種又は2種以上であることが好ましい。
また本発明は、前記金属フッ化物体の製造方法により製造された金属フッ化物体を提供する。
【0007】
【発明の実施の形態】
本発明の方法は、金属フッ化物単結晶体をチョクラルスキー法(以下、CZ法と記す。)または浮遊帯域溶融法(以下、FZ法と記す。)で形成する際、加熱手段の少なくとも一部にミリ波加熱を用いることによって、短時間かつ容易に高配向性の金属フッ化物体を作製するものである。
なお、本発明において「ミリ波」とは、一般にミリ波と呼ばれている周波数帯の他、近ミリ波を含めた3GHz〜300GHzの周波数帯の電磁波であると定義する。
【0008】
本発明において、CZ法で金属フッ化物体を製造する場合、高純度の金属フッ化物粉末を、黒鉛るつぼなどの清浄なるつぼに入れ、加熱して粉末を融解し、種結晶を融液に接触させて単結晶引上げを開始し、これと同時に単結晶にミリ波を照射して熱処理を行う。またFZ法で金属フッ化物体を製造する場合、金属フッ化物単結晶を育成すると同時に単結晶にミリ波を照射して熱処理を行う。
【0009】
本発明において、金属フッ化物としては、紫外域において高い透明度を持つ金属フッ化物、例えば周期表1〜4族の金属元素のフッ化物が挙げられ、特にCaF,LiF,AlF,BaF,MgF,SrF,HfF,LaF,PrF,ZrF,NdF,CeF,YbF,YF,SiOFからなる群から選択される1種又は2種以上が好ましい。
【0010】
本発明の方法において、金属フッ化物単結晶体を加熱するために用いられるミリ波加熱装置としては、特に限定されることなく、例えば市販のミリ波加熱装置を用いることができる。好ましい市販のミリ波加熱装置としては、例えば富士電波工業社製、ミリ波加熱装置FMW−10−28等が挙げられる。
【0011】
ミリ波溶融は通常のヒータ等による外部加熱方式に比べ、自己加熱式であり均一加熱ができること、及びその特異な反応メカニズムにより、極めて短時間で単結晶化が可能であり、不純物の混入も少ない。その結果、本発明によれば、高品質で安価な耐レーザ性材料を短時間且つ容易に作製できる。
【0012】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例の記載のみに限定されるものではない。
【0013】
(実施例1)
市販の高純度フッ化カルシウムパウダー(ステラ ケミファ社製、Grade−1)800gをCZ法にて引き上げると同時にミリ波加熱装置(富士電波工業社製、FMW−10−28)にて加熱処理した結果、透明なフッ化カルシウム単結晶体が得られた。
この際のCZ法及びミリ波加熱に要した時間は合計で1時間であった。得られた透明単結晶体を所望のサイズに切り出し、表面を光学研磨加工した後に分光光度計にて調査したところ、エネルギー密度50〜500mJ/cm、50〜500Hzのレーザ光を10〜10ショット照射したときの内部透過率が厚さ10mm当たり90.0%以上であり、通常のCZ法やFZ法のみで作製されたものと遜色のない値が得られた。また、複屈折測定には、東京インスツルメント社製複屈折測定装置EXICORを用いた。熱処理品1つにつき1000ポイントの多点測定を行い、波長633nmの光に対する複屈折光路差がすべて5nm/cm以下であり、数値にもバラツキが見られなかった。これらの結果より、ミリ波溶融で作製されたフッ化カルシウム透明材料は均質性に優れており、通常の製法と比べて遜色のない耐レーザ性を有していることが確認された。
【0014】
(比較例)
実施例1と同等の高純度フッ化カルシウムパウダー(ステラ ケミファ社製、Grade−1)を用いて従来方法にて透明フッ化カルシウムの単結晶体を作製した。まず、フッ化カルシウムパウダーを融解して形成した融液を固化させて蛍石単結晶を成長させることにより、蛍石単結晶のインゴットを作製する工程と、さらに熱処理を施した前記インゴットから蛍石単結晶の成形品及びテストピースを切り出す工程と、前記成形品及びテストピースを熱処理する工程を経て製造した。先ず、前記パウダーを黒鉛製容器などの清浄な容器に充填し、真空排気が可能な垂直ブリッジマン装置(結晶成長炉)の所定位置に設置した。十分な排気下において、ヒータの通電加熱により蛍石原料を昇温させて融解させた。融点に到達した後は、直ぐに引下げによる結晶化を開始せず、6時間経過後に結晶化を開始した。引下げは1時間当たり1mmの速度で行い、融液の全てが結晶化したら、室温まで徐冷してインゴットとして取り出した。インゴットのまま熱処理(アニール)を行った。ちなみに、この工程に要した時間は合計で1100時間(約1.5ヶ月)であった。得られたインゴットを切断研磨した後に、耐レーザ性及び複屈折測定の評価を行った。耐レーザ性評価としては、実施例1と同様に行い、エネルギー密度50〜500mJ/cm、50〜500Hzのレーザ光を10〜10ショット照射したときの内部透過率が厚さ10mm当たり90.0%以上であった。複屈折測定は、東京インスツルメント社製複屈折測定装置EXICORを用いた。熱処理品1つにつき1000ポイントの多点測定を行い、波長633nmの光に対する複屈折光路差がすべて5nm/cm以下であることが確認された。
【0015】
(実施例2)
実施例1と同様、市販のフッ化バリウムパウダー(ステラ ケミファ社製)500gをFZ法にて引き上げると同時にミリ波溶融装置(富士電波工業社製、FMW−10−28)にて加熱処理した結果、透明なフッ化バリウム単結晶体が得られた。この際のFZ法及びミリ波溶融に要した時間は合計で1時間であった。得られた透明単結晶体を所望のサイズに切り出し、表面を光学研磨した後に分光光度計にて調査したところ、エネルギー密度50〜500mJ/cm、50〜500Hzのレーザ光を10〜10ショット照射したときの内部透過率が厚さ10mm当たり90.0%以上であり、通常のCZ法やFZ法のみで作製されたものと遜色のない値が得られた。また、複屈折測定には、東京インスツルメント社製複屈折測定装置EXICORを用いた。熱処理品1つにつき1000ポイントの多点測定を行い、波長633nmの光に対する複屈折光路差がすべて5nm/cm以下であり、数値にもバラツキが見られなかった。これらの結果より、ミリ波溶融で作製されたフッ化カルシウム透明材料は均質性に優れており、通常の製法と比べて遜色のない耐レーザ性を有していることが確認された。
【0016】
【発明の効果】
本発明によれば、高品質で安価な耐レーザ性材料を短時間且つ容易に作製できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal fluoride object used in an optical device or the like that uses high-power laser light in the ultraviolet region, such as an excimer laser, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, in accordance with demands for miniaturization and higher density of semiconductor elements, ultrafine densification of circuit patterns on wafers has progressed, and light in the vacuum ultraviolet region having a shorter wavelength is used as a light beam for optical lithography. In addition, synthetic quartz glass excellent in ultraviolet transmittance is applied.
However, as the wavelength of light used becomes shorter and the energy becomes higher, the quartz glass itself is more likely to be damaged, and the service life is becoming shorter. This is because various structural defects are generated in the glass due to damage caused by light rays, and transmission characteristics are deteriorated due to a new absorption band and a change in refractive index and homogeneity due to a local density change. At present, quartz glass can be used up to the 197 nm (ArF laser) region, but in the use of the next-generation 157 nm (F 2 laser) region, the light transmission characteristics and laser resistance characteristics have reached the limits. As a specific optical material, a metal fluoride single crystal including calcium fluoride (CaF 2 ) is used (for example, see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-119098
[Problems to be solved by the invention]
As described above, it becomes difficult to cope with quartz glass as the laser wavelength is shortened, and a metal fluoride single crystal such as CaF 2 is mainly used as an optical component material. These metal fluorides are manufactured using single crystal growth techniques such as the Czochralski (CZ) method and the floating zone melting (FZ) method, as with silicon semiconductors. When growing a single crystal by the Czochralski method, floating zone melting method, etc., in order to grow a homogeneous crystal, a sufficient stabilization time is required before crystallization is started, and the pulling or pulling speed is increased. For example, it is necessary to carry out very slowly at 1 mm / hour or less. That is, since a very long time and energy required for operating the apparatus are required to produce a good single crystal, there is a disadvantage that the cost increases. In addition, since the manufacturing time is long, there is a high possibility that contamination in which impurities enter the single crystal body is generated. In particular, in order to maintain a stable laser resistance, it is necessary to avoid mixing impurities as well as crystal orientation.
[0005]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a production method capable of easily producing a highly oriented metal fluoride object in a short time and a metal fluoride object obtained by the method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for producing a metal fluoride object by growing a metal fluoride single crystal by the Czochralski method or the floating zone melting method. There is provided a method for producing a metal fluoride object characterized by using heating.
In the method of the present invention, the metal fluoride is CaF 2 , LiF, AlF 3 , BaF 2 , MgF 2 , SrF 2 , HfF 4 , LaF 3 , PrF 3 , ZrF 4 , NdF 3 , CeF 3 , YbF 3 , One or more selected from the group consisting of YF 3 and SiOF are preferred.
In addition, the present invention provides a metal fluoride object manufactured by the method for manufacturing a metal fluoride object.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, when a metal fluoride single crystal is formed by the Czochralski method (hereinafter referred to as CZ method) or the floating zone melting method (hereinafter referred to as FZ method), at least one of heating means is used. By using millimeter wave heating for the part, a highly oriented metal fluoride object is easily produced in a short time.
In the present invention, “millimeter wave” is defined as an electromagnetic wave in a frequency band of 3 GHz to 300 GHz including a near millimeter wave in addition to a frequency band generally called a millimeter wave.
[0008]
In the present invention, when a metal fluoride object is produced by the CZ method, a high-purity metal fluoride powder is placed in a clean crucible such as a graphite crucible, heated to melt the powder, and the seed crystal is brought into contact with the melt. The single crystal pulling is started, and at the same time, the single crystal is irradiated with millimeter waves to perform heat treatment. Further, when a metal fluoride object is produced by the FZ method, the metal fluoride single crystal is grown, and at the same time, the single crystal is irradiated with millimeter waves to perform heat treatment.
[0009]
In the present invention, examples of the metal fluoride include metal fluorides having high transparency in the ultraviolet region, for example, fluorides of metal elements of Groups 1 to 4 of the periodic table, and in particular, CaF 2 , LiF, AlF 3 , BaF 2 , MgF 2, SrF 2, HfF 4 , LaF 3, PrF 3, ZrF 4, NdF 3, CeF 3, YbF 3, YF 3, 1 or two or more selected from the group consisting of SiOF is preferred.
[0010]
In the method of the present invention, the millimeter wave heating device used for heating the metal fluoride single crystal is not particularly limited, and for example, a commercially available millimeter wave heating device can be used. As a preferable commercially available millimeter wave heating device, for example, a millimeter wave heating device FMW-10-28 manufactured by Fuji Denpa Kogyo Co., Ltd. may be mentioned.
[0011]
Millimeter-wave melting is self-heating and uniform heating compared to an external heating method using a normal heater, etc., and due to its unique reaction mechanism, single crystallization is possible in a very short time, and there is little contamination with impurities. . As a result, according to the present invention, a high-quality and inexpensive laser-resistant material can be easily produced in a short time.
[0012]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited only to description of a following example.
[0013]
(Example 1)
Result of heating 800 g of commercially available high-purity calcium fluoride powder (Stella Chemifa Co., Grade-1) with a millimeter wave heating device (FMW-10-28, Fuji Radio Industry Co., Ltd.) at the same time as the CZ method. A transparent calcium fluoride single crystal was obtained.
The time required for the CZ method and the millimeter wave heating at this time was 1 hour in total. When the obtained transparent single crystal was cut into a desired size and the surface was optically polished and examined with a spectrophotometer, laser light with an energy density of 50 to 500 mJ / cm 2 and 50 to 500 Hz was emitted from 10 4 to 10. The internal transmittance when irradiated with 7 shots was 90.0% or more per 10 mm thickness, and a value comparable to that produced only by the ordinary CZ method or FZ method was obtained. For birefringence measurement, a birefringence measuring apparatus EXICOR manufactured by Tokyo Instruments was used. A multipoint measurement of 1000 points was performed for each heat-treated product, and all the birefringence optical path differences with respect to light having a wavelength of 633 nm were all 5 nm / cm or less, and there was no variation in numerical values. From these results, it was confirmed that the calcium fluoride transparent material produced by millimeter-wave melting has excellent homogeneity and has laser resistance comparable to that of a normal production method.
[0014]
(Comparative example)
A single crystal of transparent calcium fluoride was prepared by a conventional method using high-purity calcium fluoride powder equivalent to Example 1 (Grade-1 manufactured by Stella Chemifa). First, the melt formed by melting calcium fluoride powder is solidified to grow a fluorite single crystal, thereby producing an ingot of the fluorite single crystal, and the fluorite from the ingot subjected to further heat treatment A single crystal molded product and a test piece were cut out, and the molded product and the test piece were heat treated. First, the powder was filled in a clean container such as a graphite container, and placed in a predetermined position of a vertical Bridgman apparatus (crystal growth furnace) that can be evacuated. Under sufficient exhaust, the fluorite raw material was heated and melted by energization heating of the heater. Immediately after reaching the melting point, crystallization by pulling was not started, but crystallization was started after 6 hours. Pulling down was performed at a rate of 1 mm per hour, and when all of the melt was crystallized, it was gradually cooled to room temperature and taken out as an ingot. Heat treatment (annealing) was performed with the ingot. Incidentally, the total time required for this step was 1100 hours (about 1.5 months). After the obtained ingot was cut and polished, laser resistance and birefringence measurement were evaluated. The evaluation of laser resistance was carried out in the same manner as in Example 1, and the internal transmittance when 10 4 to 10 7 shots of laser light having an energy density of 50 to 500 mJ / cm 2 and 50 to 500 Hz were irradiated was 90 per 10 mm thickness. 0.0% or more. For the birefringence measurement, a birefringence measuring apparatus EXICOR manufactured by Tokyo Instruments was used. Multipoint measurement of 1000 points was performed for each heat-treated product, and it was confirmed that all the birefringence optical path differences with respect to light having a wavelength of 633 nm were 5 nm / cm or less.
[0015]
(Example 2)
As in Example 1, 500 g of commercially available barium fluoride powder (manufactured by Stella Chemifa) was pulled up by the FZ method and simultaneously heat treated with a millimeter-wave melting apparatus (FMW-10-28, manufactured by Fuji Denpa Kogyo Co., Ltd.). A transparent barium fluoride single crystal was obtained. The time required for the FZ method and millimeter wave melting at this time was 1 hour in total. When the obtained transparent single crystal was cut into a desired size and the surface was optically polished and examined with a spectrophotometer, laser light with an energy density of 50 to 500 mJ / cm 2 and 50 to 500 Hz was emitted from 10 4 to 10 7. The internal transmittance upon shot irradiation was 90.0% or more per 10 mm thickness, and a value comparable to that produced by only the ordinary CZ method or FZ method was obtained. For birefringence measurement, a birefringence measuring apparatus EXICOR manufactured by Tokyo Instruments was used. A multipoint measurement of 1000 points was performed for each heat-treated product, and all the birefringence optical path differences with respect to light having a wavelength of 633 nm were all 5 nm / cm or less, and there was no variation in numerical values. From these results, it was confirmed that the calcium fluoride transparent material produced by millimeter wave melting was excellent in homogeneity and had laser resistance comparable to that of a normal production method.
[0016]
【The invention's effect】
According to the present invention, a high-quality and inexpensive laser-resistant material can be easily produced in a short time.

Claims (3)

チョクラルスキー法または浮遊帯域融解法で金属フッ化物単結晶を育成して金属フッ化物体を製造する方法において、加熱手段の少なくとも一部にミリ波加熱を用いることを特徴とする金属フッ化物体の製造方法。In the method for producing a metal fluoride object by growing a metal fluoride single crystal by the Czochralski method or the floating zone melting method, the metal fluoride object is characterized by using millimeter wave heating as at least a part of the heating means. Manufacturing method. 前記金属フッ化物が、CaF,LiF,AlF,BaF,MgF,SrF,HfF,LaF,PrF,ZrF,NdF,CeF,YbF,YF,SiOFからなる群から選択される1種又は2種以上であることを特徴とする請求項1に記載の金属フッ化物体の製造方法。Wherein the metal fluoride is comprised of CaF 2, LiF, AlF 3, BaF 2, MgF 2, SrF 2, HfF 4, LaF 3, PrF 3, ZrF 4, NdF 3, CeF 3, YbF 3, YF 3, SiOF It is 1 type, or 2 or more types selected from the group, The manufacturing method of the metal fluoride body of Claim 1 characterized by the above-mentioned. 請求項1又は2に記載の金属フッ化物体の製造方法により製造された金属フッ化物体。A metal fluoride object produced by the method for producing a metal fluoride object according to claim 1 or 2.
JP2003166469A 2003-06-11 2003-06-11 Metal fluoride body and its manufacturing method Pending JP2005001933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166469A JP2005001933A (en) 2003-06-11 2003-06-11 Metal fluoride body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166469A JP2005001933A (en) 2003-06-11 2003-06-11 Metal fluoride body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005001933A true JP2005001933A (en) 2005-01-06

Family

ID=34092628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166469A Pending JP2005001933A (en) 2003-06-11 2003-06-11 Metal fluoride body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005001933A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119952A (en) * 2003-09-24 2005-05-12 Hokushin Ind Inc Fluoride single crystal for radiation detection and radiation detector
CN101864596A (en) * 2010-07-02 2010-10-20 中国科学院上海光学精密机械研究所 Ytterbium-gadolinium codoped barium fluoride crystal and preparation method thereof
US20120230032A1 (en) * 2009-09-29 2012-09-13 National Institute For Materials Science Inorganic optical filter, optical element, and light source
CN104233189A (en) * 2014-09-30 2014-12-24 苏州普京真空技术有限公司 Preparation method of novel optical coating material
JP2015093791A (en) * 2013-11-11 2015-05-18 信越化学工業株式会社 Transparent baked compact, and faraday rotator and optical isolator using the same
JP2016222496A (en) * 2015-06-01 2016-12-28 株式会社トクヤマ Cerium fluoride single crystal and production method thereof
CN109252208A (en) * 2018-10-15 2019-01-22 江苏万邦微电子有限公司 A kind of production method of Flouride-resistani acid phesphatase Cerium Fluoride Crystal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005119952A (en) * 2003-09-24 2005-05-12 Hokushin Ind Inc Fluoride single crystal for radiation detection and radiation detector
JP4605588B2 (en) * 2003-09-24 2011-01-05 シンジーテック株式会社 Fluoride single crystal for radiation detection, method for producing the same, and radiation detector
US20120230032A1 (en) * 2009-09-29 2012-09-13 National Institute For Materials Science Inorganic optical filter, optical element, and light source
US9217910B2 (en) * 2009-09-29 2015-12-22 National Institute For Materials Science Inorganic optical filter, optical element, and light source
CN101864596A (en) * 2010-07-02 2010-10-20 中国科学院上海光学精密机械研究所 Ytterbium-gadolinium codoped barium fluoride crystal and preparation method thereof
JP2015093791A (en) * 2013-11-11 2015-05-18 信越化学工業株式会社 Transparent baked compact, and faraday rotator and optical isolator using the same
CN104233189A (en) * 2014-09-30 2014-12-24 苏州普京真空技术有限公司 Preparation method of novel optical coating material
JP2016222496A (en) * 2015-06-01 2016-12-28 株式会社トクヤマ Cerium fluoride single crystal and production method thereof
CN109252208A (en) * 2018-10-15 2019-01-22 江苏万邦微电子有限公司 A kind of production method of Flouride-resistani acid phesphatase Cerium Fluoride Crystal

Similar Documents

Publication Publication Date Title
JP2003532610A (en) Fluoride crystal optical lithography lens element material
US20040099205A1 (en) Method of growing oriented calcium fluoride single crystals
JPWO2002077676A1 (en) Optical member, method of manufacturing the same, and projection exposure apparatus
JP2005001933A (en) Metal fluoride body and its manufacturing method
JPH101310A (en) Calcium fluoride crystal and production thereof
JP4959526B2 (en) BaLiF3 single crystal
JP2005503313A (en) UV light transmitting fluoride crystal for photolithography
JP2007005777A (en) Last lens of immersion exposure device
JP6035584B2 (en) Method for producing fluorite crystals
JP4092515B2 (en) Fluorite manufacturing method
JP2003238152A (en) Method for making crystal
US20060279836A1 (en) Last lens of immersion lithography equipment
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
JP3686204B2 (en) Annealing method of fluorite single crystal
JP4277595B2 (en) Fluoride crystal manufacturing method, calcium fluoride crystal and exposure apparatus
JP2003221297A (en) Method for producing calcium fluoride crystal
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JPH10279378A (en) Production of crystal and apparatus for production therefor
JP4836913B2 (en) BaLiF3 single crystal
JP2004315255A (en) Method for manufacturing fluoride crystal, fluoride crystal, optical system, and optical lithography device
US7014703B2 (en) Method for annealing group IIA metal fluoride crystals
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
JP2001335398A (en) Large diameter fluorite single crystal for photolithography and its production method
JP2010285327A (en) Method for heat-treating fluoride, method for producing fluoride single crystal, and fluoride single crystal
JP2008201644A (en) MANUFACTURE PROCESS OF BaLiF3 SINGLE CRYSTAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Effective date: 20080414

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028