JP2003238292A - Method of manufacturing fluorite crystal - Google Patents

Method of manufacturing fluorite crystal

Info

Publication number
JP2003238292A
JP2003238292A JP2002037043A JP2002037043A JP2003238292A JP 2003238292 A JP2003238292 A JP 2003238292A JP 2002037043 A JP2002037043 A JP 2002037043A JP 2002037043 A JP2002037043 A JP 2002037043A JP 2003238292 A JP2003238292 A JP 2003238292A
Authority
JP
Japan
Prior art keywords
fluorite
crucible
crystal
melt
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002037043A
Other languages
Japanese (ja)
Inventor
Takashi Noma
敬 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002037043A priority Critical patent/JP2003238292A/en
Publication of JP2003238292A publication Critical patent/JP2003238292A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide fluorite which is suitable as an optical component for excimer laser of an exposure device for photolithography. <P>SOLUTION: A method of manufacturing a fluorite crystal comprises a step for melting calcium fluoride in a crucible and then solidifying the resulting melt, and includes a step for growing the fluorite single crystal from the lower end of the melt in the crucible, and a step for subsequently depositing fluorite polycrystal from the melt. Further, in the method of manufacturing the fluorite crystal, a step for analyzing the concentration of an impurity in a part of the fluorite polycrystal and judging from the analyzed value whether the quality of the formed fluorite single crystal is good or not. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蛍石とそれを用い
た光学部品及びフォトリソグラフィー用の露光装置に係
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fluorite, an optical component using the same, and an exposure apparatus for photolithography.

【0002】[0002]

【従来の技術】エキシマレーザーは、紫外域で発振する
唯一の高出力レーザーとして注目されており、電子産業
や化学産業やエネルギー産業において応用が期待されて
いる。具体的には金属、樹脂、ガラス、セラミックス、
半導体等の加工や化学反応等に利用されている。
2. Description of the Related Art Excimer lasers are attracting attention as the only high-power lasers that oscillate in the ultraviolet region, and are expected to find applications in the electronic, chemical, and energy industries. Specifically, metal, resin, glass, ceramics,
It is used for processing semiconductors and chemical reactions.

【0003】エキシマレーザー光を発生する装置はエキ
シマレーザー発振装置として知られている。マニホルド
内に充填されたAr,Kr,Xe,KrF,ArF,F
等のレーザーガスを電子ビーム照射や放電等により励
起状態にする。すると、励起された原子は基底状態の原
子と結合して励起状態でのみ存在する分子を生成する。
この分子がエキシマと呼ばれるものである。エキシマは
不安定な為、直ちに紫外光を放出して基底状態に落ち
る。これをボンドフリー遷移というが、この遷移よって
えられた紫外光を一対のミラーで構成される光共振器内
で増倍してレーザー光として取り出すものがエキシマレ
ーザー発振装置である。
A device for generating excimer laser light is known as an excimer laser oscillator. Ar, Kr, Xe, KrF, ArF, F filled in the manifold
A laser gas such as 2 is excited by electron beam irradiation, discharge, or the like. Then, the excited atoms combine with the atoms in the ground state to generate molecules that exist only in the excited state.
This molecule is called an excimer. Since the excimer is unstable, it immediately emits ultraviolet light and falls to the ground state. This is called a bond-free transition, and an excimer laser oscillator is one that multiplies the ultraviolet light obtained by this transition in an optical resonator composed of a pair of mirrors and extracts it as laser light.

【0004】エキシマレーザー光の中でもKrFレーザ
ー,ArFレーザー,Fレーザーはそれぞれ波長が2
48nm、193nm、157nmといった真空紫外域
とよばれる波長域の光であり、光学系にはこうした波長
域の光の透過率が高いものを用いなければならない。蛍
石(フッ化カルシウム単結晶)はこうした光学系の為の
硝材として好ましいものである。
Of the excimer laser lights, the KrF laser, the ArF laser, and the F 2 laser each have a wavelength of 2
It is light in a wavelength range called vacuum ultraviolet region such as 48 nm, 193 nm, and 157 nm, and it is necessary to use an optical system having a high transmittance of light in such a wavelength range. Fluorite (calcium fluoride single crystal) is a preferable glass material for such an optical system.

【0005】通常蛍石はブリッジマン法(ルツボ下降
法)で製造されている。従来の真空紫外域用蛍石の製造
方法として、例えば、特開平4ー349199号公報、
特開平4ー349198号公報に記載された方法があ
る。それを簡単に説明する。まず、化学合成で作られた
高純度原料をカレット状にしたものをルツボの中に充填
し、それを結晶成長炉に入れ、炉内を真空に排気してか
ら炉温度を蛍石の融点以上にあげて、原料を融解させ
る。この成長炉内では緩やかな温度分布ができるように
温度制御されている。次にルツボを成長炉内で降下さ
せ、ルツボの下部の方から結晶化させてゆく。融液最上
端まで結晶化したところで結晶成長は終了し、そのまま
徐冷を行う。炉温が常温まで下がったところで結晶イン
ゴットは炉から取り出され、次の工程へと回される。
Fluorite is usually manufactured by the Bridgman method (crucible descending method). As a conventional method for producing a fluorspar for the vacuum ultraviolet region, for example, JP-A-4-349199,
There is a method described in JP-A-4-349198. I will explain it briefly. First, cullet-shaped high-purity raw materials made by chemical synthesis are filled into a crucible, which is then placed in a crystal growth furnace, the furnace is evacuated to a vacuum, and the furnace temperature is set to the melting point of fluorite or higher. And melt the ingredients. In this growth furnace, the temperature is controlled so that a gentle temperature distribution can be obtained. Next, the crucible is lowered in the growth furnace and crystallized from the lower part of the crucible. The crystal growth is terminated when the uppermost end of the melt is crystallized, and the material is gradually cooled. When the furnace temperature has dropped to room temperature, the crystal ingot is taken out of the furnace and sent to the next step.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
蛍石は可視光の光学系のための基材としては満足できる
性能を示すものの、エキシマレーザーのように短波長で
高出力の光を長期間繰り返し照射するとその光学特性が
劣化することがあった。本発明者らは、その原因を探究
するうちにそれが結晶構造や含有する不純物に影響を受
けていることに気がついた。
However, although the conventional fluorite shows satisfactory performance as a base material for an optical system of visible light, it emits high-power light with a short wavelength for a long time like an excimer laser. Repeated irradiation sometimes deteriorated the optical characteristics. The present inventors, while searching for the cause, realized that it was affected by the crystal structure and the contained impurities.

【0007】本発明は、上述した技術的課題に鑑みなさ
れたものであり、短波長で高出力の光を長期間繰り返し
照射した場合であっても、透過率特性が劣化し難い蛍石
を提供することを主たる目的とする。本発明の別の目的
は、エキシマレーザー用の光学部品、とりわけフォトリ
ソグラフィー用の露光装置のエキシマレーザー用の光学
部品に好適な蛍石を提供することにある。
The present invention has been made in view of the above-mentioned technical problems, and provides a fluorite whose transmittance characteristics are not easily deteriorated even when high-power light having a short wavelength is repeatedly irradiated for a long period of time. The main purpose is to do. Another object of the present invention is to provide a fluorite suitable for an optical component for an excimer laser, particularly an optical component for an excimer laser of an exposure apparatus for photolithography.

【0008】本発明の更に別の目的は、短波長で高出力
の光を長期間繰り返し照射しても光学特性が劣化しない
エキシマレーザー用の光学部品を提供することにある。
Still another object of the present invention is to provide an optical component for an excimer laser which does not deteriorate its optical characteristics even if it is repeatedly irradiated with light of short wavelength and high output for a long period of time.

【0009】本発明の更に別の目的は、0.25ミクロ
ン以下の微細パターンを長期間安定して露光することが
できるフォトリソグラフィー用の露光装置を提供するこ
とにある。
Still another object of the present invention is to provide an exposure apparatus for photolithography, which can stably expose a fine pattern of 0.25 micron or less for a long period of time.

【0010】[0010]

【課題を解決するための手段】本発明の蛍石結晶の製造
方法は、ルツボ中でフッ化カルシウムを融解させてから
凝固させる蛍石結晶の製造方法において、ルツボ中融液
の下端から蛍石単結晶を成長させる工程と、それに引き
続いて融液から蛍石多結晶体を析出させる工程とを含む
ことを特徴とする。さらに、蛍石多結晶体の部分の不純
物濃度を分析し、その値で生成した蛍石単結晶の品質の
良否を判定する工程を含むことを特徴とする。
The method for producing fluorite crystals according to the present invention is a method for producing fluorite crystals in which calcium fluoride is melted in a crucible and then solidified. It is characterized by including a step of growing a single crystal and a step of subsequently depositing a fluorite polycrystal body from a melt. Further, the method is characterized by including the step of analyzing the impurity concentration in the portion of the fluorite polycrystal body and determining the quality of the quality of the fluorite single crystal produced by the value.

【0011】また、ルツボ中融液の下端から蛍石単結晶
を成長させる工程と、それに引き続いて融液から蛍石多
結晶体を析出させる工程とを、ルツボの下降速度の変化
によって行うことを特徴とする。
Further, the step of growing a fluorite single crystal from the lower end of the melt in the crucible and the subsequent step of precipitating a fluorite polycrystal from the melt are performed by changing the descending speed of the crucible. Characterize.

【0012】また、ルツボ中融液の下端から蛍石単結晶
を成長させる工程と、それに引き続いて融液から蛍石多
結晶体を析出させる工程とを、ヒーター電流の変化によ
って行うことを特徴とする。
Further, a step of growing a fluorite single crystal from the lower end of the melt in the crucible and a step of subsequently depositing a fluorite polycrystal from the melt are performed by changing the heater current. To do.

【0013】なお、本発明の明細書中で、単結晶とは単
一の結晶粒からその方位を受け継いで成長した結晶領域
のことを指す。また、多結晶とは結晶方位の大きく異な
る複数の領域からなる結晶体のことを指す。
In the specification of the present invention, a single crystal refers to a crystal region grown by inheriting the orientation of a single crystal grain. In addition, a polycrystal refers to a crystal body including a plurality of regions whose crystal orientations are significantly different.

【0014】[0014]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【実施例】(実施例1)図1のフローチャトを参照しな
がら、第1の実施例について説明する。
EXAMPLE 1 Example 1 will be described with reference to the flow chart of FIG.

【0015】粉末のフッ化カルシウムに対してZnF
を0.7重量%添加して、両者を混合させた。
ZnF 2 based on calcium fluoride powder
0.7% by weight was added to mix both.

【0016】次いで、この混合物を精製炉のルツボに入
れて1360℃に加熱した後、ルツボを降下させて徐冷
し、原料を結晶化した。ルツボ上部にあたる結晶化した
フッ化カルシウムの上部を厚さ数mm除去した。この加
熱・徐冷・除去の工程を繰り返し行い、繰り返す工程数
が異なるフッ化カルシウム結晶ブロックの試料を多数用
意した。[原料精製工程] 次に、上記ブロックを、単結晶成長用炉のルツボに入れ
た。なお、スカベンジャーとしてZnFを0.1重量
%ルツボに入れた。続いて炉内を真空排気して、ルツボ
を加熱し、真空度を2×10-6Torr、温度を13
60℃として11時間保った。[原料融解工程] 次にルツボを2mm/hの速度で50hにわたって、1
00mm降下させた。この時の温度降下速度は結晶成長
面(固液界面)近傍において、約100℃/hに相当す
る。[単結晶成長工程] 次にルツボを次にルツボを20mm/hの速度で5hに
わたって、100mm降下させた。この時の温度降下速
度は約1000℃/hに相当する。[多結晶成長工程] 次に炉内温度を12時間かけて常温に戻した。このとき
の蛍石の温度降下速度は約100℃/hであった。[徐
冷工程] 炉内のルツボが常温に戻ったら、ルツボの中のインゴッ
トを取り出す。このインゴットは図3に示すように、全
長が約200mmで下部の約100mmは蛍石単結晶、
上部の約100mmは蛍石多結晶体である。このインゴ
ットを、単結晶,多結晶の境界で切断し、多結晶体の一
部を分析して不純物の評価を実施した。分析方法は試料
を溶解してICP質量分析法(ICP−MS)によって
実施した。[不純物濃度評価工程] 次に、アニール炉のルツボに上述の蛍石単結晶と、0.
1重量%のZnFを入れた。炉内を排気してるつぼの
温度を室温から900℃に速度100℃/hで上昇させ
た後、20時間900℃に保持した。そして、6℃/h
の速度で低下させ、室温まで冷却した。[アニール工
程] こうして得られた蛍石結晶は良好な光学特性を示した。
着色が無く、劣化率も0%となり、KrF,ArF,F
エキシマレーザー用の光学系として好ましく適用でき
ることが分かった。
Next, this mixture was placed in a crucible of a refining furnace and heated to 1360 ° C., and then the crucible was lowered and gradually cooled to crystallize the raw material. The upper part of the crystallized calcium fluoride corresponding to the upper part of the crucible was removed with a thickness of several mm. The steps of heating, gradual cooling and removal were repeated, and a large number of calcium fluoride crystal block samples with different numbers of repeating steps were prepared. [Raw Material Purification Step] Next, the above block was placed in a crucible of a single crystal growth furnace. As a scavenger, ZnF 2 was placed in a 0.1 wt% crucible. Then, the furnace is evacuated to heat the crucible, the degree of vacuum is 2 × 10 −6 Torr, and the temperature is 13
The temperature was kept at 60 ° C for 11 hours. [Raw Material Melting Step] Next, the crucible is moved at a speed of 2 mm / h for 50 h for 1 hour.
It was lowered by 00 mm. The temperature drop rate at this time corresponds to about 100 ° C./h in the vicinity of the crystal growth surface (solid-liquid interface). [Single Crystal Growth Step] Next, the crucible was then lowered 100 mm at a speed of 20 mm / h for 5 hours. The temperature decrease rate at this time corresponds to about 1000 ° C./h. [Polycrystalline Growth Step] Next, the temperature inside the furnace was returned to room temperature over 12 hours. At this time, the temperature decrease rate of fluorite was about 100 ° C./h. [Slow cooling step] When the crucible in the furnace returns to room temperature, the ingot in the crucible is taken out. As shown in FIG. 3, this ingot has a total length of about 200 mm and a lower part of about 100 mm is a fluorite single crystal,
About 100 mm in the upper part is a fluorite polycrystal. This ingot was cut at the boundary between a single crystal and a polycrystal, and a part of the polycrystal was analyzed to evaluate impurities. The analysis method was performed by dissolving the sample and performing ICP mass spectrometry (ICP-MS). [Impurity Concentration Evaluation Step] Next, the above-mentioned fluorite single crystal was added to the crucible of the annealing furnace.
1 wt% ZnF 2 was added. The furnace was evacuated, the temperature of the crucible was raised from room temperature to 900 ° C. at a rate of 100 ° C./h, and then kept at 900 ° C. for 20 hours. And 6 ° C / h
And cooled to room temperature. [Annealing Step] The fluorite crystal thus obtained exhibited good optical characteristics.
There is no coloring, the deterioration rate is 0%, and KrF, ArF, F
It was found that it can be preferably applied as an optical system for a two- excimer laser.

【0017】(実施例2)本発明の第2に実施例は、単
結晶成長工程終了後、炉内温度を速度100℃/hで降
下させ、フッ化カルシウムの多結晶部を形成した。その
他の工程は実施例1と同様である。本実施例ではプロセ
ス時間を短縮することができる。実施例1と比較して約
5時間の時間短縮が達成された。
Example 2 In the second example of the present invention, after the single crystal growth step was completed, the temperature inside the furnace was lowered at a rate of 100 ° C./h to form a polycrystalline portion of calcium fluoride. The other steps are the same as in the first embodiment. In this embodiment, the process time can be shortened. A time reduction of about 5 hours was achieved compared to Example 1.

【0018】[0018]

【発明の効果】本発明によれば次の諸々の効果を達成す
ることができる。 1.短波長で高出力の光を長期間繰り返し照射した場合
であっても、透過率特性が劣化し難い蛍石を提供するこ
とができる。 2.エキシマレーザー用の光学部品、とりわけフォトリ
ソグラフィー用の露光装置のエキシマレーザー用の光学
部品に好適な蛍石を提供するができる。 3.信頼性の高い光学物品となりうる蛍石を、比較的安
価に製造できる蛍石を提供することができる。 4.短波長で高出力の光を長期間繰り返し照射しても光
学特性が劣化しないエキシマレーザー用の光学部品を提
供することができる。 5.0.25ミクロン以下の微細パターンを長期間安定
して露光することができるフォトリソグラフィー用の露
光装置を提供することができる。
According to the present invention, the following various effects can be achieved. 1. It is possible to provide fluorite whose transmittance characteristics do not easily deteriorate even when high-power light with a short wavelength is repeatedly irradiated for a long period of time. 2. It is possible to provide a fluorite suitable for an optical component for an excimer laser, particularly for an optical component for an excimer laser of an exposure device for photolithography. 3. It is possible to provide fluorspar that can be manufactured as a highly reliable optical article and that can be manufactured at relatively low cost. 4. It is possible to provide an optical component for an excimer laser that does not deteriorate in optical characteristics even if it is repeatedly irradiated with light of short wavelength and high output for a long period of time. An exposure apparatus for photolithography that can stably expose a fine pattern of 5.0.25 microns or less for a long time can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る蛍石の製造工程例を説明する為の
フローチャートである。
FIG. 1 is a flow chart for explaining an example of a manufacturing process of fluorite according to the present invention.

【図2】単結晶成長工程に用いられる成長炉の断面を示
す図である。
FIG. 2 is a diagram showing a cross section of a growth furnace used in a single crystal growth step.

【図3】結晶成長後、ルツボが常温になった時の結晶組
織を示す模式図である。
FIG. 3 is a schematic diagram showing a crystal structure when the crucible reaches normal temperature after crystal growth.

【符号の説明】[Explanation of symbols]

1 チャンバー 2 断熱材 3 ヒーター 4 ルツボ 5 蛍石 6 ルツボ引き下げ機構 7 種結晶室 8 単結晶フッ化カルシウム 9 多結晶フッ化カルシウム 1 chamber 2 insulation 3 heater 4 crucibles 5 Fluorite 6 Crucible lowering mechanism 7 seed crystal chamber 8 Single crystal calcium fluoride 9 Polycrystalline calcium fluoride

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ルツボ中でフッ化カルシウムを融解させ
てから凝固させる蛍石結晶の製造方法において、ルツボ
中融液の下端から蛍石単結晶を成長させる工程と、それ
に引き続いて融液から蛍石多結晶体を析出させる工程と
を含むことを特徴とする蛍石結晶の製造方法。
1. A method for producing a fluorite crystal in which calcium fluoride is melted in a crucible and then solidified, a step of growing a fluorite single crystal from the lower end of a melt in the crucible, and subsequently, a step of growing the fluorite from the melt. And a step of precipitating a stone polycrystal, a method for producing a fluorite crystal.
【請求項2】 蛍石多結晶体の部分の不純物濃度を分析
し、その値で生成した蛍石単結晶の品質の良否を判定す
る工程を含むことを特徴とする請求項1に記載の蛍石結
晶の製造方法。
2. The fluorite according to claim 1, further comprising a step of analyzing an impurity concentration in a portion of the fluorite polycrystal, and judging the quality of the fluorite single crystal produced by the value. Stone crystal manufacturing method.
【請求項3】 ルツボ中融液の下端から蛍石単結晶を成
長させる工程と、それに引き続いて融液から蛍石多結晶
体を析出させる工程とを、ルツボの下降速度の変化によ
って行うことを特徴とする請求項1に記載の蛍石結晶の
製造方法。
3. The step of growing a fluorite single crystal from the lower end of the melt in the crucible and the subsequent step of precipitating a fluorite polycrystal from the melt are performed by changing the descending speed of the crucible. The method for producing a fluorite crystal according to claim 1, which is characterized in that.
【請求項4】 ルツボ中融液の下端から蛍石単結晶を成
長させる工程と、それに引き続いて融液から蛍石多結晶
体を析出させる工程とを、ヒーター電流の変化によって
行うことを特徴とする請求項1に記載の蛍石結晶の製造
方法。
4. A step of growing a fluorite single crystal from a lower end of a melt in a crucible and a step of subsequently depositing a fluorite polycrystal from the melt are performed by changing a heater current. The method for producing a fluorite crystal according to claim 1.
JP2002037043A 2002-02-14 2002-02-14 Method of manufacturing fluorite crystal Withdrawn JP2003238292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037043A JP2003238292A (en) 2002-02-14 2002-02-14 Method of manufacturing fluorite crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037043A JP2003238292A (en) 2002-02-14 2002-02-14 Method of manufacturing fluorite crystal

Publications (1)

Publication Number Publication Date
JP2003238292A true JP2003238292A (en) 2003-08-27

Family

ID=27778754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037043A Withdrawn JP2003238292A (en) 2002-02-14 2002-02-14 Method of manufacturing fluorite crystal

Country Status (1)

Country Link
JP (1) JP2003238292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016229A (en) * 2004-06-30 2006-01-19 Canon Inc Method and apparatus for manufacturing crystal, aligner, and device manufacturing method
WO2006027873A1 (en) * 2004-09-10 2006-03-16 Murata Manufacturing Co., Ltd. Thin film piezoelectric resonator
JP2006315915A (en) * 2005-05-13 2006-11-24 Canon Inc Optical component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016229A (en) * 2004-06-30 2006-01-19 Canon Inc Method and apparatus for manufacturing crystal, aligner, and device manufacturing method
JP4731844B2 (en) * 2004-06-30 2011-07-27 キヤノン株式会社 Crystal manufacturing method and apparatus
WO2006027873A1 (en) * 2004-09-10 2006-03-16 Murata Manufacturing Co., Ltd. Thin film piezoelectric resonator
JP2006315915A (en) * 2005-05-13 2006-11-24 Canon Inc Optical component

Similar Documents

Publication Publication Date Title
KR100247314B1 (en) Fluoride crystal, optical article and production method
JP2001354494A (en) Method for growing single crystal having large volume from calcium fluoride and use of the single crystal
US8333838B2 (en) Method for producing fluoride crystal
JP3697008B2 (en) Fluoride crystal and method for producing fluoride crystal lens
JP3969865B2 (en) Method for producing fluoride crystals
JP3475407B2 (en) Apparatus and method for producing fluoride crystal and crucible
JP2003342098A (en) Apparatus and method for producing fluoride crystal
JP2003238292A (en) Method of manufacturing fluorite crystal
JPH09255328A (en) Fluoride and optical system using the same and exposure device
JP2003137689A (en) Method of producing calcium fluoride single crystal having fracture resistance and its use
JPH10265296A (en) Production of fluorite single crystal
JP2003238152A (en) Method for making crystal
JPH09315815A (en) Fluorite and optical article using the same and exposing device for photolithography
JP2005001933A (en) Metal fluoride body and its manufacturing method
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JP3337605B2 (en) Magnesium-containing fluorite, optical system and exposure apparatus using the same
JP2003221297A (en) Method for producing calcium fluoride crystal
JPH10279378A (en) Production of crystal and apparatus for production therefor
JP4158252B2 (en) Fluorite single crystal, heat treatment method thereof, and method for producing fluorite single crystal material
JP4277595B2 (en) Fluoride crystal manufacturing method, calcium fluoride crystal and exposure apparatus
JPH1160382A (en) Fluorite single crystal and photolithographic device using the same
RU2108418C1 (en) Method for growing single crystals of lanthanum-gallium silicate
JP2004315255A (en) Method for manufacturing fluoride crystal, fluoride crystal, optical system, and optical lithography device
JP2003238293A (en) Fluorite, method of producing the same, and optical system and exposure apparatus using the fluorite
JPH07101800A (en) Production of i-iii-vi2 compound single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510