JPH01172299A - Polling method for lithium tantalate single crystal - Google Patents

Polling method for lithium tantalate single crystal

Info

Publication number
JPH01172299A
JPH01172299A JP62331425A JP33142587A JPH01172299A JP H01172299 A JPH01172299 A JP H01172299A JP 62331425 A JP62331425 A JP 62331425A JP 33142587 A JP33142587 A JP 33142587A JP H01172299 A JPH01172299 A JP H01172299A
Authority
JP
Japan
Prior art keywords
single crystal
powder
lithium tantalate
lithium
poling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62331425A
Other languages
Japanese (ja)
Inventor
Kenji Nagata
永田 憲治
Masayuki Sakai
雅之 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62331425A priority Critical patent/JPH01172299A/en
Publication of JPH01172299A publication Critical patent/JPH01172299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable polling at the temp. higher than a conventional method and to improve uniformity and reproducibility of polling by utilizing single crystal powder of lithium niobate or the sintered body of this powder as a medium and pinching lithium tantalate single crystal between a pair of platinum electrodes and subjecting this single crystal to polling treatment. CONSTITUTION:Lithium tantalate single crystal (1) is pinched between a pair of platinum electrodes 3, 3 while utilizing single crystal powder of lithium niobate or a sintered body of this powder as a medium (6) and polling voltage is impressed on the platinum electrodes 3, 3. In the above-mentioned method, it is utilized that lithium tantalate is made stable for lithium niobate and also lithium niobate is made electroconductive at the temp. not lower than about 650 deg.C.

Description

【発明の詳細な説明】 〔概要〕 圧電素子や弾性表面波フィルタ等の素子基板を採取する
タンタル酸リチウム単結晶のポーリング方法に関し、 ポーリングの均一性と再現性を高め、ポーリング時に発
生するクラックの低減を目的とし、ニオブ酸リチウム単
結晶の粉末または該粉末の焼結体を媒体として一対の白
金電極でタンタル酸リチウムの単結晶を挟み、該白金電
極にポーリング電圧を印加することを特徴とし構成する
[Detailed Description of the Invention] [Summary] Regarding the poling method of lithium tantalate single crystal for collecting element substrates such as piezoelectric elements and surface acoustic wave filters, the present invention improves the uniformity and reproducibility of poling and eliminates cracks that occur during poling. For the purpose of reduction, the lithium tantalate single crystal is sandwiched between a pair of platinum electrodes using a lithium niobate single crystal powder or a sintered body of the powder as a medium, and a poling voltage is applied to the platinum electrodes. do.

〔産業上の利用分野〕[Industrial application field]

本発明はタンタル酸リチウム(LiTaOs)の単結晶
、特に圧電素子や弾性表面波フィルタ等の素子基板を採
取するタンタル酸リチウム単結晶のポーリング方法の改
良に関する。
The present invention relates to an improvement in a method of poling a lithium tantalate (LiTaOs) single crystal, particularly a lithium tantalate single crystal for collecting element substrates such as piezoelectric elements and surface acoustic wave filters.

タンタル酸リチウムの単結晶、例えばチョクラルスキー
法で育成した単結晶(インゴット)は、薄く切断してウ
ェーハを作成するに先立って、前記育成時にできた内部
ひずみを除去するアニールを実施し、さらに分域を単一
化させるポーリング処理が施される。
A single crystal of lithium tantalate, for example, a single crystal (ingot) grown by the Czochralski method, is annealed to remove the internal strain created during the growth before being cut into thin pieces to create a wafer. Polling processing is performed to unify the domain.

〔従来の技術〕[Conventional technology]

第4図は育成されたタンタル酸リチウム単結晶の従来の
ポーリング方法を説明するための側面図であり、円筒形
状に育成された単結晶1は、結晶Z軸方向の対向円筒面
にそれぞれ導体ペースト2を塗布し、導体ペースト2を
介して一対の断面円弧形状の白金電極3で挟み、電極3
を直流電源4に接続する。
FIG. 4 is a side view for explaining the conventional poling method of a grown lithium tantalate single crystal, in which a single crystal 1 grown in a cylindrical shape is coated with conductive paste on opposing cylindrical surfaces in the Z-axis direction of the crystal. 2 is applied and sandwiched between a pair of platinum electrodes 3 having an arc-shaped cross section through the conductor paste 2.
Connect to DC power supply 4.

このような単結晶1、例えば直径3インチの単結晶lは
、650°C〜 700℃に加熱した雰囲気中で約4時
間、電極3に所定の直流電圧を印加しポーリングが行わ
れる。
Such a single crystal 1, for example, a single crystal 1 having a diameter of 3 inches, is polled by applying a predetermined DC voltage to the electrode 3 for about 4 hours in an atmosphere heated to 650°C to 700°C.

なお、図中の符号5は単結晶1を支承する磁器製の台、
符号6は単結晶1に搭載した電極3を押さえる磁気製の
蓋であり、一般に導体ペースト2は、白金パラジウムの
粉末を溶剤で練ったものが使用される。
Note that the reference numeral 5 in the figure is a porcelain stand that supports the single crystal 1;
Reference numeral 6 is a magnetic lid that holds down the electrode 3 mounted on the single crystal 1, and the conductive paste 2 is generally made by kneading platinum palladium powder with a solvent.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来のポーリング方法において、白金電極3の接続
媒体となる従来の導体ペースト2の溶媒は、650°C
以上で溶媒に含まれる有機物が炭化する等の変質が生じ
、その結果ポーリング電圧の分布が不均一となってポー
リングに°“むら”が生じるおよび、該炭化生成物によ
ってマイクロクラックが発生するようになると共に、ポ
ーリング特性の再現性が悪いという問題点があった。
In the conventional poling method, the solvent of the conventional conductive paste 2, which is the connection medium for the platinum electrode 3, is heated at 650°C.
As a result, the organic matter contained in the solvent undergoes deterioration such as carbonization, and as a result, the distribution of the poling voltage becomes uneven, resulting in uneven poling, and the carbonization products cause microcracks to occur. In addition, there was a problem that the reproducibility of the polling characteristics was poor.

なお、温度依存性を有する前記ポーリングに際し、65
0°Cという温度は再現性の不充分な処理条件、特に直
径が3インチ程度の単結晶1では中心部のポーリングが
行われ難くなり、その改善のため700℃程度の高温で
ポーリング処理すると前記溶媒の変質が顕著となり、ポ
ーリングを均一化するためポーリング電圧を高くすると
、そのことによって単結晶1に微細なりラックが発生し
、所要の素子基板を採取できる歩留まりが低減するよう
になる。
In addition, when performing the temperature-dependent polling, 65
A temperature of 0°C is a processing condition with insufficient reproducibility, especially in the case of a single crystal 1 with a diameter of about 3 inches, it becomes difficult to perform poling at the center. When the deterioration of the solvent becomes noticeable and the poling voltage is increased in order to make the poling uniform, fine racks are generated in the single crystal 1, and the yield at which the desired element substrates can be obtained is reduced.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の除去を目的とした本発明は、タンタル酸リ
チウムがニオブ酸リチウムに対し安定であり、かつ、ニ
オブ酸リチウムが650 ’C程度以上で導電性になる
ことを利用したものであり、第1図は本発明方法を説明
するための基本図である。
The present invention, which aims to eliminate the above problems, takes advantage of the fact that lithium tantalate is stable with respect to lithium niobate and that lithium niobate becomes conductive at temperatures above about 650'C. FIG. 1 is a basic diagram for explaining the method of the present invention.

第1図において本発明方法は、ニオブ酸リチウム単結晶
の粉末または該粉末の焼結体を媒体6として一対の白金
電極3でタンタル酸リチウムの単結晶1を挟み、直流電
源4より一対の電極3にポーリング電圧を印加すること
を特徴とするタンタル酸リチウム単結晶のポーリング方
法である。
In FIG. 1, the method of the present invention uses a lithium niobate single crystal powder or a sintered body of the powder as a medium 6, and a lithium tantalate single crystal 1 is sandwiched between a pair of platinum electrodes 3, and a DC power source 4 connects the pair of electrodes. This is a poling method for a lithium tantalate single crystal, which is characterized by applying a poling voltage to the lithium tantalate single crystal.

〔作用〕[Effect]

650°C程度以上で導電性になるニオブ酸リチラム単
結晶の粉末または該粉末の焼結体を媒体とし、一対の白
金電極でタンタル酸リチウムの単結晶を挟み、該単結晶
をポーリング処理することにより、従来方法より高温度
でのポーリングが可能となり均一性および再現性が向上
し、該単結晶にマイクロクランクが発生しないことで、
所要の素子基板の採取歩留まりが向上する。
Using a lithium niobate single crystal powder or a sintered body of the powder that becomes conductive at about 650°C or higher as a medium, a lithium tantalate single crystal is sandwiched between a pair of platinum electrodes, and the single crystal is subjected to a poling treatment. This enables poling at higher temperatures than conventional methods, improving uniformity and reproducibility, and eliminating the occurrence of micro-cranks in the single crystal.
The yield of required element substrates is improved.

〔実施例〕〔Example〕

以下に、図面を用いて本発明方法の実施例を説明する。 Examples of the method of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例を説明するための断面図、第
3図は本発明の他の実施例を説明するための側面図であ
る。
FIG. 2 is a sectional view for explaining one embodiment of the present invention, and FIG. 3 is a side view for explaining another embodiment of the present invention.

アルミナ坩堝とニオブ酸リチウム単結晶の粉末を利用し
、前出の第4図と共通部分に同一符号を使用した第2図
において、アルミナ坩堝11の底にニオブ酸リチウム単
結晶の粉末12を、例えば2c+++の厚さに敷き詰め
、その上にタンタル酸リチウムの単結晶1と、単結晶1
から適宜量だけ離れ単結晶1のZ軸方向に対向する一対
の白金電極3とを直立させたのち、単結晶1と白金電極
3との間にはニオブ酸リチウム単結晶の粉末13を充填
し、単結晶lと坩堝11との間および白金電極3と坩堝
11との間にニオブ酸リチウム単結晶の粉末(媒体)1
4を充填する。
In FIG. 2, which utilizes an alumina crucible and lithium niobate single crystal powder, and uses the same reference numerals for the same parts as in FIG. For example, it is spread to a thickness of 2c+++, and on top of that is lithium tantalate single crystal 1 and single crystal 1.
A pair of platinum electrodes 3 facing each other in the Z-axis direction of the single crystal 1 are stood upright by an appropriate distance from the lithium niobate single crystal powder 13 between the single crystal 1 and the platinum electrode 3. , lithium niobate single crystal powder (medium) 1 between the single crystal 1 and the crucible 11 and between the platinum electrode 3 and the crucible 11
Fill 4.

そこで、一対の白金電極3を直流電源4に接続し、例え
ば1時間に100’C程度の割合で850°Cまで加熱
し単結晶1に従来と同じポーリング電圧を印加しながら
1時間保持したのち、1時間に75°C程度の割合で徐
冷し、単結晶1のポーリングが完了する。
Therefore, a pair of platinum electrodes 3 are connected to a DC power source 4, heated to 850°C at a rate of, for example, 100'C per hour, and held for 1 hour while applying the same poling voltage as before to the single crystal 1. , the single crystal 1 is slowly cooled at a rate of about 75° C. per hour, and the poling of the single crystal 1 is completed.

かかるポーリング処理において、650°C以上で導電
性となるニオブ酸リチウム単結晶の粉末12゜13、1
4は、850 ’Cの高温でも組成的に安定であるため
単結晶1にはクラックが発生せず、単結晶1の全体に渡
り従来より均一なポーリングが行われるようになる。
In this poling process, lithium niobate single crystal powder 12°13,1 which becomes conductive at 650°C or higher is used.
4 is compositionally stable even at a high temperature of 850'C, so no cracks occur in the single crystal 1, and poling is performed more uniformly over the entire single crystal 1 than in the past.

なお、第2図においてポーリング電流が流れる粉末14
は、該電流の流れを良くするため搗き固め、粉末13よ
り高密度にすることが望ましく、ニオブ酸リチウム単結
晶の粉末14に替え、理想として高融点の良導電材料例
えば白金の粉末を使用する方が優れるが、かかる材料は
極めて高価であり実用的でない。
In addition, in FIG. 2, the powder 14 through which the poling current flows
In order to improve the current flow, it is preferable to pound and harden the powder to make it denser than the powder 13. Instead of the lithium niobate single crystal powder 14, ideally, a highly conductive material with a high melting point, such as platinum powder, is used. However, such materials are extremely expensive and impractical.

ニオブ酸リチウム単結晶の粉末の焼結体を利用し、前出
図と共通部分に同一符号を使用した第3図において、タ
ンタル酸リチウムの単結晶1はオリエントフラット1a
を形成し、上向きにしたオリエントフラット1aには、
ニオブ酸リチウム単結晶の粉末を焼結し均一厚さの板状
に形成した焼結体21を搭載し、前出の白金電極3の一
方に相当する平板状の白金電極31を焼結体21の上に
搭載し、白金電極3の上に板状の磁器製の蓋23を搭載
する。
In Fig. 3, which utilizes a sintered body of lithium niobate single crystal powder and uses the same reference numerals for parts common to the previous figure, the lithium tantalate single crystal 1 is orient flat 1a.
In the orient flat 1a which forms and faces upward,
A sintered body 21 formed by sintering lithium niobate single crystal powder and formed into a plate shape of uniform thickness is mounted, and a flat platinum electrode 31 corresponding to one of the platinum electrodes 3 described above is attached to the sintered body 21. A plate-shaped porcelain lid 23 is mounted on the platinum electrode 3.

単結晶1の支持用である板状の磁器製の台24には、前
出の白金電極3の他方に相当する平板状の白金電極31
を搭載し、その上にニオブ酸リチウム単結晶の粉末の焼
結し上面が単結晶lの円筒面の接触する円筒面に形成し
た焼結体22を搭載し、焼結体22の上に単結晶lを搭
載する。
A plate-shaped porcelain base 24 for supporting the single crystal 1 has a plate-shaped platinum electrode 31 corresponding to the other platinum electrode 3 described above.
A sintered body 22 of sintered lithium niobate single crystal powder is mounted on the sintered body 22, the upper surface of which is formed into a cylindrical surface in contact with the cylindrical surface of the single crystal L. Load crystal l.

そこで、一対の白金電極31を直流電源4に接続し、例
えば1時間に100″C程度の割合で850°Cまで加
熱し単結晶1に従来と同じポーリング電圧を印加しなが
ら1時間保持口たのち、1時間に75℃程度の割合で徐
冷し、単結晶lのポーリングが完了する。
Therefore, the pair of platinum electrodes 31 are connected to the DC power supply 4, heated to 850°C at a rate of, for example, 100''C per hour, and kept in the holding chamber for 1 hour while applying the same poling voltage as before to the single crystal 1. Thereafter, it is slowly cooled at a rate of about 75° C. per hour, and the poling of the single crystal I is completed.

かかるポーリング処理において、650℃以上で導電性
となるニオブ酸リチウム単結晶の粉末を焼結した焼結体
21および22は、850°Cの高温でも組成的に安定
であるため単結晶1にはクラックが発生せず、単結晶1
の全体に渡り従来より均一なポーリングが行われるよう
になる。
In this poling process, the sintered bodies 21 and 22 obtained by sintering the lithium niobate single crystal powder that becomes conductive at 650°C or higher are compositionally stable even at a high temperature of 850°C, so the single crystal 1 is No cracks, single crystal 1
Polling will now be performed more uniformly across the entire area than before.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、650 ’C程度以上で
導電性になるニオブ酸リチウム単結晶の粉末または該粉
末の焼結体を媒体として利用し、タンタル酸リチウムの
単結晶をポーリングすることにより、従来方法より高温
度でのポーリングが可能となり均一性および再現性が向
上し、マイクロクラックの発生をなくし得た結果、該単
結晶から採取する圧電素子等の基板の歩留まりが向上し
、かつ、該素子等の性能を安定にした効果がある。
As explained above, the present invention utilizes a lithium niobate single crystal powder or a sintered body of the powder that becomes conductive at temperatures above about 650'C as a medium, and polls a lithium tantalate single crystal. , it is possible to perform poling at a higher temperature than the conventional method, improving uniformity and reproducibility, and eliminating the occurrence of microcracks, resulting in an improvement in the yield of substrates such as piezoelectric elements collected from the single crystal, and This has the effect of stabilizing the performance of the element, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するための基本図、第2図は
本発明の一実施例を説明するための断面図、 第3図は本発明の他・の実施例を説明するための側面図
、 第4図はタンタル酸リチウム単結晶の従来のポーリング
方法を説明するための側面図、である。 図中において、 1はタンタル酸リチウムの単結晶、 1aはオリエントフラット、 3.31は白金電極、 4は直流電源、 6は媒体、 11はアルミナ坩堝、 12、13はニオブ酸リチウム単結晶の粉末、14はニ
オブ酸リチウム単結晶の粉末(媒体)、 21.22はニオブ酸リチウム単結晶の粉末の焼結体(
媒体)、 を示す。 f′完・竺〜シー1否るr:Ah (7)’に勢図早 
Z (8)
Figure 1 is a basic diagram for explaining the method of the present invention, Figure 2 is a sectional view for explaining one embodiment of the present invention, and Figure 3 is a diagram for explaining another embodiment of the present invention. Side View FIG. 4 is a side view for explaining the conventional poling method of lithium tantalate single crystal. In the figure, 1 is a lithium tantalate single crystal, 1a is an orient flat, 3.31 is a platinum electrode, 4 is a DC power supply, 6 is a medium, 11 is an alumina crucible, 12 and 13 are lithium niobate single crystal powder , 14 is a lithium niobate single crystal powder (medium), 21.22 is a sintered body of lithium niobate single crystal powder (
medium), indicates. f′ Complete・纺~Shi 1 Neru r: Ah (7)′ Seizu Haya
Z (8)

Claims (1)

【特許請求の範囲】 (1)ニオブ酸リチウム単結晶の粉末または該粉末の焼
結体を媒体(6)として一対の白金電極(3,31)で
タンタル酸リチウムの単結晶(1)を挟み、該白金電極
(3,31)にポーリング電圧を印加することを特徴と
するタンタル酸リチウム単結晶のポーリング方法。 (2)アルミナにてなる坩堝(11)の底部にニオブ酸
リチウム単結晶の第1の粉末(12)を敷き詰め、該粉
末(12)の上に前記タンタル酸リチウムの単結晶(1
)と該単結晶(1)に対向する前記一対の白金電極(3
)とを直立せしめ、該単結晶(1)と該白金電極(3)
との間にニオブ酸リチウム単結晶の粉末(14)にてな
る前記媒体(6)を充填し、該坩堝(11)と該単結晶
(1)および該白金電極(3)との間にニオブ酸リチウ
ム単結晶の第2の粉末(13)を充填したのち、前記ポ
ーリング電圧を印加することを特徴とする前記特許請求
の範囲第1項記載のタンタル酸リチウム単結晶のポーリ
ング方法。(3)前記ニオブ酸リチウム単結晶(1)と
前記白金電極(3)との間のに充填した前記ニオブ酸リ
チウム単結晶の粉末(14)を搗き固めて前記媒体(6
)とすることを特徴とする前記特許請求の範囲第2項記
載のタンタル酸リチウム単結晶のポーリング方法。 (4)前記媒体(6)がニオブ酸リチウム単結晶の粉末
を焼結した一対の焼結体(21,22)であり、前記タ
ンタル酸リチウムの単結晶(1)にオリエントフラット
(1a)を形成し、該オリエントフラット(1a)に接
触する一方の該焼結体(21)をほぼ一定厚さの板状に
形成し、該オリエントフラット(1a)に対向する該タ
ンタル酸リチウム単結晶(1)の円筒面に接触する他方
の該焼結体(22)を該円筒面に沿った円筒面を有する
板状に形成し、該一対の焼結体(21,22)を介して
前記一対の白金電極(31)が該タンタル酸リチウムの
単結晶(1)を挟み、該白金電極(31)に前記ポーリ
ング電圧を印加することを特徴とする前記特許請求の範
囲第1項記載のタンタル酸リチウム単結晶のポーリング
方法。
[Claims] (1) A single crystal of lithium tantalate (1) is sandwiched between a pair of platinum electrodes (3, 31) using a lithium niobate single crystal powder or a sintered body of the powder as a medium (6). A method for poling a lithium tantalate single crystal, comprising applying a poling voltage to the platinum electrodes (3, 31). (2) Spread the first powder (12) of lithium niobate single crystal on the bottom of the crucible (11) made of alumina, and place the first powder (12) of the lithium tantalate single crystal (12) on top of the powder (12).
) and the pair of platinum electrodes (3) facing the single crystal (1).
) are made to stand upright, and the single crystal (1) and the platinum electrode (3)
The medium (6) made of lithium niobate single crystal powder (14) is filled between the crucible (11), the single crystal (1) and the platinum electrode (3). 2. The method of poling a lithium tantalate single crystal according to claim 1, wherein the poling voltage is applied after filling the second powder (13) of the lithium tantalate single crystal. (3) The powder (14) of the lithium niobate single crystal filled between the lithium niobate single crystal (1) and the platinum electrode (3) is pounded and solidified to form the medium (6).
) A method for poling a lithium tantalate single crystal according to claim 2. (4) The medium (6) is a pair of sintered bodies (21, 22) obtained by sintering lithium niobate single crystal powder, and the orient flat (1a) is attached to the lithium tantalate single crystal (1). One of the sintered bodies (21) in contact with the orient flat (1a) is formed into a plate shape having a substantially constant thickness, and the lithium tantalate single crystal (1) facing the orient flat (1a) is ) is formed into a plate shape having a cylindrical surface along the cylindrical surface, and the pair of sintered bodies (21, 22) are in contact with Lithium tantalate according to claim 1, characterized in that platinum electrodes (31) sandwich the single crystal (1) of lithium tantalate, and the poling voltage is applied to the platinum electrodes (31). Single crystal polling method.
JP62331425A 1987-12-26 1987-12-26 Polling method for lithium tantalate single crystal Pending JPH01172299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62331425A JPH01172299A (en) 1987-12-26 1987-12-26 Polling method for lithium tantalate single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331425A JPH01172299A (en) 1987-12-26 1987-12-26 Polling method for lithium tantalate single crystal

Publications (1)

Publication Number Publication Date
JPH01172299A true JPH01172299A (en) 1989-07-07

Family

ID=18243524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331425A Pending JPH01172299A (en) 1987-12-26 1987-12-26 Polling method for lithium tantalate single crystal

Country Status (1)

Country Link
JP (1) JPH01172299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037697A (en) * 2000-07-25 2002-02-06 Mitsui Mining & Smelting Co Ltd Method for producing optical material
KR100482512B1 (en) * 2002-09-06 2005-04-14 한국과학기술원 Fabrication of single domain KNbO3 single crystal
CN114318539A (en) * 2022-01-04 2022-04-12 江西匀晶光电技术有限公司 Large-size X-axis or Y-axis magnesium-doped lithium niobate single crystal polarization device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037697A (en) * 2000-07-25 2002-02-06 Mitsui Mining & Smelting Co Ltd Method for producing optical material
JP4575561B2 (en) * 2000-07-25 2010-11-04 三井金属鉱業株式会社 Manufacturing method of optical material
KR100482512B1 (en) * 2002-09-06 2005-04-14 한국과학기술원 Fabrication of single domain KNbO3 single crystal
CN114318539A (en) * 2022-01-04 2022-04-12 江西匀晶光电技术有限公司 Large-size X-axis or Y-axis magnesium-doped lithium niobate single crystal polarization device and method
CN114318539B (en) * 2022-01-04 2023-01-10 江西匀晶光电技术有限公司 Large-size X-axis or Y-axis magnesium-doped lithium niobate single crystal polarization device and method

Similar Documents

Publication Publication Date Title
JPH01172299A (en) Polling method for lithium tantalate single crystal
US5477807A (en) Process for producing single crystal of potassium niobate
CN1332078C (en) Polarization method for lithium niobate
JPS5895690A (en) Preparation of single crystal
JPH0367999B2 (en)
WO2004030046A1 (en) Method of producing lithium tantalate substrate for surface acoustic wave element
US4255228A (en) Method of growing quartz
JP2502608B2 (en) Method for producing single-domain lithium tantalate single crystal
JPS5845194A (en) Method for forming single domain of lithium niobate single crystal
JPS6335500A (en) Method for making single domain ferroelectric single crystal
JP2818344B2 (en) Method and apparatus for producing oxide single crystal
JPH01100100A (en) Single domain of oxide single crystal
Reid et al. Surface roughness effects at lithium silicate glass/blocking metal interfaces
JP2862742B2 (en) Method for producing oxide single crystal
JP6999498B2 (en) Crystal manufacturing method and conductivity control method
JPH04285025A (en) Method for rendering single domain to piezoelectric single crystal
JP2022007556A (en) Method for forming oxide single crystal into single domain
EP0191671B1 (en) A method for the poling treatment of a lithium tantalate single crystal
JPS63218599A (en) Method for subjecting lithium tantalate single crystal to single domain
JPH01103999A (en) Formation of single domain in ferroelectric single crystal
JPS62154406A (en) Single isolation of ferroelectric single crystal
JPS61155298A (en) Transformation of lithium tantalate single crystal to single zone
JPS61155300A (en) Transformation of lithium tantalate single crystal to single zone
JPS5951156B2 (en) Method for manufacturing single domain crystal
JP4504540B2 (en) Ultrasonic vibrator and manufacturing method thereof