JP2006327837A - Fluorite single crystal manufacturing apparatus and method for manufacturing fluorite single crystal using the same - Google Patents

Fluorite single crystal manufacturing apparatus and method for manufacturing fluorite single crystal using the same Download PDF

Info

Publication number
JP2006327837A
JP2006327837A JP2005149443A JP2005149443A JP2006327837A JP 2006327837 A JP2006327837 A JP 2006327837A JP 2005149443 A JP2005149443 A JP 2005149443A JP 2005149443 A JP2005149443 A JP 2005149443A JP 2006327837 A JP2006327837 A JP 2006327837A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
fluorite
furnace chamber
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005149443A
Other languages
Japanese (ja)
Other versions
JP4569872B2 (en
Inventor
Kazuo Kimura
和生 木村
Ikuo Kitamura
郁夫 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005149443A priority Critical patent/JP4569872B2/en
Publication of JP2006327837A publication Critical patent/JP2006327837A/en
Application granted granted Critical
Publication of JP4569872B2 publication Critical patent/JP4569872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorite single crystal manufacturing apparatus which utilizes an impurity segregation effect at crystal growth to enable efficient, reliable manufacturing of a high-quality fluorite single crystal whose transmittance does not decrease, even when exposed to an excimer laser beam over a long period of time, and a method for manufacturing the fluorite single crystal using the same. <P>SOLUTION: The fluorite single crystal manufacturing apparatus employs a vertical Bridgman method and is equipped with a furnace main body 1 that forms a furnace chamber, an insulation member 14b located in a partitioning section 10b that vertically separates the furnace chamber into two chambers, i.e. a high-temperature furnace chamber 10a and a low-temperature furnace chamber 10c, a crucible 11 that can be moved by a drag-down bar 13 through the partitioning section 10b between the high-temperature furnace chamber 10a and the low-temperature furnace chamber 10c and heaters located in the high-temperature furnace chamber 10a and the low-temperature furnace chamber 10c. The ratio (crucible outside diameter R<SB>2</SB>/heater inside diameter R<SB>1</SB>) of the outside diameter R<SB>2</SB>of the crucible to the inside diameters R<SB>1</SB>of the heaters is ≥0.76. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蛍石の単結晶製造装置、並びにそれを用いた蛍石単結晶の製造方法に関するものである。   The present invention relates to an apparatus for producing a fluorite single crystal and a method for producing a fluorite single crystal using the apparatus.

半導体製造において集積回路の高集積化の要求は高まるばかりであり、ウエハ上に集積回路パターンを描画する光リソグラフィー技術は、近年、微細化が急速に進展している。集積回路の高集積化のためには露光装置(ステッパー)に用いる投影レンズの解像力を向上させる必要があり、その投影レンズの解像力は、露光に使用する光の露光波長λと、投影レンズのNA(開口数)とに支配される。露光波長λが同一の場合には、細かいパターンほど回折光の角度が大きくなるので、レンズのNAが大きくなれば回折光を取り込めなくなる。また、露光波長λが短いほど、同一パターンにおける回折光の角度は小さくなるので、レンズのNAは小さくてよいことになる。このような解像度と、焦点深度に関しては、次式(1)及び(2):
(解像度)=k・λ/NA (1)
(焦点深度)=k・λ/(NA) (2)
(式(1)及び(2)中、k及びkはそれぞれ比例定数を示す)
で表すことができる。このような式(1)及び(2)からも明らかなように、解像度を向上させるためにはレンズのNAを大きくする(レンズを大口径化する)か、或いは露光波長λを短くすればよく、λを短くする方が焦点深度の点でも有利であることが分かる。
In semiconductor manufacturing, the demand for higher integration of integrated circuits is increasing, and in recent years, the miniaturization of optical lithography technology for drawing an integrated circuit pattern on a wafer has progressed rapidly. In order to achieve high integration of integrated circuits, it is necessary to improve the resolving power of a projection lens used in an exposure apparatus (stepper). The resolving power of the projection lens depends on the exposure wavelength λ of light used for exposure and the NA of the projection lens. (Numerical aperture). When the exposure wavelength λ is the same, the angle of the diffracted light increases as the pattern becomes finer. Therefore, if the NA of the lens increases, the diffracted light cannot be captured. Also, the shorter the exposure wavelength λ, the smaller the angle of diffracted light in the same pattern, so the NA of the lens may be smaller. For such resolution and depth of focus, the following equations (1) and (2):
(Resolution) = k 1 · λ / NA (1)
(Depth of focus) = k 2 · λ / (NA) 2 (2)
(In formulas (1) and (2), k 1 and k 2 are proportional constants, respectively)
It can be expressed as As is clear from these equations (1) and (2), in order to improve the resolution, the NA of the lens is increased (the lens is enlarged) or the exposure wavelength λ is shortened. It can be seen that shortening λ is more advantageous in terms of depth of focus.

このような露光装置においては、これまでに露光波長λの短波長化が進んできており、現在では、g線(波長436nm)、i線(波長365nm)から更に波長の短いエキシマレーザーの波長域へと移行してきている。また、このような露光装置の光学系においては、i線の波長域までは光学ガラスを使用することが可能であるが、KrFエキシマレーザー(波長248nm)やArFエキシマレーザー(波長193nm)等の波長域になると、その透過率の観点からもはや露光装置の光学系に光学ガラスを使用するのは困難となる。250nm以下の短波長を用いた光リソグラフィー用途に使用できる光学材料は非常に少ない。そのため、エキシマレーザーの波長域を光源とする露光装置の光学系に使用される光学材料としては、現在では蛍石(フッ化カルシウム)と石英ガラスの2種類が一般的となっている。このような蛍石はエキシマレーザーの波長域においても高い透過率を有しているが、エキシマレーザーのような光子エネルギーの高い光を長時間照射すると透過率が低下してしまう問題があった。そのため、近年では蛍石に対して優れた耐エキシマ性(エキシマレーザー光を長時間照射しても透過率が低下しない性質)を有することが強く要求されてきている。   In such an exposure apparatus, the exposure wavelength λ has been shortened so far, and at present, the wavelength range of excimer lasers with shorter wavelengths from g-line (wavelength 436 nm) and i-line (wavelength 365 nm). It has moved to. In the optical system of such an exposure apparatus, optical glass can be used up to the wavelength range of i-line, but the wavelength of KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), etc. In the area, it becomes difficult to use optical glass in the optical system of the exposure apparatus from the viewpoint of the transmittance. Very few optical materials can be used for photolithography applications using short wavelengths of 250 nm or less. Therefore, at present, two types of optical materials, fluorite (calcium fluoride) and quartz glass, are commonly used in the optical system of an exposure apparatus that uses the excimer laser wavelength range as a light source. Such fluorite has a high transmittance even in the wavelength region of the excimer laser, but there is a problem in that the transmittance decreases when light having a high photon energy such as an excimer laser is irradiated for a long time. For this reason, in recent years, there has been a strong demand for excimer resistance (property that transmittance does not decrease even when excimer laser light is irradiated for a long time) against fluorite.

また、このような蛍石の単結晶(CaF)は、主に垂直ブリッジマン法(ストックバーガー法又はるつぼ降下法と呼ばれる)で製造されている。このような垂直ブリッジマン法において、エキシマレーザーの波長域の光を露光光とする露光装置の光学系で使用されるような蛍石の単結晶を製造(単結晶の育成)することを目的とする場合には、天然の蛍石或いは合成蛍石の粉砕品は紫外ないし真空紫外域に吸収があるため原料として使用することができない。そのため、このような原料の高純度化を進めていくことが有効であり、現在では、化学合成により製造されたフッ化カルシウム高純度粉末原料とスカベンジャーとを混合して使用することが一般的である。また、このような原料としては、粉末のフッ化カルシウムを使用すると嵩比重の関係から粉末を直接熔融した時の目減りが激しいため、前記高純度原料粉末とスカベンジャーとを混合した粉末原料を一度熔融した後に固化させるといった前処理工程を経て得られる多結晶バルクや、そのバルクを粉砕して得られるカレットを使用する場合がある。そして、垂直ブリッジマン法においては、前記原料をルツボに充填した後に、そのルツボをいわゆるブリッジマン型の単結晶製造(育成)装置内に配置して単結晶を製造する。 Such fluorite single crystals (CaF 2 ) are mainly manufactured by the vertical Bridgman method (referred to as the stock burger method or the crucible descent method). In such a vertical Bridgman method, the objective is to produce a single crystal of fluorite that is used in the optical system of an exposure apparatus that uses light in the wavelength region of an excimer laser as exposure light (growth of the single crystal). In this case, pulverized natural fluorite or synthetic fluorite cannot be used as a raw material because it is absorbed in the ultraviolet or vacuum ultraviolet region. For this reason, it is effective to advance the purification of such raw materials. At present, it is common to use a mixture of calcium fluoride high-purity powder raw material produced by chemical synthesis and a scavenger. is there. Also, as such a raw material, when powdered calcium fluoride is used, the loss when the powder is directly melted is severe due to the bulk specific gravity. In some cases, a polycrystalline bulk obtained through a pretreatment step such as solidification after pulverization or cullet obtained by pulverizing the bulk is used. In the vertical Bridgman method, after the crucible is filled with the raw material, the crucible is placed in a so-called Bridgman type single crystal production (growing) apparatus to produce a single crystal.

図1に、このようなブリッジマン型の従来の単結晶製造装置として代表的な実施形態の模式図を示す。図1に示す単結晶製造装置は、真空チャンバーからなる炉本体1を備え、炉本体1の断熱材2で覆われた炉内中空部10には、原料を充填させたルツボ11がルツボ支持台12の上に設置されている。また、ルツボ支持台12は引き下げ棒13に接続され、引き下げ棒13は図示を省略した昇降手段に接続されている。更に、炉内中空部10の軸方向に設定された単結晶育成帯域14の上方の高温側炉室10aにおいてはルツボ側面の外周囲に高温用ヒーター14aが配置されており、下方の低温側炉室10cにおいては低温用ヒーター14cが配置されている。また、高温側炉室10aと低温側炉室10cとを仕切る仕切り部10bには断熱部材14bが設置されている。なお、このような構成の単結晶製造装置の炉本体1は図示していない真空排気系に接続されている。   FIG. 1 shows a schematic diagram of a typical embodiment of such a conventional Bridgman type single crystal manufacturing apparatus. The single crystal manufacturing apparatus shown in FIG. 1 includes a furnace body 1 composed of a vacuum chamber, and a crucible 11 filled with a raw material is filled in a hollow part 10 in the furnace covered with a heat insulating material 2 of the furnace body 1. 12 is installed. The crucible support 12 is connected to a pull-down bar 13, and the pull-down bar 13 is connected to lifting means (not shown). Furthermore, in the high temperature side furnace chamber 10a above the single crystal growth zone 14 set in the axial direction of the hollow portion 10 in the furnace, a high temperature heater 14a is arranged on the outer periphery of the side surface of the crucible, and the low temperature side furnace below. A low temperature heater 14c is arranged in the chamber 10c. Further, a heat insulating member 14b is installed in the partition portion 10b that partitions the high temperature side furnace chamber 10a and the low temperature side furnace chamber 10c. The furnace body 1 of the single crystal manufacturing apparatus having such a configuration is connected to a vacuum exhaust system (not shown).

図1に示す構成を有する従来の単結晶製造装置を用いた単結晶の製造(育成)方法においては、先ず、炉内中空部10において引き下げ棒13を介して、原料を充填したルツボ11を仕切り部10bよりも上方の所定位置へ上昇させる。次に、高温加熱部14aと低温加熱部14cとにそれぞれ所定の温度を設定して上下方向に温度勾配をつけ、このようにして上下方向に温度勾配が設定された単結晶育成帯域14中において、ルツボ11の降下速度が所定速度となるように制御しながらルツボ11を降下させる。   In the single crystal manufacturing (growing) method using the conventional single crystal manufacturing apparatus having the configuration shown in FIG. 1, first, the crucible 11 filled with the raw material is partitioned in the hollow portion 10 in the furnace via the pulling rod 13. Raise to a predetermined position above the portion 10b. Next, a predetermined temperature is set in each of the high-temperature heating unit 14a and the low-temperature heating unit 14c to create a temperature gradient in the vertical direction. Thus, in the single crystal growth zone 14 in which the temperature gradient is set in the vertical direction in this way. The crucible 11 is lowered while controlling the lowering speed of the crucible 11 to be a predetermined speed.

このような単結晶育成帯域14中の温度分布は、図1に示す上部側の高温側炉室10aで育成結晶の融点温度よりも高く、下部側の低温側炉室10cにかけて次第に低く設定される急峻な温度勾配を有している。そして、このように設定された温度分布の単結晶育成帯域14内にルツボ11を通過させることで、上部の高温領域で一旦溶融されたルツボ11内の原料の結晶成長が開始され、急峻な温度勾配の低温領域において次第に冷却固化されて結晶化がなされ、単結晶が製造される。なお、前述の真空排気系により高真空中の炉内にて単結晶を製造することが一般的である。   The temperature distribution in the single crystal growth zone 14 is set to be higher than the melting temperature of the grown crystal in the upper high temperature side furnace chamber 10a shown in FIG. 1 and gradually lower toward the lower temperature side furnace room 10c. It has a steep temperature gradient. Then, by passing the crucible 11 through the single crystal growth zone 14 having the temperature distribution set in this way, the crystal growth of the raw material in the crucible 11 once melted in the upper high temperature region is started, and the steep temperature is increased. In the low temperature region of the gradient, it is gradually cooled and solidified and crystallized to produce a single crystal. In addition, it is common to manufacture a single crystal in the furnace in a high vacuum with the above-mentioned vacuum exhaust system.

このような従来の単結晶製造装置を用いた単結晶の育成に際して、一般的には、溶融させた原料を全体に亘って一様に結晶化成長させるために、図1に示すルツボ11の下部に単結晶成長を促す面方位指定された種結晶を配置した上で、前記種結晶の少なくとも一部が単結晶の製造中に溶融しないように、炉内の低温領域の所定の高さ位置にルツボ11の下部がくるようにしてルツボ11を配置する。このような配置とすることで、種結晶の結晶面方位に一致した一様な単結晶が得ることが可能となる。   When a single crystal is grown using such a conventional single crystal manufacturing apparatus, generally, the lower portion of the crucible 11 shown in FIG. A seed crystal with a plane orientation designated to promote single crystal growth is placed on the substrate, and at least a part of the seed crystal is not melted during the production of the single crystal at a predetermined height position in the low temperature region in the furnace. The crucible 11 is arranged so that the lower part of the crucible 11 comes. By adopting such an arrangement, a uniform single crystal matching the crystal plane orientation of the seed crystal can be obtained.

このような蛍石のるつぼ降下法(垂直ブリッジマン法)による従来の単結晶製造装置としては、例えば、特開平4−349198号公報においては、炉室の上部に天端ヒーターを付加した装置が開示されており、また、特開平7−277869号公報においては、加熱機構の高温部と低温部との間に所定の長さの断熱部を設置した装置が開示されている。しかしながら、このような従来の単結晶製造装置においては、ヒーターとルツボとの接触防止やヒーターの設計上の観点等から、ルツボの外径とヒーターの内径との比(ルツボの外径/ヒーターの内径)が0.76未満である必要があった。このような従来の単結晶製造装置は、結晶成長時の不純物偏析効果を利用して、エキシマレーザー光を長時間照射しても透過率が低下しない、いわゆる耐エキシマ性に優れた高品質な蛍石の単結晶を製造するという点では未だ十分なものではなかった。
特開平4−349198号公報 特開平7−277869号公報
As a conventional single crystal manufacturing apparatus using such a fluorite crucible descent method (vertical Bridgman method), for example, in Japanese Patent Application Laid-Open No. 4-349198, there is an apparatus in which a ceiling heater is added to the upper part of a furnace chamber. Japanese Patent Laid-Open No. 7-277869 discloses an apparatus in which a heat insulating part having a predetermined length is provided between a high temperature part and a low temperature part of a heating mechanism. However, in such a conventional single crystal manufacturing apparatus, the ratio of the outer diameter of the crucible to the inner diameter of the heater (crucible outer diameter / heater The inner diameter) was required to be less than 0.76. Such a conventional single crystal manufacturing apparatus utilizes the effect of segregation of impurities during crystal growth, and does not decrease the transmittance even when irradiated with excimer laser light for a long time. In terms of producing single crystals of stone, it has not been sufficient yet.
JP-A-4-349198 JP 7-277869 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、結晶成長時の不純物偏析効果を利用して、エキシマレーザー光を長時間照射しても透過率が低下しない高品質な蛍石の単結晶を効率よく且つ確実に製造することを可能とする蛍石の単結晶製造装置、並びにそれを用いた蛍石単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and utilizes the impurity segregation effect at the time of crystal growth, so that the high-quality fluorescent light whose transmittance does not decrease even when irradiated with excimer laser light for a long time. An object of the present invention is to provide a fluorite single crystal production apparatus capable of efficiently and reliably producing a single crystal of stone, and a method for producing a fluorite single crystal using the same.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ルツボと側面ヒーターの相対的な幾何学的配置に関して、前記ルツボの外径と前記ヒーターの内径との比(ルツボの外径/ヒーターの内径)を所定値以上とし、ルツボ内の実効温度勾配を急峻に設定することによって、結晶成長時の不純物偏析効果を利用して、エキシマレーザー光を長時間照射しても透過率が低下しない高品質な蛍石の単結晶を効率よく且つ確実に製造することが可能となることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the ratio of the outer diameter of the crucible to the inner diameter of the heater (outside of the crucible) with respect to the relative geometric arrangement of the crucible and the side heater. By setting the effective temperature gradient in the crucible to a steep value by setting the diameter / heater inner diameter) to a predetermined value or more, the transmissivity can be obtained even if the excimer laser light is irradiated for a long time by utilizing the impurity segregation effect during crystal growth. The inventors have found that it is possible to efficiently and reliably produce a high-quality fluorite single crystal that does not deteriorate, and the present invention has been completed.

すなわち、本発明の蛍石の単結晶製造装置は、炉室を形成する炉本体と、前記炉室を高温側炉室と低温側炉室とに鉛直方向に2室に分離する仕切り部に配置されている断熱部材と、引き下げ棒により前記高温側炉室と前記低温側炉室との間を前記仕切り部を通って移動可能なように設置されたルツボと、前記高温側炉室内と前記低温側炉室内とにそれぞれ配置されたヒーターとを備える垂直ブリッジマン法に用いられる蛍石の単結晶製造装置であって、
前記ルツボの外径と前記ヒーターの内径との比(ルツボの外径/ヒーターの内径)が0.76以上であることを特徴とするものである。
That is, the fluorite single crystal production apparatus of the present invention is disposed in a furnace body that forms a furnace chamber, and a partition that vertically separates the furnace chamber into a high temperature side furnace chamber and a low temperature side furnace chamber. A heat insulating member, a crucible installed so as to be movable through the partition between the high temperature side furnace chamber and the low temperature side furnace chamber by a pull-down rod, the high temperature side furnace chamber, and the low temperature An apparatus for producing a single crystal of fluorite used in the vertical Bridgman method, comprising a heater disposed in each of the side furnace chambers,
The ratio of the outer diameter of the crucible to the inner diameter of the heater (crucible outer diameter / heater inner diameter) is 0.76 or more.

また、上記本発明の蛍石の単結晶製造装置としては、前記ルツボの内径と前記ヒーターの内径との比(ルツボの内径/ヒーターの内径)が0.70以上であることが好ましい。   In the fluorite single crystal production apparatus of the present invention, the ratio between the inner diameter of the crucible and the inner diameter of the heater (the inner diameter of the crucible / the inner diameter of the heater) is preferably 0.70 or more.

さらに、上記本発明の蛍石の単結晶製造装置としては、前記仕切り部の垂直方向の長さと前記ルツボの内径との比(仕切り部の垂直方向の長さ/ルツボの内径)が1/7〜1/10の範囲にあることが好ましい。   Furthermore, in the fluorite single crystal production apparatus of the present invention, the ratio between the vertical length of the partition portion and the inner diameter of the crucible (vertical length of the partition portion / inner diameter of the crucible) is 1/7. It is preferable to be in the range of ˜1 / 10.

また、本発明の蛍石単結晶の製造方法は、上記本発明の蛍石の単結晶製造装置を用いて蛍石の単結晶を得ることを特徴とするものである。   The method for producing a fluorite single crystal of the present invention is characterized in that a single crystal of fluorite is obtained using the above-described apparatus for producing a single crystal of fluorite of the present invention.

なお、本発明の蛍石の単結晶製造装置によって、結晶成長時の不純物偏析効果を利用して、エキシマレーザー光を長時間照射しても透過率が低下しない高品質な蛍石の単結晶を効率よく且つ確実に製造することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。   By using the fluorite single crystal manufacturing apparatus of the present invention, a high-quality fluorite single crystal whose transmittance does not decrease even when irradiated with excimer laser light for a long time is utilized by utilizing the impurity segregation effect during crystal growth. The reason why efficient and reliable production is possible is not always clear, but the present inventors infer as follows.

エキシマレーザーの波長域の光を露光光とする露光装置の光学部材に使用される蛍石においては、エキシマレーザー光に対する内部透過損失がないか又は内部透過損失が非常に小さいこと(耐エキシマ性)が重要である。そのため、特にレーザー光のエネルギーが大きな照明系部分に用いられる蛍石(部材)には、エネルギーの小さな投影系レンズ用の光学部材と比較すると、光学設計上はるかに高い性能が求められている。そして、このような内部透過率損失を小さくするために、光の吸収を誘起するような不純物を結晶中からできるかぎり排除することが必要となり、単結晶の製造に用いられる原料粉末の高純度化が必須となる。また、結晶育成中は結晶成長時の不純物偏析効果を利用することによって結晶中の不純物濃度を小さくすることが必要となる。   The fluorite used in the optical component of an exposure apparatus that uses light in the excimer laser wavelength range as exposure light has no internal transmission loss or very low internal transmission loss for excimer laser light (excimer resistance) is important. Therefore, a fluorite (member) used for an illumination system portion where the energy of laser light is particularly large is required to have a much higher performance in terms of optical design than an optical member for a projection system lens with a low energy. In order to reduce such internal transmittance loss, it is necessary to eliminate impurities that induce light absorption from the crystal as much as possible. Is essential. Further, during crystal growth, it is necessary to reduce the impurity concentration in the crystal by utilizing the impurity segregation effect during crystal growth.

このような結晶成長中の不純物元素の偏析は、実効偏析係数Keffの値の大小で判断される。すなわち、Keffの値が小さいほど結晶中の不純物の残留濃度が小さくなる。結晶成長速度をVとすると、その結晶成長速度Vにおける実効偏析係数Keffは、次の式(3):
(Keff)=[K+(1−K)exp(−V・δ/D)]−1 (3)
(式(3)中、Kは界面における不純物の偏析係数を示し、δは半溶融層の厚さを示し、Dは融液中における不純物の拡散係数を示す。)
で表される。上記式(3)により、Keffの値は成長速度Vが小さいほど小さくなること及び半溶融層の厚さδが薄いほど小さくなることが分かる。
Such segregation of impurity elements during crystal growth is determined by the magnitude of the effective segregation coefficient Keff. That is, the smaller the Keff value, the smaller the residual concentration of impurities in the crystal. When the crystal growth rate is V, the effective segregation coefficient Keff at the crystal growth rate V is expressed by the following equation (3):
(Keff) = [K + (1-K) exp (−V · δ / D)] −1 (3)
(In formula (3), K represents the segregation coefficient of impurities at the interface, δ represents the thickness of the semi-molten layer, and D represents the diffusion coefficient of impurities in the melt.)
It is represented by From the above equation (3), it can be seen that the value of Keff decreases as the growth rate V decreases and decreases as the thickness δ of the semi-molten layer decreases.

図2にルツボ内部における蛍石単結晶の結晶成長の概念図を示す。図2に示すように、結晶成長時のルツボ内は結晶21と融液22の間に固液界面23が存在し、更に、固液界面23の上に半溶融層24が存在する。   FIG. 2 shows a conceptual diagram of crystal growth of a fluorite single crystal inside the crucible. As shown in FIG. 2, a solid-liquid interface 23 exists between the crystal 21 and the melt 22 in the crucible during crystal growth, and a semi-molten layer 24 exists on the solid-liquid interface 23.

蛍石単結晶の製造においては、半溶融層24の厚さδは固液界面温度Tmと融液温度Tmとの差が大きいほど薄くなる。そのため、半溶融層の厚さδを薄くするためには、結晶成長時の単結晶育成帯域に急峻な温度勾配を作ることが重要となる。このような急峻な温度勾配を作るために、図1に示す従来の単結晶製造装置や、特許文献1及び2に記載されている単結晶製造装置においては、前述のように断熱部を介して高温部ヒーターと低温部ヒーターとを配置することでこの温度勾配を実現しようとしていた。しかしながら、このような高温部ヒーターと低温部ヒーターの温度設定の決定だけでは、実効偏析係数Keffの値に直結する程、ルツボ内の実効温度勾配を急峻に設定することはできない。そのため、従来の単結晶製造装置を用いて得られる蛍石の単結晶は、エキシマレーザーの波長域の光を露光光とする露光装置において要求される性能を満足する耐エキシマ性を有するには至っていなかった。 In the production of a fluorite single crystal, the thickness δ of the semi-molten layer 24 decreases as the difference between the solid-liquid interface temperature Tm 1 and the melt temperature Tm 2 increases. Therefore, in order to reduce the thickness δ of the semi-molten layer, it is important to create a steep temperature gradient in the single crystal growth zone during crystal growth. In order to create such a steep temperature gradient, in the conventional single crystal manufacturing apparatus shown in FIG. 1 and the single crystal manufacturing apparatus described in Patent Documents 1 and 2, as described above, the heat insulating portion is used. This temperature gradient was attempted to be realized by arranging a high temperature heater and a low temperature heater. However, the effective temperature gradient in the crucible cannot be set so steep that it is directly linked to the value of the effective segregation coefficient Keff only by determining the temperature settings of the high temperature heater and the low temperature heater. Therefore, a single crystal of fluorite obtained using a conventional single crystal manufacturing apparatus has excimer resistance that satisfies the performance required in an exposure apparatus that uses light in the wavelength region of an excimer laser as exposure light. It wasn't.

そこで、本発明者らは、ルツボ内の実効温度勾配を急峻に設定して結晶成長時の不純物偏析効果を利用するために、ルツボと側面ヒーターの相対的な幾何学的配置、すなわちルツボとヒーターとの間の距離に注目した。すなわち、ルツボと前記ルツボ側面に配置されたヒーターとの位置関係がルツボ内部への伝熱量に大きく反映し、ルツボ内部における固液界面の形成と半溶融層の形成及び融液の結晶化に伴う不純物の偏析に影響を与えるため、ルツボと前記ルツボ側面に配置されたヒーターとの位置関係が、得られる蛍石単結晶インゴットの「耐エキシマ性(エキシマレーザー光を長時間照射しても透過率が低下しない性質)」の優劣を左右すると本発明者らは考えた。特に、大口径の蛍石の単結晶を製造する際においては、ルツボ側面に配置されたヒーターの加熱によってルツボ内の固液界面付近における急峻な実効温度勾配が実現されるために、ルツボと前記ルツボ側面に配置されたヒーターとの相対的な幾何学的配置が重要となる。   Therefore, the present inventors set the effective temperature gradient in the crucible steeply and use the impurity segregation effect during crystal growth, that is, the relative geometric arrangement of the crucible and the side heater, that is, the crucible and the heater. Focused on the distance between. That is, the positional relationship between the crucible and the heater disposed on the side surface of the crucible greatly reflects the amount of heat transferred to the inside of the crucible, which is accompanied by the formation of a solid-liquid interface, the formation of a semi-molten layer, and the crystallization of the melt. In order to affect the segregation of impurities, the positional relationship between the crucible and the heater arranged on the side of the crucible is “excimer resistance of the obtained fluorite single crystal ingot (transmittance even when irradiated with excimer laser light for a long time. The present inventors thought that the superiority or inferiority of “the property that does not decrease”). In particular, when producing a single crystal of a large-diameter fluorite, a steep effective temperature gradient near the solid-liquid interface in the crucible is realized by heating a heater arranged on the side of the crucible. The relative geometrical arrangement with the heater arranged on the side of the crucible is important.

そこで、前記ルツボと前記ルツボ側面に配置されたヒーターとの位置関係について、放射率係数Fε1及びルツボ側面とヒーター面間との形態係数f12の観点から更に検討した。ここで、蛍石の単結晶製造装置においては、チャンバー内は真空に保持されていることからルツボとヒーター間の伝熱は放射だけとなる。また、ルツボ側面と側面ヒーターの関係は同心円柱面をなす2灰色面と仮定できる。さらに、ルツボ側面の面積をAとし、ルツボの外周囲に配置された側面ヒーターの面積をAとする。放射率係数Fε1及びルツボ側面とヒーター面間の形態係数f12は下記式(4):
ε1=f12=[1/ε+(A/A)×(1/ε−1)]−1 (4)
(ここで、ε1はルツボ側面の放射率を示し、ε2はルツボ外周囲に配置されたヒーター面の放射率を示す。)
で表される。上記式(4)より、幾何学的配置が同心円柱面となるルツボ側面とヒーター面の設置距離によって、このような向かい合う2面の距離が近いほど表面積比A/Aは1に近い値をとり、他方、このような向かい合う2面の距離が遠いほど表面積比A/Aは0に近い値をとる。このように表面積比A/Aは0〜1までの範囲をとることが可能であり、ルツボ側面とヒーター面間の形態係数f12もルツボ側面とヒーター面の設置距離によって異なることとなる。そして、ヒーターとルツボに同様の材質を選択し、これらの加工表面状態も同様に仕上げた部材で構成した場合、上記式(4)の放射率はε1=ε2となることから、形態係数f12は向かい合う2面の表面積比A/Aによってのみ決定される。ここで、ヒーター面とルツボ側面が同一中心軸を持って配置された円筒形状であるならば、これら2面の表面積比は互いの径の比によって規定されることになる。このような観点から、本発明者らは、鋭意研究を重ねた結果、不純物の偏析効果を十分に得ることができるヒーターの径とルツボの径との関係を見出した。
Therefore, the positional relationship between the heater disposed in the crucible side and the crucible was further investigated in terms of form factor f 12 of the inter-emissivity coefficient F .epsilon.1 and the crucible side and the heater surface. Here, in the fluorite single crystal manufacturing apparatus, the heat is transferred only between the crucible and the heater because the chamber is kept in vacuum. The relationship between the side surface of the crucible and the side surface heater can be assumed to be a 2 gray surface forming a concentric cylindrical surface. Furthermore, the area of the crucible side as A 1, the area of the side heater arranged around the periphery of the crucible and A 2. Radiance factor F .epsilon.1 and form factor f 12 between the crucible side and the heater surface the following formula (4):
F ε1 = f 12 = [1 / ε 1 + (A 1 / A 2) × (1 / ε 2 -1)] -1 (4)
(Here, ε 1 indicates the emissivity of the side surface of the crucible, and ε 2 indicates the emissivity of the heater surface disposed around the outer periphery of the crucible.)
It is represented by From the above formula (4), the surface area ratio A 1 / A 2 is closer to 1 as the distance between the two faces facing each other is closer depending on the installation distance between the crucible side surface and the heater surface whose geometric arrangement is a concentric cylindrical surface. On the other hand, the surface area ratio A 1 / A 2 takes a value close to 0 as the distance between the two facing surfaces increases. Thus, the surface area ratio A 1 / A 2 can range from 0 to 1 , and the form factor f 12 between the crucible side surface and the heater surface also varies depending on the installation distance between the crucible side surface and the heater surface. . And when the same material is selected for the heater and the crucible, and the processed surface state is composed of similarly finished members, the emissivity of the above equation (4) is ε 1 = ε 2 , so the form factor f 12 is determined only by the surface area ratio A 1 / A 2 of the two faces facing each other. Here, if the heater surface and the crucible side surface have a cylindrical shape arranged with the same central axis, the surface area ratio of these two surfaces is defined by the ratio of the diameters of the two surfaces. From such a viewpoint, as a result of intensive studies, the present inventors have found a relationship between the diameter of the heater and the diameter of the crucible that can sufficiently obtain the segregation effect of impurities.

本発明によれば、結晶成長時の不純物偏析効果を利用して、エキシマレーザー光を長時間照射しても透過率が低下しない高品質な蛍石の単結晶を効率よく且つ確実に製造することを可能とする蛍石の単結晶製造装置、並びにそれを用いた蛍石単結晶の製造方法を提供することが可能となる。   According to the present invention, by utilizing the effect of segregation of impurities during crystal growth, it is possible to efficiently and reliably produce a high-quality fluorite single crystal whose transmittance does not decrease even when irradiated with excimer laser light for a long time. It is possible to provide a single crystal production apparatus for fluorite that makes it possible and a method for producing a single crystal of fluorite using the same.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.

図3は、本発明の蛍石の単結晶製造装置として好適な一実施形態の構成を示す模式図である。   FIG. 3 is a schematic diagram showing the configuration of an embodiment suitable as a single crystal production apparatus for fluorite of the present invention.

図3に示す蛍石の単結晶製造装置は、真空ベルジャーからなる炉本体1を備えている。炉本体1には、炉本体1の内壁の炉室を覆った断熱材2と、前記炉室を高温側炉室10aと低温側炉室10cとに鉛直方向に2室に分離する仕切り部10bに配置されている断熱部材14bと、高温側炉室10aの縦壁内に配置されている高温用ヒーター14aと、低温側炉室10cの縦壁内に配置されている低温用ヒーター14cとが設けられている(以下「ヒーター」と示す場合には高温用ヒーター14aと低温用ヒーター14cの双方を示す。)。更に、炉本体1には、炉本体1内の略中央部に引き下げ棒13によって高温側炉室10aと低温側炉室10cとを移動可能なようにルツボ支持台12の上に設置されたルツボ11が収容されている。そして、引き下げ棒13は、図示されていない引き下げ速度の調整が可能な昇降手段に接続されている。また、炉本体1は、図示されていない真空排気系に接続されている。なお、図3中のRはヒーターの内径を示し、Rはルツボの外径を示し、Rはルツボの内径を示し、Lは仕切り部の垂直方向の長さを示す。 The fluorite single crystal production apparatus shown in FIG. 3 includes a furnace body 1 made of a vacuum bell jar. The furnace body 1 includes a heat insulating material 2 covering the furnace chamber on the inner wall of the furnace body 1, and a partition portion 10b that divides the furnace chamber into two chambers in a vertical direction into a high temperature side furnace chamber 10a and a low temperature side furnace chamber 10c. The high-temperature heater 14a disposed in the vertical wall of the high-temperature side furnace chamber 10a, and the low-temperature heater 14c disposed in the vertical wall of the low-temperature side furnace chamber 10c. (In the case of “heater” hereinafter, both the high-temperature heater 14a and the low-temperature heater 14c are shown.) Furthermore, the crucible installed on the crucible support base 12 is provided in the furnace main body 1 so that the high temperature side furnace chamber 10a and the low temperature side furnace chamber 10c can be moved by a pull-down rod 13 at a substantially central portion in the furnace main body 1. 11 is accommodated. And the pulling-down rod 13 is connected to the raising / lowering means which can adjust the pulling-down speed which is not shown in figure. The furnace body 1 is connected to a vacuum exhaust system (not shown). In FIG. 3, R 1 indicates the inner diameter of the heater, R 2 indicates the outer diameter of the crucible, R 3 indicates the inner diameter of the crucible, and L indicates the length of the partition portion in the vertical direction.

このような蛍石の単結晶製造装置においては、前記ルツボの外径Rと前記ヒーターの内径Rとの比(R/R)が0.76以上である。このようなR/Rの値が0.76未満であると、ルツボ内の実効温度勾配を急峻に設定することができず、不純物が偏析し難い。従って、このようなR/Rの値が0.76未満の蛍石の単結晶製造装置を用いた場合には、耐エキシマ性に優れた高品質な蛍石の単結晶を得ることができない。また、前記R/Rの値としては0.76〜0.92であることが好ましい。前記R/Rの値が前記上限を超えると、単結晶を製造中にヒーターとルツボとの接触が生じるといった問題等から単結晶製造装置の設計が困難な傾向にあり、他方、前記下限未満では、より耐エキシマ性に優れた高品質な蛍石の単結晶を得ることができない傾向にある。 In such a fluorite single crystal production apparatus, the ratio (R 2 / R 1 ) between the outer diameter R 2 of the crucible and the inner diameter R 1 of the heater is 0.76 or more. When the value of R 2 / R 1 is less than 0.76, the effective temperature gradient in the crucible cannot be set sharply, and impurities are difficult to segregate. Therefore, when such a fluorite single crystal production apparatus having an R 2 / R 1 value of less than 0.76 is used, a high-quality fluorite single crystal having excellent excimer resistance can be obtained. Can not. Further, the value of R 2 / R 1 is preferably 0.76 to 0.92. If the value of R 2 / R 1 exceeds the upper limit, the design of the single crystal manufacturing apparatus tends to be difficult due to problems such as contact between the heater and the crucible during manufacturing of the single crystal. If it is less than 1, it tends to be impossible to obtain a high-quality fluorite single crystal having more excellent excimer resistance.

また、前記ルツボの内径Rと前記ヒーターの内径Rとの比(R/R)が0.70以上であることが好ましい。更に、このようなR/Rの値としては0.70〜0.87であることがより好ましい。前記R/Rの値が前記下限未満では、エキシマレーザーを長時間照射した後の蛍石単結晶の透過率の低下、すなわちエキシマレーザー耐性の低下が起こる等、結晶内の不純物濃度を低減させるための偏析効果が十分に得られない傾向にあり、他方、前記上限を超えると、ルツボが薄くなりすぎることで、単結晶製造装置への収納時等の実際の取り扱いの際にルツボの強度が不足する傾向にある。 The ratio (R 3 / R 1 ) of the inner diameter R 3 of the crucible and the inner diameter R 1 of the heater is preferably 0.70 or more. Further, the value of R 3 / R 1 is more preferably 0.70 to 0.87. If the value of R 3 / R 1 is less than the lower limit, the impurity concentration in the crystal is reduced, such as a decrease in transmittance of the fluorite single crystal after long-time irradiation with an excimer laser, that is, a decrease in excimer laser resistance. The segregation effect tends not to be obtained sufficiently, and on the other hand, if the upper limit is exceeded, the crucible becomes too thin, and the crucible strength during actual handling such as when stored in a single crystal manufacturing apparatus Tend to run out.

さらに、前記仕切り部の垂直方向の長さLと前記ルツボの内径Rとの比(L/R)が1/7〜1/10の範囲にあることが好ましく、1/8〜1/10の範囲にあることがより好ましい。前記L/Rの値が前記下限未満であると、前記仕切り部の上下に配置されたヒーター14a及びヒーター14cの相互の熱流の影響をルツボ内に与えやすくなり、現実的に温度勾配を急峻に設定することができないために、得られる蛍石単結晶のエキシマレーザー耐性の低下が起こる等、結晶内の不純物濃度を低減させるための偏析効果が十分に得られない傾向にあり、他方、前記上限を超えると、仕切り部長さLの増大によって温度勾配を急峻に設定することができなくなるために、結晶内の不純物濃度を低減させるための偏析効果を得ることが困難となる傾向にある。 Furthermore, the ratio (L / R 3 ) between the vertical length L of the partition portion and the inner diameter R 3 of the crucible is preferably in the range of 1/7 to 1/10, and 1/8 to 1 / More preferably, it is in the range of 10. If the value of L / R 3 is less than the lower limit, the influence of the mutual heat flow of the heaters 14a and 14c disposed above and below the partition portion is likely to be given to the crucible, and the temperature gradient is steeply realistic. Since the excimer laser resistance of the obtained fluorite single crystal is reduced, the segregation effect for reducing the impurity concentration in the crystal tends not to be sufficiently obtained. If the upper limit is exceeded, the temperature gradient cannot be set steeply due to the increase in the partition portion length L, and it tends to be difficult to obtain a segregation effect for reducing the impurity concentration in the crystal.

なお、前記ヒーターの内径Rの大きさは特に制限されないが、製造する蛍石単結晶の大きさや製造装置の設計上の理由等の観点から、一般に140〜550mm程度であることが好ましい。また、ルツボの外径R及びルツボの内径Rの大きさも特に制限されず、同様の観点から、ルツボの外径Rとしては一般に110〜500mm程度であることが好ましく、ルツボの内径Rの大きさとしては一般に100〜470mm程度であることが好ましい。 Incidentally, the inner diameter R 1 of the heater is not particularly limited, in view of the reasons such as design of the size and manufacturing apparatus of fluorite single crystal to be produced is preferably generally about 140~550Mm. Also, the outer diameter R 2 of the crucible and the inner diameter R 3 of the crucible are not particularly limited, and from the same viewpoint, the outer diameter R 2 of the crucible is generally preferably about 110 to 500 mm, and the inner diameter R of the crucible is preferable. In general, the size of 3 is preferably about 100 to 470 mm.

次に、本実施形態で用いられる原料30につき説明する。原料30としては、高純度のフッ化カルシウム原料粉末とスカベンジャーとの混合粉末であってもよいが、ルツボ11に充填する際の充填率をあげること及び原料を高純度化してフッ化カルシウム単結晶の内部品質を向上させることから、前処理を行って得られた多結晶体並びに前記多結晶体を粉砕して得たカレットであることが好ましい。このような前処理の方法としては、先ず、真空排気系に接続された前処理用の電気加熱炉の内部に、高純度フッ化カルシウム粉末原料とスカベンジャーとを混合充填した前処理用のルツボを設置し、炉内を加熱する前に10−4〜10−5Paの真空状態にする。次に、真空排気を継続しながら装置内温度を徐々に上げ、例えばスカベンジャーにフッ化鉛(PbF)を用いた場合は800℃〜900℃で一旦保持して、十分にスカベンジ反応を進行させる。その後、更に装置内温度を原料の融点以上の温度1370℃〜1450℃まで昇温させる。そこで、過剰なスカベンジャーと反応生成物とを揮発させると共に原料を熔融させるステップを経た後、徐々に温度を降下させ熔融物を固化させる。このような前処理を行って前記多結晶体を得ることができる。なお、前記スカベンジャーとしては特に制限されないが、テフロン(登録商標)、フッ化鉛、フッ化銀、フッ化コバルト、フッ化マンガン等が挙げられる。このようなスカベンジャーの添加量は、原料粉末の粒度や容積、スカベンジャーの種類等によって決定されるものではあるが、原料のフッ化カルシウム粉末に対して0.1mol%〜5.0mol%程度であることが好ましく、0.5mol%〜3.0mol%程度であることがより好ましい。 Next, the raw material 30 used in this embodiment will be described. The raw material 30 may be a mixed powder of a high-purity calcium fluoride raw material powder and a scavenger, but the calcium fluoride single crystal is obtained by increasing the filling rate when filling the crucible 11 and purifying the raw material. In order to improve the internal quality, it is preferable to use a polycrystal obtained by pretreatment and a cullet obtained by pulverizing the polycrystal. As such a pretreatment method, first, a pretreatment crucible in which a high-purity calcium fluoride powder raw material and a scavenger are mixed and filled in a pretreatment electric heating furnace connected to an evacuation system is used. It is installed and brought into a vacuum state of 10 −4 to 10 −5 Pa before heating the inside of the furnace. Next, the temperature inside the apparatus is gradually raised while continuing the vacuum evacuation. For example, when lead fluoride (PbF 2 ) is used as a scavenger, the temperature is temporarily held at 800 ° C. to 900 ° C. to sufficiently advance the scavenge reaction. . Thereafter, the temperature in the apparatus is further raised to a temperature of 1370 ° C. to 1450 ° C. above the melting point of the raw material. Then, after passing the step of volatilizing excess scavengers and reaction products and melting the raw material, the temperature is gradually lowered to solidify the melt. The polycrystal can be obtained by performing such pretreatment. The scavenger is not particularly limited, and examples thereof include Teflon (registered trademark), lead fluoride, silver fluoride, cobalt fluoride, and manganese fluoride. The amount of scavenger added is determined by the particle size and volume of the raw material powder, the type of scavenger, etc., but is about 0.1 mol% to 5.0 mol% with respect to the raw material calcium fluoride powder. It is preferable, and it is more preferable that it is about 0.5 mol%-3.0 mol%.

本実施形態においては、原料30としては、前述のような前処理を行って得られた多結晶体を用いる。   In the present embodiment, the raw material 30 is a polycrystal obtained by performing the pretreatment as described above.

以下において、本発明の蛍石単結晶の製造方法に好適な図3に示す蛍石の単結晶製造装置を使用した蛍石単結晶の製造方法につき説明する。   Hereinafter, a method for producing a fluorite single crystal using the fluorite single crystal production apparatus shown in FIG. 3 suitable for the method for producing a fluorite single crystal of the present invention will be described.

このようなフッ化カルシウム単結晶の製造方法としては、いわゆる「ブリッジマン法」(ストックバーガー法、ルツボ降下法)が用いられる。先ず、原料30を充填したルツボ11を前記製造装置内に置き、前記製造装置内を10−3Pa(より好ましくは10−4Pa)よりも低い真空雰囲気に保持し、製造装置内の温度をフッ化カルシウムの融点以上(1370℃〜1450℃)まで徐々に昇温させてルツボ11内の原料30を溶融せしめる。次に、炉内の加熱用ヒーター電力を制御しながら0.1mm/hr〜5mm/hr程度の速度で育成用ルツボを引き下げることにより、ルツボの下部から融液を徐々に結晶化させ、結晶を成長させる。このようにして蛍石の単結晶を得ることができる。なお、結晶化させた後は蛍石の単結晶が割れない程度のアニール及び徐冷を実施する。 As a method for producing such a calcium fluoride single crystal, a so-called “Bridgeman method” (stock burger method, crucible descent method) is used. First, the crucible 11 filled with the raw material 30 is placed in the manufacturing apparatus, the inside of the manufacturing apparatus is maintained in a vacuum atmosphere lower than 10 −3 Pa (more preferably 10 −4 Pa), and the temperature in the manufacturing apparatus is set. The raw material 30 in the crucible 11 is melted by gradually raising the temperature to the melting point of calcium fluoride or higher (1370 ° C. to 1450 ° C.). Next, by lowering the growth crucible at a speed of about 0.1 mm / hr to 5 mm / hr while controlling the heater power for heating in the furnace, the melt is gradually crystallized from the lower part of the crucible. Grow. In this way, a single crystal of fluorite can be obtained. After crystallization, annealing and gradual cooling are performed to such an extent that the fluorite single crystal is not broken.

このようにして得られた蛍石の単結晶は、エキシマレーザー光を長時間照射しても透過率が低下しない高品質な蛍石の単結晶である。そのため、前述のようにして得られた蛍石の単結晶は、エキシマレーザー光のような短波長の光を露光光とする露光装置に用いられる光学部材として好適に使用することができ、例えば、250nm以下の波長の光を露光光とする露光装置のレンズ、ミラー等に用いられる。   The fluorite single crystal thus obtained is a high-quality fluorite single crystal whose transmittance does not decrease even when irradiated with excimer laser light for a long time. Therefore, the single crystal of fluorite obtained as described above can be suitably used as an optical member used in an exposure apparatus that uses short-wavelength light such as excimer laser light as exposure light. Used for lenses, mirrors, and the like of exposure apparatuses that use light having a wavelength of 250 nm or less as exposure light.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1〜7及び比較例1〜5)
1.原料の調製
先ず、高純度フッ化カルシウム原料粉末(純度99.0%以上のフッ化カルシウム)にスカベンジャー(PbF)を添加量1.0mol%の割合で混合して混合粉末を得た後、前記混合粉末を前処理用の炉内に充填した。次に、前記炉内温度を850℃まで昇温させて8時間保持し、スカベンジ反応を進行させた。次いで、前記炉内温度を更にフッ化カルシウムの融点以上の温度である1400℃まで昇温してフッ化カルシウムを熔融せしめて熔融物とした後、徐々に温度を降下させて前記熔融物を固化させ、蛍石の多結晶を得た。
(Examples 1-7 and Comparative Examples 1-5)
1. Preparation of raw material First, after mixing a high-purity calcium fluoride raw material powder (calcium fluoride having a purity of 99.0% or more) with a scavenger (PbF 2 ) at a ratio of 1.0 mol%, a mixed powder was obtained. The mixed powder was filled in a pretreatment furnace. Next, the furnace temperature was raised to 850 ° C. and held for 8 hours to advance the scavenge reaction. Next, the furnace temperature is further raised to 1400 ° C., which is equal to or higher than the melting point of calcium fluoride to melt the calcium fluoride to form a melt, and then the temperature is gradually lowered to solidify the melt. To obtain polycrystals of fluorite.

2.蛍石単結晶の製造
図3に示す蛍石の単結晶製造装置を用いて蛍石の単結晶を製造した。すなわち、このようにして得られた蛍石の多結晶を原料30として用い、原料30をルツボ11に充填し、前記ルツボ11を単結晶製造装置内のルツボ支持台12の上に設置した。その際、水平面の結晶面方位を{111}に指定した種結晶をルツボ11の最下部に納め、前記種結晶を納めた部分の高さ位置が仕切り部10bの上端の高さ位置と一致するようにルツボ11の高さ位置を定めた。
2. Production of Fluorite Single Crystal A fluorite single crystal was produced using the fluorite single crystal production apparatus shown in FIG. That is, the fluorite polycrystal thus obtained was used as a raw material 30, the raw material 30 was filled in the crucible 11, and the crucible 11 was placed on the crucible support base 12 in the single crystal manufacturing apparatus. At that time, a seed crystal whose crystal plane orientation is set to {111} is stored in the lowermost part of the crucible 11, and the height position of the part storing the seed crystal coincides with the height position of the upper end of the partition portion 10b. Thus, the height position of the crucible 11 was determined.

次に、真空ベルジャーからなる炉本体1内を10−4Paよりも低い真空雰囲気とした後に、高温側炉室10aの温度を1410℃まで徐々に昇温させた。その後、炉内加熱用の高温用ヒーター14aと低温部ヒーター40bとを制御しながら、ルツボ11を1.0mm/hrの速度で下方に徐々に引き下げて、ルツボ11内の融液を結晶化させて蛍石の単結晶インゴットを得た。結晶化させた後は蛍石の単結晶インゴットが割れない程度のアニールおよび徐冷を実施して、炉内から蛍石の単結晶インゴットを取り出した。 Next, after making the inside of the furnace main body 1 consisting of a vacuum bell jar a vacuum atmosphere lower than 10 −4 Pa, the temperature of the high temperature side furnace chamber 10 a was gradually raised to 1410 ° C. Thereafter, while controlling the high-temperature heater 14a and the low-temperature heater 40b for heating in the furnace, the crucible 11 is gradually pulled down at a speed of 1.0 mm / hr to crystallize the melt in the crucible 11. Thus, a single crystal ingot of fluorite was obtained. After crystallization, annealing and slow cooling were performed to such an extent that the fluorite single crystal ingot was not broken, and the fluorite single crystal ingot was taken out of the furnace.

各実施例及び各比較例においては、それぞれヒーター(高温用ヒーター14aと低温部ヒーター40bは同径のものである)の内径Rの値を変化させて、上記のようにして蛍石単結晶を製造した。各実施例及び各比較例におけるルツボ11の外径Rとヒーターの内径Rとの比α(R/R)、ルツボ11の内径Rと前記ヒーターの内径Rとの比α′(R/R)、更に、前記仕切り部の垂直方向の長さLと前記ルツボの内径Rとの比β(L/R)をそれぞれ表1に示す。なお、ヒーター(高温用ヒーター14aと低温部ヒーター40b)と、ヒーターの外周に配置されている断熱材2との外径比は、すべての組み合わせで一定にした。 In Examples and Comparative Examples, respectively heater (high temperature heater 14a and the low temperature portion heater 40b than it is that of the same diameter) by changing the value of the inner diameter R 1 of fluorite single crystal as described above Manufactured. The ratio α (R 2 / R 1 ) between the outer diameter R 2 of the crucible 11 and the inner diameter R 1 of the heater in each example and each comparative example, and the ratio α between the inner diameter R 3 of the crucible 11 and the inner diameter R 1 of the heater '(R 3 / R 1 ) and the ratio β (L / R 3 ) between the vertical length L of the partition and the inner diameter R 3 of the crucible are shown in Table 1, respectively. Note that the outer diameter ratio between the heater (the high-temperature heater 14a and the low-temperature heater 40b) and the heat insulating material 2 disposed on the outer periphery of the heater was constant in all combinations.

<透過率の測定>
各実施例及び各比較例で得られた蛍石の単結晶インゴットの透過率を測定した。測定に際しては、先ず、各実施例及び各比較例で得られた蛍石の単結晶インゴットの上部をそれぞれ切断、加工して直径が30mmで厚さが10mmの透過率測定用のテストピースを作成した。次に、このようなテストピースに対して波長193.4nmのArFエキシマレーザー光を照射し、それぞれのテストピースの内部初期透過率(以下「内部初期透過率」と示す)を測定した後、更にArFエキシマレーザーを50mJの条件で1×10パルス照射した後の内部透過率(以下「照射後の内部透過率」と示す)を測定した。内部初期透過率及び照射後の内部透過率の測定結果を表1に示し、前記αと照射後の内部透過率との関係のグラフを図4に示す。
<Measurement of transmittance>
The transmittance of the single crystal ingot of fluorite obtained in each example and each comparative example was measured. In the measurement, first, the upper part of the single crystal ingot of fluorite obtained in each example and each comparative example was cut and processed to prepare a test piece for transmittance measurement having a diameter of 30 mm and a thickness of 10 mm. did. Next, ArF excimer laser light having a wavelength of 193.4 nm was irradiated to such a test piece, and after measuring the internal initial transmittance (hereinafter referred to as “internal initial transmittance”) of each test piece, The internal transmittance after irradiation with 1 × 10 5 pulses of ArF excimer laser under the condition of 50 mJ (hereinafter referred to as “internal transmittance after irradiation”) was measured. The measurement results of the internal initial transmittance and the internal transmittance after irradiation are shown in Table 1, and a graph showing the relationship between the α and the internal transmittance after irradiation is shown in FIG.

Figure 2006327837
Figure 2006327837

表1に示した結果からも明らかなように、ルツボの外径と側面ヒーターの内径との比αが0.76以上である実施例1〜7で得られた蛍石の単結晶インゴットは、エキシマレーザー光を長時間照射しても透過率の低下が非常に少なく、ArFエキシマレーザーを50mJの条件で1×10パルス照射した後においても内部透過率が99.7%/cmを実現できることが確認された。 As is clear from the results shown in Table 1, the single crystal ingot of fluorite obtained in Examples 1 to 7 in which the ratio α between the outer diameter of the crucible and the inner diameter of the side heater is 0.76 or more, Even when excimer laser light is irradiated for a long time, the decrease in the transmittance is very small, and the internal transmittance can be achieved 99.7% / cm even after the ArF excimer laser is irradiated with 1 × 10 5 pulses at 50 mJ. Was confirmed.

以上説明したように、本発明によれば、結晶成長時の不純物偏析効果を利用して、エキシマレーザー光を長時間照射しても透過率が低下しない高品質な蛍石の単結晶を効率よく且つ確実に製造することを可能とする蛍石の単結晶製造装置、並びにそれを用いた蛍石単結晶の製造方法を提供することが可能となる。   As described above, according to the present invention, by utilizing the impurity segregation effect during crystal growth, a high-quality fluorite single crystal whose transmittance does not decrease even when irradiated with excimer laser light for a long time can be efficiently obtained. Also, it is possible to provide a fluorite single crystal production apparatus that can be reliably produced, and a fluorite single crystal production method using the same.

したがって、本発明の蛍石の単結晶製造装置は、エキシマレーザーの波長域の光を露光光とする露光装置の光学系に使用されるレンズ、ミラー等に用いられる高品質な蛍石の製造に特に有用である。   Therefore, the fluorite single crystal production apparatus of the present invention is used to produce high-quality fluorite used in lenses, mirrors, etc. used in the optical system of an exposure apparatus that uses light in the wavelength region of an excimer laser as exposure light. It is particularly useful.

ブリッジマン型の従来の単結晶製造装置を示す模式図である。It is a schematic diagram which shows the Bridgman-type conventional single crystal manufacturing apparatus. ルツボ内での固液界面付近を示す概念図を示すグラフである。It is a graph which shows the conceptual diagram which shows the solid-liquid interface vicinity in a crucible. 本発明の蛍石の単結晶製造装置として好適な一実施形態の構成を示す模式図である。It is a schematic diagram which shows the structure of one Embodiment suitable as a single crystal manufacturing apparatus of the fluorite of this invention. ルツボ11の外径Rとヒーターの内径Rとの比α(R/R)と照射後の透過率の関係のグラフである。It is a graph of the relationship between the ratio α (R 2 / R 1 ) between the outer diameter R 2 of the crucible 11 and the inner diameter R 1 of the heater and the transmittance after irradiation.

符号の説明Explanation of symbols

1…炉本体、2…断熱材、10…炉内中空部、10a…高温側炉室、10b…断熱部、10c…低温側炉室、11…ルツボ、12…ルツボ支持台、13…引き下げ棒、14…単結晶育成帯域、14a…高温用ヒーター、14b…断熱部材、14c…低温用ヒーター、21…結晶、22…融液、23…固液界面、24…半溶融層、30…原料、R…ヒーターの内径、R…ルツボの外径、R…ルツボの内径、L…仕切り部の垂直方向の長さ。 DESCRIPTION OF SYMBOLS 1 ... Furnace main body, 2 ... Heat insulation material, 10 ... Hollow part in a furnace, 10a ... High temperature side furnace chamber, 10b ... Heat insulation part, 10c ... Low temperature side furnace chamber, 11 ... Crucible, 12 ... Crucible support stand, 13 ... Pull-down rod 14 ... single crystal growth zone, 14a ... high temperature heater, 14b ... heat insulation member, 14c ... low temperature heater, 21 ... crystal, 22 ... melt, 23 ... solid-liquid interface, 24 ... semi-molten layer, 30 ... raw material, R 1 ... inner diameter of the heater, R 2 ... outer diameter of the crucible, R 3 ... inner diameter of the crucible, L ... length of the partition portion in the vertical direction.

Claims (4)

炉室を形成する炉本体と、前記炉室を高温側炉室と低温側炉室とに鉛直方向に2室に分離する仕切り部に配置されている断熱部材と、引き下げ棒により前記高温側炉室と前記低温側炉室との間を前記仕切り部を通って移動可能なように設置されたルツボと、前記高温側炉室内と前記低温側炉室内とにそれぞれ配置されたヒーターとを備える垂直ブリッジマン法に用いられる蛍石の単結晶製造装置であって、
前記ルツボの外径と前記ヒーターの内径との比(ルツボの外径/ヒーターの内径)が0.76以上であることを特徴とする蛍石の単結晶製造装置。
A furnace body that forms a furnace chamber, a heat insulating member disposed in a partition that vertically separates the furnace chamber into two chambers, a high temperature side furnace chamber and a low temperature side furnace chamber; A vertical crucible installed so as to be movable between the chamber and the low-temperature side furnace chamber through the partition, and a heater disposed in each of the high-temperature side furnace chamber and the low-temperature side furnace chamber An apparatus for producing a single crystal of fluorite used in the Bridgman method,
An apparatus for producing a single crystal of fluorite, wherein the ratio of the outer diameter of the crucible to the inner diameter of the heater (crucible outer diameter / heater inner diameter) is 0.76 or more.
前記ルツボの内径と前記ヒーターの内径との比(ルツボの内径/ヒーターの内径)が0.70以上であることを特徴とする請求項1に記載の蛍石の単結晶製造装置。   2. The apparatus for producing a single crystal of fluorite according to claim 1, wherein the ratio of the inner diameter of the crucible to the inner diameter of the heater (the inner diameter of the crucible / the inner diameter of the heater) is 0.70 or more. 前記仕切り部の垂直方向の長さと前記ルツボの内径との比(仕切り部の垂直方向の長さ/ルツボの内径)が1/7〜1/10の範囲にあることを特徴とする請求項1又は2に記載の蛍石の単結晶製造装置。   The ratio of the vertical length of the partition portion to the inner diameter of the crucible (the length of the partition portion in the vertical direction / the inner diameter of the crucible) is in the range of 1/7 to 1/10. Or the apparatus for producing a single crystal of fluorite according to 2. 請求項1〜3のうちのいずれか一項に記載の蛍石の単結晶製造装置を用いて蛍石の単結晶を得ることを特徴とする蛍石単結晶の製造方法。   A method for producing a fluorite single crystal, wherein the fluorite single crystal is obtained using the fluorite single crystal production apparatus according to claim 1.
JP2005149443A 2005-05-23 2005-05-23 Fluorite single crystal production apparatus and fluorite single crystal production method using the same Expired - Fee Related JP4569872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149443A JP4569872B2 (en) 2005-05-23 2005-05-23 Fluorite single crystal production apparatus and fluorite single crystal production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149443A JP4569872B2 (en) 2005-05-23 2005-05-23 Fluorite single crystal production apparatus and fluorite single crystal production method using the same

Publications (2)

Publication Number Publication Date
JP2006327837A true JP2006327837A (en) 2006-12-07
JP4569872B2 JP4569872B2 (en) 2010-10-27

Family

ID=37549923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149443A Expired - Fee Related JP4569872B2 (en) 2005-05-23 2005-05-23 Fluorite single crystal production apparatus and fluorite single crystal production method using the same

Country Status (1)

Country Link
JP (1) JP4569872B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014193025A1 (en) * 2013-05-30 2014-12-04 주식회사 인솔텍 Device for manufacturing silicon ingots, provided with divisional crucible guides
CN104593860A (en) * 2015-02-03 2015-05-06 中国电子科技集团公司第四十六研究所 Support structure for VB/VGF single crystal growth and processing method of support structure
US9613791B2 (en) 2014-02-28 2017-04-04 Nikon Corporation Calcium fluoride optical member, manufacturing method therefor, gas-holding container, and light source device
US10458042B2 (en) 2013-12-25 2019-10-29 Nikon Corporation Calcium fluoride member, method for producing same, and method for pressure-bonding calcium fluoride crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015301A1 (en) 2011-07-26 2013-01-31 株式会社ニコン Crucible for manufacturing compound crystal, apparatus for manufacturing compound crystal, and method for manufacturing compound crystal using crucible

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349199A (en) * 1991-05-23 1992-12-03 Nikon Corp Device for producing fluorite excellent in excimer resistance
JPH10251097A (en) * 1997-03-10 1998-09-22 Nikon Corp Apparatus for production of fluorite single crystal and its production
JPH10265296A (en) * 1997-03-25 1998-10-06 Nikon Corp Production of fluorite single crystal
JP2001240497A (en) * 2000-02-29 2001-09-04 Kobe Steel Ltd Method and equipment for manufacturing single crystal fluoride
JP2004010461A (en) * 2002-06-11 2004-01-15 Canon Inc Apparatus for manufacturing crystal and method for manufacturing crystal
JP2004018319A (en) * 2002-06-17 2004-01-22 Hitachi Cable Ltd Compound semiconducting crystal growth apparatus
JP2004269329A (en) * 2003-03-11 2004-09-30 Sumitomo Electric Ind Ltd Apparatus for manufacturing single crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349199A (en) * 1991-05-23 1992-12-03 Nikon Corp Device for producing fluorite excellent in excimer resistance
JPH10251097A (en) * 1997-03-10 1998-09-22 Nikon Corp Apparatus for production of fluorite single crystal and its production
JPH10265296A (en) * 1997-03-25 1998-10-06 Nikon Corp Production of fluorite single crystal
JP2001240497A (en) * 2000-02-29 2001-09-04 Kobe Steel Ltd Method and equipment for manufacturing single crystal fluoride
JP2004010461A (en) * 2002-06-11 2004-01-15 Canon Inc Apparatus for manufacturing crystal and method for manufacturing crystal
JP2004018319A (en) * 2002-06-17 2004-01-22 Hitachi Cable Ltd Compound semiconducting crystal growth apparatus
JP2004269329A (en) * 2003-03-11 2004-09-30 Sumitomo Electric Ind Ltd Apparatus for manufacturing single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014193025A1 (en) * 2013-05-30 2014-12-04 주식회사 인솔텍 Device for manufacturing silicon ingots, provided with divisional crucible guides
US10458042B2 (en) 2013-12-25 2019-10-29 Nikon Corporation Calcium fluoride member, method for producing same, and method for pressure-bonding calcium fluoride crystal
US9613791B2 (en) 2014-02-28 2017-04-04 Nikon Corporation Calcium fluoride optical member, manufacturing method therefor, gas-holding container, and light source device
CN104593860A (en) * 2015-02-03 2015-05-06 中国电子科技集团公司第四十六研究所 Support structure for VB/VGF single crystal growth and processing method of support structure

Also Published As

Publication number Publication date
JP4569872B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
US9347148B2 (en) Vitreous silica crucible with specific ratio of transparent layer and bubble-containing layer thicknesses
JP4569872B2 (en) Fluorite single crystal production apparatus and fluorite single crystal production method using the same
US20040099205A1 (en) Method of growing oriented calcium fluoride single crystals
JP4194565B2 (en) Crystal material purification method and apparatus, crystal production method and apparatus from crystal material, and crystal use method
JP4147595B2 (en) Method for producing fluorite single crystal
JP3006148B2 (en) Fluorite production equipment with excellent excimer resistance
JP5741691B2 (en) Crucible for producing compound crystal, apparatus for producing compound crystal, and method for producing compound crystal using crucible
JP2000128696A (en) Fluoride single crystal-made raw material for making optical element and production of the same raw material
JP3006147B2 (en) Large diameter fluorite single crystal manufacturing equipment
JP4463730B2 (en) Method for producing metal fluoride single crystal
US7691766B2 (en) Material, particularly for an optical component for use in microlithography, and method for making a blank from the material
JP2003238152A (en) Method for making crystal
JP4839205B2 (en) Fluorite manufacturing method
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JP2007051013A (en) Method for producing calcium fluoride crystal
JP4839204B2 (en) Fluorite
JP4608894B2 (en) Fluoride single crystal manufacturing apparatus and manufacturing method
JP2006117442A (en) Method and apparatus for producing single crystal
JP2006117494A (en) Method for producing metal fluoride single crystal and as-grown single crystal of metal fluoride produced by the method
JPH1160382A (en) Fluorite single crystal and photolithographic device using the same
JP4731844B2 (en) Crystal manufacturing method and apparatus
JP2006335587A (en) Method for manufacturing single crystal, and pretreatment apparatus for single crystal growth
JP2006001760A (en) Method for producing fluoride single crystal
JP2005330123A (en) Method for producing caf2 crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4569872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees