JPS63303834A - Production of optical element - Google Patents

Production of optical element

Info

Publication number
JPS63303834A
JPS63303834A JP62137718A JP13771887A JPS63303834A JP S63303834 A JPS63303834 A JP S63303834A JP 62137718 A JP62137718 A JP 62137718A JP 13771887 A JP13771887 A JP 13771887A JP S63303834 A JPS63303834 A JP S63303834A
Authority
JP
Japan
Prior art keywords
transparent dielectric
molten salt
optical element
porous
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62137718A
Other languages
Japanese (ja)
Inventor
Seiichi Aragaki
新垣 誠一
Kohei Nakada
耕平 中田
Takashi Serizawa
芹沢 高
Haruo Tomono
晴夫 友野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62137718A priority Critical patent/JPS63303834A/en
Publication of JPS63303834A publication Critical patent/JPS63303834A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To prevent unnecessary ion exchange and loss of a transparent dielectric material and to efficiently obtain an optical element by utilizing the fine pore of a porous material having communicated pore to hold fused salt in the case of bringing the fused salt into contact with the transparent dielectric and producing the optical element with an ion exchanging method. CONSTITUTION:A porous material 2 (e.g. porous glass) in which many fine pore having fine diameter are communicated with fine communicated pore is immersed into fused salt (e.g. sodium nitrate) contg. exchangeable cations to hold the fused salt in the fine pore of the porous material 2. Then the aimed optical element is obtained by bringing this porous material 2 into contact with a transparent dielectric 1 (e.g. glass) and ion-exchanging the cations incorporated in the transparent dielectric 1 with the cations contained in the fused salt via a contact part by an ion exchanging method. Further as the ion exchanging method, a thermal diffusion method and an electric field migration method, etc., are used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はイオン交換法を用いた光学素子の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing an optical element using an ion exchange method.

さらに詳しくは透明誘電体と溶融塩の接触により行なわ
れるイオン交換法において、溶融塩の保持に連通孔を有
する多孔質体の細孔を利用する方法に関するものである
More specifically, the present invention relates to a method of utilizing the pores of a porous body having communicating pores to retain the molten salt in an ion exchange method carried out by contacting a transparent dielectric with a molten salt.

〔従来の技術〕[Conventional technology]

近年マイクロオブティクスの発展にともない様々な機能
の光学素子が必要となフてきている。その中でも屈折率
分布型光学素子は透明誘電体内で光線が蛇行して進むた
め物体の結像位置を任意に選ぶことが可能であり、光通
信用部品や複写機用部品などとして多く用いられるよう
になってきている。
In recent years, with the development of micro-optics, optical elements with various functions have become necessary. Among these, graded index optical elements allow light rays to meander through a transparent dielectric material, allowing the image formation position of an object to be selected arbitrarily, and are often used as parts for optical communication and copying machines. It is becoming.

この屈折率分布型光学素子の製法としては従来から多く
の製法が提案されてきたが、その中でも最も長く研究さ
れ現在実用化されている方法としてイオン交換法がある
。この方法は、透明誘電体中の1価の陽イオンとこの誘
電体に接触している溶融塩中の1価の陽イオンを熱また
はく熱+電界)により交換するというものである。
Many manufacturing methods have been proposed to date for manufacturing this gradient index optical element, but among them, the ion exchange method has been researched the longest and is currently in practical use. In this method, monovalent cations in a transparent dielectric and monovalent cations in a molten salt in contact with the dielectric are exchanged using heat or heat (heat + electric field).

一般に熱によるイオン交換(熱拡散法)の場合には、溶
融塩を人わた容器中に透明誘電体を完全に浸漬させる方
法が知られている。また第2図のように平板マイクロレ
ンズを作製する場合には透明誘電体3の一部のみを熱拡
散によりレンズ化させるため、Tiなとの金属を蒸着し
て開口部5をもつマスク4を形成し、この開口部から溶
融塩6との間でイオン交換を行なわせている。ただしこ
の方法は熱拡散法のように比較的長時間溶融塩に浸漬す
る場合には、熱によるマスクの劣化などにより所定の開
口部以外からも拡散が起こりやすいという欠点を持って
いた。
Generally, in the case of thermal ion exchange (thermal diffusion method), a method is known in which a transparent dielectric is completely immersed in a container filled with molten salt. In addition, when producing a flat microlens as shown in FIG. 2, in order to convert only a part of the transparent dielectric 3 into a lens by thermal diffusion, a mask 4 having an opening 5 is formed by vapor-depositing a metal such as Ti. ion exchange with the molten salt 6 through this opening. However, this method has the drawback that when immersing in molten salt for a relatively long time as in the thermal diffusion method, diffusion tends to occur from other than the predetermined openings due to deterioration of the mask due to heat.

次に(熱+電界)によるイオン交換(電界移入法)につ
いては前記平板マイクロレンズ作製−法として近年かな
り注目されるようになってきている( Appl、0p
t0.■、411. (1983ン)。この方法はイオ
ンの熱拡散を電界を利用することによって早めることを
目的としている。このため前記熱拡散法におけるマスク
の劣化の問題はかなり改善されるが新たに次のような問
題点を生じている。
Next, ion exchange (electric field transfer method) using (heat + electric field) has been attracting considerable attention in recent years as a method for producing flat microlenses (Appl, 0p).
t0. ■、411. (1983). This method aims to speed up the thermal diffusion of ions by using an electric field. For this reason, although the problem of mask deterioration in the thermal diffusion method is considerably improved, the following new problems have arisen.

■透明誘電体基板の両側を溶融塩と接触させるため、溶
融塩を入れる容器が必要であり、通常該誘電体基板を箱
型構造に加工して溶融塩を保持する必要がある。このた
め誘電体材料の損失が多く、また加工の手間もかかる。
(2) In order to bring both sides of the transparent dielectric substrate into contact with the molten salt, a container is required to contain the molten salt, and it is usually necessary to process the dielectric substrate into a box-shaped structure to hold the molten salt. Therefore, there is a lot of loss of dielectric material, and processing time is also required.

■前記箱型構造のかわりに粘土と溶融塩をペースト状に
した導電ペーストを塗布する方法も行なわれたが、溶融
塩の補給ができないので長時間にわたる電界移入が困難
であり、またペースト中に溶融塩を均一に混合するのが
難しい。
■Instead of the box-shaped structure, a method of applying a conductive paste made of clay and molten salt was also used, but since the molten salt could not be replenished, it was difficult to apply an electric field for a long time, and It is difficult to mix the molten salt uniformly.

(発明が解決しようとする問題点) 本発明は上記の問題点を解決すべくなされたもので、上
記の問題がなくかつ効率の高い光学素子の製造方法を提
供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a highly efficient method of manufacturing an optical element that does not have the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は溶融塩と透明誘電体とを接触させて
行なうイオン交換法による光学素子の製造方法において
、溶融塩が連通孔を有する多孔質体に保持されているこ
とを特徴とする光学素子の製造方法である。
That is, the present invention relates to a method for manufacturing an optical element by an ion exchange method in which a molten salt and a transparent dielectric are brought into contact with each other, and the optical element is characterized in that the molten salt is held in a porous body having communicating holes. This is a manufacturing method.

本発明に用いられる溶融塩としては交換可能な陽イオン
を含む硝酸ナトリウム、硝酸カリウムなどが一般的に用
いられる。透明誘電体の材料としてはガラス、結晶など
種々の材料が用いられるが、一般にはガラスが好適に用
いられる。また多孔質体の材料としては金属、セラミッ
クス、ガラスなどがあげられるが、入手容易なガラスが
好ましく用いられる。
As the molten salt used in the present invention, sodium nitrate, potassium nitrate, etc. containing exchangeable cations are generally used. Various materials such as glass and crystal can be used as the material for the transparent dielectric, but glass is generally preferably used. Materials for the porous body include metals, ceramics, glass, etc., and glass, which is easily available, is preferably used.

本発明の連通孔を有する多孔質体とは、多孔質体を形成
する微小径の多数の細孔が微小な孔によって連通してい
る多孔質体のことであり、例えば多孔質ガラスでは数十
〜数千人の細孔が5i02を主体とするガラス骨格中に
方向性をもたずランダムに互いにつながって存在してい
るものである。従って液体の粘性に応じて細孔の大きさ
の異なる多孔質ガラスを適宜選択すれば、各種の液状溶
融塩を含浸保持することができる。
The porous body having communicating pores of the present invention refers to a porous body in which a large number of pores of minute diameter forming the porous body are connected through minute pores. For example, in the case of porous glass, several dozen ~Several thousand pores exist in the glass skeleton mainly composed of 5i02 and are connected to each other at random without directionality. Therefore, by appropriately selecting a porous glass having different pore sizes depending on the viscosity of the liquid, it is possible to impregnate and retain various liquid molten salts.

アルミナファイバ、石英ファイバなどを多数本束ね、こ
れをファイバ列に垂直に2平面研磨したファイバ集合体
を多孔質体として利用することもできる。
A fiber assembly obtained by bundling a large number of alumina fibers, quartz fibers, etc. and polishing the bundle in two planes perpendicular to the fiber rows can also be used as the porous body.

以下に図を用いて本発明を説明する。The present invention will be explained below using figures.

第1図は本発明の基本的な構成を示すものである。図に
おいて1は透明誘電体、2は多孔質体で細孔中に溶融塩
が含浸保持されている。透明誘電体中の1価の陽イオン
は多孔質体中の溶融塩と接触部を介してイオン交換反応
により、1僅の陽イオンの交換が行なわれる。交換速度
は処理温度、溶融塩の種類、透明誘電体の組成などによ
フて決まる。
FIG. 1 shows the basic configuration of the present invention. In the figure, 1 is a transparent dielectric material, and 2 is a porous material in which molten salt is impregnated and held in its pores. The monovalent cation in the transparent dielectric material contacts the molten salt in the porous material through an ion exchange reaction, whereby only one cation is exchanged. The exchange rate is determined by the processing temperature, the type of molten salt, the composition of the transparent dielectric, etc.

第3,4図は本発明による熱拡散法イオン交換法による
マイクロレンズ作製の概念図を示す。第3図において突
起部9は、溶融塩を含浸保持する多孔質体8の一部を加
工あるいは別の多孔質体を併せて用いて設けられたもの
で、この接触部分を通してイオン交換が行なわれる。
FIGS. 3 and 4 show conceptual diagrams of microlens production by the thermal diffusion method and ion exchange method according to the present invention. In FIG. 3, the protrusion 9 is provided by processing a part of the porous body 8 that impregnates and retains molten salt, or by using another porous body together, and ion exchange is performed through this contact portion. .

多孔質体8中の溶融塩は細孔の毛管現象により連続的に
9部分へ補給されてイオン交換を継続する。この方法に
よれば溶融塩を保持するための容器が不要であり、透明
誘電体7と多孔質体8とは必要部分以外では接触しない
ので不要なイオン交換が生じることもない。また第4図
のように開口部12を設けたマスク11を用いることが
できる。マスク11は通常Ti蒸着などで形成され、開
口部12の大きさは直径数十μ〜数l■、厚さ数百〜数
万人と微小であり透明誘電体l〇上溶融塩は開口部12
を通して接触できるので、第2図のような溶融塩容器が
不要であり、かつ多孔質体13の溶融塩保持能力を利用
して透明誘電体lOと多孔質体13の位置を逆にするこ
とも可能である。第3.4図では透明誘電体と溶融塩が
1箇所で接触してイオン交換を行ない1個のマイクロレ
ンズを作製する場合を例示したが、接触部分を複数設け
てイオン交換を行ない複数個のマイクレンズを同時に得
ることも可能である。また複数の多孔質体に同種または
異種の溶融塩を含浸保持させ、透明誘電体の複数箇所で
接触させてイオン交換を行ない同種または異種の複数の
レンズを同時に得ることもできる。
The molten salt in the porous body 8 is continuously replenished to the 9 parts by the capillary action of the pores to continue ion exchange. According to this method, there is no need for a container for holding the molten salt, and since the transparent dielectric material 7 and the porous material 8 do not come into contact with each other except in necessary areas, unnecessary ion exchange does not occur. Furthermore, a mask 11 provided with an opening 12 as shown in FIG. 4 can be used. The mask 11 is usually formed by Ti vapor deposition, etc., and the size of the opening 12 is minute, with a diameter of several tens of microns to several liters and a thickness of several hundred to tens of thousands. 12
Since the molten salt container as shown in FIG. 2 is not required, the positions of the transparent dielectric IO and the porous body 13 can be reversed by utilizing the molten salt holding ability of the porous body 13. It is possible. Figure 3.4 shows an example in which a transparent dielectric and a molten salt contact each other at one point to perform ion exchange to produce one microlens, but by providing multiple contact areas to perform ion exchange, multiple microlenses can be fabricated. It is also possible to obtain a microphone lens at the same time. It is also possible to simultaneously obtain a plurality of lenses of the same or different types by impregnating and retaining molten salts of the same or different types in a plurality of porous bodies and bringing them into contact with the transparent dielectric at a plurality of locations to perform ion exchange.

第5図は本発明による電界移入法によるマイクロレンズ
作製の例である。14は透明誘電体であるガラス基板、
15はマスク、16はマスクの開口部、17および18
は多孔質体としての多孔質ガラスで細孔中にそれぞれ溶
融塩を含浸しである。19および20は電極で、21は
直流電源を示している。溶融塩を保持している多孔質ガ
ラスに接触している電極19.20の間に電圧を印加し
、その電界効果によって多孔質ガラス18に保持された
溶融塩中の1価の陽イオンを開口部を通してガラス基板
へ注入する。マスク15の劣化が起こるような場合はマ
スクを用いず開口部16を多孔質ガラスで作成すること
も可能である。この電界移入法においては溶融塩がガラ
ス基板の両側に離れて位置し両方の溶融塩が多孔質ガラ
スに保持される。
FIG. 5 is an example of manufacturing a microlens by the electric field transfer method according to the present invention. 14 is a glass substrate which is a transparent dielectric;
15 is a mask, 16 is an opening in the mask, 17 and 18
This is a porous glass material whose pores are each impregnated with a molten salt. 19 and 20 are electrodes, and 21 is a DC power source. A voltage is applied between the electrodes 19 and 20 that are in contact with the porous glass holding the molten salt, and the monovalent cations in the molten salt held on the porous glass 18 are opened by the electric field effect. Inject into the glass substrate through the tube. If the mask 15 deteriorates, the opening 16 may be made of porous glass without using a mask. In this electric field transfer method, molten salts are spaced apart on both sides of a glass substrate, and both molten salts are held in the porous glass.

第6図は多孔質ガラスの形状を変更した例を示す図であ
る。図に示すように多孔質ガラス22.23を加工して
溶融塩の供給部a、bを設けることにより補給が簡単に
行なえる。この方法によれば従来補給が困難であったベ
ースを用いる場合や、ガラス基板を毎回箱型に加工する
方法にくらべ繰り返し使用することが可能であり補給も
簡単で効率が著しく向上する。
FIG. 6 is a diagram showing an example in which the shape of porous glass is changed. As shown in the figure, by processing the porous glasses 22 and 23 to provide molten salt supply parts a and b, replenishment can be easily performed. According to this method, compared to the case of using a base that was conventionally difficult to replenish, or the method of processing a glass substrate into a box shape each time, it can be used repeatedly, replenishment is easy, and efficiency is significantly improved.

〔実施例〕〔Example〕

以下、本発明による実施例について説明する。 Examples according to the present invention will be described below.

(実施例1〕 第7図は熱拡散法により複数種の屈折率分布型レンズを
製造する例を示す。
(Example 1) FIG. 7 shows an example in which a plurality of types of gradient index lenses are manufactured by a thermal diffusion method.

Naとにを合計で18モル%含む光学ガラスブロック(
10x 10x 10mm)の立方体の全面が研磨され
た試料27を用意した。この試料の2対面(4面)の中
央部に直径[lの多孔質ガラス突起部32,33.34
.35が位置するように多孔質ガラス(5x5X3mm
、細孔径400人) 28.29,30゜31を密着さ
せた。なお多孔質ガラス28.29.30゜31はそれ
ぞれ予め、520℃でT12 So、 30モル%、Z
nSo470モル%; T12 So440モル%、Z
nSo460モル%; T12 So450モル%、Z
nSo450モル%; T12 So、 60モル%、
ZnSo440モル%の4種の溶融塩に1時間浸漬させ
たものを用いた。以上の準備を終えた後試料を500℃
で100時間加熱処理した。得られたガラスブロックに
は36.37,38.39に示すような領域に屈折率分
布が形成されており、拡散深さはそれぞれ1.47゜1
.50,1.55,1.59mmと大差がなかったが、
屈折率差はそれぞれ0.116.O,132,0,14
5,0,162とかなり違いが見られる4種類のレンズ
が同時に得られた。
Optical glass block containing a total of 18 mol% of Na and Ni (
A sample 27 was prepared in which the entire surface of a cube measuring 10 mm x 10 mm x 10 mm was polished. Porous glass protrusions 32, 33.34 with a diameter of
.. Porous glass (5x5X3mm
, pore diameter 400) 28.29, 30°31 were brought into close contact. Note that the porous glasses 28, 29, 30 and 31 were each preliminarily treated with T12 So, 30 mol%, and Z at 520°C.
nSo470 mol%; T12 So440 mol%, Z
nSo460 mol%; T12 So450 mol%, Z
nSo450 mol%; T12 So, 60 mol%,
The specimens were immersed in four types of molten salts containing 40 mol % of ZnSo for 1 hour. After completing the above preparations, heat the sample to 500℃.
Heat treatment was performed for 100 hours. In the obtained glass block, a refractive index distribution is formed in the regions shown in 36.37 and 38.39, and the diffusion depth is 1.47°1, respectively.
.. Although there was not much difference between 50, 1.55, and 1.59 mm,
The refractive index difference is 0.116. O,132,0,14
Four types of lenses with considerable differences of 5, 0, and 162 were obtained at the same time.

(実施例2) 第8図は電界移入法により同一性能で複数の屈折率分布
型レンズを製造する例を示す。
(Example 2) FIG. 8 shows an example of manufacturing a plurality of gradient index lenses with the same performance by the electric field transfer method.

Naとにを合計で18モル%含む光学ガラス基板(30
x 30x 5 mm)の30X 30−一の2面が平
行平面研磨された試料40を用意した。この研磨面の一
面に1.0m1間隔で直径0.5m+■の開口部を多数
もつようなマスク41をTi蒸着により形成した。同時
に細孔径約400人の多孔質ガラス(30x 30x 
3 mm)を2枚用意し、これを520℃T12So、
 60モル%、Zn5o、40モル%の溶融塩に1時間
浸漬して多孔質ガラス中に溶融塩を均一に含浸保持させ
た。次に上記ガラス基板の30X 30mmの2面それ
ぞれに向い合う形で上記2枚の多孔質ガラス43.44
の30X 30mm面を完全に密着させた。さらに多孔
質カラスとガラス基板との接触面の対面に白金板の電極
45.46を取り付け、Tiマスク側をプラス極になる
ように電源47と接続した。以上の準備を終えた後、試
料を500℃に保持した電気炉中に設置し、0.2A定
電流制御で4時間通電して電界移入を行なった。得られ
た試料のTiマスク側の面を研磨したところ直径2.2
mmの半球状レンズが多数形成されており、ブロックの
周辺部においても中央部と変わらない性能のレンズが得
られた。
Optical glass substrate containing a total of 18 mol% of Na and Ni (30
A sample 40 of 30×30-1 (2 mm x 30 x 5 mm) was prepared in which two surfaces were polished to parallel planes. A mask 41 having a large number of openings with a diameter of 0.5 m + 2 at intervals of 1.0 m was formed on one side of this polished surface by Ti evaporation. At the same time, porous glass with a pore diameter of about 400 people (30x 30x
Prepare two sheets of 3 mm) and heat them at 520℃T12So,
The porous glass was immersed in a molten salt containing 60 mol %, Zn5O, and 40 mol % for 1 hour to uniformly impregnate and maintain the molten salt in the porous glass. Next, place the two pieces of porous glass 43.
The 30X 30mm surfaces of the two were completely brought into close contact. Furthermore, electrodes 45 and 46 made of platinum plates were attached to opposite sides of the contact surface between the porous glass and the glass substrate, and connected to a power source 47 so that the Ti mask side became the positive electrode. After completing the above preparations, the sample was placed in an electric furnace maintained at 500° C., and current was applied for 4 hours under constant current control of 0.2 A to transfer an electric field. When the surface of the obtained sample on the Ti mask side was polished, the diameter was 2.2 mm.
A large number of mm hemispherical lenses were formed, and lenses with the same performance at the periphery of the block as at the center were obtained.

〔実施例3〕 第9図は電界移入法において多孔質ガラスを加工して溶
融塩の補給を行なう例を示す。
[Embodiment 3] FIG. 9 shows an example of processing porous glass and replenishing molten salt using the electric field transfer method.

実施例2で示した構成のうち多孔質ガラス43.44を
51.52のように取り換えた。多孔質ガラス51は細
孔径約400人の板状(40x 30x 5mm)のも
のを40X30mmの面の一端より30X30mmに相
当する部分のみ厚さが3mmになるまで平面研削して作
成した。同様に、多孔質ガラス52は上記板状(40x
 30x 5mm)のものを40X 30Ql11の面
の一端よりtox 30mmに相当する部分について厚
さが3mmになるまで平面研削して作製した。
In the configuration shown in Example 2, porous glasses 43 and 44 were replaced with 51 and 52. The porous glass 51 was prepared by plane-grinding a plate-shaped glass (40 x 30 x 5 mm) with a pore diameter of approximately 400 mm from one end of a 40 x 30 mm surface until the thickness of the portion corresponding to 30 x 30 mm was 3 mm. Similarly, the porous glass 52 has the above-mentioned plate shape (40x
30 x 5 mm) was prepared by surface grinding a portion corresponding to tox 30 mm from one end of a 40 x 30 Ql11 surface until the thickness was 3 mm.

次に実施例2で示したTiマスクを形成したガラス基板
を4個用意し、そのうちの1個を予め520℃、T12
50460モル%、ZnSo440モル%の溶融塩中に
1時間浸漬して取り出した多孔質ガラス51.52では
さみこんだ。次いで多孔質ガラス51.52とガラス基
板48との接触面の対面に白金板の電極53.54を取
り付け、Tiマスク49側をプラス極になるように電源
と接続した。以上の準備を終えた後、試料を500℃に
保持した電気炉中に設置し0.2A定電流制御で4時間
通電して電界移入を行なった。但しこの時に第9図c、
d部分へ前記溶融塩を1時間に1−の割合で補給した。
Next, four glass substrates on which the Ti masks shown in Example 2 were formed were prepared, and one of them was preheated at 520°C with a T12
It was sandwiched between porous glass 51.52 which was immersed in a molten salt containing 50,460 mol % and ZnSo 440 mol % for 1 hour and then taken out. Next, platinum plate electrodes 53 and 54 were attached to opposite surfaces of the contact surfaces between the porous glasses 51 and 52 and the glass substrate 48, and connected to a power source so that the Ti mask 49 side became the positive electrode. After completing the above preparations, the sample was placed in an electric furnace maintained at 500° C., and current was applied under constant current control of 0.2 A for 4 hours to transfer an electric field. However, at this time, Figure 9c,
The molten salt was replenished to part d at a rate of 1-1 hourly.

4時間後試料を取り出し別のガラス基板を取り付けて続
けて電界移入を行ない、これを繰り返しガラス基板4個
の処理を行なった。
After 4 hours, the sample was taken out, another glass substrate was attached, and electric field transfer was continued, and this process was repeated to process four glass substrates.

得られた4個の試料のそれぞれについてTiマスク側の
面を研磨したところ直径2.2m+oの半球状レンズが
多数形成されており、ガラス基板の周辺部においても中
央部と変わらない性能のレンズが得られた。また4個の
試料間のばらつきもほとんどなく、この方法によって長
時間はぼ連続的にマイクロレンズの作製が可能となった
When the surface on the Ti mask side of each of the four obtained samples was polished, many hemispherical lenses with a diameter of 2.2m+o were formed, and lenses with the same performance as the central part were formed in the peripheral part of the glass substrate. Obtained. Furthermore, there was almost no variation among the four samples, and this method made it possible to fabricate microlenses almost continuously for a long time.

〔発明の効果〕〔Effect of the invention〕

本発明により、イオン交換法における溶融塩の保持体と
して連通孔を有する多孔質体を用いることによって不必
要なイオン交換や透明誘電体材料の損失を防ぎ、溶融塩
の補給が容易となって長時間操作が可能となった。また
透明誘電体の複数部に異種の溶融塩を同時に接触させる
ことが可能となり、複数種の屈折率分布を併せもつ一体
型の新規な光学素子を作ることが可能となった。さらに
マスクの劣化の激しい場合でも適当な多孔質体を代用す
ることによりマスク不要でイオン交換を行うことが可能
となり、光学素子の製造法として工業的価値は大きい。
According to the present invention, unnecessary ion exchange and loss of transparent dielectric material are prevented by using a porous body having communicating holes as a holder for molten salt in the ion exchange method, and molten salt can be easily replenished for a long time. It is now possible to manipulate time. Furthermore, it has become possible to simultaneously bring different types of molten salt into contact with multiple parts of the transparent dielectric, making it possible to create a new integrated optical element that has multiple types of refractive index distributions. Furthermore, even in cases where the mask is severely deteriorated, by substituting a suitable porous material, ion exchange can be performed without the need for a mask, which has great industrial value as a method for manufacturing optical elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的な概念を示す縦断面図、第2図
は従来の熱拡散法の一例を示す縦断面図、第3図および
第4図は本発明による熱拡散法の一例を示す縦断面図、
第5図は本発明を電界移入法に適用した構成を示す縦断
面図、第6図は多孔質ガラスの形状を変更した一例を示
す縦断面図、第7図は本発明を熱拡散法に適用した実施
例を示す水平断面図、第8図および第9図は本発明を電
界移入法に適用した実施例を示す縦断面図である。 1、:l、7,10.14,24,27.40.48・
−・・・透明誘電体、4.11,15,25.41.4
9−−−−−−マスク、5.+2.16,26,42.
50−−−−マスク開口部、6 ・−・−−−−−−−
−−−−−−−−−−−−−=溶融塩、9.32,33
.34.35−−−−−−−−突起部、19.45.5
3= −−−−−−−−−−−−−−負極、20.46
.54−−−−−−−−−・・・・−・・・正極、21
.47.55−−−−−−・・・・・・・・・・−直流
電源。
FIG. 1 is a vertical cross-sectional view showing the basic concept of the present invention, FIG. 2 is a vertical cross-sectional view showing an example of a conventional thermal diffusion method, and FIGS. 3 and 4 are examples of a thermal diffusion method according to the present invention. A vertical cross-sectional view showing
Fig. 5 is a longitudinal cross-sectional view showing a configuration in which the present invention is applied to the electric field transfer method, Fig. 6 is a longitudinal cross-sectional view showing an example in which the shape of porous glass is changed, and Fig. 7 is a longitudinal cross-sectional view showing a configuration in which the present invention is applied to the thermal diffusion method. A horizontal sectional view showing an applied embodiment, and FIGS. 8 and 9 are vertical sectional views showing an embodiment in which the present invention is applied to an electric field transfer method. 1, :l, 7, 10.14, 24, 27.40.48・
---Transparent dielectric material, 4.11, 15, 25.41.4
9------Mask, 5. +2.16, 26, 42.
50---Mask opening, 6 ・---・---------
−−−−−−−−−−−−=molten salt, 9.32,33
.. 34.35------Protrusion, 19.45.5
3= −−−−−−−−−−−−− Negative electrode, 20.46
.. 54---------------Positive electrode, 21
.. 47.55-----------DC power supply.

Claims (1)

【特許請求の範囲】 1、溶融塩と透明誘電体とを接触させて行なうイオン交
換法による光学素子の製造方法において、溶融塩が連通
孔を有する多孔質体に保持されていることを特徴とする
光学素子の製造方法。 2、透明誘電体と同種または異種の溶融塩を保持する複
数の連通孔を有する多孔質体とを複数箇所で接触させる
特許請求の範囲第1項記載の光学素子の製造方法。 3、イオン交換法が電界移入法である特許請求の範囲第
1項または第2項記載の光学素子の製造方法。
[Claims] 1. A method for manufacturing an optical element by an ion exchange method in which a molten salt and a transparent dielectric are brought into contact, characterized in that the molten salt is held in a porous body having communicating holes. A method for manufacturing an optical element. 2. The method for manufacturing an optical element according to claim 1, wherein the transparent dielectric material and a porous body having a plurality of communicating holes that hold the same or different kind of molten salt are brought into contact at a plurality of locations. 3. The method for manufacturing an optical element according to claim 1 or 2, wherein the ion exchange method is an electric field transfer method.
JP62137718A 1987-06-02 1987-06-02 Production of optical element Pending JPS63303834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137718A JPS63303834A (en) 1987-06-02 1987-06-02 Production of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137718A JPS63303834A (en) 1987-06-02 1987-06-02 Production of optical element

Publications (1)

Publication Number Publication Date
JPS63303834A true JPS63303834A (en) 1988-12-12

Family

ID=15205200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137718A Pending JPS63303834A (en) 1987-06-02 1987-06-02 Production of optical element

Country Status (1)

Country Link
JP (1) JPS63303834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341406A (en) * 1989-07-07 1991-02-21 Hoya Corp Production of optical waveguide
JP2002037697A (en) * 2000-07-25 2002-02-06 Mitsui Mining & Smelting Co Ltd Method for producing optical material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341406A (en) * 1989-07-07 1991-02-21 Hoya Corp Production of optical waveguide
JP2002037697A (en) * 2000-07-25 2002-02-06 Mitsui Mining & Smelting Co Ltd Method for producing optical material
JP4575561B2 (en) * 2000-07-25 2010-11-04 三井金属鉱業株式会社 Manufacturing method of optical material

Similar Documents

Publication Publication Date Title
EP0380468B1 (en) Method for fabricating buried waveguides
KR20010014651A (en) Microstructure array, and apparatus and method for forming the microstructure array, and a mold for fabricating a microstructure array
CN102046547A (en) Method of manufacturing flat optical elements, and elements obtained
US3879110A (en) Small fly{3 s eye lens array
JPS63303834A (en) Production of optical element
JPH0353263B2 (en)
JPS60256101A (en) Formation of optical element to glass member
JPH0341406A (en) Production of optical waveguide
JPS63190733A (en) Production of optical glass body
JPS58167452A (en) Preparation of material wherein very small lenses are arranged
JPS5992946A (en) Manufacture of microoptical element using applied voltage
JPS59137348A (en) Manufacture of optical microelement by impressing voltage
JPS60155552A (en) Production of plate microlens
JPS58106503A (en) Refractive index distribution type lens barrel and its manufacture
JPS58167453A (en) Preparation of material wherein cylindrical lenses are arranged
JPS61168554A (en) Production of flat microlens
JPS5948711A (en) Plane optical element
JPH02279537A (en) Ion exchange treatment of glass body
SU1694502A1 (en) Method of manufacturing integral microlenses
JP2511490B2 (en) Ion exchange method for glass
JPS59102841A (en) Manufacture of optical micro-element by application of electric voltage
JPS6144737A (en) Dry production of optical element of glass plate of refractive index control type
JP2002087847A (en) Vertical type ion exchange treating device
JPH0582337B2 (en)
JPS6283335A (en) Production of microlens array