JPS6335500A - Method for making single domain ferroelectric single crystal - Google Patents
Method for making single domain ferroelectric single crystalInfo
- Publication number
- JPS6335500A JPS6335500A JP18047586A JP18047586A JPS6335500A JP S6335500 A JPS6335500 A JP S6335500A JP 18047586 A JP18047586 A JP 18047586A JP 18047586 A JP18047586 A JP 18047586A JP S6335500 A JPS6335500 A JP S6335500A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- domain
- ferroelectric
- powder
- electrode plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims description 21
- 239000000843 powder Substances 0.000 claims abstract description 20
- 230000005684 electric field Effects 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 7
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 230000011218 segmentation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はリチウムニオベート(以下LiNb0゜と記す
)またはリチウムタンタレート(以下LiTag、と記
す)等の強誘電体単結晶の単一分域化方法に関するもの
である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a single domain of a ferroelectric single crystal such as lithium niobate (hereinafter referred to as LiNb0°) or lithium tantalate (hereinafter referred to as LiTag). This is related to the conversion method.
従来引上げ法によって得た強誘電体多分域結晶を単一分
域化する方法のうち、結晶体と電極との接合手段には次
の2つがある。すなわち(11結晶切断加工面にセラミ
ックスを介して貴金属電極板で対向させる。(2)結晶
表面に電極を接合する。(1)の方法においては、結晶
を引上げ後車−分域化前に方位切断の必要があり、前記
結晶内に熱歪または分極量が存在することに起因し、切
断時にクラックを生じ易い。また引上げ軸と単一分域化
方向が異なる場合には、上記切断時による切り取り損失
部分が多いため歩留が低下する。一方(2)の方法では
電極としてPt、Ag等の貴金属ペーストを使用してい
るが、単一分域化温度1150°Cの高温状態で電界を
印加するため、電極剤が前記結晶内に拡散し、クラック
その他の不都合な現象を惹起する。上記問題点を解決す
る手段として、引上げ後の強誘電体多分域結晶を例えば
LiNb○3結晶粉末内に埋め込み、この粉末内にPt
電極板を単一分域化する方向に挿入し、キューリー温度
以上の高温に加熱して、前記対向するpt電電板板直流
電圧を印加して徐冷する方法が開示されている(特開昭
57−140400号公報参照)。Among the methods for converting a ferroelectric multi-domain crystal obtained by the conventional pulling method into a single domain, there are the following two methods for joining the crystal and the electrode. In other words, (11) A precious metal electrode plate is placed opposite the cut surface of the crystal via ceramics. (2) An electrode is bonded to the crystal surface. In the method (1), after pulling the crystal, the orientation is It is necessary to cut the crystal, and cracks are likely to occur during cutting due to the presence of thermal strain or polarization within the crystal.Also, if the pulling axis and the direction of single segmentation are different, the The yield decreases because there are many parts that are cut off and lost.Method (2), on the other hand, uses noble metal paste such as Pt or Ag as the electrode, but it is difficult to apply an electric field at a high temperature of 1150°C. As a result, the electrode agent diffuses into the crystal, causing cracks and other undesirable phenomena.As a means of solving the above problem, the ferroelectric multi-domain crystal after being pulled is placed inside, for example, LiNb○3 crystal powder. Pt is embedded in this powder.
A method has been disclosed in which an electrode plate is inserted in the direction of forming a single region, heated to a high temperature higher than the Curie temperature, and then gradually cooled by applying a DC voltage to the opposing PT electric plates (Japanese Patent Application Laid-Open No. 57-140400).
上記方法によれば、 (1) as−grownの形状
のまま単一分域化ができると共に、(2)電極剤の拡散
等の問題がなく、高歩留を期待できるという利点がある
と記載されている。しかしながら、結晶体の表面は平坦
ではなく、必ず凹凸部が存在する。−万雷極板は一般に
平板状のものが使用されるのが一般的であるが、前記結
晶体の単一分域化処理に際して結晶体と電極板との距離
を適正に保持しないと、単一分域化処理が適正かつ円滑
に進行しないという問題点がある。According to the above method, it is stated that (1) it is possible to form a single region in the as-grown shape, and (2) there are no problems such as diffusion of the electrode material, and a high yield can be expected. has been done. However, the surface of the crystal is not flat, and there are always irregularities. - In general, a flat plate is used as a lightning electrode plate, but if the distance between the crystal and the electrode plate is not maintained properly when dividing the crystal into a single region, There is a problem in that the processing for dividing into one area does not proceed properly and smoothly.
本発明は上記問題点を解消し2強誘電体単結晶の最適単
一分域化方法を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide an optimal single domainization method for two ferroelectric single crystals.
上記従来の問題点解決のために1本発明では。 One aspect of the present invention is to solve the above-mentioned conventional problems.
強誘電体多分域結晶体を粉末内に全体若しくは単一分域
化する部分のみ埋め込み、この粉末内に。The entire ferroelectric multi-domain crystal is embedded within the powder, or only the single-domain portion is embedded within this powder.
前記多分域結晶体の電界印加方向に対向する部位に電極
板を挿入し、キューリー温度近傍において。An electrode plate is inserted into a portion of the multi-domain crystal body facing the direction of electric field application, and the temperature is near the Curie temperature.
前記電極板間に電界を印加し、以後徐冷することにより
前記多分域結晶体を単一分域化する方法において、前記
電極板と前記多分域結晶体との距離を1〜15mmとす
る。という技術的手段を採用したのである。In the method of forming the multi-domain crystal into a single domain by applying an electric field between the electrode plates and then slowly cooling the multi-domain crystal, the distance between the electrode plate and the multi-domain crystal is 1 to 15 mm. This technical method was adopted.
本発明において、単一分域化すべき結晶体と電極板との
距離が小さすぎると、結晶体と電極板との間に放電現象
が惹起して、クラックを発生させるため不都合である。In the present invention, if the distance between the crystal body to be made into a single region and the electrode plate is too small, a discharge phenomenon will occur between the crystal body and the electrode plate, which will cause cracks to occur, which is disadvantageous.
一方上記距離が大きすぎると結晶体を包囲する粉末に電
流が流れるか、若しくは結晶体と電極板との間に介在す
る粉末における電圧降下が大きすぎるため、結晶体に所
定の電圧が印加されず、単一分域化のための起電力が低
下するので不都合である。従って結晶体と電極板との距
離を1〜151III11.好ましくは5〜10mmと
した。On the other hand, if the above-mentioned distance is too large, current will flow through the powder surrounding the crystal, or the voltage drop in the powder interposed between the crystal and the electrode plate will be too large, resulting in the predetermined voltage not being applied to the crystal. , which is disadvantageous because the electromotive force for single segmentation is reduced. Therefore, the distance between the crystal and the electrode plate should be set between 1 and 151III11. Preferably it is 5 to 10 mm.
また結晶体と電極板との間に介在させるべき粉末として
は、単一分域化すべき結晶体と同一種類の結晶粉末は勿
論、異なる種類の結晶粉末であっても使用できると共に
、これらの2種以上の混合または複合、更にはこれらま
たは上記混合若しくは複合と他の結合材料との混合また
は複合であってもよい。要するに前記強誘電体多分域結
晶体のキューリー温度近傍で、この結晶体と反応若しく
は相互拡散せず、かつ結晶体と電極板との間で絶縁破壊
を起こすことなく結晶体に所定の電圧を印加させ得る粉
末であればよい。Furthermore, as the powder to be interposed between the crystal body and the electrode plate, it is possible to use not only the same type of crystal powder as the crystal body to be made into a single domain, but also crystal powder of a different type. It may be a mixture or composite of more than one species, or a mixture or composite of these or the above mixtures or composites with other binding materials. In short, a predetermined voltage is applied to the crystal near the Curie temperature of the multi-domain ferroelectric crystal without reacting with or interdiffusing with the crystal and without causing dielectric breakdown between the crystal and the electrode plate. Any powder that can be used will suffice.
上記の構成により1強誘電体多分域結晶体に対して、電
極板との間に放電現象を惹起させることなく、単一分域
化処理を円滑かつ的確に進行させ得るのである。With the above-mentioned configuration, it is possible to smoothly and accurately perform single-domain processing on one ferroelectric multi-domain crystal without causing a discharge phenomenon between it and the electrode plate.
第1図は本発明の実施例を示す華−分域化処理状態の説
明図、第2図は同温度および電圧と時間との関係を示す
図であり、第2図において温度は実線で、電圧は破線で
示しである。まず2軸引上げにより育成した直径90m
m長さ100mmの強誘電体9例えばLiNbO3単結
晶を育成炉(図示せず)から取り出した後、そのまま第
1図に示すようにアルミナ製のるつぼ1内に装入し1次
にこの結晶体2の周囲に1iNbo、の粉末3を充填す
る。なおこの粉末3内には、Pt製の電極板4を例えば
z軸方向に対向して配設する。そしてるつぼ1に結晶体
2を装入したまま、均熱電気炉(図示せず)に装入し、
1150°Cに加熱保持した状態で、電極板4.4間
に例えば20Vの直流電圧を印加し1次いで80°C/
時間の割合で徐冷する。すなわち第2図において、80
°C/時間の割合で昇温し、結晶体2の温度が40°C
に到達した時点において、破線で示すように1■の直流
電圧を印加し1次に結晶体2の温度が1150°Cに到
達した時刻t0から20■/時間の割合で印加電圧を漸
次上昇させ2時刻1.から20Vに保持する。時刻t1
から150分後の時刻t2から結晶体2の温度を降下さ
せ2時刻t1から12〜15時間後の時刻t3において
電圧の印加を解除し、t、lI’Jbo3単結晶の単一
分域化処理を終了する。FIG. 1 is an explanatory diagram of a state of flower segmentation processing showing an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between temperature, voltage, and time. In FIG. 2, temperature is indicated by a solid line; The voltage is indicated by the dashed line. First, a diameter of 90 m was grown using two-axis pulling.
After taking out a ferroelectric material 9, for example, a LiNbO3 single crystal with a length of 100 mm, from a growth furnace (not shown), it is directly charged into an alumina crucible 1 as shown in FIG. 2 is filled with 1 iNbo powder 3. Note that within this powder 3, electrode plates 4 made of Pt are disposed, for example, facing each other in the z-axis direction. Then, the crystal body 2 is charged into the crucible 1 and charged into a soaking electric furnace (not shown),
While heating and holding at 1150°C, a DC voltage of 20V, for example, is applied between the electrode plates 4 and 4, and the temperature is then heated to 80°C.
Cool slowly at the rate of time. That is, in Figure 2, 80
The temperature is increased at a rate of °C/hour until the temperature of crystal body 2 is 40 °C.
At the point in time, as shown by the broken line, a DC voltage of 1 cm was applied, and the applied voltage was gradually increased at a rate of 20 cm/hour from time t0 when the temperature of the crystal body 2 reached 1150 °C. 2 time 1. to 20V. Time t1
The temperature of the crystal body 2 is lowered from time t2, which is 150 minutes after t, and the voltage application is canceled at time t3, which is 12 to 15 hours after time t1. end.
表は上記単一分域化処理における結晶体2と電極板4と
の距離と歩留との関係を示すものである。The table shows the relationship between the distance between the crystal body 2 and the electrode plate 4 and the yield in the single segmentation process.
本実施例においては、LiNb0:+単結晶について記
述したが、 L i T @ 03単結晶およびこれ
以外の他の強誘電体単結晶についても同様である。In this example, the LiNb0:+ single crystal has been described, but the same applies to the LiT@03 single crystal and other ferroelectric single crystals.
また引上軸と単一分域化方向とが同一のものについて記
述したが1両者の方向が異なる場合でも作用は同一であ
る。また結晶体の周囲に充填する粉末はl、1Nbos
結晶粉末に限定せず、前記のような他の粉末材料が使用
できることは勿論である。Furthermore, although the case has been described in which the pulling axis and the single segmentation direction are the same, the effect is the same even if the two directions are different. Also, the powder packed around the crystal is l, 1Nbos
Of course, the material is not limited to crystalline powder, and other powder materials such as those mentioned above can be used.
更にまた単結晶の育成手段が2例えばゾーン・メルト法
等の他の手段による結晶体にも当然に使用できる。また
電極板の構成材料は、pt等の貴金属の他に1例えば導
電サイアロンのようなセラミックスを使用することがで
きる。Furthermore, other means for growing single crystals, such as the zone melt method, can of course be used. Further, as the constituent material of the electrode plate, in addition to noble metals such as PT, ceramics such as conductive sialon can be used.
本発明は以上記述のような構成および作用であるから、
結晶体の育成後そのままの状態で、しかも焼鈍工程を省
略した状態で、電掻剤の拡散、蒸発を伴わずに、高歩留
の強誘電体単結晶の単一分域化処理を行い得るという効
果がある。Since the present invention has the structure and operation as described above,
It is possible to carry out single-domain processing of high-yield ferroelectric single crystals without the diffusion or evaporation of electric scratching agents, in the same state after crystal growth and without the annealing process. There is an effect.
第1図は本発明の実施例を示す単一分域化処理状態の説
明図、第2図は同じく温度および電圧と時間との関係を
示す図である。FIG. 1 is an explanatory diagram of a single segmentation processing state showing an embodiment of the present invention, and FIG. 2 is a diagram similarly showing the relationship between temperature, voltage, and time.
Claims (5)
一分域化する部分のみ埋め込み、この粉末内に、前記多
分域結晶体の電界印加方向に対向する部位に電極板を挿
入し、キューリー温度近傍において、前記電極板間に電
界を印加し、以後徐冷することにより前記多分域結晶体
を単一分域化する方法において、前記電極板と前記多分
域結晶体との距離を1〜15mmとしたことを特徴とす
る強誘電体単結晶の単一分域化方法。(1) Embed the entire ferroelectric multi-domain crystal in powder or only the portion that is to be made into a single domain, and insert an electrode plate into the powder at a portion of the multi-domain crystal that faces the electric field application direction. , a method for converting the multi-domain crystal into a single domain by applying an electric field between the electrode plates near the Curie temperature and then gradually cooling the multi-domain crystal, in which the distance between the electrode plate and the multi-domain crystal is A method for dividing a ferroelectric single crystal into a single domain, characterized in that the thickness is 1 to 15 mm.
0mmである特許請求の範囲第1項記載の強誘電体単結
晶の単一分域化方法。(2) The distance between the electrode plate and the multi-domain crystal is 5 to 1.
1. A method for dividing a ferroelectric single crystal into a single domain according to claim 1, wherein the diameter is 0 mm.
タンタレートである特許請求の範囲第1項若しくは第2
項記載の強誘電体単結晶の単一分域化方法。(3) Claim 1 or 2 in which the ferroelectric material is lithium niobate or lithium tantalate.
A single domainization method for a ferroelectric single crystal as described in .
タレートの結晶粉末である特許請求の範囲第3項記載の
強誘電体単結晶の単一分域化方法。(4) A method for forming a ferroelectric single crystal into a single domain according to claim 3, wherein the powder is a crystalline powder of lithium niobate or lithium tantalate.
請求の範囲第1項ないし第4項何れかに記載の強誘電体
単結晶の単一分域化方法。(5) A method for forming a ferroelectric single crystal into a single domain according to any one of claims 1 to 4, wherein the material constituting the electrode plate is ceramic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18047586A JPS6335500A (en) | 1986-07-31 | 1986-07-31 | Method for making single domain ferroelectric single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18047586A JPS6335500A (en) | 1986-07-31 | 1986-07-31 | Method for making single domain ferroelectric single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6335500A true JPS6335500A (en) | 1988-02-16 |
Family
ID=16083868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18047586A Pending JPS6335500A (en) | 1986-07-31 | 1986-07-31 | Method for making single domain ferroelectric single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6335500A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6793810B1 (en) | 2000-09-29 | 2004-09-21 | Aoki Electric Ind. Co., Ltd. | Waste water treatment apparatus |
RU2485222C1 (en) * | 2011-11-15 | 2013-06-20 | Общество с ограниченной ответственностью "Лабфер" | Method of forming polydomain ferroelectric monocrystals with charged domain wall |
CN109576791A (en) * | 2018-12-07 | 2019-04-05 | 河南工程学院 | A kind of polarization method of near stoichiometric lithium tantalate wafer |
-
1986
- 1986-07-31 JP JP18047586A patent/JPS6335500A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6793810B1 (en) | 2000-09-29 | 2004-09-21 | Aoki Electric Ind. Co., Ltd. | Waste water treatment apparatus |
RU2485222C1 (en) * | 2011-11-15 | 2013-06-20 | Общество с ограниченной ответственностью "Лабфер" | Method of forming polydomain ferroelectric monocrystals with charged domain wall |
CN109576791A (en) * | 2018-12-07 | 2019-04-05 | 河南工程学院 | A kind of polarization method of near stoichiometric lithium tantalate wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6335500A (en) | Method for making single domain ferroelectric single crystal | |
JP3512480B2 (en) | Method for producing potassium niobate single crystal | |
JPS5895690A (en) | Preparation of single crystal | |
JPS6335499A (en) | Method for making single domain lithium tantalate single crystal | |
JP2818344B2 (en) | Method and apparatus for producing oxide single crystal | |
JPS5845194A (en) | Method for forming single domain of lithium niobate single crystal | |
JPS6335498A (en) | Method for making single domain lithium niobate single crystal | |
JP2007001775A (en) | Method for production of ferroelectric crystal | |
JP2862742B2 (en) | Method for producing oxide single crystal | |
JP2818342B2 (en) | Method for producing oxide single crystal | |
JPH06263598A (en) | Production of oxide powder for heat-treatment and heat-treatment of oxide single crystal | |
JP2843226B2 (en) | Heat treatment vessel and single crystal manufacturing equipment | |
JPS63218599A (en) | Method for subjecting lithium tantalate single crystal to single domain | |
JP3132956B2 (en) | Method for producing oxide single crystal | |
JPH0367999B2 (en) | ||
JPS61186300A (en) | Poling of single crystal | |
JP2002348195A (en) | Method of single domain treatment of potassium niobate single crystal | |
JPH0218395A (en) | Method for forming single domain in lithium niobate single crystal | |
JPH01103999A (en) | Formation of single domain in ferroelectric single crystal | |
JP2018199606A (en) | Unifying method of domain of ferroelectric crystal | |
JPS6335497A (en) | Method for making single domain ferroelectric single crystal | |
JPS5951156B2 (en) | Method for manufacturing single domain crystal | |
JPH07172979A (en) | Crystal growth method and device therefor | |
JPH0585897A (en) | Method for forming lithium niobate single crystal into single domain | |
JPH01172299A (en) | Polling method for lithium tantalate single crystal |