JP2002087847A - Vertical type ion exchange treating device - Google Patents

Vertical type ion exchange treating device

Info

Publication number
JP2002087847A
JP2002087847A JP2000277139A JP2000277139A JP2002087847A JP 2002087847 A JP2002087847 A JP 2002087847A JP 2000277139 A JP2000277139 A JP 2000277139A JP 2000277139 A JP2000277139 A JP 2000277139A JP 2002087847 A JP2002087847 A JP 2002087847A
Authority
JP
Japan
Prior art keywords
molten salt
ion exchange
container
glass substrate
holding jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000277139A
Other languages
Japanese (ja)
Inventor
Junko Ishizu
淳子 石津
Masaru Sadayuki
勝 定行
Tomoyuki Hayashi
智幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2000277139A priority Critical patent/JP2002087847A/en
Publication of JP2002087847A publication Critical patent/JP2002087847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure which contributes to the simplification and downsizing of the subject device and dispenses with a smaller amount of molten salt and to manufacture low-loss optical elements at a good yield. SOLUTION: The device is so constituted that the one surface of a glass substrate 20 comes into contact with the positive pole side molten salt 10 and another surface into contact with the negative pole side molten salt 14. The device includes a molten salt container 12 in which the positive pole side molten salt is put and a container-like substrate holder 16 in which the negative pole side molten salt is put. The substrate holder has an opening at its flank and this opening is made attachable and detachable so as to be liquid-tightly closed by the glass substrate 20. The substrate holder is inserted into the molten salt container, by which the glass substrate is immersed into the molten salt so as to face perpendicularly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス基板の一方
の面が正極側溶融塩に、他方の面が負極側溶融塩に接す
る構成の縦型イオン交換処理装置に関し、更に詳しく述
べると、溶融塩容器中に、側面に開口を有しガラス基板
で液密的に塞がれる容器状の基板保持治具を挿入するよ
うにした縦型イオン交換処理装置に関するものである。
この縦型イオン交換処理装置は、例えば光平面回路ある
いは平板マイクロレンズなどの微小光学素子を電界イオ
ン交換法を利用して製作する場合に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical ion exchange treatment apparatus having a structure in which one surface of a glass substrate is in contact with a molten salt on a positive electrode side and the other surface is in contact with a molten salt on a negative electrode side. The present invention relates to a vertical ion exchange processing apparatus in which a container-like substrate holding jig having an opening on a side surface and closed in a liquid-tight manner with a glass substrate is inserted into a salt container.
This vertical ion exchange processing apparatus is useful when, for example, a micro optical element such as an optical planar circuit or a flat microlens is manufactured using an electric field ion exchange method.

【0002】[0002]

【従来の技術】近年、イオン交換法によりガラス基板に
光導波路あるいはマイクロレンズなどを形成する方法が
種々提案されている。その代表的な方法は、ガラス基板
の表面に所望の導波路パターン又はレンズパターンの開
口を有するイオン透過防止マスクを形成し、この開口を
通して、ガラス基板中のアルカリイオンを、屈折率を増
加させるイオンと交換し内部拡散させることにより、ガ
ラス基板表面に光導波路あるいはマイクロレンズなどを
形成するものである。
2. Description of the Related Art In recent years, various methods for forming an optical waveguide or a microlens on a glass substrate by an ion exchange method have been proposed. A typical method is to form an ion permeation preventing mask having an opening of a desired waveguide pattern or lens pattern on the surface of a glass substrate, and to pass alkali ions in the glass substrate through this opening to increase the refractive index. In this case, an optical waveguide or a microlens is formed on the surface of the glass substrate by exchanging it for internal diffusion.

【0003】イオン交換法は、電界を印加しない熱イオ
ン交換法と電界印加イオン交換法とに大別できる。それ
らのうち電界印加イオン交換法は、イオン交換時に電界
を印加することによって、より深くまでイオンを移動さ
せることができる。そこで、例えば光導波路形成におい
ては、1段階目に熱イオン交換法を、2段階目に電界印
加イオン交換法を用いる2段階イオン交換法が一般的で
ある。
The ion exchange method can be roughly classified into a thermal ion exchange method in which no electric field is applied and an ion exchange method in which an electric field is applied. Among them, the electric field application ion exchange method can move ions deeper by applying an electric field during ion exchange. Therefore, for example, in forming an optical waveguide, a two-stage ion exchange method using a thermal ion exchange method in the first stage and an electric field application ion exchange method in the second stage is common.

【0004】ところで、イオン交換処理装置としては、
ガラス基板を溶融塩中に水平に浸漬する横型式と、ガラ
ス基板を溶融塩中に垂直に浸漬する縦型式とが提案され
ている。いずれにしてもガラス基板の一方の面に正極側
溶融塩が接し、他方の面に負極側溶融塩が接する。ここ
でガラス基板のイオン交換面が正極側となる。従って横
型式の場合にはイオン交換面が下向きとなる。電極とし
て溶融塩中に金属板などを入れるが、溶融塩容器が金属
製の場合には、容器自体が電極となる。
[0004] By the way, as an ion exchange treatment apparatus,
There have been proposed a horizontal type in which a glass substrate is immersed horizontally in a molten salt and a vertical type in which a glass substrate is immersed vertically in a molten salt. In any case, the molten salt on the positive electrode side contacts one surface of the glass substrate, and the molten salt on the negative electrode side contacts the other surface. Here, the ion exchange surface of the glass substrate is on the positive electrode side. Therefore, in the case of the horizontal type, the ion exchange surface faces downward. A metal plate or the like is placed in a molten salt as an electrode. When the molten salt container is made of metal, the container itself becomes an electrode.

【0005】従来の縦型イオン交換処理装置の一例とし
ては、平板と密着させることにより液体を注入保持可能
な容器を形成する液体保持部材の2つを、1枚のガラス
基板を挾んで相対するように設置し、それぞれの容器に
溶融塩を注入する構成がある(例えば特開昭63−14
4147号公報参照)。一方の溶融塩に正極側電極を挿
入し、他方の溶融塩に負極側電極を挿入して電界印加イ
オン交換を行う。
As an example of a conventional vertical ion exchange processing apparatus, two liquid holding members forming a container capable of injecting and holding a liquid by being in close contact with a flat plate are opposed to each other with one glass substrate interposed therebetween. (See, for example, JP-A-63-14).
No. 4147). The positive electrode is inserted into one molten salt, and the negative electrode is inserted into the other molten salt to perform electric field application ion exchange.

【0006】[0006]

【発明が解決しようとする課題】横型イオン交換処理装
置は、構造が比較的簡単であるが、正極から電気化学反
応によって発生する気泡がガラス基板の下面(即ちイオ
ン交換面)に付着して残ることがある。気泡が付着した
部分は溶融塩に接していないために電界が印加されな
い。更に、表面に付着した気泡が電界印加中に何らかの
形で移動すると、イオン交換で形成される導波路の深さ
方向に分布ができる。これらのために導波路の埋込深さ
が変わり、結果として作製された光学素子には、損失の
増大となって現れる。また、電界印加イオン交換後、ガ
ラス基板徐冷時に、負極側溶融塩つまりガラス基板上面
の溶融塩が固化し凝縮する際の応力によりガラス基板が
破損する恐れもある。
The horizontal ion exchange processing apparatus has a relatively simple structure, but bubbles generated by an electrochemical reaction from the positive electrode adhere to the lower surface of the glass substrate (that is, the ion exchange surface) and remain. Sometimes. An electric field is not applied to the portion to which the bubbles are attached because the portion is not in contact with the molten salt. Further, when bubbles attached to the surface move in some way during the application of an electric field, distribution occurs in the depth direction of the waveguide formed by ion exchange. These change the embedment depth of the waveguide and result in increased losses in the resulting optical element. Further, after the electric field application ion exchange, when the glass substrate is slowly cooled, the molten salt on the negative electrode side, that is, the molten salt on the upper surface of the glass substrate may be solidified and condensed, so that the glass substrate may be damaged.

【0007】それに対して縦型式の場合には、気泡の付
着などの問題は生じにくい利点があるものの、装置が大
掛かりとなり、構造的に光学素子を量産化し難いなどの
問題がある。
On the other hand, in the case of the vertical type, although there is an advantage that problems such as adhesion of air bubbles hardly occur, there is a problem that the apparatus is large-scale and it is difficult to mass-produce optical elements structurally.

【0008】本発明の目的は、装置を簡素化・小型化で
き、溶融塩量も少なくて済む構造の縦型イオン交換処理
装置を提供することである。本発明の他の目的は、低損
失の光学素子を歩留まりよく製造でき、量産性に優れた
縦型イオン交換処理装置を提供することである。
An object of the present invention is to provide a vertical ion-exchange treatment apparatus having a structure capable of simplifying and miniaturizing the apparatus and reducing the amount of molten salt. Another object of the present invention is to provide a vertical ion-exchange processing apparatus which can manufacture low-loss optical elements with high yield and is excellent in mass productivity.

【0009】[0009]

【課題を解決するための手段】本発明は、ガラス基板の
一方の面が正極側溶融塩に、他方の面が負極側溶融塩に
接するように構成される縦型イオン交換処理装置であ
る。本発明では、正極側溶融塩が入れられる溶融塩容器
と、負極側溶融塩が入れられる容器状の基板保持治具を
具備し、該基板保持治具は、側面に開口を有し且つ該開
口がガラス基板で液密的に塞がれるように着脱可能にな
っており、前記溶融塩容器中に基板保持治具を挿入する
ことにより、ガラス基板が垂直向きで溶融塩中に浸漬さ
れるように構成されている。
SUMMARY OF THE INVENTION The present invention is a vertical ion-exchange treatment apparatus in which one surface of a glass substrate is in contact with a molten salt on a positive electrode side and the other surface is in contact with a molten salt on a negative electrode side. In the present invention, a molten salt container containing the molten salt on the positive electrode side and a container-shaped substrate holding jig for containing the molten salt on the negative electrode side are provided, and the substrate holding jig has an opening on a side surface and the opening. Is detachable so as to be closed in a liquid-tight manner with a glass substrate, and by inserting a substrate holding jig into the molten salt container, the glass substrate is immersed in the molten salt in a vertical direction. Is configured.

【0010】容器状の基板保持治具は、側面に開口を有
する容器状の治具本体と、耐熱スペーサと、ガラス基板
押さえ治具を有し、該押さえ治具により前記耐熱スペー
サを介してガラス基板を治具本体に押さえ付けることで
液密状態とする。押さえ治具はネジなどで固定する。
The container-shaped substrate holding jig includes a container-shaped jig body having an opening on a side surface, a heat-resistant spacer, and a glass substrate holding jig. A liquid-tight state is obtained by pressing the substrate against the jig body. The holding jig is fixed with screws.

【0011】基板保持治具は、例えば扁平な直方体状を
なし、その広面積側面にガラス基板よりも一回り小さな
開口が形成されている構成とする。開口が相対向する両
側面に形成され、それぞれの開口を覆うようにガラス基
板が着脱可能な構造とすると2枚同時に処理できる。特
にこのような扁平構造の基板保持治具の場合、扁平な直
方体状の部分の上方に拡開した部分が連続している構造
が好ましい。正極側溶融塩が入れられる溶融塩容器内
に、複数の基板保持治具を並置すると、多数枚のガラス
基板を同時にイオン交換処理することが可能となる。複
数の基板保持治具を並置する上でも、該基板保持治具を
上記のように扁平構造とするのは有効である。
[0011] The substrate holding jig has, for example, a flat rectangular parallelepiped shape and an opening slightly smaller than the glass substrate is formed on a wide area side surface thereof. If the openings are formed on both side surfaces facing each other and the glass substrate is detachable so as to cover each opening, two substrates can be processed simultaneously. In particular, in the case of the substrate holding jig having such a flat structure, a structure in which a portion expanded and opened above a flat rectangular parallelepiped portion is preferable. When a plurality of substrate holding jigs are juxtaposed in a molten salt container in which a molten salt on the positive electrode side is put, it is possible to simultaneously perform ion exchange processing on a large number of glass substrates. Even when a plurality of substrate holding jigs are juxtaposed, it is effective that the substrate holding jigs have a flat structure as described above.

【0012】その他、基板保持治具としては、多角形筒
状をなし、その各側面に開口が形成され、それぞれの開
口を覆うようにガラス基板が着脱可能な構造でもよい。
正四角筒状あるいは正六角筒状などでもよい。
In addition, the substrate holding jig may have a polygonal cylindrical shape, an opening formed in each side surface thereof, and a glass substrate detachable so as to cover each opening.
It may be a regular square cylinder or a regular hexagon cylinder.

【0013】基板保持治具は、セラミックスやガラスな
どの電気絶縁材料からなるが、例えばAl2 3 、Mg
O、SiO2 からなるもの又は複合化合物からなる。
The substrate holding jig is made of an electrically insulating material such as ceramics or glass. For example, Al 2 O 3 , Mg
O, SiO 2 or a composite compound.

【0014】炉内に、基板保持治具を挿入する溶融塩容
器の他に、別の容器を設置し、イオン交換処理操作後、
基板保持治具内の負極側溶融塩を別の容器に廃棄可能と
する構成も有用である。また、炉内に、1段階目のイオ
ン交換を行うための溶融塩が入った第1の容器、1価イ
オンを含まずイオン交換に寄与しない溶融塩の入った第
2の容器、2段階目のイオン交換を行うための溶融塩が
入った第3の容器を設置し、ガラス基板を装着した基板
保持治具を、第1の容器内の溶融塩、第2の容器内の溶
融塩、第3の容器内の溶融塩に順次浸漬可能として2段
階イオン交換を連続的に行うことができるようにした構
成も有効である。
In the furnace, in addition to the molten salt container into which the substrate holding jig is inserted, another container is installed.
It is also useful that the molten salt on the negative electrode side in the substrate holding jig can be disposed in another container. In addition, a first container containing a molten salt for performing the first-stage ion exchange, a second container containing a molten salt that does not contain a valence ion and does not contribute to ion exchange, and a second stage in the furnace. A third container containing a molten salt for performing the ion exchange is installed, and the substrate holding jig on which the glass substrate is mounted is connected to the molten salt in the first container, the molten salt in the second container, The configuration in which the two-stage ion exchange can be continuously performed by sequentially immersing in the molten salt in the container No. 3 is also effective.

【0015】上記のような縦型イオン交換処理装置を用
いると、第1の容器内の溶融塩にて1段階目のイオン交
換を行った後、第2の容器内の溶融塩に浸漬してガラス
基板に付着している1段階目のイオン交換を行うための
溶融塩を除去し、続けて第3の容器内の溶融塩にて2段
階目のイオン交換を行うという作業を連続的に効率よく
行うことができ、光導波路素子や屈折率分布型平面マイ
クロレンズなどの光学素子を製造できる。その場合、ガ
ラス基板を装着した基板保持治具を複数用意し同時にイ
オン交換すると、多数枚のガラス基板のイオン交換処理
を効率よく実施することができる。
When the vertical ion exchange treatment apparatus as described above is used, the first-stage ion exchange is performed with the molten salt in the first container, and then immersed in the molten salt in the second container. The operation of removing the molten salt for performing the first-stage ion exchange attached to the glass substrate and subsequently performing the second-stage ion exchange with the molten salt in the third container is continuously and efficiently performed. It can be performed well, and an optical element such as an optical waveguide element or a graded index planar microlens can be manufactured. In this case, when a plurality of substrate holding jigs on which glass substrates are mounted are prepared and ion exchange is performed at the same time, ion exchange processing of a large number of glass substrates can be efficiently performed.

【0016】[0016]

【実施例】図1は、本発明に係る縦型イオン交換処理装
置の一実施例を示す概略構成図である。この装置は、例
えば光導波路素子の製造などに有用である。基本的に
は、垂直に配置されたガラス基板の一方の面が正極側溶
融塩に、他方の面が負極側溶融塩に接するように構成さ
れる。ガラス基板が垂直に配置されることから、縦型と
称している。
FIG. 1 is a schematic diagram showing one embodiment of a vertical ion exchange apparatus according to the present invention. This apparatus is useful, for example, for manufacturing an optical waveguide device. Basically, the vertically arranged glass substrate is configured so that one surface thereof is in contact with the molten salt on the positive electrode side and the other surface is in contact with the molten salt on the negative electrode side. Since the glass substrate is arranged vertically, it is called a vertical type.

【0017】この縦型イオン交換処理装置は、正極側溶
融塩10が入れられる溶融塩容器12と、負極側溶融塩
14が入れられる容器状の基板保持治具16を具備し、
それらが電気炉18内に収容される。基板保持治具16
は、側面に開口を有し且つその開口がガラス基板20で
液密的に塞がれるように着脱可能になっており、図2に
示すように、前記溶融塩容器10中に基板保持治具16
を挿入することにより、ガラス基板20が垂直向きで溶
融塩中に浸漬される。両方の溶融塩中に電極22,24
を挿入し、直流電源26に接続してガラス基板20に直
流電界を印加する。
This vertical ion exchange apparatus comprises a molten salt container 12 in which the positive molten salt 10 is placed, and a container-like substrate holding jig 16 in which the negative molten salt 14 is placed.
They are housed in an electric furnace 18. Substrate holding jig 16
Has an opening on the side surface and is detachable so that the opening is closed in a liquid-tight manner with the glass substrate 20, and as shown in FIG. 16
Is inserted, the glass substrate 20 is immersed in the molten salt in the vertical direction. Electrodes 22, 24 in both molten salts
Is inserted and connected to a DC power supply 26 to apply a DC electric field to the glass substrate 20.

【0018】基板保持治具は、ガラス基板に対して電気
抵抗が十分に大きい材料で構成されていることが望まし
い。また、溶融塩の成分変化を防ぐためにイオン交換さ
れない材質が好ましい。一般に、アルカリイオンを含有
する材質はイオン交換が起こり、且つ電気抵抗が小さ
い。ガラス基板は、その内部に光導波路などを形成する
光学素子となるものであり、アルカリ金属を含有するガ
ラスである。従って、基板保持治具として極力アルカリ
金属を含有しない材質を選べば、電気抵抗は十分に大き
く、イオン交換も起こらない。具体的にはセラミックス
やガラス、例えばAl2 3 、MgO、SiO2 からな
るもの又は複合化合物から構成する。
The substrate holding jig is desirably made of a material having a sufficiently large electric resistance to the glass substrate. Further, a material that is not ion-exchanged in order to prevent a change in components of the molten salt is preferable. Generally, a material containing an alkali ion undergoes ion exchange and has low electric resistance. The glass substrate is an optical element that forms an optical waveguide or the like therein, and is a glass containing an alkali metal. Therefore, if a material containing as little alkali metal as possible is selected as the substrate holding jig, the electric resistance is sufficiently large and ion exchange does not occur. Specifically, it is made of ceramics or glass, for example, one made of Al 2 O 3 , MgO, SiO 2 or a composite compound.

【0019】基板保持治具の一例を図3に示す。ここで
基板保持治具本体30は、扁平な直方体状をなしている
のが好ましく、その広面積側面にガラス基板よりも一回
り小さな開口32が形成されている構造である。ガラス
基板20が耐熱スペーサ34を介して液密的に前記開口
を塞ぐようにする。ガラス基板20の保持は任意の方法
でよい。
FIG. 3 shows an example of the substrate holding jig. Here, the substrate holding jig main body 30 preferably has a flat rectangular parallelepiped shape, and has a structure in which an opening 32 slightly smaller than the glass substrate is formed on a wide area side surface thereof. The glass substrate 20 is closed in a liquid-tight manner with the heat-resistant spacer 34 interposed therebetween. The holding of the glass substrate 20 may be performed by any method.

【0020】ガラス基板の保持状態の一例を図4に示
す。容器状の基板保持治具は、側面に開口32を有する
容器状の治具本体30と、耐熱スペーサ34と、ガラス
基板押さえ治具36を有し、該押さえ治具36によりガ
ラス基板20を前記耐熱スペーサ34を介して治具本体
30に押さえ付けることで液密状態とする。ここで押さ
え治具36は、リング状をなし、その周囲に複数箇所
(ここでは4箇所)にネジ38を分散配置する。他方、
治具本体30の開口の周囲にはそれに対応してナット部
40を設ける。各ネジ38をナット部40に螺着するこ
とにより、押さえ治具36でガラス基板20を耐熱スペ
ーサ34を介して治具本体30に押さえ付け液密状態と
する。ここで、治具本体の開口周辺と押さえ治具のガラ
ス基板対向面のいずれか一方もしくは両方に円周状に凹
凸を配列し、部材相互の密着性を高めるようにしてもよ
い。
FIG. 4 shows an example of the holding state of the glass substrate. The container-shaped substrate holding jig has a container-shaped jig main body 30 having an opening 32 on a side surface, a heat-resistant spacer 34, and a glass substrate holding jig 36, and the glass substrate 20 is held by the holding jig 36. A liquid-tight state is obtained by pressing the jig body 30 through the heat-resistant spacer 34. Here, the holding jig 36 has a ring shape, and the screws 38 are dispersedly arranged at a plurality of positions (here, four positions) around the ring. On the other hand,
A nut portion 40 is provided around the opening of the jig main body 30 correspondingly. By screwing each screw 38 to the nut portion 40, the glass substrate 20 is pressed by the pressing jig 36 to the jig main body 30 via the heat-resistant spacer 34 to be in a liquid-tight state. Here, irregularities may be circumferentially arranged on one or both of the periphery of the opening of the jig main body and the glass substrate facing surface of the holding jig to enhance the adhesion between the members.

【0021】基板保持治具の他の例を図5に示す。図5
のAに示す例は、扁平な直方体状をなし、その広面積の
両側面に、それぞれガラス基板よりも一回り小さな開口
32が相対向するように形成され、それぞれの開口32
を覆うようにガラス基板が着脱可能な構造である。この
基板保持治具を用いると、2枚のガラス基板の同時処理
が可能となる。図5のBに示す例は、扁平な直方体状の
部分の上方に拡開した部分42が連続している構造であ
る。その広面積側面に、ガラス基板よりも一回り小さな
開口32が形成され、その開口32を覆うようにガラス
基板が着脱可能な構造である。開口は両方の広面積側面
に相対向するように形成してもよい。基板保持治具内に
入れた溶融塩の原料は、溶融すると嵩が減るために原料
を多めに入れる必要があり、そのためには上部が拡がっ
た構造は有効である。また、このような構造の基板保持
治具を用いると、大きな塊の原料もそのまま入れること
ができる。
FIG. 5 shows another example of the substrate holding jig. FIG.
In the example shown in FIG. 2A, a flat rectangular parallelepiped is formed, and openings 32 slightly smaller than the glass substrate are formed on both sides of the wide area so as to face each other.
Is a structure in which a glass substrate can be attached and detached so as to cover. The use of this substrate holding jig enables simultaneous processing of two glass substrates. The example shown in FIG. 5B has a structure in which a portion 42 that expands above a flat rectangular parallelepiped portion is continuous. An opening 32 slightly smaller than the glass substrate is formed on the wide area side surface, and the glass substrate is detachable so as to cover the opening 32. The openings may be formed so as to face both wide-area side surfaces. The molten salt raw material put in the substrate holding jig needs to be used in a large amount because the raw material of the molten salt decreases in volume when it is melted. For this purpose, a structure in which the upper portion is expanded is effective. When a substrate holding jig having such a structure is used, a large lump of raw material can be directly contained.

【0022】図6に示すように、電気炉18内に、イオ
ン交換を行うための正極側の溶融塩10が入った溶融塩
容器12を複数個(ここでは3個)並設し、ガラス基板
20を装着した基板保持治具16をそれら溶融塩容器1
2に対応する個数用意し、各基板保持治具16に負極側
溶融塩14を入れ、各溶融塩容器12の溶融塩10中
に、それらガラス基板20を装着した基板保持治具16
をそれぞれ浸漬する。これによって、多数枚のガラス基
板20を同時平行してイオン交換処理することができ
る。このためには、基板保持治具16は、上記のように
扁平な構造とするのが好ましい。多数の溶融塩容器12
を密に並置でき、電気炉18を小型化しうるからであ
る。なお、この例も含めて以下の例では、図面を簡略化
するために、電極や電源などは図示するのを省略してい
る。
As shown in FIG. 6, a plurality (three in this case) of molten salt containers 12 containing a molten salt 10 on the positive electrode side for performing ion exchange are arranged in an electric furnace 18 in parallel. The substrate holding jig 16 on which the molten salt container 20 is mounted
2 are prepared, the molten salt 14 on the negative electrode side is put into each substrate holding jig 16, and the substrate holding jig 16 having the glass substrates 20 mounted in the molten salt 10 of each molten salt container 12 is prepared.
Respectively. Thus, a large number of glass substrates 20 can be subjected to ion exchange processing simultaneously and in parallel. For this purpose, the substrate holding jig 16 preferably has a flat structure as described above. Multiple molten salt containers 12
Can be closely arranged, and the electric furnace 18 can be downsized. In addition, in the following examples including this example, illustration of electrodes, power supplies, and the like is omitted for simplification of the drawings.

【0023】基板保持治具は、多角形筒状として、その
各側面に開口が形成され、それぞれの開口を覆うように
ガラス基板が着脱可能な構造としてもよい。図7に示す
例では、基板保持治具は、正四角形筒状をなし、その各
側面に開口32が形成され、それぞれの開口を覆うよう
にガラス基板が着脱可能な構造である。また、図8に示
す例では、基板保持治具は、正六角形筒状をなし、その
各側面に開口32が形成され、それぞれの開口を覆うよ
うにガラス基板が着脱可能な構造である。筒状体は、吊
り下げ具44によって保持可能になっている。
The substrate holding jig may have a polygonal cylindrical shape with openings formed on each side surface thereof, and a structure in which a glass substrate can be attached and detached so as to cover each opening. In the example shown in FIG. 7, the substrate holding jig has a regular square cylindrical shape, and has an opening 32 formed on each side surface thereof, and has a structure in which a glass substrate can be attached and detached so as to cover each opening. In the example shown in FIG. 8, the substrate holding jig has a regular hexagonal cylindrical shape, and has an opening 32 formed on each side surface thereof, and has a structure in which a glass substrate can be attached and detached so as to cover each opening. The tubular body can be held by the hanging tool 44.

【0024】図9に示すように、電気炉18内に、基板
保持治具16を挿入する溶融塩容器12の他に、別の容
器46を設置する構成も有効である。図9のAに示すよ
うな状態で、イオン交換処理操作を行う。その後、図9
のBに示すように、基板保持治具16を90度以上傾け
て該基板保持治具16内の負極側溶融塩14を流し出し
て別の容器46に廃棄する。このようにすると、徐冷時
に基板保持治具内の負極側溶融塩が固化する際にガラス
基板が破損するのを防止することができる。
As shown in FIG. 9, it is effective to provide another container 46 in the electric furnace 18 in addition to the molten salt container 12 into which the substrate holding jig 16 is inserted. The ion exchange processing operation is performed in a state as shown in FIG. Then, FIG.
As shown in B, the substrate holding jig 16 is tilted by 90 degrees or more, and the negative electrode side molten salt 14 in the substrate holding jig 16 flows out and is discarded in another container 46. By doing so, it is possible to prevent the glass substrate from being damaged when the negative electrode-side molten salt in the substrate holding jig solidifies during slow cooling.

【0025】また図10に示すように、電気炉18内
に、1段階目のイオン交換を行うための溶融塩50が入
った第1の容器52、1価イオンを含まずイオン交換に
寄与しない溶融塩54の入った第2の容器56、2段階
目のイオン交換を行うための溶融塩58が入った第3の
容器60を設置すると、2段階イオン交換処理を連続し
て行える。ガラス基板20を装着した基板保持治具16
を、第1の容器52内の溶融塩50に浸漬して1段階目
のイオン交換を行った後、ガラス基板20を装着した基
板保持治具16を第2の容器60の溶融塩58に浸漬し
て1段階目のイオン交換を行うための溶融塩を除去し、
引き続いてガラス基板20を装着した基板保持治具16
を、第3の容器60内の溶融塩58に浸漬して2段階目
のイオン交換を行う。このようにして、ガラス基板に埋
め込み型の光導波路を連続的に効率よく形成することが
可能となる。
As shown in FIG. 10, a first container 52 containing a molten salt 50 for performing the first-stage ion exchange in the electric furnace 18 does not contain monovalent ions and does not contribute to ion exchange. If the second container 56 containing the molten salt 54 and the third container 60 containing the molten salt 58 for performing the second-stage ion exchange are installed, the two-stage ion exchange process can be performed continuously. Substrate holding jig 16 with glass substrate 20 mounted
Is immersed in the molten salt 50 in the first container 52 to perform the first-stage ion exchange, and then the substrate holding jig 16 on which the glass substrate 20 is mounted is immersed in the molten salt 58 of the second container 60. To remove the molten salt for the first stage ion exchange,
Subsequently, the substrate holding jig 16 on which the glass substrate 20 is mounted
Is immersed in the molten salt 58 in the third container 60 to perform the second-stage ion exchange. In this way, it becomes possible to continuously and efficiently form the embedded optical waveguide in the glass substrate.

【0026】本装置を使用することで、ガラス基板中の
アルカリイオンを溶融塩中の高屈折率イオンとイオン交
換し、ガラス基板中に高屈折率分布の光導波路やマイク
ロレンズを形成した光学素子が得られる。
By using this apparatus, an alkali element in a glass substrate is ion-exchanged with a high-refractive-index ion in a molten salt, and an optical waveguide or a microlens having a high-refractive-index distribution is formed in the glass substrate. Is obtained.

【0027】[0027]

【発明の効果】本発明は上記のように、基本的に縦型方
式であるために気泡や不純物のガラス基板への付着が生
じにくく、そのため高品位の光学素子を歩留まりよく製
造できる。
As described above, since the present invention is basically of a vertical type, it is difficult for air bubbles and impurities to adhere to a glass substrate, so that a high-quality optical element can be manufactured with a high yield.

【0028】また本発明の装置は、小型化に適し、2段
回イオン交換も連続的にできるし、あるいは多数枚のガ
ラス基板の同時並行処理が可能なため、光学素子の製造
効率がよく、量産性に優れている。
Further, the apparatus of the present invention is suitable for miniaturization, can perform ion exchange twice in a continuous manner, or can process a large number of glass substrates simultaneously in parallel. Excellent mass productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る縦型イオン交換処理装置の一実施
例を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing one embodiment of a vertical ion exchange treatment apparatus according to the present invention.

【図2】そのセッティング時の説明図。FIG. 2 is an explanatory diagram at the time of setting.

【図3】基板保持治具の一例を示す説明図。FIG. 3 is an explanatory view showing an example of a substrate holding jig.

【図4】その基板の保持構造の例を示す説明図。FIG. 4 is an explanatory view showing an example of the substrate holding structure.

【図5】基板保持治具本体の他の例を示す説明図。FIG. 5 is an explanatory view showing another example of the substrate holding jig main body.

【図6】基板保持治具本体の更に他の例を示す説明図。FIG. 6 is an explanatory view showing still another example of the substrate holding jig main body.

【図7】基板保持治具本体の他の例を示す説明図。FIG. 7 is an explanatory view showing another example of the substrate holding jig main body.

【図8】本発明装置の使用状態の一例を示す説明図。FIG. 8 is an explanatory diagram showing an example of a use state of the device of the present invention.

【図9】本発明装置の使用状態の他の例を示す説明図。FIG. 9 is an explanatory view showing another example of a use state of the device of the present invention.

【図10】本発明装置の使用状態の更に他の例を示す説
明図。
FIG. 10 is an explanatory view showing still another example of a use state of the device of the present invention.

【符号の説明】[Explanation of symbols]

10 正極側溶融塩 12 溶融塩容器 14 負極側溶融塩 16 基板保持治具 18 電気炉 20 ガラス基板 22,24 電極 26 直流電源 Reference Signs List 10 molten salt on positive electrode side 12 molten salt container 14 molten salt on negative electrode 16 substrate holding jig 18 electric furnace 20 glass substrate 22, 24 electrode 26 DC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 智幸 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 Fターム(参考) 2H047 PA13 4G059 AA08 AC09 HB03  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tomoyuki Hayashi 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. F-term (reference) 2H047 PA13 4G059 AA08 AC09 HB03

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板の一方の面が正極側溶融塩
に、他方の面が負極側溶融塩に接するように構成される
イオン交換処理装置において、 正極側溶融塩が入れられる溶融塩容器と、負極側溶融塩
が入れられる容器状の基板保持治具を具備し、該基板保
持治具は、側面に開口を有し且つ該開口がガラス基板で
液密的に塞がれるように着脱可能になっており、前記溶
融塩容器中に基板保持治具を挿入することにより、ガラ
ス基板が垂直向きで溶融塩中に浸漬されるようにしたこ
とを特徴とする縦型イオン交換処理装置。
1. An ion exchange treatment apparatus configured such that one surface of a glass substrate is in contact with a molten salt on a positive electrode side and the other surface is in contact with a molten salt on a negative electrode. , Comprising a container-shaped substrate holding jig into which the molten salt on the negative electrode side is to be put, the substrate holding jig has an opening on a side surface and is detachable so that the opening is liquid-tightly closed by a glass substrate. Wherein the glass substrate is vertically immersed in the molten salt by inserting a substrate holding jig into the molten salt container.
【請求項2】 基板保持治具は、扁平な直方体状をな
し、その広面積側面にガラス基板よりも一回り小さな開
口が形成されている請求項1記載の縦型イオン交換処理
装置。
2. The vertical ion exchange apparatus according to claim 1, wherein the substrate holding jig has a flat rectangular parallelepiped shape, and an opening slightly smaller than the glass substrate is formed on a wide area side surface thereof.
【請求項3】 開口が相対向する両側面に形成され、そ
れぞれの開口を覆うようにガラス基板が着脱可能な構造
である請求項2記載の縦型イオン交換処理装置。
3. The vertical ion exchange apparatus according to claim 2, wherein the openings are formed on both opposing side surfaces, and the glass substrate is detachable so as to cover the respective openings.
【請求項4】 基板保持治具は、扁平な直方体状の部分
の上方に拡開した部分が連続している形状をなしている
請求項2又は3記載の縦型イオン交換処理装置。
4. The vertical ion-exchange processing apparatus according to claim 2, wherein the substrate holding jig has a shape in which a portion expanded above a flat rectangular parallelepiped portion is continuous.
【請求項5】 正極側溶融塩が入れられる溶融塩容器内
に、複数の基板保持治具を並置し、同時にイオン交換処
理を可能とした請求項1乃至4のいずれかに記載の縦型
イオン交換処理装置。
5. The vertical ion as claimed in claim 1, wherein a plurality of substrate holding jigs are juxtaposed in a molten salt container into which the molten salt on the positive electrode side is placed, and ion exchange treatment is enabled at the same time. Exchange processing equipment.
【請求項6】 基板保持治具は、多角形筒状をなし、そ
の各側面に開口が形成され、それぞれの開口を覆うよう
にガラス基板が着脱可能な構造である請求項1記載の縦
型イオン交換処理装置。
6. The vertical type according to claim 1, wherein the substrate holding jig has a polygonal cylindrical shape, an opening is formed on each side thereof, and a glass substrate is detachable so as to cover each opening. Ion exchange processing equipment.
【請求項7】 容器状の基板保持治具は、側面に開口を
有する容器状の治具本体と、耐熱スペーサと、ガラス基
板押さえ治具を有し、該押さえ治具により前記耐熱スペ
ーサを介してガラス基板を治具本体に押さえ付けること
で液密状態とする請求項1乃至6のいずれかに記載の縦
型イオン交換処理装置。
7. A container-shaped substrate holding jig includes a container-shaped jig main body having an opening on a side surface, a heat-resistant spacer, and a glass substrate pressing jig. The vertical ion exchange processing apparatus according to any one of claims 1 to 6, wherein the glass substrate is held in a liquid-tight state by pressing the glass substrate against the jig body.
【請求項8】 基板保持治具が、Al2 3 、MgO、
SiO2 からなるもの又は複合化合物からなる請求項1
乃至7のいずれかに記載の縦型イオン交換処理装置。
8. The substrate holding jig is made of Al 2 O 3 , MgO,
2. The method according to claim 1, wherein said composition is composed of SiO 2 or a composite compound.
The vertical ion exchange treatment apparatus according to any one of claims 1 to 7.
【請求項9】 炉内に、基板保持治具を挿入する溶融塩
容器の他に、別の容器を設置し、イオン交換処理操作
後、基板保持治具内の負極側溶融塩を別の容器に廃棄可
能とした請求項1乃至8のいずれかに記載の縦型イオン
交換処理装置。
9. A separate container is installed in the furnace in addition to the molten salt container into which the substrate holding jig is inserted, and after the ion exchange treatment operation, the negative electrode side molten salt in the substrate holding jig is transferred to another container. 9. The vertical ion exchange treatment device according to claim 1, wherein the ion exchange treatment device can be disposed of.
【請求項10】 電気炉内に、1段階目のイオン交換を
行うための溶融塩が入った第1の容器、1価イオンを含
まずイオン交換に寄与しない溶融塩の入った第2の容
器、2段階目のイオン交換を行うための溶融塩が入った
第3の容器を設置し、ガラス基板を装着した基板保持治
具を、第1の容器内の溶融塩、第2の容器内の溶融塩、
第3の容器内の溶融塩に順次浸漬可能として2段階イオ
ン交換を連続的に実施可能とした請求項1乃至8のいず
れかに記載の縦型イオン交換処理装置。
10. A first container containing a molten salt for performing the first-stage ion exchange in an electric furnace, and a second container containing a molten salt containing no monovalent ions and not contributing to ion exchange. A third container containing a molten salt for performing the second-stage ion exchange is installed, and the substrate holding jig on which the glass substrate is mounted is moved to the molten salt in the first container and the molten salt in the second container. Molten salt,
The vertical ion-exchange treatment apparatus according to any one of claims 1 to 8, wherein the two-stage ion exchange can be continuously performed by being sequentially immersed in the molten salt in the third container.
JP2000277139A 2000-09-12 2000-09-12 Vertical type ion exchange treating device Pending JP2002087847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000277139A JP2002087847A (en) 2000-09-12 2000-09-12 Vertical type ion exchange treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000277139A JP2002087847A (en) 2000-09-12 2000-09-12 Vertical type ion exchange treating device

Publications (1)

Publication Number Publication Date
JP2002087847A true JP2002087847A (en) 2002-03-27

Family

ID=18762512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000277139A Pending JP2002087847A (en) 2000-09-12 2000-09-12 Vertical type ion exchange treating device

Country Status (1)

Country Link
JP (1) JP2002087847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067465B1 (en) * 2019-06-24 2020-01-17 주식회사 티오텍 Surface tempering apparatus for glass for a foldable dispaly apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067465B1 (en) * 2019-06-24 2020-01-17 주식회사 티오텍 Surface tempering apparatus for glass for a foldable dispaly apparatus

Similar Documents

Publication Publication Date Title
EP3201149B1 (en) Method for manufacturing patterned ion-exchanged substrates
KR20010014651A (en) Microstructure array, and apparatus and method for forming the microstructure array, and a mold for fabricating a microstructure array
KR910010203A (en) Improved optical device and manufacturing method thereof
WO2019084077A1 (en) Through glass via fabrication using a protective material
KR101610994B1 (en) Method for forming oxide film
JP2002087847A (en) Vertical type ion exchange treating device
AKAHORI Electron microscopic study of growing mechanism of aluminium anodic oxide film
CN103560222A (en) Connection method of lead-acid storage battery polar plates and device used for connection method
CN107564847A (en) The preparation method and making apparatus of a kind of display panel
CN102736178A (en) Method for preparing buried optical waveguide
AU708515B2 (en) Method for dissolving a hardened glass solder, method for separating components joined by means of a glass solder, method for disassembling a fuel cell, and apparatus for disassembling a fuel cell
JPS58167451A (en) Preparation of optical element
JP6172667B2 (en) Method for producing double-sided chemically strengthened glass
CN112563169A (en) Hot plate device for removing photoresist by plasma dry method and using method thereof
CN108914193A (en) A kind of environmentally protective wear-resisting extinction electrophoresis production technology
CN211044764U (en) Combined optical mirror device for college physics experiments
JP2008018656A (en) Mold holder and mold cleaning apparatus with the mold holder
CN218710815U (en) Vertical face type annular wafer film coating jig
CN217641234U (en) Fixing tool for wafer
CN105648479A (en) Micro electroforming device with double cathodes vertically rotating
JP2009129651A (en) Manufacturing method of dye-sensitized solar cell
KR100737484B1 (en) Manufacturing method for bipolar plate of fuel cell
JPS63303834A (en) Production of optical element
SU1694502A1 (en) Method of manufacturing integral microlenses
JPH06196179A (en) Formation of constitutive film for solid electrolyte type fuel cell and jig used therefor