JPS6335499A - Method for making single domain lithium tantalate single crystal - Google Patents
Method for making single domain lithium tantalate single crystalInfo
- Publication number
- JPS6335499A JPS6335499A JP18047486A JP18047486A JPS6335499A JP S6335499 A JPS6335499 A JP S6335499A JP 18047486 A JP18047486 A JP 18047486A JP 18047486 A JP18047486 A JP 18047486A JP S6335499 A JPS6335499 A JP S6335499A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- powder
- single domain
- lithium tantalate
- domain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 49
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title claims description 20
- 239000000843 powder Substances 0.000 claims abstract description 30
- 230000005684 electric field Effects 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 229910012463 LiTaO3 Inorganic materials 0.000 abstract description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000000470 constituent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- -1 conductive sialon Chemical compound 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000013316 zoning Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はリチウムタンタレート(以下LiTaO3と記
す)単結晶の単一分域化方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for dividing lithium tantalate (hereinafter referred to as LiTaO3) single crystal into a single domain.
従来引上げ法によって得たLiTa0+多分域結晶を単
一分域化する方法のうち、結晶体と電極との接合手段に
は次の2つがある。すなわち(1)結晶切断加工面にセ
ラミックスを介して貴金属電橋板で対向させる。(2)
結晶表面に電極を接合する。Among the methods for converting the LiTa0+ multi-domain crystal obtained by the conventional pulling method into a single domain, there are the following two methods for joining the crystal and the electrode. That is, (1) a noble metal electric bridge plate is placed opposite to the cut surface of the crystal with a ceramic interposed therebetween. (2)
Bond an electrode to the crystal surface.
(1)の方法においては、結晶を引上げ後車−分域化前
に方位切断の必要があり、前記結晶内に熱歪または分極
歪が存在することに起因し、切断時にクラックを生じ易
い。また引上げ軸と単一分域化方向が異なる場合には、
上記切断時による切り取り損失部分が多いため歩留が低
下する。一方(2)の方法では電極としてPt、Ag等
の貴金属ペーストを使用しているが、単一分域化温度1
)50°Cの高温状態で電界を印加するため、電極剤が
前記結晶内に拡散し、クランクその他の不都合な現象を
惹起する。上記問題点を解決する手段として、引上げ後
のLiTaO3多分域結晶をLiTa0.結晶粉末内に
埋め込み、この粉末内にpt電極板を単一分域化する方
向に挿入し、キューリー温度以上の高温に加熱して、前
記対向するPt電極板に直流電圧を印加して徐冷する方
法が開示されている(特開昭57−140400号公報
参照)。In method (1), it is necessary to cut the crystal in its orientation after pulling it and before dividing it into segments, and cracks are likely to occur during cutting due to the presence of thermal strain or polarization strain within the crystal. In addition, if the pulling axis and single segmentation direction are different,
Since there are many parts that are lost due to the above-mentioned cutting, the yield is reduced. On the other hand, in method (2), a noble metal paste such as Pt or Ag is used as an electrode, but the single zone temperature 1
) Since the electric field is applied at a high temperature of 50° C., the electrode agent diffuses into the crystal, causing cranking and other undesirable phenomena. As a means to solve the above-mentioned problems, the LiTa0. Embedded in crystal powder, PT electrode plates are inserted into this powder in the direction of forming a single region, heated to a high temperature above the Curie temperature, and then slowly cooled by applying a DC voltage to the opposing Pt electrode plates. A method has been disclosed (see Japanese Patent Laid-Open No. 140400/1983).
上記改良方法によれば、 (1)as−grownの形
状のまま単一分域化ができると共に、(2)電極剤の拡
散等の問題がな(、高歩留を期待できるという利点があ
ると記載されている。しかしながら、結晶体を埋め込む
べき粉末についての特性については何等の開示がないの
みならず、電気絶縁体から電気良導体まですべての材料
を包含するかの如き記載があり、実際作業への適用が困
難であるという問題点がある。According to the above-mentioned improved method, (1) it is possible to form a single domain with the as-grown shape, and (2) there are no problems such as diffusion of electrode material (and high yield can be expected). However, not only is there no disclosure regarding the characteristics of the powder in which the crystal is to be embedded, but there is also a description that seems to include all materials from electrical insulators to good electrical conductors, making it difficult to actually work. The problem is that it is difficult to apply.
本発明は上記の問題点を解消するため、前記結晶を埋め
込むべき粉末材料に必要な特性を2種々の実験の結果見
出したものであり、l、1TaO+単結晶の最適単一分
域化方法を提供することを目的とする。In order to solve the above-mentioned problems, the present invention has discovered the characteristics necessary for the powder material in which the crystals are to be embedded as a result of two various experiments, and has developed an optimal single domainization method for l,1TaO+ single crystals. The purpose is to provide.
上記従来の問題点解決のために9本発明では。 In order to solve the above-mentioned conventional problems, the present invention has nine aspects.
A、リチウムタンタレート多分域結晶体を粉末内に全体
若しくは単一分域化する部分のみ埋め込み、この粉末内
に、前記多分域結晶体の電界印加方向に対向する部位に
電極板を挿入し、キューリー温度近傍において前記電極
板間に電界を印加し、以後徐冷することにより前記多分
域結晶体を単一分域化する方法において。A. embedding the entire lithium tantalate multi-domain crystal in powder or only the portion to be made into a single domain; inserting an electrode plate into the powder at a portion of the multi-domain crystal that faces the electric field application direction; In a method for converting the multi-domain crystal into a single domain by applying an electric field between the electrode plates near the Curie temperature and then gradually cooling the body.
B、前記粉末を前記結晶体と前記キューリー温度近傍で
非反応かつ非拡散である材料で構成する。B. The powder is composed of a material that does not react with the crystal and is non-diffusive near the Curie temperature.
C0前記粉末の前記キューリー温度近傍における電気抵
抗率を10’〜10’Ω・Cl1lとする。The electrical resistivity of the C0 powder near the Curie temperature is 10' to 10'Ω·Cl11.
という技術的手段を採用したのである。なおLiTag
、のキューリー温度は、配合組成、育成条件によって異
なるが600°C近傍にある。This technical method was adopted. Furthermore, LiTag
The Curie temperature of , which varies depending on the composition and growth conditions, is around 600°C.
本発明において、結晶体の全部若しくは単一分域化すべ
き一部を包囲若しくは埋め込む粉末のキューリー温度近
傍における電気抵抗率が103Ω・cm未満、すなわち
電気伝導度の比較的高い材料を使用すると、粉末にのみ
電流が流れてしまい。In the present invention, if the electrical resistivity of the powder surrounding or embedding all or a part of the crystal to be made into a single domain is less than 10 3 Ω·cm near the Curie temperature, that is, a material with relatively high electrical conductivity is used, the powder Current flows only in the
単一分域化すべき結晶体に電流が流れなくなるため不都
合である。一方電気抵抗率が10’Ω・cmを越えると
、粉末部分における電圧降下が大きすぎるため、結晶体
に所定の電圧が印加されず、単一分域化のための付勢力
が低下するため好ましくない。This is inconvenient because current no longer flows through the crystal to be made into a single domain. On the other hand, if the electrical resistivity exceeds 10'Ω・cm, the voltage drop in the powder part will be too large, so the prescribed voltage will not be applied to the crystal, and the biasing force for forming a single domain will decrease, which is preferable. do not have.
上記の粉末構成材料としては、下記のようなものが使用
できると共に、これらの2種以上の混合または複合、更
にはこれらまたは上記混合若しくは複合と他の結合材料
との混合若しくは複合であってもよい。ただし、複合系
の場合においては。As the above-mentioned powder constituent materials, the following can be used, as well as mixtures or composites of two or more of these, or even mixtures or composites of these or the above mixtures or composites and other binding materials. good. However, in the case of a complex system.
夫々の粉末構成材料と結晶材料とが相互に化学反応を起
こす組合わせは当然に回避しなければならない。Naturally, combinations in which the respective powder constituent materials and crystalline materials cause chemical reactions with each other must be avoided.
粉末構成材料としては1例えばニオブ酸リチウム、タン
タル酸リチウム、導電サイアロン、ジルコニア、チタニ
ア等で、高温度における電気抵抗率を適切に調節された
ものを使用することができる。As the powder constituent material, for example, lithium niobate, lithium tantalate, conductive sialon, zirconia, titania, etc., whose electrical resistivity at high temperatures is appropriately adjusted, can be used.
上に己の構成により、 L i Ta 03多分域結
晶体に対しては、電極または結晶体の全部若しくは一部
の周囲を包囲する粉末との間に反応若しくは拡散を惹起
することなく、所定の電界印加によりjl−一分域化が
行われるのである。Due to its configuration, the L i Ta 03 multi-domain crystal can be used for a given amount of energy without causing any reaction or diffusion between the electrodes or the powder surrounding all or part of the crystal. By applying an electric field, jl-segmentation is performed.
(実施例〕
第1図は本発明の実施例を示す単一分域化処理状態の説
明図、第2図は同温度および電圧と時間との関係を示す
図であり、第2図において温度は実線で、電圧は破線で
示しである。まず2軸引上げにより育成した直径60m
+m長さ100mmのLiTag、単結晶を育成炉(図
示せず)から取り出した後、そのまま第1図に示すよう
にアルミナ製のるつぼ1内に装入し1次にこの結晶体2
の周囲に電気抵抗率が500Ω・cmの[,1Tao:
+の粉末3を充填する。なおこの粉末3内には、Pt製
の電極板4を例えばz軸方向に対向して配設する。(Example) Fig. 1 is an explanatory diagram of a single segmentation processing state showing an embodiment of the present invention, and Fig. 2 is a diagram showing the relationship between temperature, voltage, and time. is shown by a solid line, and the voltage is shown by a broken line.First, the diameter of 60m grown by biaxial pulling
After taking out a LiTag single crystal with a length of 100 mm from the growth furnace (not shown), it is directly charged into an alumina crucible 1 as shown in FIG.
around [,1Tao:
Fill with + powder 3. Note that within this powder 3, electrode plates 4 made of Pt are disposed, for example, facing each other in the z-axis direction.
そしてるつぼ1に結晶体2を装入したまま、均熱電気炉
(図示せず)に装入し、750°Cに加熱保持した状態
で、電極板4.4間に例えば200■の直流電圧を印加
し2次いで80°C/時間の割合で徐冷する。すなわち
第2図において、80”C/時間の割合で昇温し、結晶
体2の温度が60″Cに到達した時点において、破線で
示すようにIOVの直流電圧を印加し1次に結晶体2の
温度が750”Cに到達した時刻t0から200V/時
間の割合で印加電圧を漸次上昇させ1時刻t1から20
0■に保持する。時刻1.から300分後の時刻t2か
ら結晶体2の温度を降下させ。Then, the crucible 1 with the crystal 2 charged therein is charged into a soaking electric furnace (not shown), and while heated and maintained at 750°C, a DC voltage of, for example, 200 μ is applied between the electrode plates 4 and 4. 2 and then slowly cooled at a rate of 80°C/hour. That is, in FIG. 2, the temperature is increased at a rate of 80"C/hour, and when the temperature of the crystal 2 reaches 60"C, a DC voltage of IOV is applied as shown by the broken line, and the primary crystal is From time t0 when the temperature of 2 reached 750"C, the applied voltage was gradually increased at a rate of 200 V/hour, and from time t1 to 20"
Hold at 0■. Time 1. The temperature of the crystal body 2 is lowered from time t2, 300 minutes after.
時刻1.から12〜15時間後の時刻り、において電圧
の印加を解除し、LiTa0.単結晶の単一分域化処理
を終了する0以上のようにして45個の単一分域化処理
を行ったところ、45個全数が完全に単一分域化されて
おり、クランクの発生は2個であった。Time 1. At a time of 12 to 15 hours after LiTa0. When 45 single crystals were single-domained as above 0 to end the single-crystal single-domain process, all 45 crystals were completely single-domained, and no crank occurred. There were 2 pieces.
本実施例においては、引上軸と単一分域化方向が同一の
ものについて記述したが9両者の方向が異なる場合でも
作用は同一である。また結晶体の全部若しくは単一分域
化すべき部分の周囲に充填する粉末はl、1Taos結
晶粉末に限定せず、前記のような他の粉末材料が使用で
きることは勿論である。更にまた単結晶の育成手段が9
例えばゾーン・メルト法等の他の手段による結晶体にも
当然に使用できる。また電極板の構成材料は、pt等の
貴金属の他に1例えば導電サイアロンのようなセラミッ
クスを使用することができる。In this embodiment, a case has been described in which the pulling axis and the single segmentation direction are the same, but even if the two directions are different, the effect is the same. Further, the powder to be filled around the entire crystal body or the portion to be divided into a single region is not limited to the 1,1 Taos crystal powder, and it goes without saying that other powder materials such as those mentioned above can be used. Furthermore, there are 9 methods for growing single crystals.
Naturally, it can also be used for crystals produced by other means, such as the zone melt method. Further, as the constituent material of the electrode plate, in addition to noble metals such as PT, ceramics such as conductive sialon can be used.
本発明は以上記述のような構成および作用であるから、
結晶体の育成後そのままの状態で、しかも焼鈍工程を省
略した状態で、電極剤の拡散、蒸発を伴わずに、クラッ
クの発生のないl、 i T a O3単結晶の単一分
域化を行うことができる。また上記単一分域化における
粉末材料の電気抵抗率を規定したことにより、最適かつ
効率的な処理を行うことができるという効果がある。Since the present invention has the structure and operation as described above,
It is possible to form a single domain of l, i T a O3 single crystal without cracking, without diffusion or evaporation of the electrode agent, in the same state after the growth of the crystal, and without the annealing process. It can be carried out. Furthermore, by specifying the electrical resistivity of the powder material in the single-zoning process, there is an effect that optimal and efficient processing can be performed.
第1図は本発明の実施例を示す単一分域化処理状態の説
明図、第2図は同温度および電圧と時間との関係を示す
図である。
2:結晶体、3:粉末、4:電極板。FIG. 1 is an explanatory diagram of a single segmentation processing state showing an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between temperature, voltage, and time. 2: Crystal, 3: Powder, 4: Electrode plate.
Claims (2)
体若しくは単一分域化する部分のみ埋め込み、この粉末
内に、前記多分域結晶体の電界印加方向に対向する部位
に電極板を挿入し、キューリー温度近傍において前記電
極板間に電界を印加し、以後徐冷することにより前記多
分域結晶体を単一分域化する方法において、前記粉末を
前記結晶体と前記キューリー温度近傍で非反応かつ非拡
散である材料であり、かつ前記キューリー温度近傍にお
ける電気抵抗率が10^3〜10^6Ω・cmであるこ
とを特徴とするリチウムタンタレート単結晶の単一分域
化方法。(1) Embed the entire lithium tantalate multi-domain crystal in powder or only the portion that is to be made into a single domain, and insert an electrode plate into the powder at a portion of the multi-domain crystal that faces the direction in which an electric field is applied. , a method for converting the multi-domain crystal into a single domain by applying an electric field between the electrode plates near the Curie temperature and then slowly cooling the powder, in which the powder does not react with the crystal near the Curie temperature. A method for forming a lithium tantalate single crystal into a single domain, characterized in that the material is non-diffusive and has an electrical resistivity of 10^3 to 10^6 Ω·cm near the Curie temperature.
請求の範囲第1項記載のリチウムタンタレート単結晶の
単一分域化方法。(2) A method for forming a lithium tantalate single crystal into a single domain according to claim 1, wherein the material constituting the electrode plate is ceramic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18047486A JPS6335499A (en) | 1986-07-31 | 1986-07-31 | Method for making single domain lithium tantalate single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18047486A JPS6335499A (en) | 1986-07-31 | 1986-07-31 | Method for making single domain lithium tantalate single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6335499A true JPS6335499A (en) | 1988-02-16 |
Family
ID=16083851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18047486A Pending JPS6335499A (en) | 1986-07-31 | 1986-07-31 | Method for making single domain lithium tantalate single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6335499A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005038097A1 (en) * | 2003-10-16 | 2005-04-28 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and process for producing the same |
WO2005038099A1 (en) * | 2003-10-16 | 2005-04-28 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and method for producing same |
WO2005038098A1 (en) * | 2003-10-16 | 2005-04-28 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and method for producing same |
JP2008043918A (en) * | 2006-08-21 | 2008-02-28 | Best Tech:Kk | Contact aeration method and equipment for organic wastewater |
CN109576791A (en) * | 2018-12-07 | 2019-04-05 | 河南工程学院 | A kind of polarization method of near stoichiometric lithium tantalate wafer |
-
1986
- 1986-07-31 JP JP18047486A patent/JPS6335499A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005038097A1 (en) * | 2003-10-16 | 2005-04-28 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and process for producing the same |
WO2005038099A1 (en) * | 2003-10-16 | 2005-04-28 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and method for producing same |
WO2005038098A1 (en) * | 2003-10-16 | 2005-04-28 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and method for producing same |
US7442250B2 (en) | 2003-10-16 | 2008-10-28 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and method for producing same |
US7628853B2 (en) | 2003-10-16 | 2009-12-08 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and process for its manufacture |
US7713511B2 (en) | 2003-10-16 | 2010-05-11 | Sumitomo Metal Mining Co., Ltd. | Lithium tantalate substrate and process for its manufacture |
JP2008043918A (en) * | 2006-08-21 | 2008-02-28 | Best Tech:Kk | Contact aeration method and equipment for organic wastewater |
CN109576791A (en) * | 2018-12-07 | 2019-04-05 | 河南工程学院 | A kind of polarization method of near stoichiometric lithium tantalate wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seitz | The plasticity of silicon and germanium | |
JPS6335499A (en) | Method for making single domain lithium tantalate single crystal | |
JPS5933559B2 (en) | Single crystal manufacturing method | |
JPS6335498A (en) | Method for making single domain lithium niobate single crystal | |
US5477807A (en) | Process for producing single crystal of potassium niobate | |
US3870850A (en) | Method of connecting electrically conducting bodies | |
JPS6335500A (en) | Method for making single domain ferroelectric single crystal | |
JPS6163595A (en) | Method of melting elementary silicon and process and device for pulling out single crystal silicon rod | |
JPS5845194A (en) | Method for forming single domain of lithium niobate single crystal | |
JPS63218599A (en) | Method for subjecting lithium tantalate single crystal to single domain | |
JP2007001775A (en) | Method for production of ferroelectric crystal | |
JP2818344B2 (en) | Method and apparatus for producing oxide single crystal | |
JPH06263598A (en) | Production of oxide powder for heat-treatment and heat-treatment of oxide single crystal | |
JP2664508B2 (en) | Method for producing lithium niobate single crystal | |
JP2002348195A (en) | Method of single domain treatment of potassium niobate single crystal | |
JPS57140400A (en) | Formation of single domain in single crystal of ferroelectric substance | |
JPH01103999A (en) | Formation of single domain in ferroelectric single crystal | |
JPS6335497A (en) | Method for making single domain ferroelectric single crystal | |
JPH0218395A (en) | Method for forming single domain in lithium niobate single crystal | |
Kramer et al. | Phase determinations and crystal growth of Pb2KNb5O15 (PKN) | |
JPS5951156B2 (en) | Method for manufacturing single domain crystal | |
JPH0367999B2 (en) | ||
JP4398288B2 (en) | Bonding material for sintered aluminum nitride | |
PL136674B1 (en) | Method of polarization of single crystals of lithium niobate of orientation | |
JPS61186300A (en) | Poling of single crystal |