JPH10203899A - Fluorite little in alkaline earth metal impurities and its production - Google Patents

Fluorite little in alkaline earth metal impurities and its production

Info

Publication number
JPH10203899A
JPH10203899A JP9010551A JP1055197A JPH10203899A JP H10203899 A JPH10203899 A JP H10203899A JP 9010551 A JP9010551 A JP 9010551A JP 1055197 A JP1055197 A JP 1055197A JP H10203899 A JPH10203899 A JP H10203899A
Authority
JP
Japan
Prior art keywords
fluorite
alkaline earth
single crystal
earth metal
metal impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9010551A
Other languages
Japanese (ja)
Inventor
Shigeru Sakuma
繁 佐久間
Tsutomu Mizugaki
勉 水垣
Masaki Shiozawa
正樹 塩澤
Shuichi Takano
修一 高野
Hidemi Nishikawa
秀美 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KOKEN KOGYO KK
Nikon Corp
Original Assignee
OYO KOKEN KOGYO KK
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KOKEN KOGYO KK, Nikon Corp filed Critical OYO KOKEN KOGYO KK
Priority to JP9010551A priority Critical patent/JPH10203899A/en
Publication of JPH10203899A publication Critical patent/JPH10203899A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain fluorite little in alkaline earth metal impurities and not producing color centers, even when irradiated with the photons or particles of ArF excimer laser light or γ-rays, thereby not lowering transmittance by controlling the concentrations of the alkaline earth metal impurities to specific values or lower. SOLUTION: This fluorite has preferably a total alkaline earth metal impurity concentration of IE 18 atom/cm<3> , more preferably a strontium concentration of IE 18 atom/cm<3> among the alkaline earth metal impurities. The fluorite is obtained by a Bridgman method comprising a process for thermally melting polycrystals and subsequently growing a single crystal from the melted polycrystals, a process for plurally repeating the first process and subsequently cutting out the growing direction lower portions of the obtained plural single crystal ingots, and a process for collecting the cut plural single crystal ingot lower portions, thermally melting the mixture and subsequently growing a single crystal from the melted mixture. Since Mg, Sr and Ba contained in the powder of raw materials and belonging to the same group as that of Ca are mostly left, a conventional method utilizes segregation coefficients to give the fluorite little in the impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、紫外線光学系に用
いられる蛍石とその製造方法に関する。特に、ArFエ
キシマレーザーを用いた各種機器、例えばステッパー、
CVD装置、核融合装置などに用いられるレンズ、窓材
等の光学部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fluorite used in an ultraviolet optical system and a method for producing the same. In particular, various devices using an ArF excimer laser, such as a stepper,
The present invention relates to an optical member such as a lens and a window material used for a CVD device, a nuclear fusion device, and the like.

【0002】[0002]

【従来の技術】近年におけるVLSIは、高集積化、高
機能化が進行し、ウェハ上の微細加工技術が要求されて
いる。その微細加工の方法として、光リソグラフィー技
術を用いた方法が一般的に行われている。このVLSI
の中で、DRAMを例に挙げれば、近年256M以上の
容量も現実のものとなっている。加工線幅も0.35μ
m以下と微細になっているため、光リソグラフィー技術
の主流となっているステッパーの投影レンズには高い結
像性能(解像度と焦点深度)が要求されている。この要
求を満たすために、露光波長も次第に短波長となり、K
rFエキシマレーザー(波長248nm)を光源とする
ステッパーも市場に登場するようになってきた。248
nm以下の波長で光リソグラフィー用として使える光学
材料は非常に少なく、蛍石と石英ガラスの2種類が用い
られる。
2. Description of the Related Art In recent years, VLSIs have become highly integrated and highly functional, and a fine processing technique on a wafer is required. As a method of the fine processing, a method using an optical lithography technique is generally performed. This VLSI
Of these, taking a DRAM as an example, a capacity of 256 M or more has recently become a reality. Processing line width is 0.35μ
Since the size is as small as m or less, a projection lens of a stepper, which is a mainstream of the optical lithography technology, is required to have high imaging performance (resolution and depth of focus). In order to satisfy this requirement, the exposure wavelength is gradually shortened, and K
Steppers using an rF excimer laser (wavelength: 248 nm) as a light source have come to the market. 248
There are very few optical materials that can be used for optical lithography at wavelengths of nm or less, and two types of fluorite and quartz glass are used.

【0003】紫外、または真空紫外域で使用される蛍石
を製造する場合は、ブリッジマン法と呼ばれる方法で結
晶成長させて弗化カルシウム結晶、すなわち蛍石を製造
する。原料としては人工的に化学合成された弗化カルシ
ウムを用いる。この弗化カルシウムの合成方法として
は、「炭酸カルシウムと弗化アンモニウムあるいは弗化
水素アンモニウムとの反応を用いる方法」、「炭酸カル
シウムに過剰の弗化水素酸を加えて温浸するか、塩化カ
ルシウムと弗化カリウムの各水溶液の反応を用いる方
法」、「塩化カルシウムとアルカリ金属の弗化物および
塩化物の混合物とを融解する方法」などが一般的であ
る。こうして合成、精製された弗化カルシウムを原料と
し、これをPbF2等の弗素化剤とともに充填した育成
用ルツボを真空電気炉(育成装置)内に置き、10-5
10ー6Torrの真空雰囲気に保つ。次に育成装置内の
温度を徐々に上げ原料と弗素化剤とを反応させた後、さ
らに蛍石の融点以上(1370℃〜1450℃)まで徐
々に昇温し、過剰な弗素化剤と反応生成物とを揮発させ
ると共に、原料を溶融する。結晶成長段階では、0.1
〜5mm/H程度の速度で育成用ルツボを引き下げるこ
とにより、ルツボの下部から徐々に結晶化させ蛍石を得
る。
[0003] In the case of producing fluorite used in the ultraviolet or vacuum ultraviolet region, a crystal is grown by a method called the Bridgman method to produce calcium fluoride crystals, that is, fluorite. As the raw material, artificially chemically synthesized calcium fluoride is used. Examples of the method of synthesizing calcium fluoride include "a method using a reaction between calcium carbonate and ammonium fluoride or ammonium hydrogen fluoride", "addition of excess hydrofluoric acid to calcium carbonate, digestion, or calcium chloride. And a method of melting calcium chloride and a mixture of a fluoride and a chloride of an alkali metal, and the like. A growth crucible filled with calcium fluoride synthesized and purified in this manner and filled with a fluorinating agent such as PbF 2 is placed in a vacuum electric furnace (growing apparatus) to 10 −5 to 10 −5 .
Keep in a vacuum atmosphere of 10 over 6 Torr. Next, the temperature in the growing apparatus is gradually increased to react the raw material with the fluorinating agent, and then gradually raised to the melting point of fluorite or more (1370 ° C. to 1450 ° C.), and react with the excess fluorinating agent. While volatilizing the product, the raw material is melted. In the crystal growth stage, 0.1
By lowering the growing crucible at a speed of about 5 mm / H, fluorite is obtained by gradually crystallizing from the lower part of the crucible.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような方
法で製造された蛍石であっても、ArFエキシマレーザ
ー光、γ線などの高エネルギーの光子、粒子が照射され
るとカラーセンターが生じて透過率が低下してしまい、
実用上非常に大きな問題があった。
However, even with fluorite manufactured by such a method, a color center is generated when irradiated with high-energy photons or particles such as ArF excimer laser light and γ-rays. And the transmittance decreases,
There was a very large problem in practice.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは、
蛍石の製造において、カラーセンターの生じにくい蛍石
について鋭意研究した結果、下記のとおりに不純物の少
ない蛍石について、上記光照射による透過率低下が問題
とならないことを見い出した。本発明は、アルカリ土類
金属不純物の濃度の合計が1E18 atom/cm3 以下、よ
り好ましくはアルカリ土類金属不純物のうち、ストロン
チウムの濃度が1E18 atom/cm3 以下である蛍石を提
供するものである。
Means for Solving the Problems Accordingly, the present inventors have:
In the manufacture of fluorite, as a result of intensive research on fluorite, which hardly generates a color center, it was found that, for fluorite having a small amount of impurities as described below, the decrease in transmittance due to the light irradiation did not pose a problem. The present invention provides a fluorite having a total alkaline earth metal impurity concentration of 1E18 atom / cm 3 or less, more preferably an alkaline earth metal impurity with a strontium concentration of 1E18 atom / cm 3 or less. It is.

【0006】なお、本発明において、1E18 atom/cm
3 とは、1×1018 atom/cm3 のことを示している。ま
た、本発明では、このような蛍石はブリッジマン法によ
って得られる。さらに、このような蛍石を製造する製造
方法において、本発明は、少なくとも以下の工程を含む
製造方法を提供する。 第1工程:多結晶体を加熱、溶融して結晶成長させ単結
晶インゴットを得る工程、 第2工程:前記第1工程を複数回行い、得られた複数の
単結晶インゴットの成長方向の下部を切り出す工程、 第3工程:前記第2工程で切り出した複数の単結晶イン
ゴットの下部を合わせて加熱、溶融して結晶成長させ単
結晶インゴットを得る工程。
In the present invention, 1E18 atom / cm
3 indicates 1 × 10 18 atom / cm 3 . In the present invention, such fluorite is obtained by the Bridgman method. Further, in the method for producing such fluorite, the present invention provides a production method including at least the following steps. A first step: a step of heating and melting the polycrystal to grow a crystal to obtain a single crystal ingot; a second step: performing the first step a plurality of times to obtain a lower part in a growth direction of the obtained plurality of single crystal ingots. Cutting step, third step: a step of combining the lower portions of the plurality of single crystal ingots cut out in the second step, heating and melting the single crystal ingots to grow crystals, thereby obtaining a single crystal ingot.

【0007】[0007]

【発明の実施の形態】従来の蛍石の製造方法において
は、原料粉末に含まれている、カルシウムと同族のアル
カリ土類金属のマグネシウム、ストロンチウムやバリウ
ムといった不純物が精製されずにほとんど残ってしまう
という問題点があった。合成された弗化カルシウム原料
と従来のブリッジマン法で結晶成長させた弗化カルシウ
ム中の不純物濃度を測定したところ、以下のとおりであ
った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the conventional fluorite manufacturing method, impurities such as magnesium, strontium and barium, which are alkaline earth metals of the same family as calcium, contained in the raw material powder remain almost unpurified. There was a problem. The impurity concentrations in the synthesized calcium fluoride raw material and calcium fluoride grown by the conventional Bridgman method were measured. The results were as follows.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】このように、マグネシウム、ストロンチウ
ム、バリウムはカルシウムと同族で性質が似ているた
め、合成された粉末の弗化カルシウム中にも数ppm以
上、特にストロンチウムについては200ppm程度含
まれている。また、この粉末原料を用いて結晶成長させ
ても、従来の方法ではそのまま結晶中に不純物が残って
しまう。
As described above, since magnesium, strontium, and barium are similar to calcium and have similar properties, calcium fluoride in the synthesized powder contains several ppm or more, particularly about 200 ppm of strontium. Further, even if a crystal is grown using this powder raw material, impurities remain in the crystal as it is in the conventional method.

【0011】これら3種類の不純物については、偏析係
数はW.BOLLMAN, Crystal Researchand Technology, 16,
521(1981) にマグネシウムが0.15、ストロンチウ
ムが0.705、バリウムが0.18と出ている。偏析
係数の定義としては、
For these three types of impurities, the segregation coefficient is determined by W. BOLLMAN, Crystal Research and Technology, 16,
In 521 (1981), magnesium is 0.15, strontium is 0.705, and barium is 0.18. The definition of the segregation coefficient is

【0012】[0012]

【数1】 (Equation 1)

【0013】であり、ここでk0:偏析係数、c(s):
固相中の不純物濃度、c(l):液相中の不純物濃度であ
る。固相と液相が平衡状態にあれば常にこの式に従って
結晶成長していくため、ブリッジマン法の場合、偏析係
数k0>1であれば結晶成長と共に不純物濃度が減少し
ていき、逆にk0<1であれば不純物濃度は増加してい
く。k0〜0であれば不純物は結晶成長と共に排斥され
ていくので最も好ましい。
Where k 0 : segregation coefficient, c (s):
Impurity concentration in solid phase, c (l): impurity concentration in liquid phase. If the solid phase and the liquid phase are in an equilibrium state, the crystal will always grow according to this equation. In the Bridgman method, if the segregation coefficient k 0 > 1, the impurity concentration decreases with the crystal growth, and conversely. If k 0 <1, the impurity concentration increases. If k 0 to 0, impurities are most preferably eliminated because they are rejected as the crystal grows.

【0014】マグネシウムとバリウムは共に偏析係数k
0が0.2以下であり、ストロンチウムと比較すると小
さい。しかし、この係数が意味を持ってくるのは、結晶
成長が固相と液相とで平衡状態を保持したまま行ってい
る場合であり、成長速度が大きいときなどには成立しな
くなる。さらに、結晶が大口径になるにつれて液相の対
流(自然対流や表面張力対流など)の影響が大きくな
り、平衡状態を保つことができなくなるという問題が生
じる。
Both magnesium and barium have a segregation coefficient k
0 is 0.2 or less, which is smaller than that of strontium. However, this coefficient has a meaning when the crystal growth is performed while maintaining the equilibrium state between the solid phase and the liquid phase, and is not satisfied when the growth rate is high. Furthermore, as the diameter of the crystal becomes larger, the influence of the convection of the liquid phase (natural convection, surface tension convection, etc.) increases, and a problem arises in that the equilibrium state cannot be maintained.

【0015】そこで、平衡状態を実現するためには、結
晶成長の速度を可能な限り小さくし、さらに液相の対流
を極力おさえるための工夫が必要となる。しかし、結晶
成長速度を小さくすればするほど製造に時間がかかりコ
ストアップにつながるため、工業的には成長速度は0.
3mm/H程度が限界と言える。また、液相の対流の防
止には、真空電気炉の構成が非常に重要であり、図2に
示すような上部にヒーターを持ち、液相の対流をおさえ
る構造の育成装置を利用する。さらに、結晶成長するに
従って、結晶化した固相から冷却される程度が増加する
ので、結晶成長と共に上部のヒーターと天井部のヒータ
ーの出力を徐々に上げていくなどの工夫を行う。
Therefore, in order to realize the equilibrium state, it is necessary to reduce the crystal growth rate as much as possible and to devise the convection of the liquid phase as much as possible. However, the lower the crystal growth rate, the longer the production time and the higher the cost.
The limit is about 3 mm / H. In order to prevent convection of the liquid phase, the configuration of the vacuum electric furnace is very important. A growth apparatus having a structure having a heater at an upper portion to suppress the convection of the liquid phase as shown in FIG. 2 is used. Furthermore, as the degree of cooling from the crystallized solid phase increases as the crystal grows, the output of the upper heater and the ceiling heater is gradually increased together with the crystal growth.

【0016】こうして、偏析係数k0が意味を持ってく
るような結晶成長をさせれば、ストロンチウム以外のマ
グネシウムやバリウムは成長の過程で排斥され、結晶の
主要部分にはほとんど残らないようにすることができ
る。また、ストロンチウムについても結晶成長の後半部
分を取り除いて再度結晶成長させたり、成長の初期の部
分から製品を切り出すことによって、不純物の少ない蛍
石を得ることが可能となる。
In this way, when the crystal is grown so that the segregation coefficient k 0 has a meaning, magnesium and barium other than strontium are eliminated during the growth process, and hardly remain in the main part of the crystal. be able to. Also, for strontium, it is possible to obtain fluorite with less impurities by removing the latter half of the crystal growth and growing the crystal again, or by cutting out the product from the initial part of the growth.

【0017】なお、結晶成長の前段階で不純物を充分に
精製しておくことが考えられるが、粉末原料の精製はコ
ストが非常に高くつく。従って、粉末原料にはアルカリ
土類不純物が少ないのに越したことはないが、必須では
なく、一般的な純度のもので問題ない。また、ArFエ
キシマレーザー(波長193nm)を100mJ/cm
2・パルス、100Hz、104ショット照射したときの
193nmにおける吸収係数とストロンチウム濃度との
関係を調べたところ、図1のようになった。ストロンチ
ウム濃度はICP−AESで分析し、吸収係数について
は厚さ10mmのテストピースで反射損失を含む透過率
から計算によって求めたものである。ストロンチウム濃
度が小さくなるにつれて、吸収係数も小さくなり、濃度
が約1E18 atom/cm3 より小さいところではほとんど
変化しなくなることがわかった。
Although it is conceivable to sufficiently purify the impurities before the crystal growth, the purification of the powder raw material is very expensive. Therefore, although the powder raw material has little alkaline earth impurities, it is not indispensable, but is not indispensable and has no problem in general purity. In addition, an ArF excimer laser (wavelength 193 nm) is set to 100 mJ / cm.
2 pulse was examined a relationship between the absorption coefficient and the strontium concentration in 193nm when the 100 Hz, 10 4 shots, was as shown in Figure 1. The strontium concentration was analyzed by ICP-AES, and the absorption coefficient was calculated from the transmittance including the reflection loss using a test piece having a thickness of 10 mm. It was found that as the strontium concentration decreased, the absorption coefficient also decreased, and hardly changed when the concentration was less than about 1E18 atom / cm 3 .

【0018】ArFエキシマレーザーに対する透過率の
低下量は100mJ/cm2・パルス以下ではエネルギ
ー密度と線形の関係にあるので、蛍石に照射されるエネ
ルギー密度が小さくなれば不純物の限界値も上がること
が予想されるが、レーザー光源に近い光学部品に照射さ
れる光が数十mJ/cm2・パルスとなることは避けら
れない。本発明の蛍石は、特にそうした場所に使用され
た場合、効果が非常に大きい。
The decrease in transmittance of the ArF excimer laser has a linear relationship with the energy density at a pulse of 100 mJ / cm 2 · pulse or less. Therefore, the lower the energy density applied to the fluorite, the higher the limit value of impurities. However, it is unavoidable that the light irradiated on the optical component close to the laser light source has a pulse of several tens mJ / cm 2 · pulse. The fluorite of the present invention is very effective, especially when used in such places.

【0019】[0019]

【実施例】市販されている弗化物カルシウム粉末原料5
0kgに弗素化剤を微量添加し、カーボン容器に入れ、
真空電気炉にセットする。前記炉内を10ー5Torr以
下の真空度まで排気した後昇温し、融点以上の1370
〜1450℃で1日保持した後、ヒーターをオフにす
る。次に、この一度溶融した多結晶体を図2に示したよ
うな真空電気炉で結晶成長させる。融点以上の1370
〜1420℃に上げて多結晶体を溶かした後、育成用ル
ツボを非常に低速で引き下げた。
EXAMPLE 5 Commercially available calcium fluoride powder raw material 5
Add a small amount of a fluorinating agent to 0 kg, put it in a carbon container,
Set in a vacuum electric furnace. The furnace KoNoboru heated which is evacuated to a vacuum degree of 10 @ 5 Torr, 1370 higher than the melting point
After holding at 141450 ° C. for one day, the heater is turned off. Next, the once melted polycrystal is grown in a vacuum electric furnace as shown in FIG. 1370 above melting point
After raising the temperature to 141420 ° C. to melt the polycrystal, the growth crucible was lowered at a very low speed.

【0020】得られた結晶インゴットφ250×t30
0の結晶成長方向のアルカリ土類金属(Mg、Sr、B
a)濃度の分布は、育成用ルツボで結晶化した下部から
20、100、200、270±5mmの位置から10
×10×10mmのバルクをそれぞれ切り出し、粉砕、
酸で溶液化し、ICP−AES(セイコー電子製)で分
析した。結果を表2に示す。MgとBaはあまり高い濃
度ではなかったが、Srは結晶インゴットの成長方向の
上部にいく程、高い濃度を示した。
The obtained crystal ingot φ250 × t30
0 alkaline earth metals (Mg, Sr, B
a) Concentration distribution is 10 or 20 or 100, 200 or 270 ± 5 mm from the bottom crystallized with the growing crucible.
× 10 × 10mm bulk is cut out and crushed,
It was made into a solution with an acid and analyzed by ICP-AES (manufactured by Seiko Denshi). Table 2 shows the results. Although the concentrations of Mg and Ba were not so high, the concentration of Sr was higher as the position became higher in the growth direction of the crystal ingot.

【0021】そこで、まず上記の方法により結晶インゴ
ットの育成を3回行い、得られた3つの結晶インゴット
の下から100mmのところで切断し、下部だけを育成
ルツボに充填し、再度結晶成長させる。さらに、同様の
操作をもう一度行い、結晶インゴットの不純物を排斥す
る。このようにして、合計3回の結晶成長を行った結
果、得られた結晶インゴットの下から100mmより下
部のSr濃度は1E18atom/cm3 であった。
Therefore, the crystal ingot is grown three times by the above method, cut at a distance of 100 mm from the bottom of the obtained three crystal ingots, only the lower part is filled in a growth crucible, and the crystal is grown again. Further, the same operation is performed once again to eliminate impurities in the crystal ingot. As a result of performing the crystal growth three times in total, the Sr concentration below 100 mm from the bottom of the obtained crystal ingot was 1E18 atom / cm 3 .

【0022】従来の蛍石(結晶成長の回数が1回の蛍
石)と本発明の蛍石(切断した下部を用いた結晶成長を
行った蛍石)を比較するために、それぞれの蛍石単結晶
からφ30×t10のサンプルを切り出し、表面を研磨
し、193nmでの反射損失を含む透過率(サンプル1
0mm厚)をVarian製のCary5で窒素雰囲気
下で測定し、さらにArFレーザーを100mJ/cm
2・パルス、100Hz、104ショット照射後の透過率
も同様に測定した。193nmでの多重反射を考慮した
反射率から内部透過率を求め、照射前後での変化を表3
に示す。
In order to compare the conventional fluorite (fluorite having a single crystal growth) with the fluorite of the present invention (fluorite grown by crystal growth using the cut lower part), the respective fluorites were compared. A sample of φ30 × t10 was cut out from the single crystal, the surface was polished, and the transmittance including the reflection loss at 193 nm (sample 1)
0 mm thick) with a Varian Cary 5 under a nitrogen atmosphere, and an ArF laser at 100 mJ / cm.
2 pulse, transmittance of 100 Hz, 10 4 shots after the irradiation was measured in the same manner. The internal transmittance was determined from the reflectance in consideration of multiple reflection at 193 nm, and the change before and after irradiation was shown in Table 3.
Shown in

【0023】[0023]

【表3】 [Table 3]

【0024】このように、本発明の蛍石は、ArFエキ
シマレーザーに対して優れた耐久性を有する。
As described above, the fluorite of the present invention has excellent durability against ArF excimer laser.

【0025】[0025]

【発明の効果】ステッパーの光源は、KrFエキシマレ
ーザーの次はArFエキシマレーザーと考えられてい
る。どちらの光源においても、使われる光学材料は蛍石
と石英ガラスが主に考えられる。蛍石は、最近では大口
径で且つ高品質のものが得られるようになってきている
が、エキシマレーザー照射による透過率の低下の問題は
ステッパー光学系として使用する場合には大きな問題で
ある。本発明は、この問題に対して非常に有効であり、
本発明の蛍石をArFエキシマレーザーを光源とする光
リソグラフィー用として用いることにより、充分な結像
性能が得られる。
The light source of the stepper is considered to be an ArF excimer laser after the KrF excimer laser. In both light sources, the optical materials used are mainly fluorite and quartz glass. Fluorite has recently become available with a large diameter and high quality, but the problem of a decrease in transmittance due to excimer laser irradiation is a major problem when used as a stepper optical system. The present invention is very effective for this problem,
By using the fluorite of the present invention for photolithography using an ArF excimer laser as a light source, sufficient imaging performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の蛍石にArFエキシマレーザー(波
長193nm)を照射したときの193nmにおける吸
収係数とストロンチウム濃度との関係を示す図。
FIG. 1 is a diagram showing a relationship between an absorption coefficient at 193 nm and a strontium concentration when fluorite of the present invention is irradiated with an ArF excimer laser (wavelength 193 nm).

【図2】 蛍石単結晶の育成装置の模式図。FIG. 2 is a schematic view of an apparatus for growing a fluorite single crystal.

【符号の説明】[Explanation of symbols]

1 結晶インゴット 2 結晶成長面 3 成長用るつぼ 4 ヒーター 5 断熱材 DESCRIPTION OF SYMBOLS 1 Crystal ingot 2 Crystal growth surface 3 Crucible for growth 4 Heater 5 Insulation material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩澤 正樹 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 (72)発明者 高野 修一 東京都福生市大字熊川1642番地26 応用光 研工業株式会社内 (72)発明者 西川 秀美 東京都福生市大字熊川1642番地26 応用光 研工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaki Shiozawa 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nikon Corporation (72) Inventor Shuichi Takano 1642-26 Kumakawa, Fussa-shi, Tokyo 26 Applied Optical Laboratory Co., Ltd. (72) Inventor Hidemi Nishikawa 1642 Kumakawa, Fussa-shi, Tokyo 26-applied light laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】アルカリ土類金属不純物の濃度の合計が1
E18 atom/cm3 以下である蛍石。
(1) The total concentration of alkaline earth metal impurities is 1
Fluorite having an E18 atom / cm 3 or less.
【請求項2】アルカリ土類金属不純物のうち、ストロン
チウムの濃度が1E18 atom/cm3以下である蛍石。
2. A fluorite having a strontium concentration of 1E18 atom / cm 3 or less among alkaline earth metal impurities.
【請求項3】ブリッジマン法により製造されたことを特
徴とする請求項1または2に記載の蛍石。
3. The fluorite according to claim 1, wherein the fluorite is manufactured by a Bridgman method.
【請求項4】アルカリ土類金属の濃度の合計が1E18
atom/cm3 以下である蛍石を用いたことを特徴とする紫
外線光学用光学部材。
4. The total concentration of alkaline earth metals is 1E18.
An optical member for ultraviolet optics, wherein fluorite having an atom / cm 3 or less is used.
【請求項5】アルカリ土類金属不純物のうち、ストロン
チウムの濃度が1E18 atom/cm3以下である蛍石を用
いたことを特徴とする紫外線光学用光学部材。
5. An optical member for ultraviolet optics, wherein fluorite having a strontium concentration of 1E18 atom / cm 3 or less among alkaline earth metal impurities is used.
【請求項6】請求項4または請求項5に記載の紫外線光
学用光学部材において、前記紫外線がArFエキシマレ
ーザーであることを特徴とする紫外線光学用光学部材。
6. The optical member for ultraviolet optics according to claim 4, wherein said ultraviolet light is an ArF excimer laser.
【請求項7】原材料を加熱、溶融して結晶成長させ単結
晶インゴットを得るブリッジマン法による蛍石の製造方
法において、少なくとも以下の工程を含むことを特徴と
する蛍石の製造方法 第1工程:多結晶体を加熱、溶融して結晶成長させ単結
晶インゴットを得る工程、 第2工程:前記第1工程を複数回行い、得られた複数の
単結晶インゴットの成長方向の下部を切り出す工程、 第3工程:前記第2工程で切り出した複数の単結晶イン
ゴットの下部を合わせて加熱、溶融して結晶成長させ単
結晶インゴットを得る工程。
7. A method for producing fluorite by the Bridgman method of heating and melting a raw material to grow a crystal by producing a single crystal ingot, comprising at least the following steps: a first step of producing fluorite. : A step of heating and melting the polycrystal to grow a crystal to obtain a single crystal ingot; a second step: a step of performing the first step a plurality of times to cut out a lower portion of the obtained single crystal ingot in a growth direction; Third step: a step in which the lower portions of the plurality of single crystal ingots cut out in the second step are heated and melted together to grow crystals to obtain a single crystal ingot.
JP9010551A 1997-01-23 1997-01-23 Fluorite little in alkaline earth metal impurities and its production Pending JPH10203899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9010551A JPH10203899A (en) 1997-01-23 1997-01-23 Fluorite little in alkaline earth metal impurities and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9010551A JPH10203899A (en) 1997-01-23 1997-01-23 Fluorite little in alkaline earth metal impurities and its production

Publications (1)

Publication Number Publication Date
JPH10203899A true JPH10203899A (en) 1998-08-04

Family

ID=11753403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9010551A Pending JPH10203899A (en) 1997-01-23 1997-01-23 Fluorite little in alkaline earth metal impurities and its production

Country Status (1)

Country Link
JP (1) JPH10203899A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286913A (en) * 2001-03-27 2002-10-03 Nikon Corp Method for acquiring optical member, optical member and projection exposure device
JP2006315915A (en) * 2005-05-13 2006-11-24 Canon Inc Optical component
JP2008540303A (en) * 2005-05-05 2008-11-20 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Synthesis of starting materials for the growth of fluoride crystals with improved outgassing
DE102011118229A1 (en) 2010-11-26 2012-05-31 Nihon Kessho Kogaku Co., Ltd. Producing fluorite crystal, comprises performing melting-solidification step by melting mixture of calcium fluoride powder having scavenger, and solidifying melted mixture by cooling to obtain melt-solidified body A
US8951344B2 (en) 2006-01-20 2015-02-10 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286913A (en) * 2001-03-27 2002-10-03 Nikon Corp Method for acquiring optical member, optical member and projection exposure device
JP2008540303A (en) * 2005-05-05 2008-11-20 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Synthesis of starting materials for the growth of fluoride crystals with improved outgassing
JP2006315915A (en) * 2005-05-13 2006-11-24 Canon Inc Optical component
US8951344B2 (en) 2006-01-20 2015-02-10 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
DE102011118229A1 (en) 2010-11-26 2012-05-31 Nihon Kessho Kogaku Co., Ltd. Producing fluorite crystal, comprises performing melting-solidification step by melting mixture of calcium fluoride powder having scavenger, and solidifying melted mixture by cooling to obtain melt-solidified body A

Similar Documents

Publication Publication Date Title
US6238479B1 (en) Raw material for manufacturing fluoride crystal, refining method of the same, fluoride crystal, manufacturing method of the same, and optical part
JP2001354494A (en) Method for growing single crystal having large volume from calcium fluoride and use of the single crystal
US20040099205A1 (en) Method of growing oriented calcium fluoride single crystals
US5978070A (en) Projection exposure apparatus
US20050227849A1 (en) Optical element made of fluoride crystal
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
JPH11228292A (en) Raw material for producing fluoride crystal and its purification, fluoride crystal and its production, and optical component
JPH101310A (en) Calcium fluoride crystal and production thereof
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
WO2012011373A1 (en) Fluorite production method
JP2006219361A (en) Method for manufacturing crystal
JP2006327837A (en) Fluorite single crystal manufacturing apparatus and method for manufacturing fluorite single crystal using the same
JP4092515B2 (en) Fluorite manufacturing method
JP3686204B2 (en) Annealing method of fluorite single crystal
JP6035584B2 (en) Method for producing fluorite crystals
JP3698848B2 (en) Heat treatment apparatus and heat treatment method for fluorite single crystal
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
JPH10279378A (en) Production of crystal and apparatus for production therefor
JP2003221297A (en) Method for producing calcium fluoride crystal
JP2001335398A (en) Large diameter fluorite single crystal for photolithography and its production method
JPH1160382A (en) Fluorite single crystal and photolithographic device using the same
US20060201412A1 (en) Method of making highly uniform low-stress single crystals with reduced scattering
JP2003238292A (en) Method of manufacturing fluorite crystal
Hatanaka et al. Properties of ultra-large CaF2 crystals for the high NA optics
JP2006016242A (en) Manufacturing method of fluoride crystal, optical part and exposure unit