JPS61186300A - Poling of single crystal - Google Patents
Poling of single crystalInfo
- Publication number
- JPS61186300A JPS61186300A JP2562085A JP2562085A JPS61186300A JP S61186300 A JPS61186300 A JP S61186300A JP 2562085 A JP2562085 A JP 2562085A JP 2562085 A JP2562085 A JP 2562085A JP S61186300 A JPS61186300 A JP S61186300A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- treatment
- single crystal
- ingot
- poling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は例えば圧電振動子用単結晶の製造に係る単結晶
のポーリング方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a single crystal poling method for producing a single crystal for a piezoelectric vibrator, for example.
電気エネルギを機械エネルギに変換する圧電振動子は、
従来から水晶体の圧電性を利用する発振子あるいは共振
子があるが、近時は電気機械結合係数の大きいタンタル
酸すチューム(LiTaO3)やニオブ酸すチューム(
LiNbO3)等の圧電型結晶を切り出した振動子が官
用されている。Piezoelectric vibrators convert electrical energy into mechanical energy.
Conventionally, there have been oscillators or resonators that utilize the piezoelectricity of the crystalline lens, but recently tantalum oxide (LiTaO3) and niobium oxide (aluminium niobium), which have a large electromechanical coupling coefficient, have been used.
Vibrators cut from piezoelectric crystals such as LiNbO3) are in public use.
本発明は、 LiNbO3等単結晶の製造において。The present invention relates to the production of single crystals such as LiNbO3.
育成の結晶インゴット体に対して、固有の結晶軸を保持
するカットに先行する処理に係るインゴットの歪除去処
理(アニール)、並びに結晶軸方位の再配列処理(分極
処理、又はポーリング処理とも云う)についての−具体
策を示すものである。Ingot distortion removal treatment (annealing), which is a process that precedes cutting to maintain the unique crystal axis of the grown crystal ingot body, and treatment to rearrange the crystal axis orientation (also called polarization treatment or poling treatment) - It shows concrete measures regarding.
高周波るつぼ炉の電力制御等によって育成された例えば
直径8cm高さ15cmのLiNbO3単結晶インゴッ
トは、アニール、分極処理と、これに続いて所定厚さの
結晶片切り出しと該切り出しの断面研磨をなして振動素
体片とするウェーハ形成がされる。For example, a LiNbO3 single crystal ingot with a diameter of 8 cm and a height of 15 cm, grown by controlling the power of a high-frequency crucible furnace, is subjected to annealing and polarization treatment, followed by cutting out a crystal piece of a predetermined thickness and polishing the cross section of the cut out. Wafers are formed into vibrating element pieces.
第3図は、炉内における従来のポーリング方法を示す処
理容器の断面図である。FIG. 3 is a cross-sectional view of a processing container showing a conventional poling method in a furnace.
アルミナ(Al103 )からなる熱処理容器15内に
セットされた単結晶インゴット10は次の手順によりア
ニール処理とポーリング処理がされる。A single crystal ingot 10 set in a heat treatment container 15 made of alumina (Al103) is subjected to an annealing treatment and a poling treatment according to the following procedure.
(1) 1200°Cでのアニール処理(2)両端部の
切断加工、切断の端面11と12の平坦化加工
(3) 前記端面11と12にセラミック板13及び
分極処理のための白金電極14の装着
(4)炉温度1200°Cにおいて分極処理電源16に
より白金電極14間に電流路0.2Aを流す(単位面積
換算通電量=40μA / ct )。(1) Annealing treatment at 1200°C (2) Cutting of both ends and flattening of the cut end faces 11 and 12 (3) Ceramic plate 13 and platinum electrode 14 for polarization treatment on the end faces 11 and 12 (4) At a furnace temperature of 1200° C., a current path of 0.2 A is caused to flow between the platinum electrodes 14 by the polarization power source 16 (current flow amount in terms of unit area = 40 μA/ct).
斯様なアニール(1)処理乃至分極処理(4)は9例え
ばZ軸方向引上げ結晶育成炉の温度勾配の不均一。Such annealing (1) treatment or polarization treatment (4) may be caused by, for example, non-uniform temperature gradients in the Z-axis pulling crystal growth furnace.
及び引上げ速度の微細変動に結果して育成されたインゴ
ノIO内の結晶配列の乱れ等を補正する不可欠の手段で
ある。It is also an indispensable means for correcting the disorder of the crystal arrangement within the ingono-IO grown as a result of minute fluctuations in the pulling speed.
ところでアニール処理(1)、インゴット端面の平坦化
加工(2)、及び軸方位配列の分極処理(4)は工数的
に多くの手間がかかりポーリング作業の改善が要請され
ていた。However, the annealing process (1), the flattening process of the ingot end face (2), and the polarization process of the axial orientation arrangement (4) require a lot of time and effort, and there has been a demand for improvement in the poling process.
〔発明が解決しようとする問題点〕
前記要語にもとづき、インゴット体の歪除去のためのア
ニール処理と9分極処理とを同時処理することにより該
処理工程の筒易化をはかることである。[Problems to be Solved by the Invention] Based on the above-mentioned key points, an object of the present invention is to simultaneously perform an annealing treatment for removing strain on an ingot body and a 9-polarization treatment to facilitate the process.
前記の問題軸は、熱処理炉内におiする育成インゴット
結晶のポーリング処理に当り、単結晶微粉末を充填した
熱処理容器に前記育成インゴット結晶を埋設し、且つ一
定の結晶軸方向にそって白金電極を配置してなす本発明
のポーリング方法とすることにより解決される。The problem lies in the poling treatment of grown ingot crystals placed in a heat treatment furnace. This problem is solved by the poling method of the present invention, which is performed by arranging electrodes.
単結晶微粉末を充填した熱処理容器は育成インゴット結
晶体に対して、その装着が安定になされる。即ち、イン
ゴット端面の平坦加工が省かれると共に育成された結晶
軸の両端に装着する白金電極に対してもその固定が安定
になる。The heat treatment container filled with single crystal fine powder is stably attached to the growing ingot crystal body. That is, the flattening of the end faces of the ingot can be omitted, and the platinum electrodes attached to both ends of the grown crystal axis can be stably fixed.
斯くしてアニール並びにアニール後の分極処理が同じ熱
処理炉で継続して実施され、これにともない流れの生産
性が向上する。In this way, annealing and post-annealing polarization treatment are performed continuously in the same heat treatment furnace, thereby improving the productivity of the flow.
以下2本発明のポーリング処理実施例を図面に従って詳
細に説明する。Two embodiments of polling processing according to the present invention will be described below in detail with reference to the drawings.
第1図はポーリング処理容器中の単結晶装着方法を示す
断面図、第2図は本発明の他の実施例とする同装着方法
を示す断面図である。FIG. 1 is a sectional view showing a method for mounting a single crystal in a polling processing container, and FIG. 2 is a sectional view showing the same method for mounting a single crystal in another embodiment of the present invention.
図中、従来構成と同じ構成要素には同一の参照番号がイ
1げられ本発明の要旨が明確となる様顧慮しである。In the drawings, the same reference numerals are given to the same components as those in the conventional structure to make the gist of the present invention clear.
図示単結晶インゴット10は、材料組成比重量が正確に
制御され、また最適な育成速度で引き上げられた例えば
1.1Nb03の単結晶である。The illustrated single crystal ingot 10 is, for example, a 1.1Nb03 single crystal whose material composition ratio weight is accurately controlled and which is pulled at an optimal growth rate.
1、iNb○3インゴット10は、育成結晶と同じ結晶
微粉末5が充填された処理容器15に埋め込まれて装着
され、また育成の結晶軸8に対面しその上下端面には平
板状の白金電極6及び7が配設される。1. The iNb○3 ingot 10 is embedded and installed in a processing container 15 filled with the same crystal fine powder 5 as the grown crystal, and flat platinum electrodes are placed on the upper and lower end surfaces facing the crystal axis 8 for growth. 6 and 7 are arranged.
図はZ軸方向(矢印8)育成結晶体10のポーリング処
理時における白金電極14が配置された図である。The figure shows the arrangement of the platinum electrodes 14 during the poling process of the grown crystal 10 in the Z-axis direction (arrow 8).
電極6は、インゴット10の上端9が円錐状となってい
るためリング状成形の白金電極である。The electrode 6 is a ring-shaped platinum electrode because the upper end 9 of the ingot 10 is conical.
インゴット10は下方端が平坦と限るものでなく。The ingot 10 is not limited to having a flat lower end.
底面が曲面となることもありその場合、電極7側は平板
もしくは適宜曲面が形成された白金電極が装着される。The bottom surface may be a curved surface, and in that case, a flat plate or a platinum electrode with an appropriately curved surface is attached to the electrode 7 side.
かかる熱処理容器によれば、アニール処理と該アニール
後のポーリング処理が同じ炉内で継続的に行うことが出
来る
第2図(イ)図と(ロ)図は、共に第1図に示す直立姿
態でインゴット装着をなす場合と異なり。According to such a heat treatment container, annealing treatment and post-annealing poling treatment can be performed continuously in the same furnace. FIGS. 2A and 2B are both in the upright position shown in FIG. 1. Unlike when ingot mounting is done.
水平方向に装着する状態を示しY軸方向(矢印4)育成
の結晶体10に対するアニール処理ならびにポーリング
処理する白金電極2と3を配置した状態が示される。It shows a state in which the platinum electrodes 2 and 3 are placed in the horizontal direction and are used to perform annealing and poling on the crystal 10 grown in the Y-axis direction (arrow 4).
結晶インゴット10はY軸方向に対面して設けられるポ
ーリング処理電極2と3とともに、容器15内に充填の
LiNbO3微粉末5により安定に装着される。前記装
着が終った単結晶10は、育成後の歪除去のためのアニ
ール処理と結晶方位再配列のポーリング処理が同じ熱処
理炉で継続して実施されることとなる。The crystal ingot 10 is stably mounted in a container 15 with the LiNbO3 fine powder 5 filled therein, together with the poling electrodes 2 and 3 provided facing each other in the Y-axis direction. After the single crystal 10 has been mounted, an annealing treatment for removing strain after growth and a poling treatment for rearranging the crystal orientation are continuously performed in the same heat treatment furnace.
かくして、従来、育成インゴット結晶のアニール等の加
工が繁雑であったことが改善され生産工数の低減が図ら
れる。In this way, the conventionally complicated processing such as annealing of grown ingot crystals is improved, and the number of production steps can be reduced.
以−1−1説明したように本発明の単結晶ポーリング方
法によれば、実質的に育成後における結晶加二「処理が
大幅に短縮されることとなる。係る観点から1本発明の
ポーリング方法は生産性を高め。As explained below-1-1, according to the single crystal poling method of the present invention, the crystal addition process after growth is substantially shortened.From this point of view, the single crystal poling method of the present invention increases productivity.
従って圧電振動子の生産:lストを低減するに有効であ
る。Therefore, it is effective in reducing the production costs of piezoelectric vibrators.
第1図は本発明の熱処理容器中の単結晶装着方法を示す
断面図。
第2図の(イ)と(ロ)図は他の実施例とする?)【結
晶装着方法を示す断面図。
第3図は従来のポーリング処理容器中の単結晶装着方法
を示す断面図である。
図中14は育成結晶の主軸(Y軸)。
8は育成結晶の主軸(Z輔)。
5はLiNh03微粉末。
2.3,6.7及び14は白金電極。
及び10は育成結晶(インゴソ日である。
へ
cN(Y)
−「)−FIG. 1 is a sectional view showing a method for mounting a single crystal in a heat treatment container according to the present invention. Are figures (a) and (b) of Fig. 2 other embodiments? ) [Cross-sectional view showing the crystal mounting method. FIG. 3 is a sectional view showing a conventional method for mounting a single crystal in a polling processing container. In the figure, 14 is the main axis (Y-axis) of the grown crystal. 8 is the main axis of the growing crystal (Zsuke). 5 is LiNh03 fine powder. 2.3, 6.7 and 14 are platinum electrodes. and 10 are grown crystals (Ingoso day.)
Claims (1)
理に当り、単結晶微粉末を充填した熱処理容器に前記育
成インゴット結晶を埋設し、且つ一定の結晶軸方位にそ
って白金電極を配置してなすことを特徴とする単結晶の
ポーリング方法。The poling treatment of the grown ingot crystal in a heat treatment furnace is characterized by burying the grown ingot crystal in a heat treatment container filled with single crystal fine powder, and arranging platinum electrodes along a certain crystal axis direction. Single crystal poling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2562085A JPS61186300A (en) | 1985-02-13 | 1985-02-13 | Poling of single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2562085A JPS61186300A (en) | 1985-02-13 | 1985-02-13 | Poling of single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61186300A true JPS61186300A (en) | 1986-08-19 |
Family
ID=12170921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2562085A Pending JPS61186300A (en) | 1985-02-13 | 1985-02-13 | Poling of single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61186300A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002037697A (en) * | 2000-07-25 | 2002-02-06 | Mitsui Mining & Smelting Co Ltd | Method for producing optical material |
CN1324167C (en) * | 2003-04-08 | 2007-07-04 | 住友金属矿山株式会社 | Lithium tantanate substrate and its prepn. process |
-
1985
- 1985-02-13 JP JP2562085A patent/JPS61186300A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002037697A (en) * | 2000-07-25 | 2002-02-06 | Mitsui Mining & Smelting Co Ltd | Method for producing optical material |
JP4575561B2 (en) * | 2000-07-25 | 2010-11-04 | 三井金属鉱業株式会社 | Manufacturing method of optical material |
CN1324167C (en) * | 2003-04-08 | 2007-07-04 | 住友金属矿山株式会社 | Lithium tantanate substrate and its prepn. process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5156065B2 (en) | Piezoelectric single crystal element | |
WO2005035840A1 (en) | Piezoelectric single crystal, piezoelectric single crystal element and method for preparation thereof | |
WO2005109537A1 (en) | Piezoelectric single crystal element and method for fabricating the same | |
JP4568529B2 (en) | Piezoelectric single crystal element | |
CN111206282A (en) | Production method of 8-inch lithium niobate crystal | |
JP4508725B2 (en) | Piezoelectric single crystal element and manufacturing method thereof | |
JPS61186300A (en) | Poling of single crystal | |
JP4268111B2 (en) | Piezoelectric single crystal, piezoelectric single crystal element, manufacturing method thereof, and 1-3 composite piezoelectric element | |
JP3512480B2 (en) | Method for producing potassium niobate single crystal | |
US5127982A (en) | Polycrystal piezoelectric device and method of producing the same | |
JP2004509049A (en) | Single crystal of lead magnesium niobate-lead titanate | |
JP2019052066A (en) | Raising method of oxide single crystal | |
JP2818344B2 (en) | Method and apparatus for producing oxide single crystal | |
JP2000247793A (en) | Preparation of langacite type crystal | |
JP2002198762A (en) | Single crystal wafer and its manufacturing method | |
JPS6335500A (en) | Method for making single domain ferroelectric single crystal | |
JPH0367999B2 (en) | ||
JP2862742B2 (en) | Method for producing oxide single crystal | |
JP3115401B2 (en) | Poling method for LiNbO3 single crystal | |
EP0191671B1 (en) | A method for the poling treatment of a lithium tantalate single crystal | |
JPS6165422A (en) | Method of producing silicon crystal for solar battery | |
JP2007001775A (en) | Method for production of ferroelectric crystal | |
JP3132956B2 (en) | Method for producing oxide single crystal | |
JPH01103999A (en) | Formation of single domain in ferroelectric single crystal | |
JPH0472405B2 (en) |